51
|
Lander HM, Grant AM, Albrecht T, Hill T, Peters CJ. Endothelial cell permeability and adherens junction disruption induced by junín virus infection. Am J Trop Med Hyg 2014; 90:993-1002. [PMID: 24710609 DOI: 10.4269/ajtmh.13-0382] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Junín virus (JUNV) is endemic to the fertile Pampas of Argentina, maintained in nature by the rodent host Calomys musculinus, and the causative agent of Argentine hemorrhagic fever (AHF), which is characterized by vascular dysfunction and fluid distribution abnormalities. Clinical as well as experimental studies implicate involvement of the endothelium in the pathogenesis of AHF, although little is known of its role. JUNV has been shown to result in productive infection of endothelial cells (ECs) in vitro with no visible cytopathic effects. In this study, we show that direct JUNV infection of primary human ECs results in increased vascular permeability as measured by electric cell substrate impedance sensing and transwell permeability assays. We also show that EC adherens junctions are disrupted during virus infection, which may provide insight into the role of the endothelium in the pathogenesis of AHF and possibly, other viral hemorrhagic fevers.
Collapse
Affiliation(s)
- Heather M Lander
- Departments of Pathology and Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Ashley M Grant
- Departments of Pathology and Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Thomas Albrecht
- Departments of Pathology and Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Terence Hill
- Departments of Pathology and Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Clarence J Peters
- Departments of Pathology and Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
52
|
Slany A, Paulitschke V, Haudek-Prinz V, Meshcheryakova A, Gerner C. Determination of cell type-specific proteome signatures of primary human leukocytes, endothelial cells, keratinocytes, hepatocytes, fibroblasts and melanocytes by comparative proteome profiling. Electrophoresis 2014; 35:1428-38. [PMID: 24644141 DOI: 10.1002/elps.201300581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 12/25/2022]
Abstract
Cells gain their functional specialization by different protein synthesis. A lot of knowledge with respect to cell type-specific proteins has been collected during the last thirty years. This knowledge was built mainly by using antibodies. Nowadays, modern MS, which supports comprehensive proteome analyses of biological samples, may render possible the search for cell type-specific proteins as well. However, a therefore necessary systematic MS study comprising many different cell types has not been performed until now. Here we present a proteome analysis strategy supporting the automated and meaningful comparison of any biological samples. We have presently applied this strategy to six different primary human cell types, namely leukocytes, endothelial cells, keratinocytes, hepatocytes, fibroblasts, and melanocytes. Comparative analysis of the resulting proteome profiles allowed us to select proteins specifically identified in one of the six cell types and not in any of the five others. Based on these results, we designated cell type-specific proteome signatures consisting each of six such characteristic proteins. These signatures independently reproduced well-known marker proteins already established for FACS analyses in addition to novel candidate marker proteins. We applied these signatures for the interpretation of proteome profiles obtained from the analyses of hepatocellular carcinoma-associated tissue homogenates and normal liver tissue homogenates. The identification of members of the above described signatures gave us an indication of the presence of characteristic cells in the diseased tissues and thus supported the interpretation of the proteomics data of these complex biological samples.
Collapse
Affiliation(s)
- Astrid Slany
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Austria; Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Austria
| | | | | | | | | |
Collapse
|
53
|
Golovkine G, Faudry E, Bouillot S, Voulhoux R, Attrée I, Huber P. VE-cadherin cleavage by LasB protease from Pseudomonas aeruginosa facilitates type III secretion system toxicity in endothelial cells. PLoS Pathog 2014; 10:e1003939. [PMID: 24626230 PMCID: PMC3953407 DOI: 10.1371/journal.ppat.1003939] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/06/2014] [Indexed: 01/01/2023] Open
Abstract
Infection of the vascular system by Pseudomonas aeruginosa (Pa) occurs during bacterial dissemination in the body or in blood-borne infections. Type 3 secretion system (T3SS) toxins from Pa induce a massive retraction when injected into endothelial cells. Here, we addressed the role of type 2 secretion system (T2SS) effectors in this process. Mutants with an inactive T2SS were much less effective than wild-type strains at inducing cell retraction. Furthermore, secretomes from wild-types were sufficient to trigger cell-cell junction opening when applied to cells, while T2SS-inactivated mutants had minimal activity. Intoxication was associated with decreased levels of vascular endothelial (VE)-cadherin, a homophilic adhesive protein located at endothelial cell-cell junctions. During the process, the protein was cleaved in the middle of its extracellular domain (positions 335 and 349). VE-cadherin attrition was T3SS-independent but T2SS-dependent. Interestingly, the epithelial (E)-cadherin was unaffected by T2SS effectors, indicating that this mechanism is specific to endothelial cells. We showed that one of the T2SS effectors, the protease LasB, directly affected VE-cadherin proteolysis, hence promoting cell-cell junction disruption. Furthermore, mouse infection with Pa to induce acute pneumonia lead to significant decreases in lung VE-cadherin levels, whereas the decrease was minimal with T2SS-inactivated or LasB-deleted mutant strains. We conclude that the T2SS plays a pivotal role during Pa infection of the vascular system by breaching the endothelial barrier, and propose a model in which the T2SS and the T3SS cooperate to intoxicate endothelial cells.
Collapse
Affiliation(s)
- Guillaume Golovkine
- INSERM, U1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- Université Joseph Fourier-Grenoble I, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Eric Faudry
- INSERM, U1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- Université Joseph Fourier-Grenoble I, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Stéphanie Bouillot
- INSERM, U1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- Université Joseph Fourier-Grenoble I, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Romé Voulhoux
- CNRS and Aix-Marseille Univ, Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR7255), Marseille, France
| | - Ina Attrée
- INSERM, U1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- Université Joseph Fourier-Grenoble I, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| | - Philippe Huber
- INSERM, U1036, Biology of Cancer and Infection, Grenoble, France
- CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, Grenoble, France
- Université Joseph Fourier-Grenoble I, Grenoble, France
- CEA, DSV/iRTSV, Grenoble, France
| |
Collapse
|
54
|
Liao Z, Cao C, Wang J, Huxley VH, Baker O, Weisman GA, Erb L. The P2Y 2 Receptor Interacts with VE-Cadherin and VEGF Receptor-2 to Regulate Rac1 Activity in Endothelial Cells. ACTA ACUST UNITED AC 2014; 7:1105-1121. [PMID: 25657827 PMCID: PMC4314728 DOI: 10.4236/jbise.2014.714109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Vascular endothelial cadherin (VE-cadherin) mediates homophylic adhesion between endothelial cells and is an important regulator of angiogenesis, blood vessel permeability and leukocyte trafficking. Rac1, a member of the Rho family of GTPases, controls VE-cadherin adhesion by acting downstream of several growth factors, including angiopoietin-1 and vascular endothelial growth factor (VEGF). Here we show that UTP-induced activation of the Gq protein-coupled P2Y2 nucleotide receptor (P2Y2R) in human coronary artery endothelial cells (HCAECs) activated Rac1 and caused a transient complex to form between P2Y2R, VE-cadherin and VEGF receptor-2 (VEGFR-2). Knockdown of VE-cadherin expression with siRNA did not affect UTP-induced activation of extracellular signal-regulated kinases 1/2 (ERK1/2) but led to a loss of UTP-induced Rac1 activation and tyrosine phosphorylation of p120 catenin, a cytoplasmic protein known to interact with VE-cadherin. Activation of the P2Y2R by UTP also caused a prolonged interaction between p120 catenin and vav2 (a guanine nucleotide exchange factor for Rac) that correlated with the kinetics of UTP-induced tyrosine phosphorylation of p120 catenin and VE-cadherin. Inhibitors of VEGFR-2 (SU1498) or Src (PP2) significantly diminished UTP-induced Rac1 activation, tyrosine phosphorylation of p120 catenin and VE-cadherin, and association of the P2Y2R with VE-cadherin and p120 catenin with vav2. These findings suggest that the P2Y2R uses Src and VEGFR-2 to mediate association of the P2Y2R with VE-cadherin complexes in endothelial adherens junctions to activate Rac1.
Collapse
Affiliation(s)
- Zhongji Liao
- Department of Medicine, University of California, San Diego, USA
| | - Chen Cao
- Department of Biochemistry, Life Sciences Center, University of Missouri, Columbia, USA
| | - Jianjie Wang
- Department of Biomedical Sciences, Missouri State University, Springfield, USA
| | - Virginia H Huxley
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, USA
| | - Olga Baker
- School of Dentistry, University of Utah, Salt Lake City, USA
| | - Gary A Weisman
- Department of Biochemistry, Life Sciences Center, University of Missouri, Columbia, USA
| | - Laurie Erb
- Department of Biochemistry, Life Sciences Center, University of Missouri, Columbia, USA
| |
Collapse
|
55
|
Isolation, characterization, and transplantation of cardiac endothelial cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:359412. [PMID: 24282814 PMCID: PMC3825130 DOI: 10.1155/2013/359412] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/28/2013] [Indexed: 11/18/2022]
Abstract
Isolation and ex vivo expansion of cardiac endothelial cells have been a recurrent challenge due to difficulties in isolation, cell heterogeneity, lack of specific markers to identify myocardial endothelial cells, and inadequate conditions to maintain long-term cultures. Herein, we developed a method for isolation, characterization, and expansion of cardiac endothelial cells applicable to study endothelial cell biology and clinical applications such as neoangiogenesis. First, we dissociated the cells from murine heart by mechanical disaggregation and enzymatic digestion. Then, we used flow cytometry coupled with specific markers to isolate endothelial cells from murine hearts. CD45+ cells were gated out to eliminate the hematopoietic cells. CD31+/Sca-1+ cells were isolated as endothelial cells. Cells isolated from atrium grew faster than those from ventricle. Cardiac endothelial cells maintain endothelial cell function such as vascular tube formation and acetylated-LDL uptake in vitro. Finally, cardiac endothelial cells formed microvessels in dorsal matrigel plug and engrafted in cardiac microvessels following intravenous and intra-arterial injections. In conclusion, our multicolor flow cytometry method is an effective method to analyze and purify endothelial cells from murine heart, which in turn can be ex vivo expanded to study the biology of endothelial cells or for clinical applications such as therapeutic angiogenesis.
Collapse
|
56
|
Paolinelli R, Corada M, Ferrarini L, Devraj K, Artus C, Czupalla CJ, Rudini N, Maddaluno L, Papa E, Engelhardt B, Couraud PO, Liebner S, Dejana E. Wnt activation of immortalized brain endothelial cells as a tool for generating a standardized model of the blood brain barrier in vitro. PLoS One 2013; 8:e70233. [PMID: 23940549 PMCID: PMC3734070 DOI: 10.1371/journal.pone.0070233] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 06/18/2013] [Indexed: 02/02/2023] Open
Abstract
Reproducing the characteristics and the functional responses of the blood–brain barrier (BBB) in vitro represents an important task for the research community, and would be a critical biotechnological breakthrough. Pharmaceutical and biotechnology industries provide strong demand for inexpensive and easy-to-handle in vitro BBB models to screen novel drug candidates. Recently, it was shown that canonical Wnt signaling is responsible for the induction of the BBB properties in the neonatal brain microvasculature in vivo. In the present study, following on from earlier observations, we have developed a novel model of the BBB in vitro that may be suitable for large scale screening assays. This model is based on immortalized endothelial cell lines derived from murine and human brain, with no need for co-culture with astrocytes. To maintain the BBB endothelial cell properties, the cell lines are cultured in the presence of Wnt3a or drugs that stabilize β-catenin, or they are infected with a transcriptionally active form of β-catenin. Upon these treatments, the cell lines maintain expression of BBB-specific markers, which results in elevated transendothelial electrical resistance and reduced cell permeability. Importantly, these properties are retained for several passages in culture, and they can be reproduced and maintained in different laboratories over time. We conclude that the brain-derived endothelial cell lines that we have investigated gain their specialized characteristics upon activation of the canonical Wnt pathway. This model may be thus suitable to test the BBB permeability to chemicals or large molecular weight proteins, transmigration of inflammatory cells, treatments with cytokines, and genetic manipulation.
Collapse
Affiliation(s)
| | - Monica Corada
- IFOM-FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Luca Ferrarini
- IFOM-FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Kavi Devraj
- Institute of Neurology (Edinger Institute), Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Cédric Artus
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Cathrin J. Czupalla
- Institute of Neurology (Edinger Institute), Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Noemi Rudini
- IFOM-FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Luigi Maddaluno
- IFOM-FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Eleanna Papa
- IFOM-FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | | | - Pierre Olivier Couraud
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Elisabetta Dejana
- IFOM-FIRC Institute of Molecular Oncology Foundation, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
- * E-mail:
| |
Collapse
|
57
|
Abstract
Metabolic stimuli, pressure, and fluid shear stress (FSS) are major mediators of vascular plasticity. The exposure of the vessel wall to increased laminar FSS is the main trigger of arteriogenesis, the remodelling of pre-existent arterio-arteriolar anastomoses to functional conductance arteries. In this study, we have used an in vitro bioreactor to investigate cell-specific interactions, molecular mechanisms as well as time-dependent effects under laminar FSS conditions. This bioreactor termed “artificial artery” can be used for screening potential arterio-protective substances, pro-arteriogenic factors, and for investigating biomarkers of cardiovascular diseases such as cardiac diseases. The bioreactor is built up out of 14 hollow fiber membranes colonized with endothelial cells (HUVECs) on the inside and smooth muscle cells (HUASMCs) on the outside. By means of Hoechst 33342 staining as well as immunocytochemistry of ß-catenin and α-smooth-muscle-actin, a microporous polypropylene membrane was characterized as being the appropriate polymer for co-colonization. Defined arterial flow conditions (0.1 N/m2 and 3 N/m2), metabolic exchange, and cross-talk of HUVECs and HUASMCs through hollow fibers mimic physiological in vivo conditions of the vasculature. Analysing mono- and co-culture secretomes by MALDI-TOF-TOF mass spectrometry, we could show that HUVECs secreted Up4A upon 3 N/m2. A constant cellular secretion of randomly chosen peptides verified viability of the “artificial artery” for a cultivation period up to five days. qRT-PCR analyses revealed an up-regulation of KLF2 and TIMP1 as mechano-regulated genes and demonstrated arterio-protective, homeostatic FSS conditions by a down-regulation of EDN1. Expression analyses of VWF and EDN1 furthermore confirmed that RNA of both cell types could separately be isolated without cross-contamination. CCND1 mRNA expression in HUVECs did not change upon FSS indicating a quiescent endothelial phenotype. Taken together, the “artificial artery” provides a solid in vitro model to test pharmacological active compounds for their impact on arterio-damaging or arterio-protective properties on vascular response.
Collapse
|
58
|
Kluger MS, Clark PR, Tellides G, Gerke V, Pober JS. Claudin-5 controls intercellular barriers of human dermal microvascular but not human umbilical vein endothelial cells. Arterioscler Thromb Vasc Biol 2013; 33:489-500. [PMID: 23288152 DOI: 10.1161/atvbaha.112.300893] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To assess the role claudin-5, an endothelial cell (EC) tight junction protein, plays in establishing basal permeability levels in humans by comparing claudin-5 expression levels in situ and analyzing junctional organization and function in 2 widely used models of cultured ECs, namely human dermal microvascular (HDM)ECs and human umbilical vein (HUV)ECs. METHODS AND RESULTS By immunofluorescence microscopy, ECs more highly express claudin-5 (but equivalently express vascular endothelial-cadherin) in human dermal capillaries versus postcapillary venules and in umbilical and coronary arteries versus veins, correlating with known segmental differences in tight junction frequencies and permeability barriers. Postconfluent cultured HDMECs express more claudin-5 (but equivalent vascular endothelial-cadherin) and show higher transendothelial electric resistance and lower macromolecular flux than similarly cultured HUVECs. HDMEC junctions are more complex by transmission electron microscopy and show more continuous claudin-5 immunofluorescence than HUVEC junctions. Calcium chelation or dominant negative vascular endothelial-cadherin overexpression decreases transendothelial electric resistance and disrupts junctions in HUVECs, but not in HDMECs. Claudin-5 overexpression in HUVECs fails to increase transendothelial electric resistance or claudin-5 continuity, whereas claudin-5 knockdown in HDMECs, but not in HUVECs, reduces transendothelial electric resistance and increases antibody accessibility to junctional proteins. CONCLUSIONS Claudin-5 expression and junctional organization control HDMEC and arteriolar-capillary paracellular barriers, whereas HUVEC and venular junctions use vascular endothelial-cadherin.
Collapse
Affiliation(s)
- Martin S Kluger
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA.
| | | | | | | | | |
Collapse
|
59
|
Dejana E, Vestweber D. The role of VE-cadherin in vascular morphogenesis and permeability control. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:119-44. [PMID: 23481193 DOI: 10.1016/b978-0-12-394311-8.00006-6] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
VE-cadherin is an endothelial-specific cadherin that is essential for the formation and regulation of endothelial cell junctions. The adhesive function and expression levels of VE-cadherin at endothelial contacts are central determinants of the control of vascular permeability and leukocyte recruitment into tissue. In addition to controlling junctional integrity, VE-cadherin modulates a multitude of signaling processes that influence the behavior of endothelial cells, such as proliferation, survival, migration, polarity, expression of other junctional components, and tube and lumen formation of blood vessels. This chapter highlights recent progress in understanding how VE-cadherin modulates these various cellular processes. In addition, the current knowledge about how VE-cadhern participates in the regulation of the endothelial barrier in the adult organism is discussed.
Collapse
Affiliation(s)
- Elisabetta Dejana
- IFOM, FIRC Institute of Molecular Oncology, University of Milan, Milan, Italy
| | | |
Collapse
|
60
|
Timmerman I, Hoogenboezem M, Bennett AM, Geerts D, Hordijk PL, van Buul JD. The tyrosine phosphatase SHP2 regulates recovery of endothelial adherens junctions through control of β-catenin phosphorylation. Mol Biol Cell 2012; 23:4212-25. [PMID: 22956765 PMCID: PMC3484100 DOI: 10.1091/mbc.e12-01-0038] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Reconstitution of the endothelial barrier involves SHP2-mediated dephosphorylation of VE-cadherin–associated β-catenin, leading to reassembly of adherens junctions and thereby closing the gaps between endothelial cells. Impaired endothelial barrier function results in a persistent increase in endothelial permeability and vascular leakage. Repair of a dysfunctional endothelial barrier requires controlled restoration of adherens junctions, comprising vascular endothelial (VE)-cadherin and associated β-, γ-, α-, and p120-catenins. Little is known about the mechanisms by which recovery of VE-cadherin–mediated cell–cell junctions is regulated. Using the inflammatory mediator thrombin, we demonstrate an important role for the Src homology 2-domain containing tyrosine phosphatase (SHP2) in mediating recovery of the VE-cadherin–controlled endothelial barrier. Using SHP2 substrate-trapping mutants and an in vitro phosphatase activity assay, we validate β-catenin as a bona fide SHP2 substrate. SHP2 silencing and SHP2 inhibition both result in delayed recovery of endothelial barrier function after thrombin stimulation. Moreover, on thrombin challenge, we find prolonged elevation in tyrosine phosphorylation levels of VE-cadherin–associated β-catenin in SHP2-depleted cells. No disassembly of the VE-cadherin complex is observed throughout the thrombin response. Using fluorescence recovery after photobleaching, we show that loss of SHP2 reduces the mobility of VE-cadherin at recovered cell–cell junctions. In conclusion, our data show that the SHP2 phosphatase plays an important role in the recovery of disrupted endothelial cell–cell junctions by dephosphorylating VE-cadherin–associated β-catenin and promoting the mobility of VE-cadherin at the plasma membrane.
Collapse
Affiliation(s)
- Ilse Timmerman
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
61
|
Vandenbroucke St Amant E, Tauseef M, Vogel SM, Gao XP, Mehta D, Komarova YA, Malik AB. PKCα activation of p120-catenin serine 879 phospho-switch disassembles VE-cadherin junctions and disrupts vascular integrity. Circ Res 2012; 111:739-49. [PMID: 22798526 DOI: 10.1161/circresaha.112.269654] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
RATIONALE Adherens junctions (AJs) are the primary intercellular junctions in microvessels responsible for endothelial barrier function. Homophilic adhesion of vascular endothelial (VE) cadherin forms AJs, which are stabilized by binding of p120-catenin (p120). p120 dissociation from VE-cadherin results in loss of VE-cadherin homotypic interaction and AJ disassembly; however, the signaling mechanisms regulating p120 dissociation from VE-cadherin are not understood. OBJECTIVE To address the mechanism of protein kinase C (PKC)-α function in increasing endothelial permeability, we determined the role of PKCα phosphorylation of p120 in mediating disruption of AJ integrity. METHODS AND RESULTS We showed that PKCα phosphorylation of p120 at serine (S)879 in response to thrombin or lipopolysaccharide challenge reduced p120 binding affinity for VE-cadherin and mediated AJ disassembly secondary to VE-cadherin internalization. In studies in mouse lung vessels, expression of the phosphodeficient S879A-p120 mutant prevented the increase in vascular permeability induced by activation of the thrombin receptor PAR-1. CONCLUSIONS PKCα phosphorylation of p120 at S879 is a critical phospho-switch mediating disassociation of p120 from VE-cadherin that results in AJ disassembly. Therefore, blocking PKCα-mediated p120 phosphorylation represents a novel targeted anti-inflammatory strategy to prevent disruption of vascular endothelial barrier function.
Collapse
Affiliation(s)
- Emily Vandenbroucke St Amant
- Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois College of Medicine, 835 S Wolcott Ave, M/C 86, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
62
|
Hochmeister S, Romauch M, Bauer J, Seifert-Held T, Weissert R, Linington C, Hartung HP, Fazekas F, Storch MK. Re-expression of N-cadherin in remyelinating lesions of experimental inflammatory demyelination. Exp Neurol 2012; 237:70-7. [PMID: 22735489 DOI: 10.1016/j.expneurol.2012.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 06/13/2012] [Accepted: 06/16/2012] [Indexed: 10/28/2022]
Abstract
The cell adhesion molecule N-cadherin is involved in several processes during central nervous system development, but also in certain pathologic conditions in the adult brain, including tumorigenesis and Alzheimer's disease. N-cadherin function in inflammatory demyelinating disease has so far not been investigated. In vitro studies suggest a role of N-cadherin in myelination; on the other hand N-cadherin has been implicated in the formation of the glial scar, which is believed to impede remyelination. The aim of our study was to investigate the expression pattern of N-cadherin immunoreactivity in experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein (MOG-EAE), an animal model closely mimicking multiple sclerosis. It allows a detailed evaluation of all stages of de- and remyelination during lesion development. Immunopathological evaluation was performed on paraffin-embedded CNS sections sampled at days 20 to 120 post immunization. We found a predominant expression of N-cadherin on oligodendrocytes in early remyelinating lesions, while in fully remyelinated shadow plaques there was no detectable immunoreactivity for N-cadherin. This expression pattern indicates a role of N-cadherin in the initiation of remyelination, most likely by providing a guidance between myelin lamellae and oligodendrocytes. Once the initial contact is made N-cadherin is then rapidly downregulated and virtually absent after completion of the repair process, analog to its known role in developmental myelination. Our results show that N-cadherin plays an important role in creating a remyelination-facilitating environment.
Collapse
Affiliation(s)
- S Hochmeister
- Department of Neurology, Medical University Graz, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Tso C, Rye KA, Barter P. Phenotypic and functional changes in blood monocytes following adherence to endothelium. PLoS One 2012; 7:e37091. [PMID: 22615904 PMCID: PMC3352879 DOI: 10.1371/journal.pone.0037091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/17/2012] [Indexed: 01/09/2023] Open
Abstract
Objective Blood monocytes are known to express endothelial-like genes during co-culture with endothelium. In this study, the time-dependent change in the phenotype pattern of primary blood monocytes after adhering to endothelium is reported using a novel HLA-A2 mistyped co-culture model. Methods and Results Freshly isolated human PBMCs were co-cultured with human umbilical vein endothelial cells or human coronary arterial endothelial cells of converse human leukocyte antigen A2 (HLA-A2) status. This allows the tracking of the PBMC-derived cells by HLA-A2 expression and assessment of their phenotype pattern over time. PBMCs that adhered to the endothelium at the start of the co-culture were predominantly CD11b+ blood monocytes. After 24 to 72 hours in co-culture, the endothelium-adherent monocytes acquired endothelial-like properties including the expression of endothelial nitric oxide synthase, CD105, CD144 and vascular endothelial growth factor receptor 2. The expression of monocyte/macrophage lineage antigens CD14, CD11b and CD36 were down regulated concomitantly. The adherent monocytes did not express CD115 after 1 day of co-culture. By day 6, the monocyte-derived cells expressed vascular cell adhesion molecule 1 in response to tumour necrosis factor alpha. Up to 10% of the PBMCs adhered to the endothelium. These monocyte-derived cells contributed up to 30% of the co-cultured cell layer and this was dose-dependent on the PBMC seeding density. Conclusions Human blood monocytes undergo rapid phenotype change to resemble endothelial cells after adhering to endothelium.
Collapse
Affiliation(s)
- Colin Tso
- Lipid Research Group, The Heart Research Institute, Newtown, New South Wales, Australia.
| | | | | |
Collapse
|
64
|
Weisman GA, Ajit D, Garrad R, Peterson TS, Woods LT, Thebeau C, Camden JM, Erb L. Neuroprotective roles of the P2Y(2) receptor. Purinergic Signal 2012; 8:559-78. [PMID: 22528682 DOI: 10.1007/s11302-012-9307-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/04/2011] [Indexed: 02/07/2023] Open
Abstract
Purinergic signaling plays a unique role in the brain by integrating neuronal and glial cellular circuits. The metabotropic P1 adenosine receptors and P2Y nucleotide receptors and ionotropic P2X receptors control numerous physiological functions of neuronal and glial cells and have been implicated in a wide variety of neuropathologies. Emerging research suggests that purinergic receptor interactions between cells of the central nervous system (CNS) have relevance in the prevention and attenuation of neurodegenerative diseases resulting from chronic inflammation. CNS responses to chronic inflammation are largely dependent on interactions between different cell types (i.e., neurons and glia) and activation of signaling molecules including P2X and P2Y receptors. Whereas numerous P2 receptors contribute to functions of the CNS, the P2Y(2) receptor is believed to play an important role in neuroprotection under inflammatory conditions. While acute inflammation is necessary for tissue repair due to injury, chronic inflammation contributes to neurodegeneration in Alzheimer's disease and occurs when glial cells undergo prolonged activation resulting in extended release of proinflammatory cytokines and nucleotides. This review describes cell-specific and tissue-integrated functions of P2 receptors in the CNS with an emphasis on P2Y(2) receptor signaling pathways in neurons, glia, and endothelium and their role in neuroprotection.
Collapse
Affiliation(s)
- Gary A Weisman
- Department of Biochemistry, University of Missouri, 540E Life Sciences Center, 1201 Rollins Road, Columbia, MO 65211-7310, USA.
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Wang CY, Tsai JC, Chuang CC, Hsieh YS, Sun CW. Aorta fluorescence imaging by using confocal microscopy. ISRN CARDIOLOGY 2012; 2011:215627. [PMID: 22347633 PMCID: PMC3262523 DOI: 10.5402/2011/215627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/03/2011] [Indexed: 01/01/2023]
Abstract
The activated leukocyte attacked the vascular endothelium and the associated increase in VEcadherin number was observed in experiments. The confocal microscopic system with a prism-based wavelength filter was used for multiwavelength fluorescence measurement. Multiwavelength fluorescence imaging based on the VEcadherin within the aorta segment of a rat was achieved. The confocal microscopic system capable of fluorescence detection of cardiovascular tissue is a useful tool for measuring the biological properties in clinical applications.
Collapse
Affiliation(s)
- Chun-Yang Wang
- Biophotonics Interdisciplinary Research Center and Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan
| | | | | | | | | |
Collapse
|
66
|
Chervin-Pétinot A, Courçon M, Almagro S, Nicolas A, Grichine A, Grunwald D, Prandini MH, Huber P, Gulino-Debrac D. Epithelial protein lost in neoplasm (EPLIN) interacts with α-catenin and actin filaments in endothelial cells and stabilizes vascular capillary network in vitro. J Biol Chem 2011; 287:7556-72. [PMID: 22194609 DOI: 10.1074/jbc.m111.328682] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adherens junctions are required for vascular endothelium integrity. These structures are formed by the clustering of the homophilic adhesive protein VE-cadherin, which recruits intracellular partners, such as β- and α-catenins, vinculin, and actin filaments. The dogma according to which α-catenin bridges cadherin·β-catenin complexes to the actin cytoskeleton has been challenged during the past few years, and the link between the VE-cadherin·catenin complex and the actin cytoskeleton remains unclear. Recently, epithelial protein lost in neoplasm (EPLIN) has been proposed as a possible bond between the E-cadherin·catenin complex and actin in epithelial cells. Herein, we show that EPLIN is expressed at similar levels in endothelial and epithelial cells and is located at interendothelial junctions in confluent cells. Co-immunoprecipitation and GST pulldown experiments provided evidence that EPLIN interacts directly with α-catenin and tethers the VE-cadherin·catenin complex to the actin cytoskeleton. In the absence of EPLIN, vinculin was delocalized from the junctions. Furthermore, suppression of actomyosin tension using blebbistatin triggered a similar vinculin delocalization from the junctions. In a Matrigel assay, EPLIN-depleted endothelial cells exhibited a reduced capacity to form pseudocapillary networks because of numerous breakage events. In conclusion, we propose a model in which EPLIN establishes a link between the cadherin·catenin complex and actin that is independent of actomyosin tension. This link acts as a mechanotransmitter, allowing vinculin binding to α-catenin and formation of a secondary molecular bond between the adherens complex and the cytoskeleton through vinculin. In addition, we provide evidence that the EPLIN clutch is necessary for stabilization of capillary structures in an angiogenesis model.
Collapse
|
67
|
Broermann A, Winderlich M, Block H, Frye M, Rossaint J, Zarbock A, Cagna G, Linnepe R, Schulte D, Nottebaum AF, Vestweber D. Dissociation of VE-PTP from VE-cadherin is required for leukocyte extravasation and for VEGF-induced vascular permeability in vivo. ACTA ACUST UNITED AC 2011; 208:2393-401. [PMID: 22025303 PMCID: PMC3256962 DOI: 10.1084/jem.20110525] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Artificially stabilizing contacts between VE-cadherin and VE-PTP reduce vascular permeability and leukocyte extravasation in vivo. We have recently shown that vascular endothelial protein tyrosine phosphatase (VE-PTP), an endothelial membrane protein, associates with VE-cadherin and is required for optimal VE-cadherin function and endothelial cell contact integrity. The dissociation of VE-PTP from VE-cadherin is triggered by vascular endothelial growth factor (VEGF) and by the binding of leukocytes to endothelial cells in vitro, suggesting that this dissociation is a prerequisite for the destabilization of endothelial cell contacts. Here, we show that VE-cadherin/VE-PTP dissociation also occurs in vivo in response to LPS stimulation of the lung or systemic VEGF stimulation. To show that this dissociation is indeed necessary in vivo for leukocyte extravasation and VEGF-induced vascular permeability, we generated knock-in mice expressing the fusion proteins VE-cadherin-FK 506 binding protein and VE-PTP-FRB* under the control of the endogenous VE-cadherin promoter, thus replacing endogenous VE-cadherin. The additional domains in both fusion proteins allow the heterodimeric complex to be stabilized by a chemical compound (rapalog). We found that intravenous application of the rapalog strongly inhibited VEGF-induced (skin) and LPS-induced (lung) vascular permeability and inhibited neutrophil extravasation in the IL-1β inflamed cremaster and the LPS-inflamed lung. We conclude that the dissociation of VE-PTP from VE-cadherin is indeed required in vivo for the opening of endothelial cell contacts during induction of vascular permeability and leukocyte extravasation.
Collapse
Affiliation(s)
- Andre Broermann
- Max-Planck-Institute for Molecular Biomedicine, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun 2011; 2:499. [PMID: 21988915 DOI: 10.1038/ncomms1508] [Citation(s) in RCA: 335] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 09/13/2011] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle fibres form by fusion of mesoderm progenitors called myoblasts. After birth, muscle fibres do not increase in number but continue to grow in size because of fusion of satellite cells, the postnatal myogenic cells, responsible for muscle growth and regeneration. Numerous studies suggest that, on transplantation, non-myogenic cells also may contribute to muscle regeneration. However, there is currently no evidence that such a contribution represents a natural developmental option of these non-myogenic cells, rather than a consequence of experimental manipulation resulting in cell fusion. Here we show that pericytes, transgenically labelled with an inducible Alkaline Phosphatase CreERT2, but not endothelial cells, fuse with developing myofibres and enter the satellite cell compartment during unperturbed postnatal development. This contribution increases significantly during acute injury or in chronically regenerating dystrophic muscle. These data show that pericytes, resident in small vessels of skeletal muscle, contribute to its growth and regeneration during postnatal life.
Collapse
|
69
|
Kronstein R, Seebach J, Grossklaus S, Minten C, Engelhardt B, Drab M, Liebner S, Arsenijevic Y, Taha AA, Afanasieva T, Schnittler HJ. Caveolin-1 opens endothelial cell junctions by targeting catenins. Cardiovasc Res 2011; 93:130-40. [PMID: 21960684 DOI: 10.1093/cvr/cvr256] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AIMS A fundamental phenomenon in inflammation is the loss of endothelial barrier function, in which the opening of endothelial cell junctions plays a central role. However, the molecular mechanisms that ultimately open the cell junctions are largely unknown. METHODS AND RESULTS Impedance spectroscopy, biochemistry, and morphology were used to investigate the role of caveolin-1 in the regulation of thrombin-induced opening of cell junctions in cultured human and mouse endothelial cells. Here, we demonstrate that the vascular endothelial (VE) cadherin/catenin complex targets caveolin-1 to endothelial cell junctions. Association of caveolin-1 with VE-cadherin/catenin complexes is essential for the barrier function decrease in response to the pro-inflammatory mediator thrombin, which causes a reorganization of the complex in a rope ladder-like pattern accompanied by a loss of junction-associated actin filaments. Mechanistically, we show that in response to thrombin stimulation the protease-activated receptor 1 (PAR-1) causes phosphorylation of caveolin-1, which increasingly associates with β- and γ-catenin. Consequently, the association of β- and γ-catenin with VE-cadherin is weakened, thus allowing junction reorganization and a decrease in barrier function. Thrombin-induced opening of cell junctions is lost in caveolin-1-knockout endothelial cells and after expression of a Y/F-caveolin-1 mutant but is completely reconstituted after expression of wild-type caveolin-1. CONCLUSION Our results highlight the pivotal role of caveolin-1 in VE-cadherin-mediated cell adhesion via catenins and, in turn, in barrier function regulation.
Collapse
Affiliation(s)
- Romy Kronstein
- Institute of Physiology, Medical Faculty of the TU-Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Rybtsov S, Sobiesiak M, Taoudi S, Souilhol C, Senserrich J, Liakhovitskaia A, Ivanovs A, Frampton J, Zhao S, Medvinsky A. Hierarchical organization and early hematopoietic specification of the developing HSC lineage in the AGM region. J Exp Med 2011; 208:1305-15. [PMID: 21624936 PMCID: PMC3173253 DOI: 10.1084/jem.20102419] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 04/27/2011] [Indexed: 11/18/2022] Open
Abstract
The aorta-gonad-mesonephros region plays an important role in hematopoietic stem cell (HSC) development during mouse embryogenesis. The vascular endothelial cadherin⁺ CD45⁺ (VE-cad⁺CD45⁺) population contains the major type of immature pre-HSCs capable of developing into long-term repopulating definitive HSCs. In this study, we developed a new coaggregation culture system, which supports maturation of a novel population of CD45-negative (VE-cad⁺CD45⁻CD41⁺) pre-HSCs into definitive HSCs. The appearance of these pre-HSCs precedes development of the VE-cad⁺CD45⁺ pre-HSCs (termed here type I and type II pre-HSCs, respectively), thus establishing a hierarchical directionality in the developing HSC lineage. By labeling the luminal surface of the dorsal aorta, we show that both type I and type II pre-HSCs are distributed broadly within the endothelial and subendothelial aortic layers, in contrast to mature definitive HSCs which localize to the aortic endothelial layer. In agreement with expression of CD41 in pre-HSCs, in vivo CD41-Cre-mediated genetic tagging occurs in embryonic pre-HSCs and persists in all lymphomyeloid lineages of the adult animal.
Collapse
Affiliation(s)
- Stanislav Rybtsov
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH9 3JQ, Scotland, UK
| | - Malgorzata Sobiesiak
- Department of Internal Medicine II, Division of Hematology, Immunology, Oncology, and Rheumatology, University Clinic of Tübingen, Tübingen 72076, Germany
| | - Samir Taoudi
- Molecular Medicine Division, Walter and Eliza Institute of Medical Research, Melbourne, Parkville, Victoria 3052, Australia
| | - Céline Souilhol
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH9 3JQ, Scotland, UK
| | - Jordi Senserrich
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH9 3JQ, Scotland, UK
| | - Anna Liakhovitskaia
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH9 3JQ, Scotland, UK
| | - Andrejs Ivanovs
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH9 3JQ, Scotland, UK
| | - Jon Frampton
- Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Suling Zhao
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH9 3JQ, Scotland, UK
| | - Alexander Medvinsky
- Institute for Stem Cell Research, Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH9 3JQ, Scotland, UK
| |
Collapse
|
71
|
Crebbp haploinsufficiency in mice alters the bone marrow microenvironment, leading to loss of stem cells and excessive myelopoiesis. Blood 2011; 118:69-79. [PMID: 21555743 DOI: 10.1182/blood-2010-09-307942] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
CREB-binding protein (CREBBP) is important for the cell-autonomous regulation of hematopoiesis, including the stem cell compartment. In the present study, we show that CREBBP plays an equally pivotal role in microenvironment-mediated regulation of hematopoiesis. We found that the BM microenvironment of Crebbp(+/-) mice was unable to properly maintain the immature stem cell and progenitor cell pools. Instead, it stimulates myeloid differentiation, which progresses into a myeloproliferation phenotype. Alterations in the BM microenvironment resulting from haploinsufficiency of Crebbp included a marked decrease in trabecular bone that was predominantly caused by increased osteoclastogenesis. Although CFU-fibroblast (CFU-F) and total osteoblast numbers were decreased, the bone formation rate was similar to that found in wild-type mice. At the molecular level, we found that the known hematopoietic modulators matrix metallopeptidase-9 (MMP9) and kit ligand (KITL) were decreased with heterozygous levels of Crebbp. Lastly, potentially important regulatory proteins, endothelial cell adhesion molecule 1 (ESAM1) and cadherin 5 (CDH5), were increased on Crebbp(+/-) endothelial cells. Our findings reveal that a full dose of Crebbp is essential in the BM microenvironment to maintain proper hematopoiesis and to prevent excessive myeloproliferation.
Collapse
|
72
|
Brasch J, Harrison OJ, Ahlsen G, Carnally SM, Henderson RM, Honig B, Shapiro L. Structure and binding mechanism of vascular endothelial cadherin: a divergent classical cadherin. J Mol Biol 2011; 408:57-73. [PMID: 21269602 PMCID: PMC3084036 DOI: 10.1016/j.jmb.2011.01.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
Vascular endothelial cadherin (VE-cadherin), a divergent member of the type II classical cadherin family of cell adhesion proteins, mediates homophilic adhesion in the vascular endothelium. Previous investigations with a bacterially produced protein suggested that VE-cadherin forms cell surface trimers that bind between apposed cells to form hexamers. Here we report studies of mammalian-produced VE-cadherin ectodomains suggesting that, like other classical cadherins, VE-cadherin forms adhesive trans dimers between monomers located on opposing cell surfaces. Trimerization of the bacterially produced protein appears to be an artifact that arises from a lack of glycosylation. We also present the 2.1-Å-resolution crystal structure of the VE-cadherin EC1-2 adhesive region, which reveals homodimerization via the strand-swap mechanism common to classical cadherins. In common with type II cadherins, strand-swap binding involves two tryptophan anchor residues, but the adhesive interface resembles type I cadherins in that VE-cadherin does not form a large nonswapped hydrophobic surface. Thus, VE-cadherin is an outlier among classical cadherins, with characteristics of both type I and type II subfamilies.
Collapse
Affiliation(s)
- Julia Brasch
- Department of Biochemistry and Molecular Biophysics, Columbia University, 635 West 165 Street, New York, NY 10033, USA
| | - Oliver J. Harrison
- Department of Biochemistry and Molecular Biophysics, Columbia University, 635 West 165 Street, New York, NY 10033, USA
- Howard Hughes Medical Institute, Columbia University, 1130 St Nicholas Avenue, New York, NY 10032, USA
| | - Goran Ahlsen
- Department of Biochemistry and Molecular Biophysics, Columbia University, 635 West 165 Street, New York, NY 10033, USA
| | - Stewart M. Carnally
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Robert M. Henderson
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University, 635 West 165 Street, New York, NY 10033, USA
- Howard Hughes Medical Institute, Columbia University, 1130 St Nicholas Avenue, New York, NY 10032, USA
- Center for Computational Biology and Bioinformatics, Columbia University, 1130 St Nicholas Avenue, New York, NY 10032, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, 635 West 165 Street, New York, NY 10033, USA
- Edward S. Harkness Eye Institute, Columbia University in the City of New York, New York, USA
| |
Collapse
|
73
|
Humaidan P, Kol S, Papanikolaou EG. GnRH agonist for triggering of final oocyte maturation: time for a change of practice? Hum Reprod Update 2011; 17:510-24. [PMID: 21450755 DOI: 10.1093/humupd/dmr008] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND GnRH agonist (GnRHa) triggering has been shown to significantly reduce the occurrence of ovarian hyperstimulation syndrome (OHSS) compared with hCG triggering; however, initially a poor reproductive outcome was reported after GnRHa triggering, due to an apparently uncorrectable luteal phase deficiency. Therefore, the challenge has been to rescue the luteal phase. Studies now report a luteal phase rescue, with a reproductive outcome comparable to that seen after hCG triggering. METHODS This narrative review is based on expert presentations and subsequent group discussions supplemented with publications from literature searches and the authors' knowledge. Moreover, randomized controlled trials (RCTs) were identified and analysed either in fresh IVF cycles with embryo transfer (ET), oocyte donation cycles or cycles without ET; risk differences were calculated regarding pregnancy rate and OHSS rate. RESULTS In fresh IVF cycles with ET (9 RCTs) no OHSS was reported after GnRHa triggering [0% incidence in the GnRHa group: risk difference 5% (with 95% CI: -0.07 to 0.02)]. Importantly, the delivery rate improved significantly after modified luteal support [6% risk difference in favour of the HCG group (95% CI: -0.14 to 0.2)] when compared with initial studies with conventional luteal support [18% risk difference (95% CI: -0.36 to 0.01)]. In oocyte donation cycles (4 RCTs) the OHSS incidence is 0% [10% risk difference (95% CI: 0.02-0.40)]. CONCLUSIONS GnRHa triggering is a valid alternative to hCG triggering, resulting in an elimination of OHSS. After modified luteal support there is now a non-significant difference of 6% in delivery rate in favour of hCG triggering.
Collapse
Affiliation(s)
- P Humaidan
- The Fertility Clinic, Skive Regional Hospital, Resenvej 25, Skive, Denmark.
| | | | | | | |
Collapse
|
74
|
Birnbaum T, Hildebrandt J, Nuebling G, Sostak P, Straube A. Glioblastoma-dependent differentiation and angiogenic potential of human mesenchymal stem cells in vitro. J Neurooncol 2011; 105:57-65. [PMID: 21547397 DOI: 10.1007/s11060-011-0561-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/26/2011] [Indexed: 12/29/2022]
Abstract
Tumor angiogenesis is of central importance in the malignancy of glioblastoma multiforme (GBM). As previously shown, human mesenchymal stem cells (hMSC) migrate towards GBM and are incorporated into tumor microvessels. However, phenotype and function of recruited hMSC remain unclear. We evaluated the differentiation and angiogenic potential of hMSC after stimulation with glioblastoma-conditioned medium in vitro. Immunostaining with endothelial, smooth muscle cell and pericyte markers was used to analyze hMSC differentiation in different concentrations of tumor-conditioned medium (CM), and the angiogenic potential was evaluated by matrigel-based tube-formation assay (TFA). Immunofluorescence staining revealed that tumor-conditioned hMSC (CM-hMSC) expressed CD 151, VE-cadherin, desmin, α-smooth muscle actin, nestin, and nerval/glial antigen 2 (NG2) in a CM concentration-dependent manner, whereas no expression of von-Willebrand factor (vWF) and smooth myosin could be detected. These findings are indicative of GBM-dependent differentiation of hMSC into pericyte-like cells, rather than endothelial or smooth muscle cells. Furthermore, TFA of hMSC and CM-hMSC revealed CM-dependent formation of capillary-like networks, which differed substantially from those formed by human endothelial cells (HUVEC), also implying pericyte-like tube formation. These results are indicative of GBM-derived differentiation of hMSC into pericyte-like mural cells, which might contribute to the neovascularization and stabilization of tumor vessels.
Collapse
Affiliation(s)
- Tobias Birnbaum
- Department of Neurology, Ludwig-Maximilians-University, Marchioninistr. 15, 81377 Munich, Germany.
| | | | | | | | | |
Collapse
|
75
|
Abstract
Blood vessels perform the fundamental role of providing conduits for the circulation of oxygen and nutrients and the removal of waste products throughout the body. Disruption of tissue perfusion by ischemia or hemorrhage of blood vessels has a range of devastating consequences including stroke. Stroke is a complex trait that includes both genetic and environmental risk factors. The zebrafish is an attractive model for the study of hemorrhagic stroke due to the conservation of the molecular mechanisms of blood vascular development among vertebrates and the experimental advantages that can be applied to zebrafish embryos and larva. This chapter will focus on the maintenance of vascular integrity and some of the seminal experimentation carried out in the zebrafish.
Collapse
Affiliation(s)
- Matthew G Butler
- Program in the Genomics of Differentiation, National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
76
|
Sobczak M, Dargatz J, Chrzanowska-Wodnicka M. Isolation and culture of pulmonary endothelial cells from neonatal mice. J Vis Exp 2010:2316. [PMID: 21178973 PMCID: PMC3278331 DOI: 10.3791/2316] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endothelial cells provide a useful research model in many areas of vascular biology. Since its first isolation 1, human umbilical vein endothelial cells (HUVECs) have shown to be convenient, easy to obtain and culture, and thus are the most widely studied endothelial cells. However, for research focused on processes like angiogenesis, permeability or many others, microvascular endothelial cells (ECs) are a much more physiologically relevant model to study 2. Furthermore, ECs isolated from knockout mice provide a useful tool for analysis of protein function ex vivo. Several approaches to isolate and culture microvascular ECs of different origin have been reported to date 3-7, but consistent isolation and culture of pure ECs is still a major technical problem in many laboratories. Here, we provide a step-by-step protocol on a reliable and relatively simple method of isolating and culturing mouse lung endothelial cells (MLECs). In this approach, lung tissue obtained from 6- to 8-day old pups is first cut into pieces, digested with collagenase/dispase (C/D) solution and dispersed mechanically into single-cell suspension. MLECS are purified from cell suspension using positive selection with anti-PECAM-1 antibody conjugated to Dynabeads using a Magnetic Particle Concentrator (MPC). Such purified cells are cultured on gelatin-coated tissue culture (TC) dishes until they become confluent. At that point, cells are further purified using Dynabeads coupled to anti-ICAM-2 antibody. MLECs obtained with this protocol exhibit a cobblestone phenotype, as visualized by phase-contrast light microscopy, and their endothelial phenotype has been confirmed using FACS analysis with anti-VE-cadherin 8 and anti-VEGFR2 9 antibodies and immunofluorescent staining of VE-cadherin. In our hands, this two-step isolation procedure consistently and reliably yields a pure population of MLECs, which can be further cultured. This method will enable researchers to take advantage of the growing number of knockout and transgenic mice to directly correlate in vivo studies with results of in vitro experiments performed on isolated MLECs and thus help to reveal molecular mechanisms of vascular phenotypes observed in vivo.
Collapse
|
77
|
Iwasaki H, Arai F, Kubota Y, Dahl M, Suda T. Endothelial protein C receptor-expressing hematopoietic stem cells reside in the perisinusoidal niche in fetal liver. Blood 2010; 116:544-53. [PMID: 20442369 DOI: 10.1182/blood-2009-08-240903] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are maintained in specialized niches in adult bone marrow. However, niche and HSC maintenance mechanism in fetal liver (FL) still remains unclear. Here, we investigated the niche and the molecular mechanism of HSC maintenance in mouse FL using HSCs expressing endothelial protein C receptor (EPCR). The antiapoptotic effect of activated protein C (APC) on EPCR(+) HSCs and the expression of protease-activated receptor 1 (Par-1) mRNA in these cells suggested the involvement of the cytoprotective APC/EPCR/Par-1 pathway in HSC maintenance. Immunohistochemistry revealed that EPCR(+) cells were localized adjacent to, or integrated in, the Lyve-1(+) sinusoidal network, where APC and extracellular matrix (ECM) are abundant, suggesting that HSCs in FL were maintained in the APC- and ECM-rich perisinusoidal niche. EPCR(+) HSCs were in a relatively slow cycling state, consistent with their high expression levels of p57 and p18. Furthermore, the long-term reconstitution activity of EPCR(+) HSCs decreased significantly after short culture but not when cocultured with feeder layer of FL-derived Lyve-1(+) cells, which suggests that the maintenance of the self-renewal activity of FL HSCs largely depended on the interaction with the perisinusoidal niche. In conclusion, EPCR(+) HSCs resided in the perisinusoidal niche in mouse FL.
Collapse
Affiliation(s)
- Hiroko Iwasaki
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
78
|
The soluble fragment of VE-cadherin inhibits angiogenesis by reducing endothelial cell proliferation and tube capillary formation. Cancer Gene Ther 2010; 17:700-7. [PMID: 20559333 DOI: 10.1038/cgt.2010.26] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Vascular endothelial-specific cadherin (VE-cadherin) is an endothelial cell-specific adhesion molecule, localized at cell-cell contact sites. It is involved in physiological and pathological angiogenesis. In this study, we showed that in vitro a soluble N-terminal fragment of VE-cadherin (EC1-3) corresponding to cadherin 1-3 ectodomains inhibited vascular endothelial growth factor-stimulated endothelial cell proliferation and capillary tube structure formation in the matrigel model. In vivo, EC1-3 was tested in a murine colon cancer model. EC1-3-expressing colon cancer C51 cells were subcutaneously grafted into nude mice, and tumor growth and angiogenesis were evaluated. At day 33, the mean volume of the tumors developed was reduced (510±104 versus 990±120 mm(3) for control). Similarly, injection of EC1-3 virus-producing cells into established C51 tumors resulted in an inhibition by 33% of tumor growth. Immunohistological staining of vessels on tumor sections showed a significantly reduced intratumoral angiogenesis. Furthermore, EC1-3 did not induce vessel injury in the lung, liver, spleen, heart and brain in the mice. These results suggest that the soluble N-terminal fragment of VE-cadherin EC1-3 could exert an antitumoral effect by targeting tumor angiogenesis, which included blocking endothelial cell proliferation and capillary tube formation with no obvious toxicity on normal organs.
Collapse
|
79
|
Robich MP, Chu LM, Chaudray M, Nezafat R, Han Y, Clements RT, Laham RJ, Manning WJ, Coady MA, Sellke FW. Anti-angiogenic effect of high-dose resveratrol in a swine model of metabolic syndrome. Surgery 2010; 148:453-62. [PMID: 20570307 DOI: 10.1016/j.surg.2010.04.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 04/16/2010] [Indexed: 11/19/2022]
Abstract
BACKGROUND Resveratrol has been reported to induce angiogenesis in ischemic tissue. We hypothesized that high-dose resveratrol would improve native angiogenesis in a swine model of metabolic syndrome and chronic myocardial ischemia. METHODS Yorkshire swine were fed a normal diet (Control, n = 7), hypercholesterolemic diet (HCD, n = 7), or hypercholesterolemic diet with supplemental resveratrol (100 mg/kg/day orally, HCD-R; n = 7) beginning 1 month prior to surgery. Chronic ischemia was created by placing an ameroid constrictor on the left circumflex coronary artery. After 7 weeks, swine underwent functional MRI, coronary angiography, and serum and heart tissue harvest for analysis. RESULTS HCD-R animals had lower body mass index (P < .001), total cholesterol (P < .001), low-density lipoprotein (LDL; P < .001), blood glucose levels (P < .001), and systolic blood pressure (P = .03) than HCD animals. There was no difference in regional myocardial function at 7 weeks (P = .25). Coronary angiograms revealed no difference in Rentrop collateral scores (P = .68). Staining for platelet endothelial cell adhesion molecule-1 demonstrated higher capillary density in the Control group (versus HCD and HCD-R; P = .02). Immunoblotting demonstrated decreased expression of the pro-angiogenic protein vascular endothelial (VE)-cadherin (P = .002) and an increase in anti-angiogenic proteins angiostatin (P = .001) and thrombospondin (P = .02) in the HCD and HCD-R groups. Matrix metalloprotease 2 (MMP 2; P = .47) and MMP 9 (P = .12) were not different among groups. CONCLUSION Supplemental resveratrol positively modified cardiovascular risk factors including body mass index, cholesterol, glucose tolerance, and systolic blood pressure. However, it did not increase native collateral formation in the ischemic myocardium. This may be a result of increased angiostatin and thrombospondin leading to decreased expression of VE-cadherin and other pro-angiogenic factors.
Collapse
Affiliation(s)
- Michael P Robich
- Department of Surgery, Division of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Microtubules growth rate alteration in human endothelial cells. J Biomed Biotechnol 2010; 2010:671536. [PMID: 20445745 PMCID: PMC2860155 DOI: 10.1155/2010/671536] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 01/21/2010] [Indexed: 02/06/2023] Open
Abstract
To understand how microtubules contribute to the dynamic reorganization of the endothelial cell (EC) cytoskeleton, we established an EC model expressing EB3-GFP, a protein that marks microtubule plus-ends. Using this model, we were able to measure microtubule growth rate at the centrosome region and near the cell periphery of a single human EC and in the EC monolayer. We demonstrate that the majority of microtubules in EC are dynamic, the growth rate of their plus-ends is highest in the internal cytoplasm, in the region of the centrosome. Growth rate of microtubule plus-ends decreases from the cell center toward the periphery. Our data suggest the existing mechanism(s) of local regulation of microtubule plus-ends growth in EC. Microtubule growth rate in the internal cytoplasm of EC in the monolayer is lower than that of single EC suggesting the regulatory effect of cell-cell contacts. Centrosomal microtubule growth rate distribution in single EC indicated the presence of two subpopulations of microtubules with “normal” (similar to those in monolayer EC) and “fast” (three times as much) growth rates. Our results indicate functional interactions between cell-cell contacts and microtubules.
Collapse
|
81
|
The motor protein myosin-X transports VE-cadherin along filopodia to allow the formation of early endothelial cell-cell contacts. Mol Cell Biol 2010; 30:1703-17. [PMID: 20123970 DOI: 10.1128/mcb.01226-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vascular endothelium (VE), the monolayer of endothelial cells that lines the vascular tree, undergoes damage at the basis of some vascular diseases. Its integrity is maintained by VE-cadherin, an adhesive receptor localized at cell-cell junctions. Here, we show that VE-cadherin is also located at the tip and along filopodia in sparse or subconfluent endothelial cells. We observed that VE-cadherin navigates along intrafilopodial actin filaments. We found that the actin motor protein myosin-X is colocalized and moves synchronously with filopodial VE-cadherin. Immunoprecipitation and pulldown assays confirmed that myosin-X is directly associated with the VE-cadherin complex. Furthermore, expression of a dominant-negative mutant of myosin-X revealed that myosin-X is required for VE-cadherin export to cell edges and filopodia. These features indicate that myosin-X establishes a link between the actin cytoskeleton and VE-cadherin, thereby allowing VE-cadherin transportation along intrafilopodial actin cables. In conclusion, we propose that VE-cadherin trafficking along filopodia using myosin-X motor protein is a prerequisite for cell-cell junction formation. This mechanism may have functional consequences for endothelium repair in pathological settings.
Collapse
|
82
|
KEVIL CHRISTOPHERG, OKAYAMA NAOTSUKA, TROCHA STEVEND, KALOGERIS THEODOREJ, COE LAURAL, SPECIAN ROBERTD, DAVIS CHRISTOPHERP, ALEXANDER JSTEVEN. Expression of Zonula Occludens and Adherens Junctional Proteins in Human Venous and Arterial Endothelian Cells: Role of Occludin in Endothelial Solute Barriers. Microcirculation 2010. [DOI: 10.1111/j.1549-8719.1998.tb00069.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- CHRISTOPHER G. KEVIL
- Department of Molecular and Cellular Physiology, LSU Medical Center, Shreveport, LA, USA
| | - NAOTSUKA OKAYAMA
- Department of Molecular and Cellular Physiology, LSU Medical Center, Shreveport, LA, USA
| | | | | | - LAURA L. COE
- Department of Molecular and Cellular Physiology, LSU Medical Center, Shreveport, LA, USA
| | - ROBERT D. SPECIAN
- Department of Molecular and Cellular Physiology, LSU Medical Center, Shreveport, LA, USA
| | - CHRISTOPHER P. DAVIS
- Department of Molecular and Cellular Physiology, LSU Medical Center, Shreveport, LA, USA
| | - J. STEVEN ALEXANDER
- Department of Molecular and Cellular Physiology, LSU Medical Center, Shreveport, LA, USA
| |
Collapse
|
83
|
Grinnell KL, Casserly B, Harrington EO. Role of protein tyrosine phosphatase SHP2 in barrier function of pulmonary endothelium. Am J Physiol Lung Cell Mol Physiol 2009; 298:L361-70. [PMID: 20023173 DOI: 10.1152/ajplung.00374.2009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pulmonary edema is mediated in part by disruption of interendothelial cell contacts. Protein tyrosine phosphatases (PTP) have been shown to affect both cell-extracellular matrix and cell-cell junctions. The SH2 domain-containing nonreceptor PTP, SHP2, is involved in intercellular signaling through direct interaction with adherens junction proteins. In this study, we examined the role of SHP2 in pulmonary endothelial barrier function. Inhibition of SHP2 promoted edema formation in rat lungs and increased monolayer permeability in cultured lung endothelial cells. In addition, pulmonary endothelial cells demonstrated a decreased level of p190RhoGAP activity following inhibition of SHP2, events that were accompanied by a concomitant increase in RhoA activity. Furthermore, immunofluorescence microscopy confirmed enhanced actin stress fiber formation and diminished interendothelial staining of adherens junction complex-associated proteins upon SHP2 inhibition. Finally, immunoprecipitation and immunoblot analyses demonstrated increased tyrosine phosphorylation of VE-cadherin, beta-catenin, and p190RhoGAP proteins, as well as decreased association between p120-catenin and VE-cadherin proteins. Our findings suggest that SHP2 supports basal pulmonary endothelial barrier function by coordinating the tyrosine phosphorylation profile of VE-cadherin, beta-catenin, and p190RhoGAP and the activity of RhoA, signaling molecules important in adherens junction complex integrity.
Collapse
Affiliation(s)
- K L Grinnell
- Vascular Research Laboratory, Providence VA Medical Center, 830 Chalkstone Ave., Providence, RI 02908, USA
| | | | | |
Collapse
|
84
|
Walter B, Krebs U, Berger I, Hofmann I. Protein p0071, an armadillo plaque protein of adherens junctions, is predominantly expressed in distal renal tubules. Histochem Cell Biol 2009; 133:69-83. [PMID: 19830446 DOI: 10.1007/s00418-009-0645-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2009] [Indexed: 01/27/2023]
Abstract
Protein p0071 is a member of the p120-subfamily of armadillo proteins and is well known as a junctional plaque component involved in cell-cell adhesion, especially in adherens junctions. By systematic immunohistochemical analysis of mouse and human kidney tissues, p0071 was prominently detected in distinct kidney tubules. Upon double-labeling immunolocalization experiments with segment-specific markers, p0071 was predominantly localized in distal straight and convoluted tubules and to a lesser extent in proximal tubules, in the ascending thin limb of loop of Henle and in the collecting ducts. In capillaries of the kidney, p0071 co-localized with VE-cadherin an endothelium-specific cadherin. Protein p0071 was also detected in both, renal cell carcinomas derived from distal tubules and in maturing nephrons of early mouse developmental stages. Immunoblotting of total extracts of cultured cells of renal origin showed that p0071 was detected in all human and murine cells analyzed. Upon immunolocalization, p0071 was observed in adherens junctions but also in distinct cytoplasmic structures at the cell periphery of cultured cells. Possible structural and functional roles of p0071 are suggested by its preferential occurrence in distinct tubule segments, and its potential use as a cytodiagnostic cell type marker in renal pathology is discussed.
Collapse
Affiliation(s)
- Britta Walter
- Joint Research Division Vascular Biology of the Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | | |
Collapse
|
85
|
Minagar A, Long A, Ma T, Jackson TH, Kelley RE, Ostanin DV, Sasaki M, Warren AC, Jawahar A, Cappell B, Alexander JS. Interferon (IFN)-ß1a and IFN-ß1b Block IFN-?-Induced Disintegration of Endothelial Junction Integrity and Barrier. ACTA ACUST UNITED AC 2009; 10:299-307. [PMID: 14741845 DOI: 10.1080/10623320390272299] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recent clinical trials indicate the efficacy of interferon (IFN)-beta 1b in reducing relapse rate in relapsing-remitting multiple sclerosis (MS), whereas a surge of IFN-gamma precedes and provokes acute relapses. Disruption of the cerebral endothelial barrier and transendothelial migration of inflammatory cell migration into the brain play a significant role in pathogenesis of MS and may be driven by this surge in IFN-gamma. However, the molecular mechanisms underlying the beneficial effects of IFN-beta 1b against the deleterious effects of IFN-gamma on the barrier formed by the junctional proteins remain to be characterized. The authors investigated the effects of IFN-beta 1b, IFN-beta 1a, and IFN-gamma on the integrity of two endothelial junctional proteins, occludin and vascular endothelial-cadherin (VE-cadherin). Human umbilical vein endothelial cell (HUVEC) layers were treated with IFN-beta 1b, IFN-beta 1a, IFN-gamma, IFN-beta 1b plus IFN-gamma, or IFN-beta 1a plus IFN-gamma. IFN-beta 1b, IFN-beta 1a, and IFN-gamma effects on occludin and VE-cadherin integrity and electrical resistance were assessed by Western blotting and immunofluorescence. IFN-gamma significantly reduced occludin expression and produced gaps in endothelial monolayers. VE-cadherin expression was decreased to a lesser extent in endothelial cells exposed to IFN-gamma. IFN-beta 1b significantly attenuated the IFN-gamma-induced decrease in occludin and VE-cadherin expression. The protective effects of IFN-beta 1a on IFN-gamma-treated endothelial cells were similar to those of IFN-beta 1b. IFN-gamma also significantly reduced endothelial monolayer electrical resistance; this effect was blocked by either IFN-beta 1a or IFN-beta 1b. IFN-beta 1a and IFN-beta 1b effectively prevent the IFN-gamma-induced disintegration of the endothelial tight junctions and sustain barrier against the effects of IFN-gamma. The protective effects of IFN-beta on occludin and VE-cadherin stability appear to represent molecular mechanisms for the therapeutic effects of the IFN-beta on blood brain barrier in MS.
Collapse
Affiliation(s)
- A Minagar
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Funa NS, Kriz V, Zang G, Calounova G, Akerblom B, Mares J, Larsson E, Sun Y, Betsholtz C, Welsh M. Dysfunctional microvasculature as a consequence of shb gene inactivation causes impaired tumor growth. Cancer Res 2009; 69:2141-8. [PMID: 19223532 DOI: 10.1158/0008-5472.can-08-3797] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Shb (Src homology 2 protein B) is an adapter protein downstream of the vascular endothelial growth factor receptor receptor-2 (VEGFR-2). Previous experiments have suggested a role for Shb in endothelial cell function. Recently, the Shb gene was inactivated and Shb null mice were obtained on a mixed genetic background, but not on C57Bl6 mice. The present study was performed to address endothelial function in the Shb knockout mouse and its relevance for tumor angiogenesis. Tumor growth was retarded in Shb mutant mice, and this correlated with decreased angiogenesis both in tumors and in Matrigel plugs. Shb null mice display an abnormal endothelial ultrastructure in liver sinusoids and heart capillaries with cytoplasmic extensions projecting toward the lumen. Shb null heart VE-cadherin staining was less distinct than that of control heart, exhibiting in the former case a wavy and punctuate pattern. Experiments on isolated endothelial cells suggest that these changes could partly reflect cytoskeletal abnormalities. Vascular permeability was increased in Shb null mice in heart, kidney, and skin, whereas VEGF-stimulated vascular permeability was reduced in Shb null mice. It is concluded that Shb plays an important role in maintaining a functional vasculature in adult mice, and that interference with Shb signaling may provide novel means to regulate tumor angiogenesis.
Collapse
Affiliation(s)
- Nina S Funa
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Sweet DT, Tzima E. Spatial signaling networks converge at the adaptor protein Shc. Cell Cycle 2009; 8:231-5. [PMID: 19164921 DOI: 10.4161/cc.8.2.7383] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Endothelial cells, which are located at the interface between the blood and the vessel wall, respond dynamically to a variety of stimuli initiating signaling cascades that regulate cardiovascular development, physiology and pathology. These inputs include soluble factors that bind to their receptors, integrin-matrix interactions, cell-cell contacts and mechanical forces due to the flowing blood. While these stimuli can mediate unique downstream signals, it is well-accepted that signaling pathways are highly interwoven into complex signaling networks with several levels of cross-talk, integration and coordination. Recent studies suggest that several signaling networks coalesce at the adaptor protein Shc.
Collapse
Affiliation(s)
- Daniel Timothy Sweet
- Department of Cell and Molecular Physiology and Program in Genetics and Molecular Biology, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
88
|
Gu Y, Lewis DF, Alexander JS, Wang Y. Placenta-derived chymotrypsin-like protease (CLP) disturbs endothelial junctional structure in preeclampsia. Reprod Sci 2009; 16:479-88. [PMID: 19126871 DOI: 10.1177/1933719108329818] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Placenta-derived chymotrypsin-like protease may contribute to endothelial activation in preeclampsia. In this study, we determined if placenta-derived chymotrypsin-like protease could disturb endothelial junctional integrity to promote endothelial permeability in preeclampsia. Confluent endothelial cells were cocultured with placental trophoblasts or treated with preeclampsia placenta-conditioned medium. Endothelial junction protein vascular endothelial cadherin expression and distribution were examined by fluorescent staining of endothelial cells with or without depletion of chymotrypsin. The association of endothelial cell junction protein complex VE-cadherin/beta-catenin/p120 was examined by a combined immuno-precipitation and immuno-blotting assay. Our results showed that endothelial cells cocultured with preeclampsia trophoblasts or exposed to preeclampsia placental conditioned medium exhibited a discontinuous distribution and reduced expression of vascular endothelial cadherin at cell contact regions. Vascular endothelial cadherin and p120 were expressed in control endothelial cells, but reduced or lost in endothelial cells exposed to preeclampsia placental conditioned medium, suggesting that the junctional protein complex of VE-cadherin/beta-catenin/p120 was disrupted in endothelial cells exposed to preeclampsia placental conditioned medium. We also observed that removal of trophoblasts from the coculture system and depletion of the protease from the preeclampsia placental conditioned medium could restore the dysregulated endothelial junction protein expression and distribution. Chymotrypsin also induced a dose dependent increase in endothelial monolayer permeability. We conclude that chymotrypsin-like protease released by the placenta is at least one important mediator responsible for disrupting endothelial cell integrity and inducing endothelial permeability in preeclampsia.
Collapse
Affiliation(s)
- Yang Gu
- Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | | | |
Collapse
|
89
|
Moll R, Sievers E, Hämmerling B, Schmidt A, Barth M, Kuhn C, Grund C, Hofmann I, Franke WW. Endothelial and virgultar cell formations in the mammalian lymph node sinus: endothelial differentiation morphotypes characterized by a special kind of junction (complexus adhaerens). Cell Tissue Res 2008; 335:109-41. [PMID: 19015886 DOI: 10.1007/s00441-008-0700-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 09/15/2008] [Indexed: 12/25/2022]
Abstract
The lymph node sinus are channel structures of unquestionable importance in immunology and pathology, specifically in the filtering of the lymph, the transport and processing of antigens, the adhesion and migration of immune cells, and the spread of metastatic cancer cells. Our knowledge of the cell and molecular biology of the sinus-forming cells is still limited, and the origin and biological nature of these cells have long been a matter of debate. Here, we review the relevant literature and present our own experimental results, in particular concerning molecular markers of intercellular junctions and cell differentiation. We show that both the monolayer cells lining the sinus walls and the intraluminal virgultar cell meshwork are indeed different morphotypes of the same basic endothelial cell character, as demonstrated by the presence of a distinct spectrum of general and lymphatic endothelial markers, and we therefore refer to these cells as sinus endothelial/virgultar cells (SEVCs). These cells are connected by unique adhering junctions, termed complexus adhaerentes, characterized by the transmembrane glycoprotein VE-cadherin, combined with the desmosomal plaque protein desmoplakin, several adherens junction plaque proteins including alpha- and beta-catenin and p120 catenin, and components of the tight junction ensemble, specifically claudin-5 and JAM-A, and the plaque protein ZO-1. We show that complexus adhaerentes are involved in the tight three-dimensional integration of the virgultar network of SEVC processes along extracellular guidance structures composed of paracrystalline collagen bundle "stays". Overall, the SEVC system might be considered as a local and specific modification of the general lymphatic vasculature system. Finally, physiological and pathological alterations of the SEVC system will be presented, and the possible value of the molecular markers described in histological diagnoses of autochthonous lymph node tumors will be discussed.
Collapse
Affiliation(s)
- Roland Moll
- Institute of Pathology, Philipps University of Marburg, 35033 Marburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Vestweber D, Winderlich M, Cagna G, Nottebaum AF. Cell adhesion dynamics at endothelial junctions: VE-cadherin as a major player. Trends Cell Biol 2008; 19:8-15. [PMID: 19010680 DOI: 10.1016/j.tcb.2008.10.001] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/09/2008] [Accepted: 10/14/2008] [Indexed: 12/30/2022]
Abstract
The regulation of endothelial cell contacts is of central importance for the barrier function of the blood vessel wall and for the control of leukocyte extravasation. In addition, the plasticity of endothelial cell contacts is regulated during angiogenesis by growth factors, such as vascular endothelial growth factor and angiopoietin-1. Despite the participation of several adhesion molecules and receptors in the control of endothelial cell contacts, most of the currently known mechanisms involve vascular endothelial cadherin (VE-cadherin), an essential adhesion molecule for the stability of endothelial junctions. Here, we focus on recent results showing how leukocytes and angiogenic factors regulate endothelial junctions.
Collapse
Affiliation(s)
- Dietmar Vestweber
- Max-Planck-Institute of Molecular Biomedicine, Röntgenstrasse 20, Münster, Germany.
| | | | | | | |
Collapse
|
91
|
Nottebaum AF, Cagna G, Winderlich M, Gamp AC, Linnepe R, Polaschegg C, Filippova K, Lyck R, Engelhardt B, Kamenyeva O, Bixel MG, Butz S, Vestweber D. VE-PTP maintains the endothelial barrier via plakoglobin and becomes dissociated from VE-cadherin by leukocytes and by VEGF. ACTA ACUST UNITED AC 2008; 205:2929-45. [PMID: 19015309 PMCID: PMC2585844 DOI: 10.1084/jem.20080406] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have shown recently that vascular endothelial protein tyrosine phosphatase (VE-PTP), an endothelial-specific membrane protein, associates with vascular endothelial (VE)-cadherin and enhances VE-cadherin function in transfected cells (Nawroth, R., G. Poell, A. Ranft, U. Samulowitz, G. Fachinger, M. Golding, D.T. Shima, U. Deutsch, and D. Vestweber. 2002. EMBO J. 21:4885-4895). We show that VE-PTP is indeed required for endothelial cell contact integrity, because down-regulation of its expression enhanced endothelial cell permeability, augmented leukocyte transmigration, and inhibited VE-cadherin-mediated adhesion. Binding of neutrophils as well as lymphocytes to endothelial cells triggered rapid (5 min) dissociation of VE-PTP from VE-cadherin. This dissociation was only seen with tumor necrosis factor alpha-activated, but not resting, endothelial cells. Besides leukocytes, vascular endothelial growth factor also rapidly dissociated VE-PTP from VE-cadherin, indicative of a more general role of VE-PTP in the regulation of endothelial cell contacts. Dissociation of VE-PTP and VE-cadherin in endothelial cells was accompanied by tyrosine phoshorylation of VE-cadherin, beta-catenin, and plakoglobin. Surprisingly, only plakoglobin but not beta-catenin was necessary for VE-PTP to support VE-cadherin adhesion in endothelial cells. In addition, inhibiting the expression of VE-PTP preferentially increased tyrosine phosphorylation of plakoglobin but not beta-catenin. In conclusion, leukocytes interacting with endothelial cells rapidly dissociate VE-PTP from VE-cadherin, weakening endothelial cell contacts via a mechanism that requires plakoglobin but not beta-catenin.
Collapse
|
92
|
Mourad-Zeidan AA, Melnikova VO, Wang H, Raz A, Bar-Eli M. Expression profiling of Galectin-3-depleted melanoma cells reveals its major role in melanoma cell plasticity and vasculogenic mimicry. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1839-52. [PMID: 18988806 DOI: 10.2353/ajpath.2008.080380] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Galectin-3 (Gal-3) is a beta-galactoside-binding protein that is involved in cancer progression and metastasis. Using a progressive human melanoma tissue microarray, we previously demonstrated that melanocytes accumulate Gal-3 during the progression from benign to dysplastic nevi to melanoma and further to metastatic melanoma. Herein, we show that silencing of Gal-3 expression with small hairpin RNA results in a loss of tumorigenic and metastatic potential of melanoma cells. In vitro, Gal-3 silencing resulted in loss of tumor cell invasiveness and capacity to form tube-like structures on collagen ("vasculogenic mimicry"). cDNA microarray analysis after Gal-3 silencing revealed that Gal-3 regulates the expression of multiple genes, including endothelial cell markers that appear to be aberrantly expressed in highly aggressive melanoma cells, causing melanoma cell plasticity. These genes included vascular endothelial-cadherin, which plays a pivotal role in vasculogenic mimicry, as well as interleukin-8, fibronectin-1, endothelial differentiation sphingolipid G-protein receptor-1, and matrix metalloproteinase-2. Chromatin immunoprecipitation assays and promoter analyses revealed that Gal-3 silencing resulted in a decrease of vascular endothelial-cadherin and interleukin-8 promoter activities due to enhanced recruitment of transcription factor early growth response-1. Moreover, transient overexpression of early growth response-1 in C8161-c9 cells resulted in a loss of vascular endothelial-cadherin and interleukin-8 promoter activities and protein expression. Thus, Gal-3 plays an essential role during the acquisition of vasculogenic mimicry and angiogenic properties associated with melanoma progression.
Collapse
Affiliation(s)
- Alexandra A Mourad-Zeidan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
93
|
Dubé N, Kooistra MRH, Pannekoek WJ, Vliem MJ, Oorschot V, Klumperman J, Rehmann H, Bos JL. The RapGEF PDZ-GEF2 is required for maturation of cell-cell junctions. Cell Signal 2008; 20:1608-15. [PMID: 18585005 DOI: 10.1016/j.cellsig.2008.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 05/11/2008] [Indexed: 11/25/2022]
Abstract
The small G-protein Rap1 is a critical regulator of cell-cell contacts and is activated by the remodeling of adherens junctions. Here we identify the Rap1 guanine nucleotide exchange factor PDZ-GEF2 as an upstream activator of Rap1 required for the maturation of adherens junctions in the lung carcinoma cells A549. Knockdown of PDZ-GEF2 results in the persistence of adhesion zippers at cell-cell contacts. Activation of Rap1A rescues junction maturation in absence of PDZ-GEF2, demonstrating that Rap1A is downstream of PDZ-GEF2 in this process. Moreover, depletion of Rap1A, but not Rap1B, impairs adherens junction maturation. siRNA for PDZ-GEF2 also lowers the levels of E-cadherin, an effect that can be mimicked by Rap1B, but not Rap1A siRNA. Since junctions in Rap1B depleted cells have a mature appearance, these data suggest that PDZ-GEF2 activates Rap1A and Rap1B to perform different functions. Our results present the first direct evidence that PDZ-GEF2 plays a critical role in the maturation of adherens junctions.
Collapse
Affiliation(s)
- Nadia Dubé
- Department of Physiological Chemistry, Centre for Biomedical Genetics and Cancer Genomics Centre, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Dewi BE, Takasaki T, Kurane I. Peripheral blood mononuclear cells increase the permeability of dengue virus-infected endothelial cells in association with downregulation of vascular endothelial cadherin. J Gen Virol 2008; 89:642-652. [PMID: 18272754 DOI: 10.1099/vir.0.83356-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plasma leakage is one of the characteristic features of dengue haemorrhagic fever. The interaction among peripheral blood mononuclear cells (PBMCs), dengue virus and endothelial cells was analysed in vitro. Human umbilical vein endothelial cells (HUVECs) were infected with dengue-2 virus (DV-2) at an m.o.i. of 0.5 p.f.u. per cell. PBMCs were added to DV-2-infected HUVECs, and transendothelial electrical resistance (TEER) and transalbumin permeability were assessed. Dengue virus infection at an m.o.i. of 0.5 p.f.u. per cell alone did not decrease the TEER, but addition of PBMCs decreased the TEER, increased the albumin permeability and induced morphological changes of HUVECs. The extent of the decrease was more profound with adherent PBMCs than with non-adherent PBMCs. The expression of vascular endothelial cadherin (VE-cadherin) was examined using real-time RT-PCR and immunofluorescence. Addition of PBMCs to DV-2-infected HUVECs decreased the levels of mRNA transcripts and cell-surface expression of VE-cadherin. The results indicate that PBMCs increased the permeability of DV-2-infected HUVECs and that the increased permeability was concomitant with morphological change and the decrease in VE-cadherin expression. The results suggest that functional impairment of the DV-2-infected HUVEC monolayer was caused by interaction with PBMCs.
Collapse
Affiliation(s)
- Beti Ernawati Dewi
- Department of Infection Biology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Japan.,Department of Microbiology, Medical Faculty, University of Indonesia, Jalan Pegangsaan Timur no. 16, Jakarta 10320, Indonesia.,Laboratory of Vector-Borne Viruses, Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tomohiko Takasaki
- Laboratory of Vector-Borne Viruses, Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Ichiro Kurane
- Department of Infection Biology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Japan.,Laboratory of Vector-Borne Viruses, Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
95
|
Schulz B, Pruessmeyer J, Maretzky T, Ludwig A, Blobel CP, Saftig P, Reiss K. ADAM10 regulates endothelial permeability and T-Cell transmigration by proteolysis of vascular endothelial cadherin. Circ Res 2008; 102:1192-201. [PMID: 18420943 DOI: 10.1161/circresaha.107.169805] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vascular endothelial (VE)-cadherin is the major adhesion molecule of endothelial adherens junctions. It plays an essential role in controlling endothelial permeability, vascular integrity, leukocyte transmigration, and angiogenesis. Elevated levels of soluble VE-cadherin are associated with diseases like coronary atherosclerosis. Previous data showed that the extracellular domain of VE-cadherin is released by an unknown metalloprotease activity during apoptosis. In this study, we used gain-of-function analyses, inhibitor studies, and RNA interference experiments to analyze the proteolytic release of VE-cadherin in human umbilical vein endothelial cells (HUVECs). We found that VE-cadherin is specifically cleaved by the disintegrin and metalloprotease ADAM10 in its ectodomain, releasing a soluble fragment and generating a carboxyl-terminal membrane-bound stub, which is a substrate for a subsequent gamma-secretase cleavage. This ADAM10-mediated proteolysis could be induced by Ca(2+) influx and staurosporine treatment, indicating that ADAM10-mediated VE-cadherin cleavage contributes to the dissolution of adherens junctions during endothelial cell activation and apoptosis, respectively. In contrast, protein kinase C activation or inhibition did not modulate VE-cadherin processing. Increased ADAM10 expression was functionally associated with an increase in endothelial permeability. Remarkably, our data indicate that ADAM10 activity also contributes to the thrombin-induced decrease of endothelial cell-cell adhesion. Moreover, knockdown of ADAM10 in HUVECs as well as in T cells by small interfering RNA impaired T-cell transmigration. Taken together, our data identify ADAM10 as a novel regulator of vascular permeability and demonstrate a hitherto unknown function of ADAM10 in the regulation of VE-cadherin-dependent endothelial cell functions and leukocyte transendothelial migration.
Collapse
Affiliation(s)
- Beate Schulz
- Biochemical Institute, Christian-Albrecht-University Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
96
|
Labelle M, Schnittler HJ, Aust DE, Friedrich K, Baretton G, Vestweber D, Breier G. Vascular endothelial cadherin promotes breast cancer progression via transforming growth factor beta signaling. Cancer Res 2008; 68:1388-97. [PMID: 18316602 DOI: 10.1158/0008-5472.can-07-2706] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is an important event during carcinoma progression and leads to increased tumor cell malignancy. Here, we show that vascular endothelial (VE)-cadherin is induced during EMT in mammary tumor cells and is aberrantly expressed in invasive human breast carcinomas. VE-cadherin enhanced the capacity of fibroblastoid tumor cells to proliferate, form cord-like invasive structures, and adhere to endothelial cells, characteristics that are key contributors to their increased malignancy and metastatic potential. Consistently, VE-cadherin expression in malignant fibroblastoid tumor cells promoted the growth of experimental mammary carcinomas in vivo. Analysis of the signaling mechanisms involved revealed that VE-cadherin expression influences the levels of Smad2 phosphorylation and expression of target genes of transforming growth factor-beta (TGF-beta), a major mediator of advanced tumor progression and malignant tumor cell proliferation. VE-cadherin might thus promote tumor progression not only by contributing to tumor angiogenesis but also by enhancing tumor cell proliferation via the TGF-beta signaling pathway. This article provides evidence for a novel function of VE-cadherin in tumor progression and reveals a previously unknown molecular link between VE-cadherin expression and TGF-beta signaling. Our findings may have important implications for the clinical application of anti-VE-cadherin strategies.
Collapse
Affiliation(s)
- Myriam Labelle
- Institute of Pathology, University of Dresden, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
97
|
Peters K, Unger RE, Stumpf S, Schäfer J, Tsaryk R, Hoffmann B, Eisenbarth E, Breme J, Ziegler G, Kirkpatrick CJ. Cell type-specific aspects in biocompatibility testing: the intercellular contact in vitro as an indicator for endothelial cell compatibility. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:1637-44. [PMID: 17914634 DOI: 10.1007/s10856-007-3227-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 10/27/2006] [Indexed: 05/17/2023]
Abstract
Endothelial cells cover the inner surface of blood vessels and form the interface between the blood and the tissues. Endothelial cells are involved in regulating barrier function, which is maintained by the interendothelial cell contacts. These interendothelial cell contacts are established by the interaction of different molecules. The maintenance of the barrier requires an appropriate signalling between these molecules. Thus, a number of different signalling pathways are integrated within interendothelial contacts. Since endothelial cells are important in tissue-implant interactions (especially for stent materials) this study examines the expression pattern of different interendothelial contact molecules to determine the usefulness in the analysis of biocompatibility in vitro. The effects of different pro-inflammatory and toxic stimuli and contact of human microvascular endothelial cells to metallic surfaces were examined for their impact on the pattern of interendothelial contact molecules. Striking modifications in the arrangement of these molecules were induced and the mode of modification was dependent on the tested compound. Thus, examining the pattern of expression of specific interendothelial contact molecules in vitro may be useful for testing the endothelial cell compatibility of biomaterials and their corrosion products.
Collapse
Affiliation(s)
- Kirsten Peters
- Institute of Pathology, Johannes Gutenberg-University, Langenbeckstr. 1, 55101 Mainz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
VE-cadherin is a critical endothelial regulator of TGF-beta signalling. EMBO J 2008; 27:993-1004. [PMID: 18337748 DOI: 10.1038/emboj.2008.46] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 02/20/2008] [Indexed: 12/23/2022] Open
Abstract
VE-cadherin is an endothelial-specific transmembrane protein concentrated at cell-to-cell adherens junctions. Besides promoting cell adhesion and controlling vascular permeability, VE-cadherin transfers intracellular signals that contribute to vascular stabilization. However, the molecular mechanism by which VE-cadherin regulates vascular homoeostasis is still poorly understood. Here, we report that VE-cadherin expression and junctional clustering are required for optimal transforming growth factor-beta (TGF-beta) signalling in endothelial cells (ECs). TGF-beta antiproliferative and antimigratory responses are increased in the presence of VE-cadherin. ECs lacking VE-cadherin are less responsive to TGF-beta/ALK1- and TGF-beta/ALK5-induced Smad phosphorylation and target gene transcription. VE-cadherin coimmunoprecipitates with all the components of the TGF-beta receptor complex, TbetaRII, ALK1, ALK5 and endoglin. Clustered VE-cadherin recruits TbetaRII and may promote TGF-beta signalling by enhancing TbetaRII/TbetaRI assembly into an active receptor complex. Taken together, our data indicate that VE-cadherin is a positive and EC-specific regulator of TGF-beta signalling. This suggests that reduction or inactivation of VE-cadherin may contribute to progression of diseases where TGF-beta signalling is impaired.
Collapse
|
99
|
Najy AJ, Day KC, Day ML. ADAM15 supports prostate cancer metastasis by modulating tumor cell-endothelial cell interaction. Cancer Res 2008; 68:1092-9. [PMID: 18281484 DOI: 10.1158/0008-5472.can-07-2432] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Using human tumor and cDNA microarray technology, we have recently shown that the ADAM15 disintegrin is significantly overexpressed during the metastatic progression of human prostate cancer. In the current study, we used lentiviral-based short hairpin RNA (shRNA) technology to down-regulate ADAM15 in the metastatic prostate cancer cell line, PC-3. ADAM15 down-regulation dramatically attenuated many of the malignant characteristics of PC-3 cells in vitro and prevented the s.c. growth of PC-3 cells in severe combined immunodeficient (SCID) mice. By inhibiting the expression of ADAM15 in PC-3 cells, we showed decreased cell migration and adhesion to specific extracellular matrix proteins. This was accompanied by a reduction in the cleavage of N-cadherin by ADAM15 at the cell surface. Fluorescence-activated cell sorting analysis revealed reduced cell surface expression of the metastasis-associated proteins alpha(v) integrin and CD44. Furthermore, matrix metalloproteinase 9 secretion and activity were abrogated in response to ADAM15 reduction. In an in vitro model of vascular invasion, loss of ADAM15 reduced PC-3 adhesion to, and migration through, vascular endothelial cell monolayers. Using an SCID mouse model of human prostate cancer metastasis, we found that the loss of ADAM15 significantly attenuated the metastatic spread of PC-3 cells to bone. Taken together, these data strongly support a functional role for ADAM15 in prostate tumor cell interaction with vascular endothelium and the metastatic progression of human prostate cancer.
Collapse
Affiliation(s)
- Abdo J Najy
- Department of Urology, Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109-0944, USA
| | | | | |
Collapse
|
100
|
Gurok U, Loebbert RW, Meyer AH, Mueller R, Schoemaker H, Gross G, Behl B. Laser capture microdissection and microarray analysis of dividing neural progenitor cells from the adult rat hippocampus. Eur J Neurosci 2007; 26:1079-90. [PMID: 17767487 DOI: 10.1111/j.1460-9568.2007.05734.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neural progenitor cells reside in the hippocampus of adult rodents and humans and generate granule neurons throughout life. Knowledge about the molecular processes regulating these neurogenic cells is fragmentary. In order to identify genes with a role in the proliferation of adult neural progenitor cells, a protocol was elaborated to enable the staining and isolation of such cells under RNA-preserving conditions with a combination of immunohistochemistry and laser capture microdissection. We increased proliferation of neural progenitor cells by electroconvulsive treatment, one of the most effective antidepressant treatments, and isolated Ki-67-positive cells using this new protocol. RNA amplification via in vitro transcription and subsequent microarray analysis revealed over 100 genes that were differentially expressed in neural progenitor cells due to electroconvulsive treatment compared to untreated control animals. Some of these genes have already been implicated in the functioning of neural progenitor cells or have been induced by electroconvulsive treatment; these include brain-derived neurotrophic factor (Bdnf), PDZ-binding kinase (Pbk) and abnormal spindle-like microcephaly-associated (Aspm). In addition, genes were identified for which no role in the proliferation of neurogenic progenitors has been described so far, such as enhancer of zeste homolog 2 (Ezh2).
Collapse
Affiliation(s)
- Ulf Gurok
- Neuroscience Discovery Research, Abbott, Knollstrasse, 67061 Ludwigshafen, Germany.
| | | | | | | | | | | | | |
Collapse
|