51
|
Ortiz M, Soto-Alarcón SA, Orellana P, Espinosa A, Campos C, López-Arana S, Rincón MA, Illesca P, Valenzuela R, Videla LA. Suppression of high-fat diet-induced obesity-associated liver mitochondrial dysfunction by docosahexaenoic acid and hydroxytyrosol co-administration. Dig Liver Dis 2020; 52:895-904. [PMID: 32620521 DOI: 10.1016/j.dld.2020.04.019] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Obesity-induced by high-fat diet (HFD) is associated with liver steatosis, oxidative stress and mitochondrial dysfunction, which can be eluded by the co-administration of the lipid metabolism modulator docosahexaenoic acid (DHA) and the antioxidant hydroxytyrosol (HT). METHODS C57BL/6J mice fed a HFD were orally administered either with vehicle, DHA, HT or DHA+HT for 12 weeks. We measured parameters related to insulin resistance, serum lipid levels, liver fatty acid (FA) content and steatosis score, concomitantly with those associated with mitochondrial energy functions modulated by the transcriptional coactivator PGC-1a. RESULTS HFD induced insulin resistance, liver steatosis with n-3 FA depletion, and loss of mitochondrial respiratory functions with diminished NAD+/NADH ratio and ATP levels compared with CD, with the parallel decrease in the expression of the components of the PGC-1α cascade, namely, PPAR-α, FGF21 and AMPK, effects that were not observed in mice subjected to DHA and HT co-administration. CONCLUSIONS Data presented indicate that the combination of DHA and HT prevents the development of liver steatosis and the associated mitochondrial dysfunction induced by HFD, thus strengthening the significance of this protocol as a therapeutic strategy avoiding disease evolution into more irreversible forms characterised by the absence of adequate pharmacological therapy in human obesity.
Collapse
Affiliation(s)
- Macarena Ortiz
- Nutrition and Dietetics School, Faculty of Health Sciences, Catholic University of Maule, Curico, Chile
| | - Sandra A Soto-Alarcón
- Nutrition Department, Faculty of Medicine, University of Chile, Independencia 1027, Casilla 70000, Santiago, Chile
| | - Paula Orellana
- Nutrition Department, Faculty of Medicine, University of Chile, Independencia 1027, Casilla 70000, Santiago, Chile
| | - Alejandra Espinosa
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Cristian Campos
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sandra López-Arana
- Nutrition Department, Faculty of Medicine, University of Chile, Independencia 1027, Casilla 70000, Santiago, Chile
| | - Miguel A Rincón
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Paola Illesca
- Biochemistry Department, Faculty of Biochemistry, University of Litoral, Santa Fe, Argentina
| | - Rodrigo Valenzuela
- Nutrition Department, Faculty of Medicine, University of Chile, Independencia 1027, Casilla 70000, Santiago, Chile.
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Science, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
52
|
Daimiel L, Micó V, Valls RM, Pedret A, Motilva MJ, Rubió L, Fitó M, Farrás M, Covas MI, Solá R, Ordovás JM. Impact of Phenol-Enriched Virgin Olive Oils on the Postprandial Levels of Circulating microRNAs Related to Cardiovascular Disease. Mol Nutr Food Res 2020; 64:e2000049. [PMID: 32562310 PMCID: PMC7507201 DOI: 10.1002/mnfr.202000049] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/06/2020] [Indexed: 12/19/2022]
Abstract
SCOPE We investigate the postprandial modulation of cardiovascular-related microRNAs elicited by extra virgin olive oil (EVOOs) containing different levels of their own polyphenols. METHODS AND RESULTS It is randomized, postprandial, parallel, double-blind study. Twelve healthy participants consumed 30 mL of EVOO containing low (L-EVOO; 250 mg total phenols kg-1 of oil), medium (M-EVOO; 500 mg total phenols kg-1 of oil), and high (H-EVOO; 750 mg total phenols kg-1 of oil) enriched EVOOs. Postprandial plasma microRNAs levels are analyzed by real-time quantitative PCR. The results show that L-EVOO intake is associated with decreased let-7e-5p and miR-328a-3p levels and increased miR-17-5p and miR-20a-5p, concentrations. M-EVOO decreases plasma let-7e-5p and increases miR-17-5p, miR-20a-5p, and miR-192-5p levels. Finally, H-EVOO decreases let-7e-5p, miR-10a-5p, miR-21-5p, and miR-26b-5p levels. CONCLUSION During the postprandial state, the levels of let-7e-5p decrease with EVOO regardless of polyphenol content suggesting a general response to the fatty acid composition of EVOO or/and the presence of at least 250 mg polyphenol kg-1 olive oil. Moreover, the miR-17-92 cluster increases by low and medium polyphenol content suggesting a role in fatty acid metabolism and nutrient sensing. Thus, postprandial modulation of circulating microRNAs levels could be a potential mechanism for the cardiovascular benefits associated with EVOO intake.
Collapse
Affiliation(s)
- Lidia Daimiel
- Nutritional Control of the Epigenome GroupInstituto Madrileño de EstudiosAvanzados (IMDEA) Food InstituteCEI UAM+CSICMadrid28049Spain
| | - Víctor Micó
- Nutritional Control of the Epigenome GroupInstituto Madrileño de EstudiosAvanzados (IMDEA) Food InstituteCEI UAM+CSICMadrid28049Spain
| | - Rosa M Valls
- Functional NutritionOxidation and Cardiovascular Disease Research GroupUniversitat Rovira i VirgiliHospital Universitari Sant JoanEURECATReus43204Spain
| | - Anna Pedret
- Functional NutritionOxidation and Cardiovascular Disease Research GroupUniversitat Rovira i VirgiliHospital Universitari Sant JoanEURECATReus43204Spain
| | - María José Motilva
- Food Technology DepartmentAgrotecnio CenterEscola Tècnica Superior d'Enginyeria AgràriaUniversity of LleidaLleida25198Spain
- Present address:
Instituto de Ciencias de la Vid y del Vino‐ICVV (CSIC‐Consejo Superior de Investigaciones CientíficasUniversidad de La Rioja, Gobierno de La Rioja)Finca La Grajera, Ctra. de Burgos Km. 6 (LO‐20 ‐ salida 13)Logroño (La Rioja)26007Spain
| | - Laura Rubió
- Instituto de Ciencias de la Vid y del Vino‐ICVV(CSIC‐Consejo Superior de Investigaciones Científicas, Universidad de La Rioja, Gobierno de La Rioja)Finca La Grajera, Ctra. de Burgos Km. 6 (LO‐20 – salida 13)LogroñoLa Rioja26007Spain
| | - Montse Fitó
- Cardiovascular Risk and Nutrition (Regicor Study Group)Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain. CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN)Institute of Health Carlos IIIMadrid28029Spain
| | - Marta Farrás
- Cardiovascular Risk and Nutrition (Regicor Study Group)Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain. CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN)Institute of Health Carlos IIIMadrid28029Spain
| | - María Isabel Covas
- Cardiovascular Risk and Nutrition (Regicor Study Group)Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain. CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN)Institute of Health Carlos IIIMadrid28029Spain
| | - Rosa Solá
- Functional NutritionOxidation and Cardiovascular Disease Research GroupUniversitat Rovira i VirgiliHospital Universitari Sant JoanEURECATReus43204Spain
| | - José M. Ordovás
- Nutritional Genomics and Epigenomics GroupInstituto Madrileño de Estudios Avanzados (IMDEA) Food InstituteCEI UAM+CSICMadrid28049Spain
- Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on AgingTufts University School of MedicineBostonMA02111USA
| |
Collapse
|
53
|
Farahani M, Rezaei-Tavirani M, Arjmand B. A systematic review of microRNA expression studies with exposure to bisphenol A. J Appl Toxicol 2020; 41:4-19. [PMID: 32662106 DOI: 10.1002/jat.4025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
Abstract
Bisphenol A (BPA), as a common industrial component, is generally consumed in the synthesis of polymeric materials. To gain a deeper understanding of the detrimental effects of BPA, BPA-induced microRNA (miRNA) alterations were investigated. A systematic search was performed in the PubMed, SCOPUS and Web of Science databases to evoke relevant published data up to August 10, 2019. We identified altered miRNAs that have been repeated in at least three studies. Moreover, miRNA homology analysis between human and nonhuman species was performed to determine the toxicity signatures of BPA in human exposure. In addition, to reflect the effects of environmental exposure levels of BPA, the study designs were categorized into two groups, including low and high doses according to the previous definitions. In total, 28 studies encountered our criteria and 17 miRNAs were identified that were differentially expressed in at least three independent studies. Upregulating miR-146a and downregulating miR-192, miR-134, miR-27b and miR-324 were found in three studies. MiR-122 and miR-29a were upregulated in four studies after BPA exposure, and miR-21 was upregulated in six studies. The results indicate that BPA at low-level exposures can also alter miRNA expression in response to toxicity. Finally, the miRNA-related pathways showed that BPA seriously can affect human health through various cell signaling pathways, which were predictable and consistent with existing studies. Overall, our findings suggest that further studies should be conducted to examine the role of miRNA level changes in human BPA exposure.
Collapse
Affiliation(s)
- Masoumeh Farahani
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
54
|
Statin Treatment-Induced Development of Type 2 Diabetes: From Clinical Evidence to Mechanistic Insights. Int J Mol Sci 2020; 21:ijms21134725. [PMID: 32630698 PMCID: PMC7369709 DOI: 10.3390/ijms21134725] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Statins are the gold-standard treatment for the prevention of primary and secondary cardiovascular disease, which is the leading cause of mortality worldwide. Despite the safety and relative tolerability of statins, observational studies, clinical trials and meta-analyses indicate an increased risk of developing new-onset type 2 diabetes mellitus (T2DM) after long-term statin treatment. It has been shown that statins can impair insulin sensitivity and secretion by pancreatic β-cells and increase insulin resistance in peripheral tissues. The mechanisms involved in these processes include, among others, impaired Ca2+ signaling in pancreatic β-cells, down-regulation of GLUT-4 in adipocytes and compromised insulin signaling. In addition, it has also been described that statins’ impact on epigenetics may also contribute to statin-induced T2DM via differential expression of microRNAs. This review focuses on the evidence and mechanisms by which statin therapy is associated with the development of T2DM. This review describes the multifactorial combination of effects that most likely contributes to the diabetogenic effects of statins. Clinically, these findings should encourage clinicians to consider diabetes monitoring in patients receiving statin therapy in order to ensure early diagnosis and appropriate management.
Collapse
|
55
|
de Oliveira GP, Porto WF, Palu CC, Pereira LM, Reis AMM, Marçola TG, Teixeira-Neto AR, Franco OL, Pereira RW. Effects of endurance racing on horse plasma extracellular particle miRNA. Equine Vet J 2020; 53:618-627. [PMID: 32484928 DOI: 10.1111/evj.13300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/09/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Physical exercise is an essential factor in preventing and treating metabolic diseases by promoting systemic benefits throughout the body. The molecular factors involved in this process are poorly understood. Micro RNAs (miRNAs) are small non-coding RNAs that inhibit mRNA transcription. MiRNAs, which can participate in the benefits of exercise to health, circulate in plasma in extracellular particles (EP). Horses that undergo endurance racing are an excellent model to study the impact of long-duration/low intensity exercise in plasma EP miRNAs. OBJECTIVES To evaluate the effects of 160 km endurance racing on horse plasma extracellular particles and their miRNA population. STUDY DESIGN Cohort study. METHODS We collected plasma from five Arabian horses during five time-points of an endurance ride. Extracellular particles were purified from plasma and characterised by electron microscopy, resistive pulse sensing (qNano) and western blotting. Small RNAs were purified from horse plasma EP, and sequencing was performed. RESULTS Endurance racing increased EP concentration and average diameter compared to before the race. Western blotting showed a high concentration of extracellular vesicles proteins 2 hours after the race, which returned to baseline 15 hours after the race. MicroRNA differential expression analysis revealed increasing levels of eca-miR-486-5p during and after the race, and decreasing levels of eca-miR-9083 after the end. CONCLUSIONS This study adds new data about the variation in plasma EP concentrations after long-distance exercise and brings new insights about the roles of exercise-derived EP miRNAs during low-intensity endurance exercise.
Collapse
Affiliation(s)
- Getúlio P de Oliveira
- Programa de pós-graduação em Patologia Molecular, Universidade de Brasília-UnB, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, Brasil.,Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - William F Porto
- Programa de pós-graduação em Biotecnologia, S-Inova Biotech, Universidade Católica Dom Bosco-UCDB, Campo Grande, MS, Brasil
| | - Cintia C Palu
- NSilico Life Science LTDA, Unit 1.23, Nova Center, Belfield Innovation Park, Dublin, Ireland.,University College Cork, Cork, Ireland
| | - Lydyane M Pereira
- Programa de pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília-UCB, Brasília, DF, Brasil
| | - Alessandra M M Reis
- Programa de pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília-UCB, Brasília, DF, Brasil
| | - Tatiana G Marçola
- Programa de pós-graduação em Saúde Animal, Universidade de Brasília-UnB, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, Brasil
| | - Antonio R Teixeira-Neto
- Programa de pós-graduação em Saúde Animal, Universidade de Brasília-UnB, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, Brasil
| | - Octavio L Franco
- Programa de pós-graduação em Patologia Molecular, Universidade de Brasília-UnB, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, Brasil.,Programa de pós-graduação em Biotecnologia, S-Inova Biotech, Universidade Católica Dom Bosco-UCDB, Campo Grande, MS, Brasil.,Programa de pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília-UCB, Brasília, DF, Brasil.,Programa de pós-graduação em Educação Física, Universidade Católica de Brasília-UCB, Brasília, DF, Brasil
| | - Rinaldo W Pereira
- Programa de pós-graduação em Patologia Molecular, Universidade de Brasília-UnB, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, Brasil.,Programa de pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília-UCB, Brasília, DF, Brasil.,Programa de pós-graduação em Educação Física, Universidade Católica de Brasília-UCB, Brasília, DF, Brasil
| |
Collapse
|
56
|
Differential MicroRNA-Signatures in Thyroid Cancer Subtypes. JOURNAL OF ONCOLOGY 2020; 2020:2052396. [PMID: 32565797 PMCID: PMC7290866 DOI: 10.1155/2020/2052396] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022]
Abstract
Thyroid cancer is one of the most common endocrine cancers, with an increasing trend in the last few decades. Although papillary thyroid cancer is the most frequent subtype compared with follicular or anaplastic thyroid cancer, it can dedifferentiate to a more aggressive phenotype, and the recurrence rate is high. The cells of follicular adenomas and follicular carcinomas appear identical in cytology, making the preoperative diagnosis difficult. On the other hand, anaplastic thyroid cancer poses a significant clinical challenge due to its aggressive nature with no effective therapeutic options. In the past several years, the roles of genetic alterations of thyroid tumors have been documented, with a remarkable correlation between genotype and phenotype, indicating that distinct molecular changes are associated with a multistep tumorigenic process. Besides mRNA expression profiles, small noncoding microRNA (miRNA) expression also showed critical functions for cell differentiation, proliferation, angiogenesis, and resistance to apoptosis and finally activating invasion and metastasis in cancer. Several high-throughput sequencing studies demonstrate that miRNA expression signatures contribute clinically relevant information including types of thyroid cancer, tumor grade, and prognosis. This review summarizes recent findings on miRNA signatures in thyroid cancer subtypes.
Collapse
|
57
|
Tang X, Miao Y, Luo Y, Sriram K, Qi Z, Lin FM, Gu Y, Lai CH, Hsu CY, Peterson KL, Van Keuren-Jensen K, Fueger PT, Yeo GW, Natarajan R, Zhong S, Chen ZB. Suppression of Endothelial AGO1 Promotes Adipose Tissue Browning and Improves Metabolic Dysfunction. Circulation 2020; 142:365-379. [PMID: 32393053 DOI: 10.1161/circulationaha.119.041231] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Metabolic disorders such as obesity and diabetes mellitus can cause dysfunction of endothelial cells (ECs) and vascular rarefaction in adipose tissues. However, the modulatory role of ECs in adipose tissue function is not fully understood. Other than vascular endothelial growth factor-vascular endothelial growth factor receptor-mediated angiogenic signaling, little is known about the EC-derived signals in adipose tissue regulation. We previously identified Argonaute 1 (AGO1; a key component of microRNA-induced silencing complex) as a crucial regulator in hypoxia-induced angiogenesis. In this study, we intend to determine the AGO1-mediated EC transcriptome, the functional importance of AGO1-regulated endothelial function in vivo, and the relevance to adipose tissue function and obesity. METHODS We generated and subjected mice with EC-AGO1 deletion (EC-AGO1-knockout [KO]) and their wild-type littermates to a fast food-mimicking, high-fat high-sucrose diet and profiled the metabolic phenotypes. We used crosslinking immunoprecipitation- and RNA-sequencing to identify the AGO1-mediated mechanisms underlying the observed metabolic phenotype of EC-AGO1-KO. We further leveraged cell cultures and mouse models to validate the functional importance of the identified molecular pathway, for which the translational relevance was explored using human endothelium isolated from healthy donors and donors with obesity/type 2 diabetes mellitus. RESULTS We identified an antiobesity phenotype of EC-AGO1-KO, evident by lower body weight and body fat, improved insulin sensitivity, and enhanced energy expenditure. At the organ level, we observed the most significant phenotype in the subcutaneous and brown adipose tissues of KO mice, with greater vascularity and enhanced browning and thermogenesis. Mechanistically, EC-AGO1 suppression results in inhibition of thrombospondin-1 (THBS1/TSP1), an antiangiogenic and proinflammatory cytokine that promotes insulin resistance. In EC-AGO1-KO mice, overexpression of TSP1 substantially attenuated the beneficial phenotype. In human endothelium isolated from donors with obesity or type 2 diabetes mellitus, AGO1 and THBS1 are expressed at higher levels than the healthy controls, supporting a pathological role of this pathway. CONCLUSIONS Our study suggests a novel mechanism by which ECs, through the AGO1-TSP1 pathway, control vascularization and function of adipose tissues, insulin sensitivity, and whole-body metabolic state.
Collapse
Affiliation(s)
- Xiaofang Tang
- Department of Diabetes Complications and Metabolism (X.T., Y.M., Y.L., K.S., F.L., C.H.L., R.N., Z.C.), City of Hope, Duarte, CA
| | - Yifei Miao
- Department of Diabetes Complications and Metabolism (X.T., Y.M., Y.L., K.S., F.L., C.H.L., R.N., Z.C.), City of Hope, Duarte, CA
| | - Yingjun Luo
- Department of Diabetes Complications and Metabolism (X.T., Y.M., Y.L., K.S., F.L., C.H.L., R.N., Z.C.), City of Hope, Duarte, CA
| | - Kiran Sriram
- Department of Diabetes Complications and Metabolism (X.T., Y.M., Y.L., K.S., F.L., C.H.L., R.N., Z.C.), City of Hope, Duarte, CA.,Irell and Manella Graduate School of Biological Sciences (K.S., P.T.F., R.N., Z.C.), City of Hope, Duarte, CA
| | - Zhijie Qi
- Department of Bioengineering (Z.Q., S.Z.), University of California at San Diego, La Jolla
| | - Feng-Mao Lin
- Department of Diabetes Complications and Metabolism (X.T., Y.M., Y.L., K.S., F.L., C.H.L., R.N., Z.C.), City of Hope, Duarte, CA
| | - Yusu Gu
- Department of Medicine (Y.G., K.L.P.), University of California at San Diego, La Jolla
| | - Chih-Hung Lai
- Department of Diabetes Complications and Metabolism (X.T., Y.M., Y.L., K.S., F.L., C.H.L., R.N., Z.C.), City of Hope, Duarte, CA
| | - Chien-Yi Hsu
- Department of Internal Medicine, Taipei Medical University Hospital, Taiwan (C.Y.H)
| | - Kirk L Peterson
- Department of Medicine (Y.G., K.L.P.), University of California at San Diego, La Jolla
| | | | - Patrick T Fueger
- Irell and Manella Graduate School of Biological Sciences (K.S., P.T.F., R.N., Z.C.), City of Hope, Duarte, CA.,Department of Molecular and Cellular Endocrinology (P.T.F.), City of Hope, Duarte, CA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine (G.W.Y.), University of California at San Diego, La Jolla
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism (X.T., Y.M., Y.L., K.S., F.L., C.H.L., R.N., Z.C.), City of Hope, Duarte, CA.,Irell and Manella Graduate School of Biological Sciences (K.S., P.T.F., R.N., Z.C.), City of Hope, Duarte, CA
| | - Sheng Zhong
- Department of Bioengineering (Z.Q., S.Z.), University of California at San Diego, La Jolla
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism (X.T., Y.M., Y.L., K.S., F.L., C.H.L., R.N., Z.C.), City of Hope, Duarte, CA.,Irell and Manella Graduate School of Biological Sciences (K.S., P.T.F., R.N., Z.C.), City of Hope, Duarte, CA
| |
Collapse
|
58
|
Fawzy MS, Abu AlSel BT, Al Ageeli E, Al-Qahtani SA, Abdel-Daim MM, Toraih EA. Long non-coding RNA MALAT1 and microRNA-499a expression profiles in diabetic ESRD patients undergoing dialysis: a preliminary cross-sectional analysis. Arch Physiol Biochem 2020; 126:172-182. [PMID: 30270667 DOI: 10.1080/13813455.2018.1499119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/08/2018] [Indexed: 01/22/2023]
Abstract
Background: Circulating non-coding RNAs (ncRNAs) have been implicated in health and disease. This study aimed to evaluate the serum expression profile of microRNA-499a (miR-499a) and its selected bioinformatically predicted partner long-ncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) in diabetes-related end-stage renal disease (ESRD) patients and to correlate the expressions with the patients' clinicolaboratory data.Subjects and methods: Real-time quantitative polymerase chain reaction was applied in diabetics with and without ESRD (n = 90 for each).Results: Serum MALAT1 expression levels were increased in the ESRD group relative to diabetics without ESRD with median (quartile) values of 10.5 (1.41-126.7) (p < .001). However, miR-499a levels were decreased in more than half of ESRD patients with a median of 0.96 (0.13-3.14). Both MALAT1 and miR-499a expression levels were inversely correlated in the ESRD patient-group.Conclusions: MALAT1 up-regulation and miR-499 down-regulation might be involved in diabetic nephropathy-related ESRD pathogenesis. Functional validation studies are warranted to confirm the MALAT1/miR-499a partnership.
Collapse
MESH Headings
- Adult
- Aged
- Base Pairing
- Base Sequence
- Cross-Sectional Studies
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/therapy
- Diabetic Nephropathies/diagnosis
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/genetics
- Diabetic Nephropathies/therapy
- Disease Progression
- Female
- Gene Expression Regulation
- Humans
- Kidney Failure, Chronic/diagnosis
- Kidney Failure, Chronic/etiology
- Kidney Failure, Chronic/genetics
- Kidney Failure, Chronic/therapy
- Male
- MicroRNAs/blood
- MicroRNAs/genetics
- Middle Aged
- RNA, Long Noncoding/blood
- RNA, Long Noncoding/genetics
- Renal Dialysis
Collapse
Affiliation(s)
- Manal S Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Baraah T Abu AlSel
- Department of Microbiology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Essam Al Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Saeed Awad Al-Qahtani
- Department of Physiology, Faculty of Medicine, Taibah University, Almadinah Almunawwarah, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Eman A Toraih
- Department of Histology and Cell Biology (Genetics Unit), Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Center of Excellence of Molecular and Cellular Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
59
|
Michell DL, Zhao S, Allen RM, Sheng Q, Vickers KC. Pervasive Small RNAs in Cardiometabolic Research: Great Potential Accompanied by Biological and Technical Barriers. Diabetes 2020; 69:813-822. [PMID: 32312897 PMCID: PMC7171967 DOI: 10.2337/dbi19-0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
Abstract
Advances in small RNA sequencing have revealed the enormous diversity of small noncoding RNA (sRNA) classes in mammalian cells. At this point, most investigators in diabetes are aware of the success of microRNA (miRNA) research and appreciate the importance of posttranscriptional gene regulation in glycemic control. Nevertheless, miRNAs are just one of multiple classes of sRNAs and likely represent only a minor fraction of sRNA sequences in a given cell. Despite the widespread appreciation of sRNAs, very little research into non-miRNA sRNA function has been completed, likely due to some major barriers that present unique challenges for study. To emphasize the importance of sRNA research in cardiometabolic diseases, we highlight the success of miRNAs and competitive endogenous RNAs in cholesterol and glucose metabolism. Moreover, we argue that sequencing studies have demonstrated that miRNAs are just the tip of the iceberg for sRNAs. We are likely standing at the precipice of immense discovery for novel sRNA-mediated gene regulation in cardiometabolic diseases. To realize this potential, we must first address critical barriers with an open mind and refrain from viewing non-miRNA sRNA function through the lens of miRNAs, as they likely have their own set of distinct regulatory factors and functional mechanisms.
Collapse
Affiliation(s)
- Danielle L Michell
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Ryan M Allen
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Kasey C Vickers
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
60
|
Luo M, Xu C, Luo Y, Wang G, Wu J, Wan Q. Circulating miR-103 family as potential biomarkers for type 2 diabetes through targeting CAV-1 and SFRP4. Acta Diabetol 2020; 57:309-322. [PMID: 31583475 DOI: 10.1007/s00592-019-01430-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
AIMS MicroRNA-103 (miR-103) family plays important roles in regulating glucose homeostasis in type 2 diabetes mellitus (DM2). However, the underlying mechanisms remain poorly characterized. The objective of this study was to test the hypothesis that circulating miR-103a and miR-103b, which regulate CAV-1 and SFRP4, respectively, are novel biomarkers for diagnosis of DM2. METHODS We determined the predictive potential of circulating miR-103a and miR-103b in pre-DM subjects (pre-DM), noncomplicated diabetic subjects, and normal glucose-tolerance individuals (control) using bioinformatic analysis, qRT-PCR, luciferase assays, and ELISA assays. RESULTS We found that both miR-103a and miR-103b had high complementarity and conservation, modulated reporter gene expression through seed sequences in the 3'UTRs of CAV-1 and SFRP4 mRNA, and negatively regulated their mRNA and protein levels, respectively. We also found that increased miR-103a and decreased miR-103a in plasma were significantly and negatively correlated with reduced CAV-1 levels and elevated SFRP4 levels in pre-DM and DM2, respectively, and were significantly associated with glucose metabolism, HbA1c levels, and other DM2 risk factors for progression from a normal individual to one with pre-DM. Furthermore, we demonstrated that the reciprocal changes in circulating miR-103a and miR-103b not only provided high sensitivity and specificity to differentiate the pre-DM population but also acted as biomarkers for predicting DM2 with high diagnostic value. CONCLUSIONS These findings suggest that circulating miR-103a and miR-103b may serve as novel biomarkers for diagnosis of DM2, providing novel insight into the mechanisms underlying pre-DM.
Collapse
Affiliation(s)
- Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunrong Xu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yulin Luo
- GCP Center, Affiliated Hospital (T.C.M) of Southwest Medical University, Luzhou, Sichuan, China
| | - Gang Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianbo Wu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Qin Wan
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
61
|
Li F, Ma X, Liu T, Wang Y, Xie X, Xin Y, Cheng K. mRNA-103 inhibition attenuates autophagy and inflammation in myocardial infarction by regulating the TLR4 pathway. Arch Med Sci 2020; 21:266-271. [PMID: 40190298 PMCID: PMC11969517 DOI: 10.5114/aoms.2020.93267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/31/2020] [Indexed: 04/09/2025] Open
Abstract
Introduction This investigation determined the cardioprotective activity of mRNA-103 inhibitor against myocardial infarction (MI) and also evaluated its molecular mechanism. Material and methods MI was induced in rats by inducing myocardial ischaemia/reperfusion (I/R), and left ventricular (LV) mRNA-103 (1 × 107 TU) was injected into the myocardium around the infarcted area. The effect of mRNA-103 inhibitor was assessed by determining the levels of myocardial enzymes and cytokines in the serum, the myeloperoxidase (MPO) activity, and the levels of Toll-like receptor 4 (TLR4), nuclear factor κ-light-chain enhancer of activated B cells (NF-κB), and MyD88 mRNAs in the myocardial tissues of MI rats. Immunocytochemical analysis and a histopathology study were also performed. Results The levels of myocardial enzymes and cytokines were lower in the mRNA-103 inhibitor-treated group than in the group in which the only treatment was the induction of MI. There was a lower percentage of infarcted area and a lower apoptosis index in the mRNA-103 inhibitor-treated group compared to the MI-only. The levels of TLR4, NF-κB, and MyD88 mRNAs were lower in the myocardial tissues of the mRNA-103 inhibitor-treated group than in the MI-only group. Immunohistochemical analysis revealed that treatment with mRNA-103 inhibitor ameliorated the expression of TLR4 in the myocardial tissues of MI rats. Conclusions The data revealed that inhibition by mRNA-103 protects against myocardial injury in MI rats by regulating the inflammasome pathway.
Collapse
Affiliation(s)
- Fan Li
- School of Life Science, Northwest University, Xian, China
| | - XiaoHui Ma
- Department of Vascular Surgery, General Hospital of PLA, Beijing, China
| | - Tong Liu
- Department of Cardiology, Affiliated Hospital of Northwest University, Xian, China
- Department of Cardiology, Xian No. 3 Hospital, Xian, China
| | - Yang Wang
- Department of Cardiology, Affiliated Hospital of Northwest University, Xian, China
- Department of Cardiology, Xian No. 3 Hospital, Xian, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xian, China
| | - Yi Xin
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Kang Cheng
- Department of Cardiology, Affiliated Hospital of Northwest University, Xian, China
- Department of Cardiology, Xian No. 3 Hospital, Xian, China
| |
Collapse
|
62
|
Pegon C, Rochette E, Rouel N, Pereira B, Doré E, Isfan F, Grèze V, Merlin E, Kanold J, Duché P. Childhood Leukemia Survivors and Metabolic Response to Exercise: A Pilot Controlled Study. J Clin Med 2020; 9:jcm9020562. [PMID: 32092881 PMCID: PMC7073622 DOI: 10.3390/jcm9020562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/07/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Leukemia is the most common cancer in pediatrics, with many late effects such as higher risk of dyslipidemia, insulin resistance, obesity, and metabolic syndrome. The objective of this work was to investigate substrate oxidation during submaximal exercise in survivors of childhood acute leukemia. Methods: A total of 20 leukemia survivors and 20 healthy children were matched by sex, age, and Tanner stage. They all took a submaximal incremental exercise test to determine fat and carbohydrate oxidation rates. Results: Cardiorespiratory fitness was significantly lower in leukemia survivors, with lower relative VO2 peaks (p < 0.001), lower heart rate values (p = 0.02), and lower exercise power (p = 0.012), whereas rest metabolism and body mass index did not differ between the two groups. During exercise, upward of heart rate relative to VO2 peak was significantly higher (p < 0.001) in childhood leukemia survivors. We found lower carbohydrate and fat oxidation rates (p = 0.07) in leukemia survivors compared with healthy children, and also a significantly lower relative maximal fat oxidation rate (p = 0.014). Conclusion: Despite impaired physical fitness and metabolic response to exercise, childhood leukemia survivors remained sensitive to physical activity interventions, and could readily adapt to submaximal exercise intensity.
Collapse
Affiliation(s)
- Charline Pegon
- CHU Clermont-Ferrand, Pédiatrie, F-63000 Clermont-Ferrand, France; (C.P.); (N.R.); (E.D.); (F.I.); (V.G.); (E.M.); (J.K.)
| | - Emmanuelle Rochette
- CHU Clermont-Ferrand, Pédiatrie, F-63000 Clermont-Ferrand, France; (C.P.); (N.R.); (E.D.); (F.I.); (V.G.); (E.M.); (J.K.)
- Université Clermont Auvergne, INSERM, CIC 1405, Unité CRECHE, F-63000 Clermont-Ferrand, France
- Université de Toulon, Laboratoire IAPS, F-83041 Toulon, France;
- Correspondence: ; Tel.: +33-4-73-75-22-97; Fax: + 33-4-73-75-22-86
| | - Nadège Rouel
- CHU Clermont-Ferrand, Pédiatrie, F-63000 Clermont-Ferrand, France; (C.P.); (N.R.); (E.D.); (F.I.); (V.G.); (E.M.); (J.K.)
- Université Clermont Auvergne, INSERM, CIC 1405, Unité CRECHE, F-63000 Clermont-Ferrand, France
| | - Bruno Pereira
- CHU Clermont-Ferrand, Délégation de la Recherche Clinique et Innovations, F-63000 Clermont-Ferrand, France;
| | - Eric Doré
- CHU Clermont-Ferrand, Pédiatrie, F-63000 Clermont-Ferrand, France; (C.P.); (N.R.); (E.D.); (F.I.); (V.G.); (E.M.); (J.K.)
| | - Florentina Isfan
- CHU Clermont-Ferrand, Pédiatrie, F-63000 Clermont-Ferrand, France; (C.P.); (N.R.); (E.D.); (F.I.); (V.G.); (E.M.); (J.K.)
| | - Victoria Grèze
- CHU Clermont-Ferrand, Pédiatrie, F-63000 Clermont-Ferrand, France; (C.P.); (N.R.); (E.D.); (F.I.); (V.G.); (E.M.); (J.K.)
- Université Clermont Auvergne, INSERM, CIC 1405, Unité CRECHE, F-63000 Clermont-Ferrand, France
| | - Etienne Merlin
- CHU Clermont-Ferrand, Pédiatrie, F-63000 Clermont-Ferrand, France; (C.P.); (N.R.); (E.D.); (F.I.); (V.G.); (E.M.); (J.K.)
- Université Clermont Auvergne, INSERM, CIC 1405, Unité CRECHE, F-63000 Clermont-Ferrand, France
- Université Clermont Auvergne, INRA, UMR 1019 UNH, ECREIN, F-63000 Clermont-Ferrand, France
| | - Justyna Kanold
- CHU Clermont-Ferrand, Pédiatrie, F-63000 Clermont-Ferrand, France; (C.P.); (N.R.); (E.D.); (F.I.); (V.G.); (E.M.); (J.K.)
- Université Clermont Auvergne, INSERM, CIC 1405, Unité CRECHE, F-63000 Clermont-Ferrand, France
| | - Pascale Duché
- Université de Toulon, Laboratoire IAPS, F-83041 Toulon, France;
- Université Clermont Auvergne, Laboratoire des Adaptations Métaboliques en conditions Physiologiques et Physiopathologiques (AME2P), EA 3533, F-63000 Clermont-Ferrand, France
| | | |
Collapse
|
63
|
Ramzan F, D'Souza RF, Durainayagam BR, Milan AM, Markworth JF, Miranda-Soberanis V, Sequeira IR, Roy NC, Poppitt SD, Mitchell CJ, Cameron-Smith D. Circulatory miRNA biomarkers of metabolic syndrome. Acta Diabetol 2020; 57:203-214. [PMID: 31435783 DOI: 10.1007/s00592-019-01406-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/08/2019] [Indexed: 12/19/2022]
Abstract
AIMS Circulatory microRNAs (c-miRNAs) exert important roles in the molecular dysregulation of cardio-metabolic diseases. However, little is known whether dysregulated miRNA expression occurs when risk factors are elevated, as in the metabolic syndrome (MetS). This study quantified c-miRNA expression in individuals with MetS compared to healthy, further examining the relationship of gene pathways with the underlying pathogenesis. METHODS Expression of 26 miRNAs was quantified in plasma from 40 women (20 healthy and 20 MetS) and 39 men (20 healthy and 19 MetS) by qPCR. In silico analysis was performed to investigate biological effects of the dysregulated miRNAs. Dysregulated miRNA expression was further validated in an independent cohort of 20 women (10 healthy and 10 MetS). RESULTS Regression model adjusted for age and sex identified miR-15a-5p, miR-17-5p, miR-370-3p and miR-375 as important predictors of MetS presence. Analysis of predictive miRNAs in the validation cohort strengthened the relationship with miR-15a-5p and miR-17-5p expression. These miRNAs share genes involved in the regulation of metabolic pathways including insulin, wnt, fatty acid metabolism and AMPK. CONCLUSIONS miR-15a-5p and miR-17-5p were identified as predictive biomarkers of MetS, irrespective of sexes, further demonstrating the relationship of c-miRNAs to known pathways of metabolic disturbances present in cardio-metabolic diseases.
Collapse
Affiliation(s)
- F Ramzan
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1142, New Zealand
- The Riddet Institute, Massey University, Palmerston North, New Zealand
| | - R F D'Souza
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1142, New Zealand
| | - B R Durainayagam
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1142, New Zealand
| | - A M Milan
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1142, New Zealand
| | - J F Markworth
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1142, New Zealand
| | | | - I R Sequeira
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Human Nutrition Unit, Department of Medicine, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - N C Roy
- Food Nutrition and Health Team, AgResearch Grasslands, Palmerston North, New Zealand
- The Riddet Institute, Massey University, Palmerston North, New Zealand
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Food and Bio-Based Products Group, AgResearch Ltd., Palmerston North, New Zealand
| | - S D Poppitt
- The Riddet Institute, Massey University, Palmerston North, New Zealand
- The High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Human Nutrition Unit, Department of Medicine, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - C J Mitchell
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1142, New Zealand
- School of Kinesiology, The University of British Columbia, Vancouver, Canada
| | - D Cameron-Smith
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1142, New Zealand.
- The Riddet Institute, Massey University, Palmerston North, New Zealand.
- Food and Bio-Based Products Group, AgResearch Ltd., Palmerston North, New Zealand.
| |
Collapse
|
64
|
Papalia H, Rochette E, Pereira B, Merlin E, Kanold J, Duché P. Metabolic response to exercise in childhood brain tumor survivors: A pilot controlled study. Pediatr Blood Cancer 2020; 67:e28053. [PMID: 31625676 DOI: 10.1002/pbc.28053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/16/2019] [Accepted: 10/05/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND/OBJECTIVES Survival rates in children diagnosed with malignant brain tumors exceed 70%. A higher risk of dyslipidemia, central obesity, and insulin resistance has been reported among these children. We investigated substrate utilization during submaximal exercise. DESIGN/METHODS Ten brain tumor survivors and 10 healthy children were matched by sex, age, and Tanner stage. Participants completed a submaximal incremental exercise test to determine their fat and carbohydrate oxidation rates. RESULTS The relative oxygen volume (VO2 ) peak was significantly higher in the control group than in the survivors of childhood brain tumors (43.3 ± 11.9 and 32.4 ± 10.2 mL/kg /min, P = .04). At the same relative exercise intensity, there was no difference in the carbohydrate or lipid oxidation rate between the two groups, or in the maximal fat oxidation (MFO) rate, or in the heart rate or percentage of VO2 peak to reach MFO. Healthy children achieved MFO at significantly higher muscular power than did brain tumor survivors (47.9 ± 20.8 and 21.8 ± 9.6 W, P = .003). CONCLUSION Because child brain tumor survivors are less physically fit than healthy children, and substrate utilization during submaximal exercise is not different, physical activity should be promoted for child brain tumor survivors.
Collapse
Affiliation(s)
- Honoré Papalia
- Pédiatrie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Emmanuelle Rochette
- Pédiatrie, CHU Clermont-Ferrand, Clermont-Ferrand, France.,Unité CRECHE, Université Clermont Auvergne, INSERM, CIC 1405, Clermont-Ferrand, France.,Laboratoire IAPS, Université de Toulon, Toulon, France
| | - Bruno Pereira
- Délégation de la Recherche Clinique et Innovations, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Etienne Merlin
- Pédiatrie, CHU Clermont-Ferrand, Clermont-Ferrand, France.,Unité CRECHE, Université Clermont Auvergne, INSERM, CIC 1405, Clermont-Ferrand, France.,Université Clermont Auvergne, INRA, UMR 1019 UNH, ECREIN, Clermont-Ferrand, France
| | - Justyna Kanold
- Pédiatrie, CHU Clermont-Ferrand, Clermont-Ferrand, France.,Unité CRECHE, Université Clermont Auvergne, INSERM, CIC 1405, Clermont-Ferrand, France
| | - Pascale Duché
- Laboratoire IAPS, Université de Toulon, Toulon, France.,Laboratoire des Adaptations Métaboliques en conditions Physiologiques et Physiopathologiques (AME2P), Université Clermont Auvergne, Clermont-Ferrand, France
| | | |
Collapse
|
65
|
Exploration of targets regulated by miR-125b in porcine adipocytes. In Vitro Cell Dev Biol Anim 2020; 56:103-111. [PMID: 31912457 DOI: 10.1007/s11626-019-00427-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Abstract
MicroRNA (miRNA) has been proved to play a key role in lipid metabolism. In our previous study, miR-125b was validated to be differentially expressed in preadipocytes and adipocytes, which was also proved to involve in lipid metabolism. To explore the comprehensive targets of miR-125b in adipocytes, isobaric tag for relative and absolute quantitation (iTRAQ) analysis was performed to obtain differentially expressed proteins in adipocytes comparing negative control (NC) and miR-125b mimic, combining with digital gene expression (DGE) profiling of mRNA incorporated into RNA-induced silencing complex (RISC) pulled down by biotinylated miR-125b mimic and targets prediction of miR-125b by three algorithms, acyl-CoA dehydrogenase short chain (ACADS) and mitochondrial trans-2-enoyl-CoA reductase (MECR) were screened out as miR-125b direct targets. Luciferase reporter assay further validated that miR-125b mimic significantly inhibited the luciferase activity by targeting wild type (WT) 3'-UTR compared with NC. qPCR analysis of ACADS and MECR mRNA from adipose tissues of miR-125b knockout (KO) mice further confirmed the inhibition of miR-125b on ACADS and MECR expressions. Here we report miR-125b play a vital role in maintaining homeostasis of fatty acid metabolism by targeting key enzyme ACADS and MECR in the process of fatty acid elongation and degradation.
Collapse
|
66
|
Sadeghzadeh S, Dehghani Ashkezari M, Seifati SM, Vahidi Mehrjardi MY, Dehghan Tezerjani M, Sadeghzadeh S, Ladan SAB. Circulating miR-15a and miR-222 as Potential Biomarkers of Type 2 Diabetes. Diabetes Metab Syndr Obes 2020; 13:3461-3469. [PMID: 33061506 PMCID: PMC7537850 DOI: 10.2147/dmso.s263883] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In recent years, considerable attention has been paid to the role of microRNAs (miRs) as biomarkers in type 2 diabetes (T2D). The aim of the study was to evaluate the expression levels of miR-15a and miR-222 in diabetic, pre-diabetic, and healthy individuals. MATERIALS AND METHODS Ninety individuals, who were referred to the Yazd diabetic center, were enrolled in this study and then classified into three groups as healthy, pre-T2D, and diabetic based on the clinical manifestations. Real-time PCR was performed to explore miRs expression in the plasma samples of the studied population. The correlation between the biochemical characteristic and the expression of these miRs as well as specificity and sensitivity of different clinical markers in healthy and pre-diabetic groups was evaluated. RESULTS miR-222 expression was significantly upregulated in the pre-T2D cases compared to the control subjects (P<0.001), while no significant difference was found between the pre-T2D and T2D groups (P<0.05). The expression of miR-15a was statistically downregulated in the pre-T2D and T2D subjects (P<0.05). The receiver operating characteristic (ROC) curve analysis of miR-15a expression with a cutoff point of 1.12 resulted in the area under the curve (AUC) of 85% (95% CI 0.865-0.912; P<0.001) with 84% and 85% sensitivity and specificity, respectively. Similarly, for miR-222, the cutoff point of 4.03 and AUC of 86% (95% CI 0.875-0.943; P<0.001) discriminated against the pre-T2D and control subjects via the sensitivity and specificity of 86% and 87%, respectively. Moreover, miR-15a values showed a negative correlation with FG (R=-0.32, P=0.005); however, miR-222 values were positively correlated with FG (R=0.25, P=0.03) in the pre-T2D group. Furthermore, miR-222 values were correlated with OGTT in the pre-T2D group (R=0.27, P=0.001). In addition, LDL-C had a negative correlation with miR-222 values in the pre-T2D group (R=-0.23, P=0.02). CONCLUSION This study indicated that the plasma expression levels of miR-222 and miR-15a can be considered as non-invasive, fast tools to separate the pre-T2D individuals from their healthy counterparts. Accordingly, this information could be used to predict the development of the disease as well as a direction for optimal therapy, thus refining outcomes in patients with diabetes.
Collapse
Affiliation(s)
- Salman Sadeghzadeh
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Mahmood Dehghani Ashkezari
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
- Correspondence: Mahmood Dehghani Ashkezari Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran Email
| | - Seyed Morteza Seifati
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Mohammad Yahya Vahidi Mehrjardi
- Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Genetics, Medical School, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Dehghan Tezerjani
- Abortion Research Center, Yazd Institute of Reproductive Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sara Sadeghzadeh
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Amir Behtash Ladan
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
| |
Collapse
|
67
|
Liang K, Wang H, Li P, Zhu Y, Liu J, Tang B. Detection of microRNAs using toehold-initiated rolling circle amplification and fluorescence resonance energy transfer. Talanta 2020; 207:120285. [DOI: 10.1016/j.talanta.2019.120285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022]
|
68
|
Quitete FT, de Moura EG, Peixoto TC, Torsoni AS, Torsoni MA, Milanski M, Ignacio-Souza LM, Simino LA, de Oliveira E, Lisboa PC. Alterations of the expression levels of CPT-1, SCD1, TRβ-1 and related microRNAs are involved in lipid metabolism impairment in adult rats caused by maternal coconut oil intake during breastfeeding. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
69
|
Fernández-de Frutos M, Galán-Chilet I, Goedeke L, Kim B, Pardo-Marqués V, Pérez-García A, Herrero JI, Fernández-Hernando C, Kim J, Ramírez CM. MicroRNA 7 Impairs Insulin Signaling and Regulates Aβ Levels through Posttranscriptional Regulation of the Insulin Receptor Substrate 2, Insulin Receptor, Insulin-Degrading Enzyme, and Liver X Receptor Pathway. Mol Cell Biol 2019; 39:e00170-19. [PMID: 31501273 PMCID: PMC6817752 DOI: 10.1128/mcb.00170-19] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/14/2019] [Accepted: 08/10/2019] [Indexed: 02/07/2023] Open
Abstract
Brain insulin resistance is a key pathological feature contributing to obesity, diabetes, and neurodegenerative disorders, including Alzheimer's disease (AD). Besides the classic transcriptional mechanism mediated by hormones, posttranscriptional regulation has recently been shown to regulate a number of signaling pathways that could lead to metabolic diseases. Here, we show that microRNA 7 (miR-7), an abundant microRNA in the brain, targets insulin receptor (INSR), insulin receptor substrate 2 (IRS-2), and insulin-degrading enzyme (IDE), key regulators of insulin homeostatic functions in the central nervous system (CNS) and the pathology of AD. In this study, we found that insulin and liver X receptor (LXR) activators promote the expression of the intronic miR-7-1 in vitro and in vivo, along with its host heterogeneous nuclear ribonucleoprotein K (HNRNPK) gene, encoding an RNA binding protein (RBP) that is involved in insulin action at the posttranscriptional level. Our data show that miR-7 expression is altered in the brains of diet-induced obese mice. Moreover, we found that the levels of miR-7 are also elevated in brains of AD patients; this inversely correlates with the expression of its target genes IRS-2 and IDE. Furthermore, overexpression of miR-7 increased the levels of extracellular Aβ in neuronal cells and impaired the clearance of extracellular Aβ by microglial cells. Taken together, these results represent a novel branch of insulin action through the HNRNPK-miR-7 axis and highlight the possible implication of these posttranscriptional regulators in a range of diseases underlying metabolic dysregulation in the brain, from diabetes to Alzheimer's disease.
Collapse
Affiliation(s)
| | - Inmaculada Galán-Chilet
- Genomic and Genetic Diagnosis Unit, Biomedical Research Institute Hospital Clinic of Valencia (INCLIVA), Valencia, Spain
| | - Leigh Goedeke
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Byungwook Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Ana Pérez-García
- IMDEA Research Institute of Food and Health Sciences, Madrid, Spain
| | - J Ignacio Herrero
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jungsu Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Cristina M Ramírez
- IMDEA Research Institute of Food and Health Sciences, Madrid, Spain
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
70
|
Rosado JA, Diez-Bello R, Salido GM, Jardin I. Fine-tuning of microRNAs in Type 2 Diabetes Mellitus. Curr Med Chem 2019; 26:4102-4118. [PMID: 29210640 DOI: 10.2174/0929867325666171205163944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes mellitus is a metabolic disease widely spread across industrialized countries. Sedentary lifestyle and unhealthy alimentary habits lead to obesity, boosting both glucose and fatty acid in the bloodstream and eventually, insulin resistance, pancreas inflammation and faulty insulin production or secretion, all of them very well-defined hallmarks of type 2 diabetes mellitus. miRNAs are small sequences of non-coding RNA that may regulate several processes within the cells, fine-tuning protein expression, with an unexpected and subtle precision and in time-frames ranging from minutes to days. Since the discovery of miRNA and their possible implication in pathologies, several groups aimed to find a relationship between type 2 diabetes mellitus and miRNAs. Here we discuss the pattern of expression of different miRNAs in cultured cells, animal models and diabetic patients. We summarize the role of the most important miRNAs involved in pancreas growth and development, insulin secretion and liver, skeletal muscle or adipocyte insulin resistance in the context of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Juan A Rosado
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Raquel Diez-Bello
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Ginés M Salido
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| | - Isaac Jardin
- Institute of Molecular Pathology Biomarkers & Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10003-Caceres, Spain
| |
Collapse
|
71
|
Coskun ZM, Beydogan AB, Bolkent S. Changes in the expression levels of CB1 and GLP‐1R mRNAs and microRNAs 33a and 122 in the liver of type 2 diabetic rats treated with ghrelin. J Biochem Mol Toxicol 2019; 33:e22388. [DOI: 10.1002/jbt.22388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/29/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Zeynep M. Coskun
- Department of Molecular Biology and Genetics, Faculty of Arts and SciencesDemiroglu Bilim UniversityIstanbul Turkey
| | - Alisa B. Beydogan
- Department of Medical Biology, Faculty of Cerrahpasa MedicineIstanbul University‐CerrahpasaIstanbul Turkey
| | - Sema Bolkent
- Department of Medical Biology, Faculty of Cerrahpasa MedicineIstanbul University‐CerrahpasaIstanbul Turkey
| |
Collapse
|
72
|
Zhang N, Hu G, Myers TG, Williamson PR. Protocols for the Analysis of microRNA Expression, Biogenesis, and Function in Immune Cells. CURRENT PROTOCOLS IN IMMUNOLOGY 2019; 126:e78. [PMID: 31483103 PMCID: PMC6727972 DOI: 10.1002/cpim.78] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are short (19- to 25-nucleotide) noncoding RNA molecules that target mRNAs to repress gene expression and that play important roles in regulating many fundamental biological functions including cell differentiation, development, growth, and metabolism. They are well conserved in eukaryotic cells and are considered essential ancient elements of gene regulation. miRNA genes are transcribed by RNA polymerase II to generate primary miRNAs (pri-miRNAs), which are cleaved by microprocessor complex in the nucleus to generate stem-loop structures known as pre-miRNAs. Pre-miRNAs are translocated to the cytoplasm and cleaved by Dicer to form the mature miRNAs, which mediate mRNA degradation through their loading to the RNA-induced silencing complex (RISC) and binding to complementary sequences within target mRNAs to repress their translation by mRNA degradation and/or translation inhibition. Because ∼1900 miRNA genes are reported in the human genome, many associated with disease, appropriate methods to study miRNA expression and regulation under physiological and pathological conditions have become increasingly important to the study of many aspects of human biology, including immune regulation. As with small interfering RNA (siRNA), the mechanism of miRNA-mediated targeting has been used to develop miRNA-based therapeutics. For a complete and systematic analysis, it is critical to utilize a variety of different tools to analyze the expression of pri-mRNAs, pre-miRNAs, and mature miRNAs and characterize their targets both in vitro and in vivo. Such studies will facilitate future novel drug design and development. This unit provides six basic protocols for miRNA analysis, covering next-generation sequencing, quantitative real-time PCR (qRT-PCR), and digoxigenin-based expression analysis of pri-mRNAs, pre-miRNAs, and mature miRNAs; mapping of pri-miRNA and their cleavage sites by rapid amplification of cDNA ends (RACE); electrophoretic mobility shift assays (EMSAs) or biotin-based nonradioactive detection of miRNA-protein complexes (miRNPs); and functional analysis of miRNAs using miRNA mimics and inhibitors. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Nannan Zhang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, Maryland, USA
| | - Guowu Hu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, Maryland, USA
| | - Timothy G. Myers
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and infectious diseases, National Institute of Health, Bethesda, Maryland, USA
| | - Peter R. Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, Maryland, USA
| |
Collapse
|
73
|
Three miRNAs cooperate with host genes involved in human cardiovascular disease. Hum Genomics 2019; 13:40. [PMID: 31464655 PMCID: PMC6714460 DOI: 10.1186/s40246-019-0232-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/13/2019] [Indexed: 12/03/2022] Open
Abstract
Background Understanding the roles of miRNAs in cardiovascular disease remains a challenge. Genomic linkage indicates a functional relationship between intronic miRNAs and their host genes. However, few studies have shown functional association between intronic miRNAs and their host coding genes that are genetically associated with cardiovascular disease. Methods In this study, we investigated functional relationship between three protein-coding genes genetically associated with cardiovascular disease, i.e., CDH13, SLC12A3, and CKAP5, and their intronic miRNAs using a data-driven approach. Results We found that the three protein-coding genes functionally interact with targets of their intronic miRNAs, i.e., miR-3182, miR-6863, and miR-5582, in a tissue-specific pattern. The intronic miRNAs preferentially impact important genes for the three host genes in the network, indicating their roles in maintaining the integrity of the interactome where the host genes are involved. Targets of the intronic miRNAs display functional similarity to the host genes. We furthermore present sets of target genes for future investigation on the possible miRNA-target interactions that potentially contribute to cardiovascular diseases. Conclusions Our work provides new insight into the regulatory network of the cardiovascular-associated pathways and opens the possibility for future experimental research. Electronic supplementary material The online version of this article (10.1186/s40246-019-0232-4) contains supplementary material, which is available to authorized users.
Collapse
|
74
|
Li Y, Li C, Yang M, Shi L, Tao W, Shen K, Li X, Wang X, Yang Y, Yao Y. Association of single nucleotide polymorphisms of miRNAs involved in the GLUT4 pathway in T2DM in a Chinese population. Mol Genet Genomic Med 2019; 7:e907. [PMID: 31389668 PMCID: PMC6732275 DOI: 10.1002/mgg3.907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
Background The insulin/insulin receptor substrate (IRS)/phosphatidylinositol 3‐kinase (PI3K)/protein kinase B (Akt)/GLUT4 pathway plays a crucial role in insulin resistance and is closely associated with T2DM. Accumulating evidence indicates that miRNAs (such as miR‐135a, let‐7d, miR‐107, miR‐96, miR‐29a, miR‐23a, miR‐126, miR‐133a, and miR‐106b) influence the GLUT4 pathway. Methods A total of 784 subjects with T2DM and 846 nondiabetic subjects were enrolled and 12 single nucleotide polymorphisms (SNPs) in miRNAs (rs10459194 in miR‐135a‐2, rs10993081 and rs7045890 in let‐7d, rs2296616 in miR‐107, rs2402959 and rs6965643 in miR‐96, rs24168 in miR‐29a, rs3745453 in miR‐23a, rs4636297 in miR‐126, rs8089787 and rs9948906 in miR‐133a‐1 and rs999885 in miR‐106b) involved in the GLUT4 pathway were genotyped using the MassArray method in a Chinese population. Results Our data showed that the A allele of rs2402959 in miR‐96 may increase the risk of developing T2DM (p = .002, OR = 1.266; 95% CI: 1.089–1.471). The genotypes of rs3745453 in miR‐23a showed the difference between T2DM and control groups (p < .001). Moreover, for rs2402959, compared with the A/A genotype, the (G/A–G/G) genotype shows a protective effect in T2DM (p = .001, OR = 0.71; 95% CI: 0.58–0.87). For rs3745453, compared with the (A/A–A/G) genotype, the G/G genotype increases the risk of T2DM (p < .001, OR = 1.95; 95% CI: 1.38–2.77). In addition, we also found that rs4636297G/G genotype was associated with lower TC in T2DM group. Conclusion Our results revealed that genetic variations in the miRNAs involved in the GLUT4 pathway were associated with T2DM susceptibility in a Chinese population, and these results emphasize the need to study the functional effects of these variations in the miRNAs involved in the GLUT4 pathway on the risk of developing T2DM.
Collapse
Affiliation(s)
- Yiping Li
- Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province & The Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chuanyin Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Man Yang
- Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province & The Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Wenyu Tao
- Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province & The Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Keyu Shen
- Faculty of Medicine, Dentistry and Healthy Science, The University of Melbourne, Melbourne, Vic., Australia
| | - Xianli Li
- Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province & The Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaoling Wang
- Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province & The Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ying Yang
- Department of Endocrinology and Metabolism, The Second People's Hospital of Yunnan Province & The Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| |
Collapse
|
75
|
Lu Y, Thavarajah T, Gu W, Cai J, Xu Q. Impact of miRNA in Atherosclerosis. Arterioscler Thromb Vasc Biol 2019; 38:e159-e170. [PMID: 30354259 DOI: 10.1161/atvbaha.118.310227] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yao Lu
- From the Center of Clinical Pharmacology (Y.L.)
| | - Tanuja Thavarajah
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (T.T., W.G., Q.X.)
| | - Wenduo Gu
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (T.T., W.G., Q.X.)
| | - Jingjing Cai
- Department of Cardiology (J.C., Q.X.), Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingbo Xu
- Department of Cardiology (J.C., Q.X.), Third Xiangya Hospital, Central South University, Changsha, China.,School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre, United Kingdom (T.T., W.G., Q.X.)
| |
Collapse
|
76
|
Kostyniuk DJ, Marandel L, Jubouri M, Dias K, de Souza RF, Zhang D, Martyniuk CJ, Panserat S, Mennigen JA. Profiling the rainbow trout hepatic miRNAome under diet-induced hyperglycemia. Physiol Genomics 2019; 51:411-431. [PMID: 31282806 DOI: 10.1152/physiolgenomics.00032.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Carnivorous rainbow trout exhibit prolonged postprandial hyperglycemia when fed a diet exceeding 20% carbohydrate content. This poor capacity to utilize carbohydrates has led to rainbow trout being classified as "glucose-intolerant" (GI). The metabolic phenotype has spurred research to identify the underlying cellular and molecular mechanisms of glucose intolerance, largely because carbohydrate-rich diets provide economic and ecological advantages over traditionally used fish meal, considered unsustainable for rainbow trout aquaculture operations. Evidence points to a contribution of hepatic intermediary carbohydrate and lipid metabolism, as well as upstream insulin signaling. Recently, microRNAs (miRNAs), small noncoding RNAs acting as negative posttranscriptional regulators affecting target mRNA stability and translation, have emerged as critical regulators of hepatic control of glucose-homeostasis in mammals, revealing that dysregulated hepatic miRNAs might play a role in organismal hyperglycemia in metabolic disease. To determine whether hepatic regulatory miRNA networks may contribute to GI in rainbow trout, we induced prolonged postprandial hyperglycemia in rainbow trout by using a carbohydrate-rich diet and profiled genome-wide hepatic miRNAs in hyperglycemic rainbow trout compared with fasted trout and trout fed a diet devoid of carbohydrates. Using small RNA next-generation sequencing and real-time RT-PCR validation, we identified differentially regulated hepatic miRNAs between these groups and used an in silico approach to predict bona fide mRNA targets and enriched pathways. Diet-induced hyperglycemia resulted in differential regulation of hepatic miRNAs compared with fasted fish. Some of the identified miRNAs, such as miRNA-27b-3p and miRNA-200a-3p, are known to be responsive to hyperglycemia in the liver of hyperglycemic glucose-tolerant fish and mammals, suggesting an evolutionary conserved regulation. Using Gene Ontology term-based enrichment analysis, we identify intermediate carbohydrate and lipid metabolism and insulin signaling as potential targets of posttranscriptional regulation by hyperglycemia-regulated miRNAs and provide correlative expression analysis of specific predicted miRNA-target pairs. This study identifies hepatic miRNAs in rainbow trout that exhibit differential postprandial expression in response to diets with different carbohydrate content and predicts posttranscriptionally regulated target mRNAs enriched for pathways involved in glucoregulation. Together, these results provide a framework for testable hypotheses of functional involvement of specific hepatic miRNAs in GI in rainbow trout.
Collapse
Affiliation(s)
| | - Lucie Marandel
- INRA, Université de Pau et Pays d'Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, E2S UPPA, Saint Pée-sur-Nivelle, France
| | - Mais Jubouri
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Karine Dias
- INRA, Université de Pau et Pays d'Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, E2S UPPA, Saint Pée-sur-Nivelle, France
| | - Robson F de Souza
- Microbiology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dapeng Zhang
- Department of Biology, Saint Louis University, Saint Louis, Missouri
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, UF Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Stéphane Panserat
- INRA, Université de Pau et Pays d'Adour, UMR 1419, Nutrition, Metabolism and Aquaculture, E2S UPPA, Saint Pée-sur-Nivelle, France
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
77
|
Desgagné V, Guérin R, Guay SP, Boyer M, Hutchins E, Picard S, Maréchal A, Corbin F, Keuren-Jensen KV, Arsenault BJ, Bouchard L. Human high-density lipoprotein microtranscriptome is unique and suggests an extended role in lipid metabolism. Epigenomics 2019; 11:917-934. [PMID: 31144512 DOI: 10.2217/epi-2018-0161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: To comprehensively characterize the high-density lipoproteins (HDLs) microtranscriptome and to assess whether it is distinct from that of plasma and different between women and men. Methods: RNA was extracted from ultracentrifugation-purified HDLs and plasma from 17 healthy women and men couples, and libraries were sequenced on a HiSeq2500 platform. Results: On average, 310 ± 64 and 355 ± 31 miRNAs were detected (≥1 read per million) in HDLs and plasma, respectively. A total of 62 and 134 miRNAs were over-represented (e.g., miR-150-5p; fold change = 7.52; padj = 5.41 × 10-111) and under-represented (e.g., miR-22-3p; fold change = -5.28; padj = 2.11 × 10-154) in HDLs compared with plasma. These miRNAs were enriched in lipid metabolism and cellular processes-related pathways. Conclusion: HDLs exhibit a sex-independent miRNA profile distinct from that of plasma. These miRNAs may contribute to the HDLs' physiology.
Collapse
Affiliation(s)
- Véronique Desgagné
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada.,ECOGENE-21 Biocluster, CIUSSS du Saguenay-Lac-St-Jean - Hôpital de Chicoutimi, Saguenay, Québec, G7H 5H6, Canada
| | - Renée Guérin
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada.,Department of Laboratory Medicine, CIUSSS du Saguenay-Lac-St-Jean - Hôpital de Chicoutimi, Saguenay, Québec, G7H 5H6, Canada
| | - Simon-Pierre Guay
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada.,ECOGENE-21 Biocluster, CIUSSS du Saguenay-Lac-St-Jean - Hôpital de Chicoutimi, Saguenay, Québec, G7H 5H6, Canada.,Department of Medicine, Programme de formation médicale à Saguenay (PFMS), Université de Sherbrooke, Sherbrooke, Québec, G7H 2B1, Canada.,Department of Medical Genetics, MUHC, McGill University, Montreal, Québec, H4A 3J1, Canada
| | - Marjorie Boyer
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Québec City, Québec, G1V 4G5, Canada.,Department of medicine, Faculty of Medicine, Université Laval, Québec City, Québec, G1V 0A6, Canada
| | - Elizabeth Hutchins
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, 85004, USA
| | - Samuel Picard
- Department of Biology, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Alexandre Maréchal
- Department of Biology, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - François Corbin
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Kendall Van Keuren-Jensen
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, Arizona, 85004, USA
| | - Benoit J Arsenault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Québec City, Québec, G1V 4G5, Canada.,Department of medicine, Faculty of Medicine, Université Laval, Québec City, Québec, G1V 0A6, Canada
| | - Luigi Bouchard
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada.,ECOGENE-21 Biocluster, CIUSSS du Saguenay-Lac-St-Jean - Hôpital de Chicoutimi, Saguenay, Québec, G7H 5H6, Canada.,Department of Laboratory Medicine, CIUSSS du Saguenay-Lac-St-Jean - Hôpital de Chicoutimi, Saguenay, Québec, G7H 5H6, Canada
| |
Collapse
|
78
|
Genetic Ablation of miR-33 Increases Food Intake, Enhances Adipose Tissue Expansion, and Promotes Obesity and Insulin Resistance. Cell Rep 2019; 22:2133-2145. [PMID: 29466739 PMCID: PMC5860817 DOI: 10.1016/j.celrep.2018.01.074] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/22/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
While therapeutic modulation of miRNAs provides a promising approach for numerous diseases, the promiscuous nature of miRNAs raises concern over detrimental off-target effects. miR-33 has emerged as a likely target for treatment of cardiovascular diseases. However, the deleterious effects of long-term anti-miR-33 therapies and predisposition of miR-33−/− mice to obesity and metabolic dysfunction exemplify the possible pitfalls of miRNA-based therapies. Our work provides an in-depth characterization of miR-33−/− mice and explores the mechanisms by which loss of miR-33 promotes insulin resistance in key metabolic tissues. Contrary to previous reports, our data do not support a direct role for SREBP-1-mediated lipid synthesis in promoting these effects. Alternatively, in adipose tissue of miR-33−/− mice, we observe increased pre-adipocyte proliferation, enhanced lipid uptake, and impaired lipolysis. Moreover, we demonstrate that the driving force behind these abnormalities is increased food intake, which can be prevented by pair feeding with wild-type animals.
Collapse
|
79
|
Rochette E, Bourdier P, Pereira B, Echaubard S, Borderon C, Caron N, Chausset A, Courteix D, Fel S, Kanold J, Paysal J, Ratel S, Rouel N, Sarret C, Terral D, Usclade A, Merlin E, Duché P. Impaired Muscular Fat Metabolism in Juvenile Idiopathic Arthritis in Inactive Disease. Front Physiol 2019; 10:528. [PMID: 31118902 PMCID: PMC6506786 DOI: 10.3389/fphys.2019.00528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/12/2019] [Indexed: 12/03/2022] Open
Abstract
Objectives: The objective of this study was to evaluate muscular metabolic function in children with inactive juvenile idiopathic arthritis (JIA). Methods: Fifteen children with inactive JIA and fifteen healthy controls were matched by sex, biological age, and Tanner stage. Participants completed a submaximal incremental exercise test to determine their fat and carbohydrate oxidation rates. Results: Between the two groups, heart rate values and carbohydrate oxidation rates were the same, regardless of the relative intensity of exercise. Lipid oxidation rates were lower in JIA patients, regardless of the percentage of VO2 peak (p < 0.05). Respiratory exchange ratios beyond 50% of VO2 peak were higher in patients with JIA (p < 0.05). Respective maximal fat oxidation rates (MFO) for controls and children with JIA were 218.7 ± 92.2 vs. 157.5 ± 65.9 mg ⋅ min-1 (p = 0.03) and 4.9 ± 1.9 vs. 3.4 ± 1.2 mg ⋅ min-1 ⋅ kg-1 (p = 0.04). There was no difference between the two groups in heart rate, percentage of VO2 peak, or power of exercise to achieve MFO. Controls reached their MFO at an exercise power significantly higher than did JIA subjects (42.8 ± 16.8 and 31.9 ± 9.8 W, p = 0.004). Conclusion: Children with JIA show metabolic disturbance during exercise, even when the disease is considered inactive. This disturbance is seen in a lower lipid oxidation rate during submaximal exercise.
Collapse
Affiliation(s)
- Emmanuelle Rochette
- Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France.,CIC 1405, Unité CRECHE, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France.,Laboratoire des Adaptations Métaboliques en Conditions Physiologiques et Physiopathologiques, Université Clermont Auvergne, Clermont-Ferrand, France.,Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - Pierre Bourdier
- Laboratoire des Adaptations Métaboliques en Conditions Physiologiques et Physiopathologiques, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Bruno Pereira
- Délégation à la Recherche Clinique et à l'Innovation, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Stéphane Echaubard
- Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France.,CIC 1405, Unité CRECHE, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Corinne Borderon
- Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Nicolas Caron
- Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Aurélie Chausset
- Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France.,CIC 1405, Unité CRECHE, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Daniel Courteix
- Laboratoire des Adaptations Métaboliques en Conditions Physiologiques et Physiopathologiques, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Solenne Fel
- Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Justyna Kanold
- Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France.,CIC 1405, Unité CRECHE, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Justine Paysal
- Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Sébastien Ratel
- Laboratoire des Adaptations Métaboliques en Conditions Physiologiques et Physiopathologiques, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Nadège Rouel
- Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France.,CIC 1405, Unité CRECHE, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Catherine Sarret
- Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France.,CIC 1405, Unité CRECHE, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Daniel Terral
- Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Alexandra Usclade
- Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France.,CIC 1405, Unité CRECHE, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Etienne Merlin
- Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France.,CIC 1405, Unité CRECHE, INSERM, Université Clermont Auvergne, Clermont-Ferrand, France.,INRA, UMR 1019 UNH, ECREIN, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pascale Duché
- Laboratoire des Adaptations Métaboliques en Conditions Physiologiques et Physiopathologiques, Université Clermont Auvergne, Clermont-Ferrand, France.,Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France.,Laboratoire Impact de l'Activité Physique sur la Santé, Université de Toulon, Toulon, France
| |
Collapse
|
80
|
Serum miR-17 levels are downregulated in obese, African American women with elevated HbA1c. J Diabetes Metab Disord 2019; 18:173-179. [PMID: 31275888 DOI: 10.1007/s40200-019-00404-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 04/12/2019] [Indexed: 12/17/2022]
Abstract
Purpose Type 2 diabetes is heterogeneous disease characterized by several conditions including hyperglycemia. It is estimated that over 350 million people worldwide are suffering from type 2 diabetes and this number is expected to rise. According to the CDC, African Americans were observed to have a 40% higher incidence of diabetes compared to European Americans. Epigenetic modulating mechanisms such as microRNAs (miRNAs), have recently been established as a massive regulatory machine in metabolic syndrome, obesity and type 2 diabetes. In the present study, we aimed to investigate the serum levels of circulating miRNA 17 (miR-17) of obese, African American women with elevated HbA1c. Methods We investigated miR-17 serum levels using qPCR. Then we used Pairwise Pearson Correlation Test to determine the relationship between clinical metabolic parameters and miR-17 serum levels. Results The results indicated that participants with elevated HbA1c exhibited a down regulation of serum miR-17 levels compared to participants with normal HbA1c. MiR-17 was also correlated with serum calcium in participants with normal HbA1c. Conclusions The results suggest that serum miR-17 is involved in the regulation of glucose and calcium homeostasis, which may contribute to the development of type 2 diabetes.
Collapse
|
81
|
Shi Y, Jia M, Xu L, Fang Z, Wu W, Zhang Q, Chung P, Lin Y, Wang S, Zhang Y. miR-96 and autophagy are involved in the beneficial effect of grape seed proanthocyanidins against high-fat-diet-induced dyslipidemia in mice. Phytother Res 2019; 33:1222-1232. [PMID: 30848548 DOI: 10.1002/ptr.6318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 01/10/2019] [Accepted: 01/24/2019] [Indexed: 12/15/2022]
Abstract
We aimed to investigate the possible signaling pathways underlying the regulation of grape seed proanthocyanidins extracts (GSPE) on lipid metabolism. One hundred male C57BL/6 mice were divided into four groups: control group (normal diet), GSPE group (normal diet + GSPE), high-fat diet group (HFD), and high-fat diet plus GSPE (200 mg/kg/day) group (HFD + GSPE). Mice received the diets for 180 days. Body weight and serum lipid levels were measured. Autophagic flux characteristics, such as accumulation of lipids, mitochondria, and autophagosomes in the liver, were detected using transmission electron microscopy. Expression profile of microRNAs (miRNAs) in the liver was determined using RNA microarray and quantitative real time polymerase chain reaction (qRt-PCR). GSPE significantly decreased the weight gain, serum levels of triglycerides, total cholesterol, and low-density lipoprotein cholesterol but increased high-density lipoprotein cholesterol in the HFD mice. Autophagic flux was significantly increased by HFD but decreased by GSPE treatment. GSPE significantly attenuated HFD-induced miR-96 upregulation, which in turn reduced the expressions of miR-96 downstream molecules, FOXO1, mTOR, p-mTOR, and LC3A/B. These results suggested that the miR-96 is involved in the protective effect of GSPE against HFD-induced dyslipidemia. Possible mechanisms might be through mTOR and FOXO1, which facilitate autophagic flux for clearance of lipid accumulation.
Collapse
Affiliation(s)
- Yawei Shi
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Minghan Jia
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Breast Cancer, Cancer Center, Guangdong General Hospital, Guangzhou, China
| | - Lixia Xu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zeng Fang
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weibin Wu
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Peter Chung
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - Ying Lin
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shenming Wang
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yunjian Zhang
- Department of Thyroid, Breast Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
82
|
Zhou XJ, Wang J, Ye HH, Fa YZ. Signature MicroRNA expression profile is associated with lipid metabolism in African green monkey. Lipids Health Dis 2019; 18:55. [PMID: 30819205 PMCID: PMC6396449 DOI: 10.1186/s12944-019-0999-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 02/22/2019] [Indexed: 01/04/2023] Open
Abstract
Background Non-human primates (NHPs) are important models of medical research on obesity and cardiovascular diseases. As two of the most commonly used NHPs, cynomolgus macaque (CM) and African green monkey (AGM) own different capacities in lipid metabolism of which the mechanism is unknown. This study investigated the expression profiles of lipid metabolism-related microRNAs (miRNAs) in CM and AGM and their possible roles in controlling lipid metabolism-related gene expression. Methods By small RNA deep sequencing, the plasma miRNA expression patterns of CM and AGM were compared. The lipid metabolism-related miRNAs were validated through quantitative reverse-transcription (RT) polymerase chain reaction (PCR). Related-target genes were predicted by TargetScan and validated in Vero cells. Results Compared to CM, 85 miRNAs were upregulated with over 1.5-fold change in AGM of which 12 miRNAs were related to lipid metabolism. miR-122, miR-9, miR-185, miR-182 exhibited the greatest fold changes(fold changes are 51.2, 3.8, 3.7, 3.3 respectively; all P < 0.01). And 77 miRNAs were downregulated with over 1.5-fold change in AGM of which 3, miR-370, miR-26, miR-128 (fold changes are 9.3, 1.8, 1.7 respectively; all P < 0.05) were related to lipid metabolism. The lipid metabolism-related gene targets were predicted by TargetScan and confirmed in the Vero cells. Conclusion We report for the first time a circulating lipid metabolism-related miRNA profile for CM and AGM, which may add to knowledge of differences between these two non-human primate species and miRNAs’ roles in lipid metabolism. Electronic supplementary material The online version of this article (10.1186/s12944-019-0999-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Jun Zhou
- Laboratory Animal Center, the Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China.
| | - Jin Wang
- Laboratory Animal Center, the Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
| | - Hua-Hu Ye
- Laboratory Animal Center, the Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
| | - Yun-Zhi Fa
- Laboratory Animal Center, the Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
| |
Collapse
|
83
|
Huang R, Duan X, Fan J, Li G, Wang B. Role of Noncoding RNA in Development of Nonalcoholic Fatty Liver Disease. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8690592. [PMID: 30931332 PMCID: PMC6413411 DOI: 10.1155/2019/8690592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is increasing in prevalence globally, but little is known about its specific molecular mechanisms. During the past decade, noncoding RNAs (ncRNAs) have been linked to NAFLD initiation and progression. They are a class of RNAs that play an important role in regulating gene expression despite not encoding proteins. This review summarizes recent research on the relationship between ncRNAs and NAFLD. We discussed the potential applicability of ncRNAs as a biomarker for early NAFLD diagnosis and assessment of disease severity. With further study, ncRNAs should prove to be valuable new targets for NAFLD treatment and benefit the development of noninvasive diagnostic methods.
Collapse
Affiliation(s)
- Ruixian Huang
- Center for Fatty Liver, Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaoyan Duan
- Center for Fatty Liver, Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jangao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Guangming Li
- Center for Fatty Liver, Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Baocan Wang
- Center for Fatty Liver, Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
84
|
Giardina S, Hernández-Alonso P, Díaz-López A, Salas-Huetos A, Salas-Salvadó J, Bulló M. Changes in circulating miRNAs in healthy overweight and obese subjects: Effect of diet composition and weight loss. Clin Nutr 2019; 38:438-443. [PMID: 29233588 DOI: 10.1016/j.clnu.2017.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/20/2017] [Accepted: 11/19/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNA molecules that can play an important role in several chronic metabolic conditions, including obesity. However, to date little is known about how they are regulated. Weight loss induced by surgical procedures has been effective at modulating specific circulating miRNAs, but the effect of energy-restricted diets with different macronutrient compositions on circulating miRNAs is not well understood. The objective of the present analysis was to explore the effect of three energy-restricted diets of different macronutrient composition and carbohydrate quality on plasma miRNA levels. METHODS The GLYNDIET study is a 6-month, parallel, randomized clinical trial conducted on overweight and obese subjects who were randomized to one of three different dietary intervention groups: i) a moderate-carbohydrate and low glycemic index diet (LGI), ii) a moderate-carbohydrate and high glycemic index diet (HGI), and iii) a low-fat and high glycemic index diet (LF). We assessed the genome-wide circulating miRNA profile in a subsample of eight randomly selected participants. A total of 8 miRNAs (miR-411, miR-432, miR-99b, miR-340, miR-423, miR-361, let-7c) were differently quantified according to diet intervention, and were therefore longitudinally validated in 103 participants before and after the energy-restricted diets. RESULTS Circulating miR-361 levels were lower in the LGI group than in the HGI group, even after adjusting for differences in weight loss. The intra-group analyses demonstrated a significant down-regulation of all miRNAs screened in our study subjects after the LGI intervention. Similarly, miR-139 and miR-340 were down-regulated after the HGI intervention, while miR-139, miR-432 and miR-423 were down-regulated after the low-fat diet. Changes in circulating miR-139 and let-7c were significantly associated with changes in lipid profile and insulin resistance. CONCLUSION An energy-restricted low-glycemic index diet down-regulates circulating miRNA-361 more than an energy-restricted high-glycemic index, regardless of the magnitude of the weight loss.
Collapse
Affiliation(s)
- S Giardina
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institute of Health Pere Virgili, Universitat Rovira i Virgili, Reus, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - P Hernández-Alonso
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institute of Health Pere Virgili, Universitat Rovira i Virgili, Reus, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - A Díaz-López
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institute of Health Pere Virgili, Universitat Rovira i Virgili, Reus, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - A Salas-Huetos
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institute of Health Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - J Salas-Salvadó
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institute of Health Pere Virgili, Universitat Rovira i Virgili, Reus, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - M Bulló
- Human Nutrition Unit, Faculty of Medicine and Health Sciences, Institute of Health Pere Virgili, Universitat Rovira i Virgili, Reus, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
85
|
Ghosh A, Ekka MK, Tawani A, Kumar A, Chakraborty D, Maiti S. Restoration of miRNA-149 Expression by TmPyP4 Induced Unfolding of Quadruplex within Its Precursor. Biochemistry 2019; 58:514-525. [PMID: 30585723 DOI: 10.1021/acs.biochem.8b00880] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Noncoding RNAs are functional RNA molecules that get transcribed from DNA but are not translated into proteins; yet, they can regulate gene expression at transcriptional and post-transcriptional levels. Secondary structures present within these RNAs play a major role in determining their nature of function. In the case of miRNAs, the precursor miRNA have a hairpin stem loop structure which is required for Dicer recognition and further maturation. Alternately, it might assume a G-quadruplex structure. The transition from hairpin to G-quadruplex depends upon the nucleotide sequence as well as the cellular microenvironment, and this might affect the miRNA maturation and other downstream activity. Formation of the G-quadruplex within precursor miRNA-149 has been shown to inhibit Dicer processing activity followed by suppression of miRNA-149 maturation in cancer cells. In this report, we show that suppression of cell proliferation by the upregulated miRNA-149 could be rescued by unfolding the G-quadruplex present in pre-miRNA-149 by TmPyP4 (Porphyrin) treatment. Using UV-visible spectroscopy, circular dichroism, and isothermal titration calorimetry, we observed that TmPyP4 binds strongly to G-quadruplex and unfolds it, which was further verified by NMR spectroscopy. In cellulo, qRT-PCR measurements of miRNA-149 in MCF-7 breast cancer cells showed concentration dependent enhancement of mature miRNA-149 upon treatment of TmPyP4. As a consequence of enhanced miRNA-149 activity, we also observe the reduction in miRNA-149 target protein ZBTB2 that eventually leads to reduced cell proliferation.
Collapse
Affiliation(s)
- Arpita Ghosh
- CSIR-Institute of Genomics & Integrative Biology , Mathura Road , Delhi 110025 , India
| | - Mary Krishna Ekka
- CSIR-Institute of Genomics & Integrative Biology , Mathura Road , Delhi 110025 , India
| | - Arpita Tawani
- Centre for Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Indore , Madhya Pradesh , India
| | - Amit Kumar
- Centre for Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Indore , Madhya Pradesh , India
| | - Debojyoti Chakraborty
- CSIR-Institute of Genomics & Integrative Biology , Mathura Road , Delhi 110025 , India
| | - Souvik Maiti
- CSIR-Institute of Genomics & Integrative Biology , Mathura Road , Delhi 110025 , India.,Academy of Scientific & Innovative Research , CSIR- Human Resource Development Centre (CSIR-HRDC) Campus , Sector 19 , Kamla Nehru Nagar, Ghaziabad , Uttar Pradesh 201 002 , India
| |
Collapse
|
86
|
Zhang BH, Shen CA, Zhu BW, An HY, Zheng B, Xu SB, Sun JC, Sun PC, Zhang W, Wang J, Liu JY, Fan YQ. Insight into miRNAs related with glucometabolic disorder. Biomed Pharmacother 2019; 111:657-665. [PMID: 30611990 DOI: 10.1016/j.biopha.2018.12.123] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/29/2018] [Accepted: 12/30/2018] [Indexed: 12/21/2022] Open
Abstract
A microRNA (miRNA) is a single-stranded, small and non-coding RNA molecule that contains 20-25 nucleotides. More than 2000 miRNAs have been identified in human genes since the first miRNA was discovered in Caenorhabditis elegans in the early 1990s. miRNAs play a crucial role in various biological processes by regulating gene expression through post-transcriptional mechanisms. The alterations of their levels are associated with various diseases, such as glucometabolic disorder and lipid metabolism disorder. In recent years, miRNAs have been proved to be involved in regulating the functions of pancreatic β-cells, insulin resistance and other biological behaviors related to glucometabolic disorder and the pathogenesis of diabetes mellitus (DM). This review summarized specific miRNAs, including miRNA-375 (miR-375), miRNA-155 (miR-155), miRNA-21 (miR-21), miRNA-33 (miR-33), the let-7 family and some other miRNAs related to glucometabolic regulation, introduced the obstacles and challenges in miRNA therapy, and discussed the prospect of new treatment methods for glucometabolic disorder.
Collapse
Affiliation(s)
- Bo-Han Zhang
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Chuan-An Shen
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, People's Republic of China.
| | - Bi-Wei Zhu
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Hua-Ying An
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Bo Zheng
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Sheng-Bo Xu
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Jia-Chen Sun
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Peng-Chao Sun
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Wen Zhang
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Jia Wang
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Jia-Ying Liu
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Ya-Qian Fan
- Department of Burns and Plastic Surgery, The Fourth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
87
|
Vargas-Alarcón G, Pérez-Hernández N, Rodríguez-Pérez JM, Fragoso JM, Posadas-Romero C, López-Bautista F, Vázquez-Vázquez C, Posadas-Sánchez R. Interleukin 27 polymorphisms, their association with insulin resistance and their contribution to subclinical atherosclerosis. The GEA Mexican study. Cytokine 2018; 114:32-37. [PMID: 30594065 DOI: 10.1016/j.cyto.2018.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/05/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Abstract
Our previous data suggest that the heterodimeric interleukin-27 (IL-27) could participate in the developing of insulin resistance (IR). Our aim was to assess the participation of IL-27p28 gene single nucleotide polymorphisms (SNPs) as markers for IR, subclinical atherosclerosis (SA) and cardiovascular risk factors in a Mexican population. Five IL-27p28 SNPs (rs153109, rs40837, rs17855750, rs26528 and rs181206) were genotyped in 856 individuals with IR and 644 participants without IR. Under inheritance models adjusted for confounding factors, the rs153109A (0.78[0.64-0.94] Padditive = 0.008, 0.58[0.41-0.82] Precessive = 0.002, 0.57[0.38-0.83] Pcodominant2 = 0.004), rs26528T (0.78[0.64-0.94] Padditive = 0.008, 0.61[0.43-0.88] Precessive = 0.007, 0.57[0.38-0.84] Pcodominant2 = 0.004) and rs40837A (0.76[0.63-0.92] Padditive = 0.004; 0.60[0.42-0.86] Precessive = 0.005; 0.54[0.37-0.80] Pcodominant2 = 0.002) alleles were related with a decreased risk of IR. Moreover, AAATA haplotype that contains the protector alleles was related with 17% lower risk of presenting IR (0.83 [0.71-0.98], P = 0.023). After adjusting for potential confounding variables, IL-27p28 SNPs were not associated with SA. However, some SNPs were associated with hypertension (rs26528 and rs40837) and increased total abdominal fat (rs17855750) in non-IR individuals, whereas in IR subjects we observed an association of rs26528 and rs40837 with hypoadiponectinemia. Our evidence suggests that rs40837A, rs153109A, and rs26528T alleles could be envisaged as protective markers for IR. Some polymorphisms showed an association with hypertension, low adiponectin levels, and increased total abdominal fat.
Collapse
Affiliation(s)
- Gilberto Vargas-Alarcón
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico, Mexico
| | - Nonanzit Pérez-Hernández
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico, Mexico
| | - José Manuel Rodríguez-Pérez
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico, Mexico
| | - José Manuel Fragoso
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico, Mexico
| | - Carlos Posadas-Romero
- Departamento de Endocrinologia, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico, Mexico
| | - Fabiola López-Bautista
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico, Mexico
| | - Christian Vázquez-Vázquez
- Departamento de Biología Molecular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico, Mexico
| | - Rosalinda Posadas-Sánchez
- Departamento de Endocrinologia, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico, Mexico.
| |
Collapse
|
88
|
Chen X, Guan NN, Sun YZ, Li JQ, Qu J. MicroRNA-small molecule association identification: from experimental results to computational models. Brief Bioinform 2018; 21:47-61. [PMID: 30325405 DOI: 10.1093/bib/bby098] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022] Open
Abstract
Small molecule is a kind of low molecular weight organic compound with variety of biological functions. Studies have indicated that small molecules can inhibit a specific function of a multifunctional protein or disrupt protein-protein interactions and may have beneficial or detrimental effect against diseases. MicroRNAs (miRNAs) play crucial roles in cellular biology, which makes it possible to develop miRNA as diagnostics and therapeutic targets. Several drug-like compound libraries were screened successfully against different miRNAs in cellular assays further demonstrating the possibility of targeting miRNAs with small molecules. In this review, we summarized the concept and functions of small molecule and miRNAs. Especially, five aspects of miRNA functions were exhibited in detail with individual examples. In addition, four disease states that have been linked to miRNA alterations were summed up. Then, small molecules related to four important miRNAs miR-21, 122, 4644 and 27 were selected for introduction. Some important publicly accessible databases and web servers of the experimentally validated or potential small molecule-miRNA associations were discussed. Identifying small molecule targeting miRNAs has become an important goal of biomedical research. Thus, several experimental and computational models have been developed and implemented to identify novel small molecule-miRNA associations. Here, we reviewed four experimental techniques used in the past few years to search for small-molecule inhibitors of miRNAs, as well as three types of models of predicting small molecule-miRNA associations from different perspectives. Finally, we summarized the limitations of existing methods and discussed the future directions for further development of computational models.
Collapse
Affiliation(s)
- Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Na-Na Guan
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Ya-Zhou Sun
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Jian-Qiang Li
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Jia Qu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| |
Collapse
|
89
|
Fan B, Luk AOY, Chan JCN, Ma RCW. MicroRNA and Diabetic Complications: A Clinical Perspective. Antioxid Redox Signal 2018; 29:1041-1063. [PMID: 28950710 DOI: 10.1089/ars.2017.7318] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE The rising global prevalence of diabetes and its debilitating complications give rise to significant disability and premature mortality. Due to the silent nature of diabetes and its vascular complications, and limitations in current methods for detection, there is a need for novel biomarkers for early detection and prognosis. Recent Advances: Metabolic memory and epigenetic factors are important in the pathogenesis of diabetic complications and interact with genetic variants, metabolic factors, and clinical risk factors. Micro(mi)RNAs interact with epigenetic mechanisms and pleiotropically mediate the effects of hyperglycemia on the vasculature. Utilizing mature profiling techniques and platforms, an increasing number of miRNA signatures and interaction networks have been identified for diabetes and its related cardiorenal complications. As a result, these short, single-stranded molecules are emerging as potential diagnostic and predictive tools in human studies, and may function as disease biomarkers, as well as treatment targets. CRITICAL ISSUES However, there is complex interaction between the genome and epigenome. The regulation of miRNAs may differ across species and tissues. Most profiling studies to date lack validation, often requiring large, well-characterized cohorts and reliable normalization strategies. Furthermore, the incremental benefits of miRNAs as biomarkers, beyond prediction provided by traditional risk factors, are critical issues to consider, yet often neglected in published studies. FUTURE DIRECTIONS All in all, the future for miRNA-based diagnostics and therapeutics for diabetic complications appears promising. Improved understanding of the complex mechanisms underlying miRNA dysregulation, and more well-designed studies utilizing prospective samples would facilitate the translation to clinical use.
Collapse
Affiliation(s)
- Baoqi Fan
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong , Shatin, China
| | - Andrea On Yan Luk
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong , Shatin, China .,2 Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong , Shatin, China
| | - Juliana Chung Ngor Chan
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong , Shatin, China .,2 Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong , Shatin, China .,3 Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Prince of Wales Hospital, Shatin, China .,4 The Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine , Shatin, China
| | - Ronald Ching Wan Ma
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong , Shatin, China .,2 Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong , Shatin, China .,3 Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Prince of Wales Hospital, Shatin, China .,4 The Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine , Shatin, China
| |
Collapse
|
90
|
Colon Epithelial MicroRNA Network in Fatty Liver. Can J Gastroenterol Hepatol 2018; 2018:8246103. [PMID: 30345259 PMCID: PMC6174781 DOI: 10.1155/2018/8246103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND & AIMS Intestinal barrier alterations are associated with fatty liver (FL) and metabolic syndrome (MetS), but microRNA (miR) signaling pathways in MetS-FL pathogenesis remain unclear. This study investigates an epithelial-focused miR network in colorectal cell models based on the previously reported MetS-FL miR trio of hsa-miR-142-3p, hsa-miR-18b, and hsa-miR-890. METHODS Each miR mimic construct of MetS-FL miR trio was transfected into human colorectal cells, CRL-1790 or Caco-2. Global miRNome changes posttransfection were profiled (nCounter® Human v3 miRNA, NanoString Technologies). Changes in barrier (transepithelial electrical resistance, TEER) and epithelial cell junction structure (Occludin and Zona Occludens-1/ZO-1 immunofluorescence staining-confocal microscopy) were examined pre- and posttransfection in Caco-2 cell monolayers. A signaling network was constructed from the MetS-FL miR trio, MetS-FL miR-induced colorectal miRNome changes, ZO-1, and Occludin. RESULTS Transfection of CRL-1790 cells with each MetS-FL miR mimic led to global changes in the cellular miRNome profile, with 288 miRs being altered in expression by more than twofold. Eleven miRs with known cytoskeletal and metabolic roles were commonly altered in expression by all three miR mimics. Transfection of Caco-2 cell monolayers with each MetS-FL miR mimic induced barrier-associated TEER variations and led to structural modifications of ZO-1 and Occludin within epithelial cell junctions. Pathway analysis incorporating the MetS-FL miR trio, eleven common target miRs, ZO-1, and Occludin revealed a signaling network centered on TNF and AKT2, which highlights injury, inflammation, and hyperplasia. CONCLUSIONS Colon-specific changes in epithelial barriers, cell junction structure, and a miRNome signaling network are described from functional studies of a MetS-FL miR trio signature.
Collapse
|
91
|
Roy S, Trautwein C, Luedde T, Roderburg C. A General Overview on Non-coding RNA-Based Diagnostic and Therapeutic Approaches for Liver Diseases. Front Pharmacol 2018; 9:805. [PMID: 30158867 PMCID: PMC6104154 DOI: 10.3389/fphar.2018.00805] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022] Open
Abstract
Liver diseases contribute to the global mortality and morbidity and still represent a major health problem leading to the death of people worldwide. Although there are several treatment options available for Hepatitis C infections, for most liver disease the pharmacological options are still limited. Therefore, the development of new targets against liver diseases is of high interest. Non-coding RNA (ncRNA) such as microRNA (miRNA) or long ncRNA (lncRNA) have been shown to be deeply involved in the pathophysiology of almost all acute and chronic liver diseases. The emerging evidence showed the potential therapeutic use of miRNA associated with different steps of hepatic pathophysiology. In the present review, we summarize emerging insights of ncRNA in liver diseases. We also highlight example of ncRNAs participating in the pathogenesis of different forms of liver disease and how they can be used as potential therapeutic targets for novel treatment paradigms. Furthermore, we describe an overview of up-to-date clinical trials and discuss about its future in clinical applications. Finally, we highlight the role of circulating ncRNAs in diagnosis of liver diseases and discuss the challenges and drawbacks of the usage of ncRNAs in clinical setting.
Collapse
Affiliation(s)
- Sanchari Roy
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Tom Luedde
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Christoph Roderburg
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
92
|
Langlet F, Tarbier M, Haeusler RA, Camastra S, Ferrannini E, Friedländer MR, Accili D. microRNA-205-5p is a modulator of insulin sensitivity that inhibits FOXO function. Mol Metab 2018; 17:49-60. [PMID: 30174230 PMCID: PMC6197154 DOI: 10.1016/j.molmet.2018.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022] Open
Abstract
Objectives Hepatic insulin resistance is a hallmark of type 2 diabetes and obesity. Insulin receptor signaling through AKT and FOXO has important metabolic effects that have traditionally been ascribed to regulation of gene expression. However, whether all the metabolic effects of FOXO arise from its regulation of protein-encoding mRNAs is unknown. Methods To address this question, we obtained expression profiles of FOXO-regulated murine hepatic microRNAs (miRNAs) during fasting and refeeding using mice lacking Foxo1, 3a, and 4 in liver (L-Foxo1,3a, 4). Results Out of 439 miRNA analyzed, 175 were differentially expressed in Foxo knockouts. Their functions were associated with insulin, Wnt, Mapk signaling, and aging. Among them, we report a striking increase of miR-205-5p expression in L-Foxo1,3a,4 knockouts, as well as in obese mice. We show that miR-205-5p gain-of-function increases AKT phosphorylation and decreases SHIP2 in primary hepatocytes, resulting in FOXO inhibition. This results in decreased hepatocyte glucose production. Consistent with these observations, miR-205-5p gain-of-function in mice lowered glucose levels and improved pyruvate tolerance. Conclusions These findings reveal a homeostatic miRNA loop regulating insulin signaling, with potential implications for in vivo glucose metabolism. A comprehensive analysis of Foxo-dependent miRNA. miRNAs recapitulate the transcriptional effects of Foxo on insulin signaling. Foxo regulates miRNA transcription during the fasting/refeeding transition. miR205 regulates insulin sensitivity through a homeostatic loop with Foxo.
Collapse
Affiliation(s)
- Fanny Langlet
- Naomi Berrie Diabetes Center and Departments of Medicine, Columbia University, New York, 10032, USA
| | - Marcel Tarbier
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 17121, Stockholm, Sweden
| | - Rebecca A Haeusler
- Naomi Berrie Diabetes Center and Departments of Pathology and Cell Biology, Columbia University, New York, 10032, USA
| | - Stefania Camastra
- Department of Clinical and Experimental Medicine, University of Pisa School of Medicine, Pisa, Italy
| | - Eleuterio Ferrannini
- Department of Clinical and Experimental Medicine, University of Pisa School of Medicine, Pisa, Italy; CNR Institute of Clinical Physiology, Pisa, Italy
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 17121, Stockholm, Sweden
| | - Domenico Accili
- Naomi Berrie Diabetes Center and Departments of Medicine, Columbia University, New York, 10032, USA.
| |
Collapse
|
93
|
Zhang X, Price NL, Fernández-Hernando C. Non-coding RNAs in lipid metabolism. Vascul Pharmacol 2018; 114:93-102. [PMID: 29929012 DOI: 10.1016/j.vph.2018.06.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/01/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
Cardiovascular disease (CVD), the leading cause of death and morbidity in the Western world, begins with lipid accumulation in the arterial wall, which is the initial step in atherogenesis. Alterations in lipid metabolism result in increased risk of cardiometabolic disorders, and treatment of lipid disorders remains the most common strategy aimed at reducing the incidence of CVD. Work done over the past decade has identified numerous classes of non-coding RNA molecules including microRNAs (miRNAs) and long-non-coding RNAs (lncRNAs) as critical regulators of gene expression involved in lipid metabolism and CVD, mostly acting at post-transcriptional level. A number of miRNAs, including miR-33, miR-122 and miR-148a, have been demonstrated to play important role in controlling the risk of CVD through regulation of cholesterol homeostasis and lipoprotein metabolism. lncRNAs are recently emerging as important regulators of lipid and lipoprotein metabolism. However, much additional work will be required to fully understand the impact of lncRNAs on CVD and lipid metabolism, due to the high abundance of lncRNAs and the poor-genetic conservation between species. This article reviews the role of miRNAs and lncRNAs in lipid and lipoprotein metabolism and their potential implications for the treatment of CVD.
Collapse
Affiliation(s)
- Xinbo Zhang
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
| | - Nathan L Price
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine, Department of Pathology, Yale University School of Medicine, 10 Amistad St., New Haven, CT 06510. USA.
| |
Collapse
|
94
|
Genetic Dissection of the Impact of miR-33a and miR-33b during the Progression of Atherosclerosis. Cell Rep 2018; 21:1317-1330. [PMID: 29091769 DOI: 10.1016/j.celrep.2017.10.023] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/12/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022] Open
Abstract
As an important regulator of macrophage cholesterol efflux and HDL biogenesis, miR-33 is a promising target for treatment of atherosclerosis, and numerous studies demonstrate that inhibition of miR-33 increases HDL levels and reduces plaque burden. However, important questions remain about how miR-33 impacts atherogenesis, including whether this protection is primarily due to direct effects on plaque macrophages or regulation of lipid metabolism in the liver. We demonstrate that miR-33 deficiency in Ldlr-/- mice promotes obesity, insulin resistance, and hyperlipidemia but does not impact plaque development. We further assess how loss of miR-33 or addition of miR-33b in macrophages and other hematopoietic cells impact atherogenesis. Macrophage-specific loss of miR-33 decreases lipid accumulation and inflammation under hyperlipidemic conditions, leading to reduced plaque burden. Therefore, the pro-atherogenic effects observed in miR-33-deficient mice are likely counterbalanced by protective effects in macrophages, which may be the primary mechanism through which anti-miR-33 therapies reduce atherosclerosis.
Collapse
|
95
|
MicroRNA-196b enhances the radiosensitivity of SNU-638 gastric cancer cells by targeting RAD23B. Biomed Pharmacother 2018; 105:362-369. [PMID: 29864624 DOI: 10.1016/j.biopha.2018.05.111] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 01/05/2023] Open
Abstract
Gastric cancer is characterized by resistance to ionizing radiation. The development of resistance to radiotherapy in gastric cancer patients is one of the obstacles to effective radiotherapy. MicroRNAs are small well-conserved non-coding RNA species that regulate post-transcriptional activation. Our study aimed to investigate the role of miR-196b in radiation-induced gastric cancer. In the present study, we found that miR-196b expression was significantly reduced following radiation. The ectopic miR-196b expression sensitized SNU-638 gastric cancer cells and increased γ-H2AX foci upon radiation treatment. Bioinformatics analysis suggested that the DNA repair protein RAD23B was a putative target gene of miR-196b. Overexpression of miR-196b suppressed RAD23B expression in SNU-638 cells. Reporter assays further showed that miR-196b inhibited RAD23B 3'-UTR luciferase activity. Knockdown of RAD23B by small interfering RNA transfection closely mimicked the outcomes of miR-196b transfection, leading to impaired DNA damage repair in gastric cancer cells. Our results show that miR-196b improved radiosensitivity of SNU-638 cells by targeting RAD23B. Our data indicate that miR-196b is a potential target to enhance the effect of radiation treatment on gastric cancer cells. These findings will provide evidence for a new therapeutic target in radiotherapy.
Collapse
|
96
|
Gottmann P, Ouni M, Saussenthaler S, Roos J, Stirm L, Jähnert M, Kamitz A, Hallahan N, Jonas W, Fritsche A, Häring HU, Staiger H, Blüher M, Fischer-Posovszky P, Vogel H, Schürmann A. A computational biology approach of a genome-wide screen connected miRNAs to obesity and type 2 diabetes. Mol Metab 2018; 11:145-159. [PMID: 29605715 PMCID: PMC6001404 DOI: 10.1016/j.molmet.2018.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 02/28/2018] [Accepted: 03/09/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Obesity and type 2 diabetes (T2D) arise from the interplay between genetic, epigenetic, and environmental factors. The aim of this study was to combine bioinformatics and functional studies to identify miRNAs that contribute to obesity and T2D. METHODS A computational framework (miR-QTL-Scan) was applied by combining QTL, miRNA prediction, and transcriptomics in order to enhance the power for the discovery of miRNAs as regulative elements. Expression of several miRNAs was analyzed in human adipose tissue and blood cells and miR-31 was manipulated in a human fat cell line. RESULTS In 17 partially overlapping QTL for obesity and T2D 170 miRNAs were identified. Four miRNAs (miR-15b, miR-30b, miR-31, miR-744) were recognized in gWAT (gonadal white adipose tissue) and six (miR-491, miR-455, miR-423-5p, miR-132-3p, miR-365-3p, miR-30b) in BAT (brown adipose tissue). To provide direct functional evidence for the achievement of the miR-QTL-Scan, miR-31 located in the obesity QTL Nob6 was experimentally analyzed. Its expression was higher in gWAT of obese and diabetic mice and humans than of lean controls. Accordingly, 10 potential target genes involved in insulin signaling and adipogenesis were suppressed. Manipulation of miR-31 in human SGBS adipocytes affected the expression of GLUT4, PPARγ, IRS1, and ACACA. In human peripheral blood mononuclear cells (PBMC) miR-15b levels were correlated to baseline blood glucose concentrations and might be an indicator for diabetes. CONCLUSION Thus, miR-QTL-Scan allowed the identification of novel miRNAs relevant for obesity and T2D.
Collapse
Affiliation(s)
- Pascal Gottmann
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| | - Meriem Ouni
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| | - Sophie Saussenthaler
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| | - Julian Roos
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075, Ulm, Germany.
| | - Laura Stirm
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the Eberhard Karls University Tübingen, 72076, Tübingen, Germany.
| | - Markus Jähnert
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| | - Anne Kamitz
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| | - Nicole Hallahan
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| | - Wenke Jonas
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| | - Andreas Fritsche
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the Eberhard Karls University Tübingen, 72076, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology, Nephrology, Angiology, and Clinical Chemistry, University Hospital Tübingen, 72076, Tübingen, Germany.
| | - Hans-Ulrich Häring
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the Eberhard Karls University Tübingen, 72076, Tübingen, Germany; Department of Internal Medicine, Division of Endocrinology, Diabetology, Nephrology, Angiology, and Clinical Chemistry, University Hospital Tübingen, 72076, Tübingen, Germany.
| | - Harald Staiger
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the Eberhard Karls University Tübingen, 72076, Tübingen, Germany; Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, 72076, Tübingen, Germany.
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, 04103, Leipzig, Germany.
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075, Ulm, Germany.
| | - Heike Vogel
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| | - Annette Schürmann
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Experimental Diabetology, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.
| |
Collapse
|
97
|
Abstract
The frequency of prediabetes is increasing as the prevalence of obesity rises worldwide. In prediabetes, hyperglycemia, insulin resistance, and inflammation and metabolic derangements associated with concomitant obesity cause endothelial vasodilator and fibrinolytic dysfunction, leading to increased risk of cardiovascular and renal disease. Importantly, the microvasculature affects insulin sensitivity by affecting the delivery of insulin and glucose to skeletal muscle; thus, endothelial dysfunction and extracellular matrix remodeling promote the progression from prediabetes to diabetes mellitus. Weight loss is the mainstay of treatment in prediabetes, but therapies that improved endothelial function and vasodilation may not only prevent cardiovascular disease but also slow progression to diabetes mellitus.
Collapse
Affiliation(s)
- David H Wasserman
- From the Departments of Molecular Physiology and Biophysics (D.H.W.) and Medicine (T.J.W., N.J.B.), Vanderbilt University Medical Center, Nashville, TN
| | - Thomas J Wang
- From the Departments of Molecular Physiology and Biophysics (D.H.W.) and Medicine (T.J.W., N.J.B.), Vanderbilt University Medical Center, Nashville, TN
| | - Nancy J Brown
- From the Departments of Molecular Physiology and Biophysics (D.H.W.) and Medicine (T.J.W., N.J.B.), Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
98
|
Aryal B, Suárez Y. Non-coding RNA regulation of endothelial and macrophage functions during atherosclerosis. Vascul Pharmacol 2018; 114:64-75. [PMID: 29551552 DOI: 10.1016/j.vph.2018.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/12/2018] [Accepted: 03/01/2018] [Indexed: 12/16/2022]
Abstract
The endothelial lining can be viewed as the first line of defense against risk factors of vascular disease. Endothelial dysfunction is regarded as an initial event for atherogenesis since defects in vascular integrity and homeostasis are responsible for lipid infiltration and recruitment of monocytes into the vessel wall. Monocytes-turned-macrophages, which possess astounding inflammatory plasticity, perpetuate chronic inflammation and growth of atherosclerotic plaques and, are therefore central for the pathogenesis of atherosclerosis. Because endothelial cells and macrophages are key players during atherogenesis, it is crucial to understand the regulation of their functions in order to develop strategies to intervene disease progression. Interestingly, non-coding RNAs (ncRNAs), broad class of RNA molecules that do not code for proteins, are capable of reprogramming multiple cell functions and, thus, can be used as target agents. MicroRNAs are small ncRNAs whose roles in the regulation of vascular functions and development of atherosclerosis through post-transcriptional manipulation of gene expression have been widely explored. Recently, other ncRNAs including long noncoding RNAs (lncRNAs) have also emerged as potential regulators of these functions. However, given their poor-genetic conservation between species, much work will be needed to elucidate the specific role of lncRNAs in vascular biology. This review aims to provide a comprehensive perspective of ncRNA, mostly focusing in lncRNAs, mechanism of action and relevance in regulating lipid metabolism-independent endothelial and macrophages functions in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Binod Aryal
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yajaira Suárez
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA..
| |
Collapse
|
99
|
Thanikachalam PV, Ramamurthy S, Wong ZW, Koo BJ, Wong JY, Abdullah MF, Chin YH, Chia CH, Tan JY, Neo WT, Tan BS, Khan WF, Kesharwani P. Current attempts to implement microRNA-based diagnostics and therapy in cardiovascular and metabolic disease: a promising future. Drug Discov Today 2018; 23:460-480. [DOI: 10.1016/j.drudis.2017.10.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/09/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022]
|
100
|
Chen Y, Li G, Liu ML. Microvesicles as Emerging Biomarkers and Therapeutic Targets in Cardiometabolic Diseases. GENOMICS PROTEOMICS & BIOINFORMATICS 2018; 16:50-62. [PMID: 29462670 PMCID: PMC6000161 DOI: 10.1016/j.gpb.2017.03.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/03/2017] [Accepted: 03/23/2017] [Indexed: 12/20/2022]
Abstract
Microvesicles (MVs, also known as microparticles) are small vesicles that originate from plasma membrane of almost all eukaryotic cells during apoptosis or activation. MVs can serve as extracellular vehicles to transport bioactive molecules from their parental cells to recipient target cells, thereby serving as novel mediators for intercellular communication. Importantly, more and more evidence indicates that MVs could play important roles in early pathogenesis and subsequent progression of cardiovascular and metabolic diseases. Elevated plasma concentrations of MVs, originating from red blood cells, leukocytes, platelets, or other organs and tissues, have been reported in various cardiometabolic diseases. Circulating MVs could serve as potential biomarkers for disease diagnosis or therapeutic monitoring. In this review, we summarized recently-published studies in the field and discussed the role of MVs in the pathogenesis of cardiometabolic diseases. The emerging values of MVs that serve as biomarker for non-invasive diagnosis and prognosis, as well as their roles as novel therapeutic targets in cardiometabolic diseases, were also described.
Collapse
Affiliation(s)
- Yan Chen
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Ming-Lin Liu
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19140, USA; Philadelphia VA Medical Center, Philadelphia, PA 19140, USA.
| |
Collapse
|