51
|
Gao F, Chen X, Xu B, Luo Z, Liang Y, Fang S, Li M, Wang X, Lin X. Inhibition of MicroRNA-92 alleviates atherogenesis by regulation of macrophage polarization through targeting KLF4. J Cardiol 2021; 79:432-438. [PMID: 34750028 DOI: 10.1016/j.jjcc.2021.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease in which macrophage polarization plays an important role in contribution to atherosclerotic plaque formation and stability. Here we tested the effect of miR-92 regulation on the development of atherosclerosis beyond tumorigenesis and explored the potential mechanism. METHODS AND RESULTS In the present study, bone marrow derived macrophages (BMDMs), mouse peritoneal macrophages (MPMs), and human macrophages were used to test the expression of miR-92. Here we noticed miR-92 levels were enhanced in classic M1 macrophage but decreased in alternative M2 macrophage, respectively. In vitro, we demonstrated that macrophages transfected with miR-92 inhibitor attenuated proinflammatory cytokine secretion represented by polarized M1 markers but promoted anti-inflammatory state that was indicative of an M2 phenotype. Mechanistically, miR-92 was found to directly interact with KLF4 and we further identified a requirement role of KLF4 in mediating the effect of miR-92 silencing macrophage polarization. Concomitantly, miR-92 inhibition treated ApoE-/- mice promoted macrophage polarization toward alternative M2 macrophage, thus protecting against atherosclerotic plaque formation and preventing a vulnerable phenotype. CONCLUSION miR-92 inhibition promoted alternative macrophage activation and attenuated atherosclerosis regression partially regulated in a KLF4-dependent manner, which indicated that miR-92/KLF4 axis may serve as a promising strategy for prevention of atherosclerotic diseases.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cardiology, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic Development District, Hefei 230601, Anhui Province, China
| | - Xueying Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Banglong Xu
- Department of Cardiology, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic Development District, Hefei 230601, Anhui Province, China
| | - Zhidan Luo
- Department of Geriatrics, Chongqing People's Hospital, Chongqing, China
| | - Yi Liang
- Houston Methodist Research Institute, Center for Cardiovascular Regeneration, Houston, TX, USA
| | - Sihua Fang
- Department of Cardiology, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic Development District, Hefei 230601, Anhui Province, China
| | - Mengli Li
- Department of Cardiology, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic Development District, Hefei 230601, Anhui Province, China
| | - Xiaochen Wang
- Department of Cardiology, Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Economic Development District, Hefei 230601, Anhui Province, China.
| | - Xianhe Lin
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei city 230601, Anhui Province, China.
| |
Collapse
|
52
|
Immuno-regenerative biomaterials for in situ cardiovascular tissue engineering - Do patient characteristics warrant precision engineering? Adv Drug Deliv Rev 2021; 178:113960. [PMID: 34481036 DOI: 10.1016/j.addr.2021.113960] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023]
Abstract
In situ tissue engineering using bioresorbable material implants - or scaffolds - that harness the patient's immune response while guiding neotissue formation at the site of implantation is emerging as a novel therapy to regenerate human tissues. For the cardiovascular system, the use of such implants, like blood vessels and heart valves, is gradually entering the stage of clinical translation. This opens up the question if and to what extent patient characteristics influence tissue outcomes, necessitating the precision engineering of scaffolds to guide patient-specific neo-tissue formation. Because of the current scarcity of human in vivo data, herein we review and evaluate in vitro and preclinical investigations to predict the potential role of patient-specific parameters like sex, age, ethnicity, hemodynamics, and a multifactorial disease profile, with special emphasis on their contribution to the inflammation-driven processes of in situ tissue engineering. We conclude that patient-specific conditions have a strong impact on key aspects of in situ cardiovascular tissue engineering, including inflammation, hemodynamic conditions, scaffold resorption, and tissue remodeling capacity, suggesting that a tailored approach may be required to engineer immuno-regenerative biomaterials for safe and predictive clinical applicability.
Collapse
|
53
|
PAK1 Silencing Attenuated Proinflammatory Macrophage Activation and Foam Cell Formation by Increasing PPAR γ Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6957900. [PMID: 34603600 PMCID: PMC8483905 DOI: 10.1155/2021/6957900] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/28/2021] [Indexed: 12/24/2022]
Abstract
Macrophage polarization in response to environmental cues has emerged as an important event in the development of atherosclerosis. Compelling evidences suggest that P21-activated kinases 1 (PAK1) is involved in a wide variety of diseases. However, the potential role and mechanism of PAK1 in regulation of macrophage polarization remains to be elucidated. Here, we observed that PAK1 showed a dramatically increased expression in M1 macrophages but decreased expression in M2 macrophages by using a well-established in vitro model to study heterogeneity of macrophage polarization. Adenovirus-mediated loss-of-function approach demonstrated that PAK1 silencing induced an M2 macrophage phenotype-associated gene profiles but repressed the phenotypic markers related to M1 macrophage polarization. Additionally, dramatically decreased foam cell formation was found in PAK1 silencing-induced M2 macrophage activation which was accompanied with alternation of marker account for cholesterol efflux or influx from macrophage foam cells. Moderate results in lipid metabolism and foam cell formation were found in M1 macrophage activation mediated by AdshPAK1. Importantly, we presented mechanistic evidence that PAK1 knockdown promoted the expression of PPARγ, and the effect of macrophage activation regulated by PAK1 silencing was largely reversed when a PPARγ antagonist was utilized. Collectively, these findings reveal that PAK1 is an independent effector of macrophage polarization at least partially attributed to regulation of PPARγ expression, which suggested PAK1-PPARγ axis as a novel therapeutic strategy in atherosclerosis management.
Collapse
|
54
|
Promoting athero-protective immunity by vaccination with low density lipoprotein-derived antigens. Atherosclerosis 2021; 335:89-97. [PMID: 34462127 DOI: 10.1016/j.atherosclerosis.2021.08.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/23/2022]
Abstract
Immune responses activated by LDL particles that have been trapped and oxidized in the arterial wall play an important role in atherosclerosis. Some of these immune responses are protective by facilitating the removal of pro-inflammatory and toxic lipid species formed as result of LDL oxidation. However, should these protective immune responses be insufficient, other more potent pro-inflammatory immune responses instead contributing to disease progression will gradually become dominant. The importance of the balance between protective and pathogenic immunity is particularly apparent when it comes to the adaptive immune system where pro-inflammatory T helper 1 (Th1) type T cells aggravate atherosclerosis, while regulatory T cells (Tregs) have an opposing role. As oxidized LDL is a key autoantigen in atherosclerosis, it has become an interesting possibility that immune-modulatory therapy that favors the activity of apolipoprotein B peptide-specific Tregs could be developed into a novel treatment strategy for prevention/stabilization of atherosclerosis and ischemic cardiovascular events. Indeed, several such oxidized LDL tolerance vaccines have shown promising results in animal models of atherosclerosis. This review will discuss the experimental background for development of atherosclerosis vaccines based on LDL-derived antigens as well as the challenges involved in translating these findings into clinical application.
Collapse
|
55
|
Patel S, Werstuck G. Characterizing the Role of Glycogen Synthase Kinase-3α/β in Macrophage Polarization and the Regulation of Pro-Atherogenic Pathways in Cultured Ldlr -/- Macrophages. Front Immunol 2021; 12:676752. [PMID: 34394077 PMCID: PMC8361494 DOI: 10.3389/fimmu.2021.676752] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/12/2021] [Indexed: 12/31/2022] Open
Abstract
The molecular and cellular mechanisms that link cardiovascular risk factors to the initiation and progression of atherosclerosis are not understood. Recent findings from our laboratory indicate that endoplasmic reticulum (ER) stress signaling through glycogen synthase kinase (GSK)-3α/β induces pro-atherosclerotic pathways. The objective of this study was to define the specific roles of GSK3α and GSK3β in the activation of pro-atherogenic processes in macrophages. Bone marrow derived macrophages (BMDM) were isolated from low-density lipoprotein receptor knockout (Ldlr-/-) mice and Ldlr-/- mice with myeloid deficiency of GSK3α and/or GSK3β. M1 and M2 macrophages were used to examine functions relevant to the development of atherosclerosis, including polarization, inflammatory response, cell viability, lipid accumulation, migration, and metabolism. GSK3α deficiency impairs M1 macrophage polarization, and reduces the inflammatory response and lipid accumulation, but increases macrophage mobility/migration. GSK3β deficiency promotes M1 macrophage polarization, which further increases the inflammatory response and lipid accumulation, but decreases macrophage migration. Macrophages deficient in both GSK3α and GSK3β exhibit increased cell viability, proliferation, and metabolism. These studies begin to delineate the specific roles of GSK3α and GSK3β in macrophage polarization and function. These data suggest that myeloid cell GSK3α signaling regulates M1 macrophage polarization and pro-atherogenic functions to promote atherosclerosis development.
Collapse
Affiliation(s)
- Sarvatit Patel
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada.,Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Geoff Werstuck
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada.,Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
56
|
Lipid metabolism, inflammation, and foam cell formation in health and metabolic disorders: targeting mTORC1. J Mol Med (Berl) 2021; 99:1497-1509. [PMID: 34312684 DOI: 10.1007/s00109-021-02117-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023]
Abstract
Metabolic homeostasis is important for maintaining a healthy lifespan. Lipid metabolism is particularly necessary for the maintenance of metabolic energy sources and their storage, and the structure and function of cell membranes, as well as for the regulation of nutrition through lipogenesis, lipolysis, and lipophagy. Dysfunctional lipid metabolism leads to the development of metabolic disorders, such as atherosclerosis, diabetes mellitus, and non-alcoholic fatty liver disease (NAFLD). Furthermore, dyslipidaemia causes inflammatory responses and foam cell formation. Mechanistic target of rapamycin (mTOR) signalling is a key regulator of diverse cellular processes, including cell metabolism and cell fate. mTOR complex 1 (mTORC1) is involved in lipid metabolism and immune responses in the body. Therefore, the mTORC1 signalling pathway has been suggested as a potential therapeutic target for the treatment of metabolic disorders. In this review, we focus on the roles of mTORC1 in lipid metabolism and inflammation, and present current evidence on its involvement in the development and progression of metabolic disorders.
Collapse
|
57
|
Recent advances and directions in the development of bioresorbable metallic cardiovascular stents: Insights from recent human and in vivo studies. Acta Biomater 2021; 127:1-23. [PMID: 33823325 DOI: 10.1016/j.actbio.2021.03.058] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
Over the past two decades, significant advancements have been made regarding the material formulation, iterative design, and clinical translation of metallic bioresorbable stents. Currently, magnesium-based (Mg) stent devices have remained at the forefront of bioresorbable stent material development and use. Despite substantial advances, the process of developing novel absorbable stents and their clinical translation is time-consuming, expensive, and challenging. These challenges, coupled with the continuous refinement of alternative bioresorbable metallic bulk materials such as iron (Fe) and zinc (Zn), have intensified the search for an ideal absorbable metallic stent material. Here, we discuss the most recent pre-clinical and clinical evidence for the efficacy of bioresorbable metallic stents and material candidates. From this perspective, strategies to improve the clinical performance of bioresorbable metallic stents are considered and critically discussed, spanning material alloy development, surface manipulations, material processing techniques, and preclinical/biological testing considerations. STATEMENT OF SIGNIFICANCE: Recent efforts in using Mg, Fe, and Zn based materials for bioresorbable stents include elemental profile changes as well as surface modifications to improve each of the three classes of materials. Although a variety of alloys for absorbable metallic stents have been developed, the ideal absorbable stent material has not yet been discovered. This review focuses on the state of the art for bioresorbable metallic stent development. It covers the three bulk materials used for degradable stents (Mg, Fe, and Zn), and discusses their advances from a translational perspective. Strategies to improve the clinical performance of bioresorbable metallic stents are considered and critically discussed, spanning material alloy development, surface manipulations, material processing techniques, and preclinical/biological testing considerations.
Collapse
|
58
|
Zhang Y, Wu H, He R, Ye C, Chen H, Wang J, Li Z. Dickkopf-2 knockdown protects against classic macrophage polarization and lipid loading by activation of Wnt/β-catenin signaling. J Cardiol 2021; 78:328-333. [PMID: 34030936 DOI: 10.1016/j.jjcc.2021.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Wnt/β-catenin signaling pathway plays an important role in regulation of macrophage activation implicated in the development of atherosclerosis. However, as a negative regulator of Wnt/β-catenin, the potential role of Dickkopf-2 (Dkk2) on macrophage activation remains unexplored. MATERIALS AND METHODS Bone marrow-derived macrophages (BMDMs) and mouse peritoneal macrophages (MPMs) collected from ApoE knockout mice upon oxidation low lipoprotein (Ox-LDL) administration were performed to test the expression of Dkk2. The loss-of-function strategy using siRNA-Dkk2 was further utilized for the function of Dkk2. Inhibition of β-catenin with XAV939 (a β-catenin specific inhibitor) was further used for testing its effect on macrophage activation mediated by Dkk2 knockdown. RESULTS AND CONCLUSION In the current study, real time-polymerase chain reaction analysis demonstrated that an up-regulated Dkk2 expression was observed in BMDMs and MPMs of ApoE knockout mice upon Ox-LDL administration, which was confirmed by western blot. The double immunofluorescence staining further exhibited that Dkk2 showed a strong immunoreactivity in BMDMs and primarily located in cytoplasm of macrophages. Dkk2 knockdown significantly decreased the genes related to classic M1 polarized macrophage but increased alternative M2 polarized macrophage markers. Moreover, Dkk2 silencing dramatically attenuated foam cell formation which was contributed by promoted markers' expression associated with cholesterol efflux but attenuated markers to cholesterol influx. Mechanistically, we observed that Dkk2 knockdown activated Wnt/β-catenin signaling by promoting β-catenin to translocate into the nuclei of macrophages, and XAV939 reversed the ameliorated effect of Dkk2 silencing macrophage activation. Taken together, these results suggested that downregulated Dkk2 expression in macrophages was responsible for the inactivation of macrophage through targeting Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yuan Zhang
- Center of Cardiology, Chong Qing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Hongkun Wu
- Center of Cardiology, Chong Qing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Rui He
- Center of Cardiology, Chong Qing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Changlun Ye
- Department of Cardiology, Chongqing Qijiang District People's Hospital, Chongqing, PR China
| | - Hao Chen
- Center of Cardiology, Chong Qing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Jiao Wang
- Center of Cardiology, Chong Qing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China
| | - Zhenggong Li
- Center of Cardiology, Chong Qing General Hospital, University of Chinese Academy of Sciences, Chongqing, PR China.
| |
Collapse
|
59
|
Du Y, Yang Z, Sun Q, Lin M, Wang R, Peng Y, Chen X, Qi X. Engineered Microglia Potentiate the Action of Drugs against Glioma Through Extracellular Vesicles and Tunneling Nanotubes. Adv Healthc Mater 2021; 10:e2002200. [PMID: 33644993 DOI: 10.1002/adhm.202002200] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/11/2021] [Indexed: 01/08/2023]
Abstract
Gliomas remain difficult to treat because of their metastatic and recurrent nature and the existence of the blood-brain barrier (BBB), which impedes drug delivery. Microglia, the resident macrophages in the CNS, can be recruited by gliomas and can penetrate the tumor. In this study, microglia (BV2 cells) are used as transport vectors to deliver paclitaxel for the treatment of glioma. To avoid paclitaxel toxicity in microglia, liposomes are first employed to isolate the drug from BV2 cells. Dipalmitoyl phosphatidylserine (DPPS), as an "eat me" signal, is doped into liposomes to amplify their phagocytosis by microglia. This study demonstrates that engineered microglia can cross the BBB, independently migrate toward gliomas, and transfer cargo to glioma cells. Of note, extracellular vesicles and tunneling nanotubes are found to offer unique modes of cargo transportation between microglia and glioma cells. In vivo, the engineered drug-loaded microglia has a high ability to target the brain, penetrate glioma, and suppress tumor progression, supporting the notion that the use of engineered microglia is a potential strategy for the treatment of glioma. These findings present new opportunities for exploration into the use of microglia as transport vectors to deliver therapeutic agents through specific membrane nanotubes and vesicles.
Collapse
Affiliation(s)
- Yitian Du
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems School of Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 P. R. China
| | - Zhenzhen Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems School of Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 P. R. China
| | - Qi Sun
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems School of Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 P. R. China
| | - Meng Lin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems School of Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 P. R. China
| | - Rudong Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems School of Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 P. R. China
| | - Yiwei Peng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems School of Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 P. R. China
| | - Xinyi Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems School of Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 P. R. China
| | - Xianrong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems School of Pharmaceutical Sciences Peking University 38 Xueyuan Road, Haidian District Beijing 100191 P. R. China
| |
Collapse
|
60
|
Zhang S, Li Z, Zhang Y, Chen J, Li Y, Wu F, Wang W, Cui ZJ, Chen G. Ketone Body 3-Hydroxybutyrate Ameliorates Atherosclerosis via Receptor Gpr109a-Mediated Calcium Influx. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003410. [PMID: 33977048 PMCID: PMC8097358 DOI: 10.1002/advs.202003410] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/19/2020] [Indexed: 02/05/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease that can cause acute cardiovascular events. Activation of the NOD-like receptor family, pyrin domain containing protein 3 (NLRP3) inflammasome enhances atherogenesis, which links lipid metabolism to sterile inflammation. This study examines the impact of an endogenous metabolite, namely ketone body 3-hydroxybutyrate (3-HB), on a mouse model of atherosclerosis. It is found that daily oral administration of 3-HB can significantly ameliorate atherosclerosis. Mechanistically, 3-HB is found to reduce the M1 macrophage proportion and promote cholesterol efflux by acting on macrophages through its receptor G-protein-coupled receptor 109a (Gpr109a). 3-HB-Gpr109a signaling promotes extracellular calcium (Ca2+) influx. The elevation of intracellular Ca2+ level reduces the release of Ca2+ from the endothelium reticulum (ER) to mitochondria, thus inhibits ER stress triggered by ER Ca2+ store depletion. As NLRP3 inflammasome can be activated by ER stress, 3-HB can inhibit the activation of NLRP3 inflammasome, which triggers the increase of M1 macrophage proportion and the inhibition of cholesterol efflux. It is concluded that daily nutritional supplementation of 3-HB attenuates atherosclerosis in mice.
Collapse
Affiliation(s)
- Shu‐jie Zhang
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
| | - Zi‐hua Li
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
| | - Yu‐dian Zhang
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
| | - Jin Chen
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
| | - Yuan Li
- Institute of Cell BiologyBeijing Normal UniversityBeijing100875P. R. China
| | - Fu‐qing Wu
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
| | - Wei Wang
- Innovative Institute of Animal Healthy BreedingCollege of Animal Sciences and TechnologyZhongkai University of Agriculture and EngineeringGuangzhou510025P. R. China
- Key Laboratory of Zoonosis ResearchMinistry of EducationCollege of Veterinary MedicineJilin UniversityChangchun130062P. R. China
| | - Zong Jie Cui
- Institute of Cell BiologyBeijing Normal UniversityBeijing100875P. R. China
| | - Guo‐Qiang Chen
- School of Life SciencesTsinghua UniversityBeijing100084P. R. China
- Tsinghua‐Peking Center for Life SciencesTsinghua UniversityBeijing100084P. R. China
- Center for Synthetic and Systems BiologyTsinghua UniversityBeijing100084P. R. China
- MOE Key Laboratory for Industrial BiocatalysisDept Chemical EngineeringTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
61
|
Qiu Y, Xu J, Yang L, Zhao G, Ding J, Chen Q, Zhang N, Yang R, Wang J, Li S, Zhang L. MiR-375 silencing attenuates pro-inflammatory macrophage response and foam cell formation by targeting KLF4. Exp Cell Res 2021; 400:112507. [PMID: 33545131 DOI: 10.1016/j.yexcr.2021.112507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/19/2022]
Abstract
Macrophage mediated inflammation and foam cell formation play crucial roles in the development of atherosclerosis. MiR-375 is a small noncoding RNA that significantly implicated in multiple tumor regulation and has been emerged as a novel biomarker for type 2 diabetes. However, the exact role of miR-375 on macrophage activation remains unknown. In the present study, we observed that miR-375 expression showed an up-regulated expression in atherosclerotic aortas, as well as in bone marrow derived macrophages (BMDMs) and mouse peritoneal macrophages (MPMs) isolated from ApoE deficiency mice and was gradually increased followed the Ox-LDL treated time. Functionally, miR-375 inhibition significantly decreased foam cell formation accompanied by up-regulated genes expression involved in cholesterol efflux but reduced genes expression implicated in cholesterol influx. Moreover, miR-375 silencing increased resolving M2 macrophage but reduced pro-inflammatory M1 macrophage markers expression. Such above effects can be reversed by miR-375 overexpression. Mechanistically, we noticed that miR-375 knockdown promoted KLF4 expression which was required for the ameliorated effect of miR-375 silencing on macrophage activation. Importantly, the consistent results in mRNA expression of M1 and M2 markers were observed in vivo, and miR-375-/-ApoE-/- mice significant decreased atherosclerotic lesions in the whole aorta and aortic sinus. Taken together, these evidences suggested that miR-375 knockdown attenuated macrophage activation partially through activation of KLF4-dependent mechanism.
Collapse
Affiliation(s)
- Yanyan Qiu
- Department of Cardio-Pulmonary Function, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Jinyi Xu
- Department of Cardio-Pulmonary Function, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China.
| | - Lihong Yang
- Department of Cardio-Pulmonary Function, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Guihua Zhao
- Department of Cardio-Pulmonary Function, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Jing Ding
- Department of Cardio-Pulmonary Function, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Qiong Chen
- Department of Cardio-Pulmonary Function, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Na Zhang
- Department of Cardio-Pulmonary Function, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Ruike Yang
- Department of Cardio-Pulmonary Function, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Jijing Wang
- Department of Cardio-Pulmonary Function, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Shuaibing Li
- Department of Cardio-Pulmonary Function, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Luming Zhang
- Department of Cardio-Pulmonary Function, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China
| |
Collapse
|
62
|
Gong FH, Long L, Yang YS, Shen DH, Zhang YS, Wang XS, Zhang XP, Xiao XQ. Attenuated macrophage activation mediated by microRNA-183 knockdown through targeting NR4A2. Exp Ther Med 2021; 21:300. [PMID: 33717243 DOI: 10.3892/etm.2021.9731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is considered a chronic inflammatory disease, and macrophages function as important mediators in the development of atherogenesis. MicroRNA (miR)-183 is a small non-coding RNA that acts as a novel tumor suppressor and has recently been proposed to affect cardiac hypertrophy. However, the exact role and underlying mechanism of miR-183 in macrophage activation remain unknown. In the present study, miR-183 showed upregulated expression in atheromatous plaques and in bone marrow-derived macrophages (BMDMs) subjected to stimulation with oxidized low-density lipoproteins. Using a miR-183 loss-of-function strategy, it was demonstrated that miR-183 knockdown significantly increased resolving M2 macrophage marker expression but decreased proinflammatory M1 macrophage marker expression, as well as attenuated NF-κB activation. Moreover, decreased foam-cell formation accompanied by upregulation of genes involved in cholesterol efflux and downregulation of genes implicated in cholesterol influx was found in BMDMs transfected with a miR-183 inhibitor. Mechanistically, macrophage activation mediated by miR-183 silencing was partially attributed to direct upregulation of NR4A2 expression in BMDMs. Thus, the present study suggests that neutralizing miR-183 may be a potential therapeutic strategy for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Fu-Han Gong
- Department of Cardiology, Tongren Municipal People's Hospital, Tongren, Guizhou 554300, P.R. China
| | - Li Long
- Department of Clinical Laboratory, Tongren Municipal People's Hospital, Tongren, Guizhou 554300, P.R. China
| | - Yong-Sheng Yang
- Department of Cardiology, Tongren Municipal People's Hospital, Tongren, Guizhou 554300, P.R. China
| | - De-Hong Shen
- Department of Cardiology, Tongren Municipal People's Hospital, Tongren, Guizhou 554300, P.R. China
| | - Yu-Song Zhang
- Department of Cardiology, Tongren Municipal People's Hospital, Tongren, Guizhou 554300, P.R. China
| | - Xue-Sheng Wang
- Department of Cardiology, Tongren Municipal People's Hospital, Tongren, Guizhou 554300, P.R. China
| | - Xue-Ping Zhang
- Department of Cardiology, Tongren Municipal People's Hospital, Tongren, Guizhou 554300, P.R. China
| | - Xiao-Qiang Xiao
- Department of Cardiology, Tongren Municipal People's Hospital, Tongren, Guizhou 554300, P.R. China
| |
Collapse
|
63
|
Szafranski P, Stankiewicz P. Long Non-Coding RNA FENDRR: Gene Structure, Expression, and Biological Relevance. Genes (Basel) 2021; 12:177. [PMID: 33513839 PMCID: PMC7911649 DOI: 10.3390/genes12020177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
The FOXF1 Adjacent Noncoding Developmental Regulatory RNA (Fendrr) plays an important role in the control of gene expression in mammals. It is transcribed in the opposite direction to the neighboring Foxf1 gene with which it shares a region containing promoters. In humans, FENDRR is located on chromosome 16q24.1, and is positively regulated both by the FOXF1 distant lung-specific cis-acting enhancer and by trans-acting FOXF1. Fendrr has been shown to function as a competing endogenous RNA, sponging microRNAs and protein factors that control stability of mRNAs, and as an epigenetic modifier of chromatin structure around gene promoters and other regulatory sites, targeting them with histone methyltrasferase complexes. In mice, Fendrr is essential for development of the heart, lungs, and gastrointestinal system; its homozygous loss causes embryonic or perinatal lethality. Importantly, deregulation of FENDRR expression has been causatively linked also to tumorigenesis, resistance to chemotherapy, fibrosis, and inflammatory diseases. Here, we review the current knowledge on the FENDRR structure, expression, and involvement in development and tissue maintenance.
Collapse
Affiliation(s)
- Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA;
| | | |
Collapse
|
64
|
Chen SY, Chen YZ, Lee YJ, Jiang CL, Lu SC, Lin FJ. Maternal hypercholesterolemia exacerbates atherosclerosis lesions in female offspring through potentiating macrophage polarization toward an inflammatory M1 phenotype. J Nutr Biochem 2020; 90:108575. [PMID: 33387610 DOI: 10.1016/j.jnutbio.2020.108575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Maternal hypercholesterolemia induces early onset of cardiovascular diseases in offspring; however, its underlying mechanism remains poorly understood. We hypothesized that maternal hypercholesterolemia increases offspring susceptibility to atherosclerosis in adulthood through developmental modifications of macrophages. Female apolipoprotein E (ApoE)-deficient mice were fed a Western-type diet (WD) or a control diet (CD) prior to and throughout gestation and lactation. The offspring were all fed a WD after weaning. Sixteen-week-old female offspring of WD-fed dams showed a significant increase in atherosclerotic lesions of the aorta and aortic root compared with those of CD-fed dams. This effect was associated with increased macrophage accumulation within lesions, macrophage inflammation and an increase in circulating Ly6Chigh monocyte and F4/80 macrophage counts. We further evidenced that in utero WD exposure promoted macrophage polarization toward the M1 phenotype by elevating M1 markers (Cd86, Inos/Nos2) without affecting M2 markers (Cd206, Arg1). Proinflammatory cytokine synthesis was also enhanced in response to LPS. Finally, maternal WD intake strongly inhibited the macrophage expression of Pparg and Lxra, which was associated with aberrant DNA methylation of Lxra promoter. Our findings demonstrate that maternal hypercholesterolemia exacerbates atherosclerosis, in part by altering the epigenetic state of the macrophage genome of the offspring, imprinting gene expression, and changing macrophage polarization, which ultimately contributes to plaque macrophage burden.
Collapse
Affiliation(s)
- Sin-Yu Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Zhen Chen
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Jing Lee
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Chung-Lin Jiang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shao-Chun Lu
- Department of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Fu-Jung Lin
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan; Research Center for Development Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
65
|
Rentz T, Wanschel ACBA, de Carvalho Moi L, Lorza-Gil E, de Souza JC, Dos Santos RR, Oliveira HCF. The Anti-atherogenic Role of Exercise Is Associated With the Attenuation of Bone Marrow-Derived Macrophage Activation and Migration in Hypercholesterolemic Mice. Front Physiol 2020; 11:599379. [PMID: 33329050 PMCID: PMC7719785 DOI: 10.3389/fphys.2020.599379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
An early event in atherogenesis is the recruitment and infiltration of circulating monocytes and macrophage activation in the subendothelial space. Atherosclerosis subsequently progresses as a unresolved inflammatory disease, particularly in hypercholesterolemic conditions. Although physical exercise training has been a widely accepted strategy to inhibit atherosclerosis, its impact on arterial wall inflammation and macrophage phenotype and function has not yet been directly evaluated. Thus, the aim of this study was to investigate the effects of aerobic exercise training on the inflammatory state of atherosclerotic lesions with a focus on macrophages. Hypercholesterolemic LDL-receptor-deficient male mice were subjected to treadmill training for 8 weeks and fed a high-fat diet. Analyses included plasma lipoprotein and cytokine levels; aortic root staining for lipids (oil red O); macrophages (CD68, MCP1 and IL1β); oxidative (nitrotyrosine and, DHE) and endoplasmic reticulum (GADD) stress markers. Primary bone marrow-derived macrophages (BMDM) were assayed for migration activity, motility phenotype (Rac1 and F-actin) and inflammation-related gene expression. Plasma levels of HDL cholesterol were increased, while levels of proinflammatory cytokines (TNFa, IL1b, and IL6) were markedly reduced in the exercised mice. The exercised mice developed lower levels of lipid content and inflammation in atherosclerotic plaques. Additionally, lesions in the exercised mice had lower levels of oxidative and ER stress markers. BMDM isolated from the exercised mice showed a marked reduction in proinflammatory cytokine gene expression and migratory activity and a disrupted motility phenotype. More importantly, bone marrow from exercised mice transplanted into sedentary mice led to reduced atherosclerosis in the recipient sedentary mice, thus suggesting that epigenetic mechanisms are associated with exercise. Collectively, the presented data indicate that exercise training prevents atherosclerosis by inhibiting bone marrow-derived macrophage recruitment and activation.
Collapse
Affiliation(s)
- Thiago Rentz
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Amarylis C B A Wanschel
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Leonardo de Carvalho Moi
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Estela Lorza-Gil
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Jane C de Souza
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Renata R Dos Santos
- Division of Radiotherapy, Faculty of Medical Sciences, Medical School Hospital, State University of Campinas, Campinas, Brazil
| | - Helena C F Oliveira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| |
Collapse
|
66
|
Duraisamy P, Ravi S, Krishnan M, Livya CM, Manikandan B, Arunagirinathan K, Ramar M. Dynamic Role of Macrophage Sub Types for Development of Atherosclerosis and Potential Use of Herbal Immunomodulators as Imminent Therapeutic Strategy. Cardiovasc Hematol Agents Med Chem 2020; 20:2-12. [PMID: 33334298 DOI: 10.2174/1871525718666201217163207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 11/22/2022]
Abstract
Atherosclerosis, a major contributor to cardiovascular disease is a global alarm causing mortality worldwide. Being a progressive disease in the arteries, it mainly causes recruitment of monocytes to the inflammatory sites and subside pathological conditions. Monocyte-derived macrophage mainly acts in foam cell formation by engorging the LDL molecules, oxidizes it into Ox-LDL and leads to plaque deposit development. Macrophages in general differentiate, proliferate and undergo apoptosis at the inflammatory site. Frequently two subtypes of macrophages M1 and M2 has to act crucially in balancing the micro-environmental conditions of endothelial cells in arteries. The productions of proinflammatory mediators like IL-1, IL-6, TNF-α by M1 macrophage has atherogenic properties majorly produced during the early progression of atherosclerotic plaques. To counteract cytokine productions and M1-M2 balance, secondary metabolites (phytochemicals) from plants act as a therapeutic agent in alleviating atherosclerosis progression. This review summarizes the fundamental role of the macrophage in atherosclerotic lesion formation along with its plasticity characteristic as well as recent therapeutic strategies using herbal components and anti-inflammatory cytokines as potential immunomodulators.
Collapse
Affiliation(s)
| | - Sangeetha Ravi
- Department of Zoology, University of Madras, Guindy Campus, Chennai - 600 025. India
| | - Mahalakshmi Krishnan
- Department of Zoology, University of Madras, Guindy Campus, Chennai - 600 025. India
| | - Catherene M Livya
- Department of Zoology, University of Madras, Guindy Campus, Chennai - 600 025. India
| | - Beulaja Manikandan
- Department of Biochemistry, Annai Veilankanni's College for Women, Chennai - 600 015. India
| | | | - Manikandan Ramar
- Department of Zoology, University of Madras, Guindy Campus, Chennai - 600 025. India
| |
Collapse
|
67
|
Zhang J, Zhao WS, Xu L, Wang X, Li XL, Yang XC. Endothelium-specific endothelin-1 expression promotes pro-inflammatory macrophage activation by regulating miR-33/NR4A axis. Exp Cell Res 2020; 399:112443. [PMID: 33340492 DOI: 10.1016/j.yexcr.2020.112443] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/16/2020] [Accepted: 12/12/2020] [Indexed: 01/13/2023]
Abstract
The hallmark of atherogenesis is characterized as endothelial dysfunction and subsequent macrophage activation. Although our previous study has demonstrated that endothelin-1 (ET-1) plays an important role in atherogenesis, the underlying mechanism remains deeply investigation. Enhanced atherosclerotic plaques were observed in endothelium-specific ET-1 overexpression ApoE-/- mice (eET-1/ApoE-/-) concomitant with increased secretion of pro-inflammatory adhesion molecules and cytokines. The conditional media used for culturing human umbilical vein endothelial cells (HUVECs) with AdET-1 infection and subjected to OX-LDL stimulation, was collected and utilized for bone marrow-derived macrophages (BMDMs) culturing. RT-PCR analysis showed increased genes expression related to classical M1 macrophages but decreased alternative activated M2 macrophages genes expression in macrophage culturing with the conditional media. Furthermore, consistent regulations of macrophage polarization were observed using isolated exosomes from the conditional media. More importantly, we noticed that miR-33 was enriched in the exosomes derived by HUVECs with AdET-1 infection, while bioinformatics analysis further indicated that miR-33 directly targeted NR4A and miR-33/NR4A axis was required for the effect of endothelial-specific ET-1 overexpression on pro-inflammatory macrophage activation. By contrast, such effects could be reversed by ET-1 knockdown. Taken together, our study indicated that the exosomes derived by HUVECs with AdET-1 infection can transfer miR-33 to macrophages and subsequently promote pro-inflammatory macrophage activation by directly targeting to NR4A. These evidences clearly revealed that miR-33/NR4A axis was the important mechanism underlying the effect of ET-1 on macrophage activation and indicated that ET-1 may act as a promising target for atherosclerosis management.
Collapse
Affiliation(s)
- Juan Zhang
- Cardiac Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Wen-Shu Zhao
- Cardiac Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lin Xu
- Cardiac Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xin Wang
- Cardiac Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xiao-Li Li
- Cardiac Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xin-Chun Yang
- Cardiac Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| |
Collapse
|
68
|
Fracassi F, Niccoli G, Cosentino N, Eligini S, Fiorelli S, Fabbiocchi F, Vetrugno V, Refaat H, Montone RA, Marenzi G, Tremoli E, Crea F. Human monocyte-derived macrophages: Pathogenetic role in plaque rupture associated to systemic inflammation. Int J Cardiol 2020; 325:1-8. [PMID: 33035612 DOI: 10.1016/j.ijcard.2020.09.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Macrophages play a key role in coronary plaque destabilization. In-vitro human monocyte-derived macrophages (MDMs) are used to study macrophages infiltrating tissue. Optical coherence tomography (OCT) provides an in-vivo insight of the coronary arteries. We compared the MDMs morpho-phenotype and culprit plaque features at OCT in acute coronary syndrome (ACS) patients according to the underlying plaque pathobiology. METHODS Sixty-six patients undergoing coronary angiography and pre-angioplasty OCT of the culprit vessel were allocated to three groups according to mechanism of ACS at OCT and C-reactive protein levels (cut-off: 2 mg/Ll): 1) plaque rupture with systemic inflammation; 2) plaque rupture without systemic inflammation, 3) plaque with intact fibrous cap. A blood sample was collected to obtain MDMs, categorized as having "round" or "spindle" morphology. RESULTS Thirty-two patients (48.5%) were assigned to Group 1, 10 (15.2%) to Group 2 and 24 (36.4%) to Group 3. The "round" MDMs were significantly more frequent in Group 1 (39.25 ± 4.98%) than in Group 2 (23.89 ± 3.10%) and Group 3 (23.02 ± 7.89%), p = 0.008. MDMs in Group 1 as compared to Groups 2 and 3 showed lower efferocytosis (8.74 ± 1.38 vs 9.74 ± 2.15 vs 11.41 ± 2.41; p = 0.012), higher tissue factor levels (369.84 ± 101.13 vs 301.89 ± 59.78 vs 231.74 ± 111.47; p = 0.001) and higher heme oxygenase-1 expression (678.78 ± 145.43 vs 419.12 ± 74.44 vs 409.78 ± 64.33; p = 0.008). CONCLUSIONS MDMs of ACS patients show morpho-phenotypic heterogeneity with prevalence of pro-thrombotic and pro-oxidative properties in case of plaque rupture and systemic inflammation. Such MDMs subpopulation may take part to the cellular pathways leading to fibrous cap rupture with the subsequent thrombus formation.
Collapse
Affiliation(s)
- Francesco Fracassi
- Dipartimento di Scienze Cardiovascolari e Toraciche, Fondazione Policlinico Gemelli I.R.C.C.S., Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| | - Giampaolo Niccoli
- Dipartimento di Scienze Cardiovascolari e Toraciche, Fondazione Policlinico Gemelli I.R.C.C.S., Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy.
| | | | - Sonia Eligini
- Centro Cardiologico Monzino I.R.C.C.S., Milan, Italy
| | | | | | - Vincenzo Vetrugno
- Dipartimento di Scienze Cardiovascolari e Toraciche, Fondazione Policlinico Gemelli I.R.C.C.S., Roma, Italy
| | - Hesham Refaat
- Dipartimento di Scienze Cardiovascolari e Toraciche, Fondazione Policlinico Gemelli I.R.C.C.S., Roma, Italy; Cardiology Department, Zagazig University, Zagazig, Egypt
| | - Rocco Antonio Montone
- Dipartimento di Scienze Cardiovascolari e Toraciche, Fondazione Policlinico Gemelli I.R.C.C.S., Roma, Italy
| | | | - Elena Tremoli
- Centro Cardiologico Monzino I.R.C.C.S., Milan, Italy
| | - Filippo Crea
- Dipartimento di Scienze Cardiovascolari e Toraciche, Fondazione Policlinico Gemelli I.R.C.C.S., Roma, Italy; Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
69
|
Bowman ER, Cameron CM, Richardson B, Kulkarni M, Gabriel J, Cichon MJ, Riedl KM, Mustafa Y, Cartwright M, Snyder B, Raman SV, Zidar DA, Koletar SL, Playford MP, Mehta NN, Sieg SF, Freeman ML, Lederman MM, Cameron MJ, Funderburg NT. Macrophage maturation from blood monocytes is altered in people with HIV, and is linked to serum lipid profiles and activation indices: A model for studying atherogenic mechanisms. PLoS Pathog 2020; 16:e1008869. [PMID: 33002093 PMCID: PMC7553323 DOI: 10.1371/journal.ppat.1008869] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/13/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
People with HIV (PWH) are at increased risk for atherosclerotic cardiovascular disease (ASCVD). Proportions of vascular homing monocytes are enriched in PWH; however, little is known regarding monocyte-derived macrophages (MDMs) that may drive atherosclerosis in this population. We isolated PBMCs from people with and without HIV, and cultured these cells for 5 days in medium containing autologous serum to generate MDMs. Differential gene expression (DGE) analysis of MDMs from PWH identified broad alterations in innate immune signaling (IL-1β, TLR expression, PPAR βδ) and lipid processing (LXR/RXR, ACPP, SREBP1). Transcriptional changes aligned with the functional capabilities of these cells. Expression of activation markers and innate immune receptors (CD163, TLR4, and CD300e) was altered on MDMs from PWH, and these cells produced more TNFα, reactive oxygen species (ROS), and matrix metalloproteinases (MMPs) than did cells from people without HIV. MDMs from PWH also had greater lipid accumulation and uptake of oxidized LDL. PWH had increased serum levels of free fatty acids (FFAs) and ceramides, with enrichment of saturated FAs and a reduction in polyunsaturated FAs. Levels of lipid classes and species that are associated with CVD correlated with unique DGE signatures and altered metabolic pathway activation in MDMs from PWH. Here, we show that MDMs from PWH display a pro-atherogenic phenotype; they readily form foam cells, have altered transcriptional profiles, and produce mediators that likely contribute to accelerated ASCVD. People with HIV (PWH) are at greater risk for developing cardiovascular disease (CVD) than the general public, but the mechanisms underlying this increased risk are poorly understood. Macrophages play key roles in the pathogenesis of atherosclerosis, and are potential targets for therapeutic intervention. Here, we investigate phenotypic and functional abnormalities in monocyte-derived macrophages (MDMs) isolated from PWH that may drive CVD risk in this population. MDMs were differentiated in the presence of autologous serum, enabling us to explore the contributions of serum components (lipids, inflammatory cytokines, microbial products) as drivers of altered MDM function. We link serum levels of inflammatory biomarkers and CVD-associated lipid species to MDM activation. Our study provides new insight into drivers of pro-atherogenic MDM phenotype in PWH, and identifies directions for future study and potential intervention strategies to mitigate CVD risk.
Collapse
Affiliation(s)
- Emily R. Bowman
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| | - Cheryl M. Cameron
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Brian Richardson
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Manjusha Kulkarni
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University, Columbus, Ohio, United States of America
| | - Janelle Gabriel
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University, Columbus, Ohio, United States of America
| | - Morgan J. Cichon
- Department of Food Science & Technology and the Nutrient & Phytochemical Shared Resource, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Kenneth M. Riedl
- Department of Food Science & Technology and the Nutrient & Phytochemical Shared Resource, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Yousef Mustafa
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Michael Cartwright
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Brandon Snyder
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University, Columbus, Ohio, United States of America
| | - Subha V. Raman
- Department of Internal Medicine, Division of Cardiovascular Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - David A. Zidar
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America
| | - Susan L. Koletar
- Department of Medicine, Division of Infectious Diseases, Ohio State University, Columbus, Ohio, United States of America
| | - Martin P. Playford
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Nehal N. Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Scott F. Sieg
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Case Western Reserve University/University Hospitals of Cleveland, Cleveland, Ohio, United States of America
| | - Michael L. Freeman
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Case Western Reserve University/University Hospitals of Cleveland, Cleveland, Ohio, United States of America
| | - Michael M. Lederman
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Case Western Reserve University/University Hospitals of Cleveland, Cleveland, Ohio, United States of America
| | - Mark J. Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Nicholas T. Funderburg
- School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
70
|
Xiao MZ, Liu JM, Xian CL, Chen KY, Liu ZQ, Cheng YY. Therapeutic potential of ALKB homologs for cardiovascular disease. Biomed Pharmacother 2020; 131:110645. [PMID: 32942149 DOI: 10.1016/j.biopha.2020.110645] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/05/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading causes of human death. Recently, ALKB homologs, including ALKBH1-8 and FTO, have been found to have a variety of biological functions, such as histone demethylation, RNA demethylation, and DNA demethylation. These functions may regulate the physiological and pathological processes of CVDs, including inflammation, oxidative stress, cell apoptosis, and mitochondrial, endothelial, and fat metabolism dysfunction. In the present review, we summarize the biological functions of ALKB homologs and the relationship between the ALKB homologs and CVDs. Importantly, we discuss the roles of ALKB homologs in the regulation of oxidative stress, inflammation, autophagy, and DNA damage in CVDs, as well as the practical applications of ALKB homologs inhibitors or agonists in treating CVDs. In conclusion, the ALKBH family might be a promising target for CVDs therapy.
Collapse
Affiliation(s)
- Ming-Zhu Xiao
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jia-Ming Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Cui-Ling Xian
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Keng-Yu Chen
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; The Second Affiliated Hospital of Guangdong Pharmaceutical University, Yunfu, 527300, China
| | - Zhong-Qiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Yuan-Yuan Cheng
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
71
|
Gutiérrez-Muñoz C, Méndez-Barbero N, Svendsen P, Sastre C, Fernández-Laso V, Quesada P, Egido J, Escolá-Gil JC, Martín-Ventura JL, Moestrup SK, Blanco-Colio LM. CD163 deficiency increases foam cell formation and plaque progression in atherosclerotic mice. FASEB J 2020; 34:14960-14976. [PMID: 32924185 DOI: 10.1096/fj.202000177r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/08/2020] [Accepted: 08/27/2020] [Indexed: 01/10/2023]
Abstract
Atherosclerosis is an inflammatory disease characterized by the accumulation of macrophages in the vessel wall. Macrophages depend on their polarization to exert either pro-inflammatory or anti-inflammatory effects. Macrophages of the anti-inflammatory phenotype express high levels of CD163, a scavenger receptor for the hemoglobin-haptoglobin complex. CD163 can also bind to the pro-inflammatory cytokine TWEAK. Using ApoE-deficient or ApoE/CD163 double-deficient mice we aim to investigate the involvement of CD163 in atherosclerosis development and its capacity to neutralize the TWEAK actions. ApoE/CD163 double-deficient mice displayed a more unstable plaque phenotype characterized by an increased lipid and macrophage content, plaque size, and pro-inflammatory cytokine expression. In vitro experiments demonstrated that the absence of CD163 in M2-type macrophages-induced foam cell formation through upregulation of CD36 expression. Moreover, exogenous TWEAK administration increased atherosclerotic lesion size, lipids, and macrophages content in ApoE-/- /CD163-/- compared with ApoE-/- /CD163+/+ mice. Treatment with recombinant CD163 was able to neutralize the proatherogenic effects of TWEAK in ApoE/CD163 double-deficient mice. Recombinant CD163 abolished the pro-inflammatory actions of TWEAK on vascular smooth muscle cells, decreasing NF-kB activation, cytokines and metalloproteinases expression, and macrophages migration. In conclusion, CD163-expressing macrophages serve as a protective mechanism to prevent the deleterious effects of TWEAK on atherosclerotic plaque development and progression.
Collapse
Affiliation(s)
- Carmen Gutiérrez-Muñoz
- Vascular Research Laboratory, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Nerea Méndez-Barbero
- Vascular Research Laboratory, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Pia Svendsen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Cristina Sastre
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Valvanera Fernández-Laso
- Vascular Research Laboratory, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Patricia Quesada
- Vascular Research Laboratory, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain
| | - Joan C Escolá-Gil
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain.,Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain
| | - Jose L Martín-Ventura
- Vascular Research Laboratory, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Soren K Moestrup
- Department of Molecular Medicine, University of Southern Denmark, Oddense, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Luis M Blanco-Colio
- Vascular Research Laboratory, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
72
|
Zhang J, Teng C, Li C, He W. Deliver Anti-inflammatory Drug Baicalein to Macrophages by Using a Crystallization Strategy. Front Chem 2020; 8:787. [PMID: 33062636 PMCID: PMC7517873 DOI: 10.3389/fchem.2020.00787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/28/2020] [Indexed: 01/13/2023] Open
Abstract
Macrophages are potent to modulate inflammation via phenotypic switch and production of inflammatory factors. Baicalein (BCL) is frequently used to alleviate inflammation; however, its application is always hindered due to low solubility. Herein, BCL nanocrystals (BNRs) were prepared to improve its delivery to macrophages. The prepared BNRs have a diameter of 150 nm with a rod-like structure. The nanocrystals could be well-taken up by macrophages via the caveolar pathway and, therefore, promote the polarization switch from proinflammatory phenotype to anti-inflammatory macrophages and alleviate the inflammation via reducing production cytokine IL-12. In conclusion, the crystallization strategy is promising for the improvement of the solubility of BCL and promotion of its anti-inflammatory activities.
Collapse
Affiliation(s)
- Jianming Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chao Teng
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Caolong Li
- School of Science, China Pharmaceutical University, Nanjing, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
73
|
Mirzaei R, Mohammadzadeh R, Mirzaei H, Sholeh M, Karampoor S, Abdi M, Alikhani MY, Kazemi S, Ahmadyousefi Y, Jalalifar S, Yousefimashouf R. Role of microRNAs in Staphylococcus aureus infection: Potential biomarkers and mechanism. IUBMB Life 2020; 72:1856-1869. [PMID: 32516518 DOI: 10.1002/iub.2325] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/15/2020] [Indexed: 01/27/2023]
Abstract
Staphylococcus aureus is known as a common pathogen that colonizes 30% of healthy humans. Additionally, this bacterium can cause a number of serious infections, that is, endocarditis, bacteremia, pneumonia, wound, skin infections, and tissue abscesses. A variety of cellular and molecular pathways and targets are involved in response against S. aureus. Among them, microRNAs (miRNAs) have crucial roles in response against S. aureus. In this regard, it has been shown that these molecules exert their regulatory roles via modulating a wide range of events, such as inflammatory reactions, host innate, and adaptive immunity. Current works have provided insight into the crucial involvement of miRNAs in immune defense toward Staphylococcal infections. Herein, we highlighted the current findings on the deregulation of different miRNAs in S. aureus-infected cells. Moreover, we summarized the mechanisms and targets of miRNAs in S. aureus infections.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rokhsareh Mohammadzadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sholeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Abdi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Yousef Alikhani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sima Kazemi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yaghoub Ahmadyousefi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
74
|
Long non-coding RNA FENDRR regulates IFNγ-induced M1 phenotype in macrophages. Sci Rep 2020; 10:13672. [PMID: 32792604 PMCID: PMC7426844 DOI: 10.1038/s41598-020-70633-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/29/2020] [Indexed: 01/27/2023] Open
Abstract
Macrophages play an essential role in host defense and display remarkable plasticity in switching between classically (pro-inflammatory-M1) and alternatively activated (anti-inflammatory-M2) phenotypes. The molecular mechanisms of macrophage polarization are not fully understood. Long non-coding RNAs (lncRNAs) with a length of > 200 nucleotides have been shown to play diverse roles in biological processes. Aberrant expression of lncRNAs is associated with a variety of pathophysiological conditions such as cancer, diabetes, cardiovascular, pulmonary diseases, and tissue fibrosis. In this study, we investigated the role of lncRNA FENDRR in human and mouse macrophage polarization. Human THP-1 monocytes were activated with phorbol-12-myristate-13-acetate (PMA) and differentiated into M1 macrophages with IFNγ or M2 macrophages with IL4. Real-time PCR analysis revealed that FENDRR was expressed 80-fold higher in M1 macrophages than that in M2 macrophages. Overexpression of FENDRR in PMA-activated THP-1 cells increased the IFNγ-induced expression of M1 markers, including IL1β and TNFα at both mRNA and protein levels. Knockdown of FENDRR had an opposite effect. Similarly, FENDRR overexpression in primary mouse bone marrow-derived macrophages increased mRNA expression of M1 markers. FENDRR overexpression increased, while FENDRR knock-down decreased, the IFNγ-induced phosphorylation of STAT1 in PMA-activated THP-1 cells. Our studies suggest that FENDRR enhances IFNγ-induced M1 macrophage polarization via the STAT1 pathway.
Collapse
|
75
|
Teng C, Lin C, Huang F, Xing X, Chen S, Ye L, Azevedo HS, Xu C, Wu Z, Chen Z, He W. Intracellular codelivery of anti-inflammatory drug and anti-miR 155 to treat inflammatory disease. Acta Pharm Sin B 2020; 10:1521-1533. [PMID: 32963947 PMCID: PMC7488359 DOI: 10.1016/j.apsb.2020.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/18/2020] [Accepted: 05/25/2020] [Indexed: 12/27/2022] Open
Abstract
Atherosclerosis (AS) is a lipid-driven chronic inflammatory disease occurring at the arterial subendothelial space. Macrophages play a critical role in the initiation and development of AS. Herein, targeted codelivery of anti-miR 155 and anti-inflammatory baicalein is exploited to polarize macrophages toward M2 phenotype, inhibit inflammation and treat AS. The codelivery system consists of a carrier-free strategy (drug-delivering-drug, DDD), fabricated by loading anti-miR155 on baicalein nanocrystals, named as baicalein nanorods (BNRs), followed by sialic acid coating to target macrophages. The codelivery system, with a diameter of 150 nm, enables efficient intracellular delivery of anti-miR155 and polarizes M1 to M2, while markedly lowers the level of inflammatory factors in vitro and in vivo. In particular, intracellular fate assay reveals that the codelivery system allows for sustained drug release over time after internalization. Moreover, due to prolonged blood circulation and improved accumulation at the AS plaque, the codelivery system significantly alleviates AS in animal model by increasing the artery lumen diameter, reducing blood pressure, promoting M2 polarization, inhibiting secretion of inflammatory factors and decreasing blood lipids. Taken together, the codelivery could potentially be used to treat vascular inflammation.
Collapse
Affiliation(s)
- Chao Teng
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Chenshi Lin
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Feifei Huang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xuyang Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shenyu Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ling Ye
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Helena S. Azevedo
- School of Engineering and Materials Science, Institute of Bioengineering, University of London, London E1 4NS, UK
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zhengfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
76
|
Du L, Sun J, Zhang W, Wang Y, Zhu H, Liu T, Gao M, Zheng C, Zhang Y, Liu Y, Liu Y, Shao S, Zhang X, Leng Q, Auwerx J, Duan S. Macrophage NCOR1 Deficiency Ameliorates Myocardial Infarction and Neointimal Hyperplasia in Mice. J Am Heart Assoc 2020; 9:e015862. [PMID: 32720575 PMCID: PMC7792266 DOI: 10.1161/jaha.120.015862] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background NCOR1 (nuclear receptor corepressor 1) is an essential coregulator of gene transcription. It has been shown that NCOR1 in macrophages plays important roles in metabolic regulation. However, the function of macrophage NCOR1 in response to myocardial infarction (MI) or vascular wire injury has not been elucidated. Methods and Results Here, using macrophage Ncor1 knockout mouse in combination with a mouse model of MI, we demonstrated that macrophage NCOR1 deficiency significantly reduced infarct size and improved cardiac function after MI. In addition, macrophage NCOR1 deficiency markedly inhibited neointimal hyperplasia and vascular remodeling in a mouse model of arterial wire injury. Inflammation and macrophage proliferation were substantially attenuated in hearts and arteries of macrophage Ncor1 knockout mice after MI and arterial wire injury, respectively. Cultured primary macrophages from macrophage Ncor1 knockout mice manifested lower expression of inflammatory genes upon stimulation by interleukin‐1β, interleukin‐6, or lipopolysaccharide, together with much less activation of inflammatory signaling cascades including signal transducer and activator of transcription 1 and nuclear factor‐κB. Furthermore, macrophage Ncor1 knockout macrophages were much less proliferative in culture, with inhibited cell cycle progression compared with control cells. Conclusions Collectively, our data have demonstrated that NCOR1 is a critical regulator of macrophage inflammation and proliferation and that deficiency of NCOR1 in macrophages attenuates MI and neointimal hyperplasia. Therefore, macrophage NCOR1 may serve as a potential therapeutic target for MI and restenosis.
Collapse
Affiliation(s)
- Lin‐Juan Du
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| | - Jian‐Yong Sun
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| | - Wu‐Chang Zhang
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| | - Yong‐Li Wang
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| | - Hong Zhu
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| | - Ting Liu
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| | - Ming‐Zhu Gao
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of Education, and School of PharmacyShanghai Jiao Tong UniversityShanghaiChina
| | - Chen Zheng
- Department of StomatologyThe Children's HospitalZhejiang University School of MedicineHangzhouChina
| | - Yu‐Yao Zhang
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| | - Yuan Liu
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| | - Yan Liu
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| | - Shuai Shao
- Department of NeurosurgeryRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xue‐Qing Zhang
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of Education, and School of PharmacyShanghai Jiao Tong UniversityShanghaiChina
| | - Qibin Leng
- Key Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of ShanghaiShanghai Institutes for Biological SciencesChinese Academy of SciencesUniversity of the Chinese Academy of SciencesShanghaiChina
| | - Johan Auwerx
- Laboratory of Integrative and Systems PhysiologyInstitute of BioengineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Sheng‐Zhong Duan
- Laboratory of Oral Microbiota and Systemic DiseasesShanghai Ninth People's HospitalCollege of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
- National Clinical Research Center for Oral DiseasesShanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
| |
Collapse
|
77
|
Regulating the Polarization of Macrophages: A Promising Approach to Vascular Dermatosis. J Immunol Res 2020; 2020:8148272. [PMID: 32775470 PMCID: PMC7407038 DOI: 10.1155/2020/8148272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/04/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages, a kind of innate immune cells, derive from monocytes in circulation and play a crucial role in the innate and adaptive immunity. Under the stimulation of the signals from local microenvironment, macrophages generally tend to differentiate into two main functional phenotypes depending on their high plasticity and heterogeneity, namely, classically activated macrophage (M1) and alternatively activated macrophage (M2). This phenomenon is often called macrophage polarization. In pathological conditions, chronic persistent inflammation could induce an aberrant response of macrophage and cause a shift in their phenotypes. Moreover, this shift would result in the alteration of macrophage polarization in some vascular dermatoses; e.g., an increase in proinflammatory M1 emerges from Behcet's disease (BD), psoriasis, and systemic lupus erythematosus (SLE), whereas an enhancement in anti-inflammatory M2 appears in infantile hemangioma (IH). Individual polarized phenotypes and their complicated cytokine networks may crucially mediate in the pathological processes of some vascular diseases (vascular dermatosis in particular) by activation of T cell subsets (such as Th1, Th2, Th17, and Treg cells), deterioration of oxidative stress damage, and induction of angiogenesis, but the specific mechanism remains ambiguous. Therefore, in this review, we discuss the possible role of macrophage polarization in the pathological processes of vascular skin diseases. In addition, it is proposed that regulation of macrophage polarization may become a potential strategy for controlling these disorders.
Collapse
|
78
|
Cheng WL, Zhang Q, Cao JL, Chen XL, Li W, Zhang L, Chao SP, Zhao F. ALK7 Acts as a Positive Regulator of Macrophage Activation through Down-Regulation of PPARγ Expression. J Atheroscler Thromb 2020; 28:375-384. [PMID: 32641645 PMCID: PMC8147563 DOI: 10.5551/jat.54445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: Activin receptor-like kinase 7 (ALK7) acts as a key receptor for TGF-β family members, which play important roles in regulating cardiovascular activity. However, ALK7's potential role, and underlying mechanism, in the macrophage activation involved in atherogenesis remain unexplored. Methods: ALK7 expression in macrophages was tested by RT-PCR, western blot, and immunofluorescence co-staining. The loss-of-function strategy using AdshALK7 was performed for functional study. Oil Red O staining was used to observe the foam cell formation, while inflammatory mediators and genes related to cholesterol efflux and influx were determined by RT-PCR and western blot. A PPARγ inhibitor (G3335) was used to reveal whether PPARγ was required for ALK7 to affect macrophage activation. Results: The results exhibited upregulated ALK7 expression in oxidized low-density lipoprotein (Ox-LDL) induced bone marrow derived macrophages (BMDMs) and mouse peritoneal macrophages (MPMs), isolated from ApoE-deficient mice, while ALK7's strong immunoreactivity in BMDMs was observed. ALK7 knockdown significantly attenuated pro-inflammatory, but promoted anti-inflammatory, macrophage markers expression. Additionally, ALK7 silencing decreased foam cell formation, accompanied by the up-regulation of ABCA1 and ABCG1 involved in cholesterol efflux but the down-regulation of CD36 and SR-A implicated in cholesterol influx. Mechanistically, ALK7 knockdown upregulated PPARγ expression, which was required for the ameliorated effect of ALK7 silencing macrophage activation. Conclusions: Our study demonstrated that ALK7 was a positive regulator for macrophage activation, partially through down-regulation of PPARγ expression, which suggested that neutralizing ALK7 might be promising therapeutic strategy for treating atherosclerosis.
Collapse
Affiliation(s)
- Wen-Lin Cheng
- Department of Cardiology, Zhongnan hospital, Wuhan University
| | - Quan Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Jian-Lei Cao
- Department of Cardiology, Zhongnan hospital, Wuhan University
| | - Xi-Lu Chen
- Department of Pediatric Surgery, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology
| | - Wenyan Li
- Department of Pharmacy, The First Hospital of Nanchang
| | - Lin Zhang
- Department of Cardiology, Zhongnan hospital, Wuhan University
| | - Sheng-Ping Chao
- Department of Cardiology, Zhongnan hospital, Wuhan University
| | - Fang Zhao
- Department of Cardiology, Zhongnan hospital, Wuhan University
| |
Collapse
|
79
|
Abstract
Unhealthy diet, lack of exercise, psychosocial stress, and insufficient sleep are increasingly prevalent modifiable risk factors for cardiovascular disease. Accumulating evidence indicates that these risk factors may fuel chronic inflammatory processes that are active in atherosclerosis and lead to myocardial infarction and stroke. In concert with hyperlipidemia, maladaptive immune system activities can contribute to disease progression and increase the probability of adverse events. In this review, we discuss recent insight into how the above modifiable risk factors influence innate immunity. Specifically, we focus on pathways that raise systemic myeloid cell numbers and modulate immune cell phenotypes, reviewing hematopoiesis, leukocyte trafficking, and innate immune cell accumulation in cardiovascular organs. Often, relevant mechanisms that begin with lifestyle choices and lead to cardiovascular events span multiple organ systems, including the central nervous, endocrine, metabolic, hematopoietic, immune and, finally, the cardiovascular system. We argue that deciphering such pathways provides not only support for preventive interventions but also opportunities to develop biomimetic immunomodulatory therapeutics that mitigate cardiovascular inflammation.
Collapse
Affiliation(s)
- Maximilian J Schloss
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.)
| | - Filip K Swirski
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.)
| | - Matthias Nahrendorf
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.).,Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.N.).,Department of Internal Medicine I, University Hospital Wuerzburg, Germany (M.N.)
| |
Collapse
|
80
|
Filipek A, Mikołajczyk TP, Guzik TJ, Naruszewicz M. Oleacein and Foam Cell Formation in Human Monocyte-Derived Macrophages: A Potential Strategy Against Early and Advanced Atherosclerotic Lesions. Pharmaceuticals (Basel) 2020; 13:ph13040064. [PMID: 32283795 PMCID: PMC7243116 DOI: 10.3390/ph13040064] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Oleacein is a secoiridoid group polyphenol found mostly in Olea europea L. and Ligustrum vulgare L. (Oleaceae). The aim of the present study was to investigate a potential role of oleacein in prevention of the foam cell formation. Materials and Methods: Oleacein was isolated from Ligustrum vulgare leaves. Human monocyte-derived macrophages were obtained from monocytes cultured with Granulocyte-macrophage colony-stimulating factor (GM-CSF). Then, cells were incubated with 20 μM or 50 μM of oleacein and with oxidized low-density lipoprotein (oxLDL) (50 μg/mL). Visualization of lipid deposition within macrophages was carried out using Oil-Red-O. Expression of CD36, Scavenger receptor A1 (SRA1) and Lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) was determined by Reverse transcription polymerase chain reaction (RT-PCR) and by flow cytometry. Apoptosis was determined by flow cytometry using Annexin V assay. STAT3 and Acyl-coenzyme A: cholesterol acyltransferase type 1 (ACAT1) levels were determined by ELISA. P-STAT3, P-JAK1, P-JAK2 expressions were determined by Western blot (WB). Results: Oleacein in dose-dependent manner significantly reduced lipid deposits in macrophages as well as their expression of selected scavenger receptors. The highest decrease of expression was found for CD36 and SRA1 receptors, from above 20% to more than 75% compared to oxLDL and the lowest for LOX-1 receptor, from approx. 8% to approx. 25% compared to oxLDL-stimulated macrophages. Oleacein significantly reduced (2.5-fold) early apoptosis of oxLDL-stimulated macrophages. Moreover, oleacein significantly increased the protein expression of JAK/STAT3 pathway and had no effect on ACAT1 level. Conclusions: Our study demonstrates, for the first time, that oleacein inhibits foam cell formation in human monocyte-derived macrophages and thus can be a valuable tool in the prevention of early and advanced atherosclerotic lesions.
Collapse
Affiliation(s)
- Agnieszka Filipek
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
- Correspondence: ; Tel./Fax: +48-22-572-09-85
| | - Tomasz P. Mikołajczyk
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building 120 University Place, Glasgow G12 8TA, UK;
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, 31-007 Krakow, Poland;
| | - Tomasz J. Guzik
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, 31-007 Krakow, Poland;
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF Centre for Excellence, 120 University Place, Glasgow G12 8TA, UK
| | - Marek Naruszewicz
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| |
Collapse
|
81
|
Chen F, Li J, Tian G, Yuan Z. Increased macrophage activation mediated by caspase recruitment domain 6 knockdown through negatively targeting AMPK. Biochem Biophys Res Commun 2020; 525:412-417. [DOI: 10.1016/j.bbrc.2020.02.080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 11/26/2022]
|
82
|
Geng T, Yan Y, Xu L, Cao M, Xu Y, Pu J, Yan JC. CD137 signaling induces macrophage M2 polarization in atherosclerosis through STAT6/PPARδ pathway. Cell Signal 2020; 72:109628. [PMID: 32247042 DOI: 10.1016/j.cellsig.2020.109628] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 11/28/2022]
Abstract
CD137 signaling plays an important role in the formation and development of atherosclerotic plaques. The purpose of the present study was to investigate the effects of CD137 signaling on macrophage polarization during atherosclerosis and to explore the underlying mechanisms. The effect of CD137 signaling on macrophage phenotype in atherosclerotic plaques was determined by intraperitoneal injection of agonist-CD137 recombinant protein in apolipoprotein E-deficient (ApoE-/-) mice, an established in vivo model of atherosclerosis. Murine peritoneal macrophages and RAW 264.7 cells were treated with AS1517499 and siPPARδ (peroxisome proliferator-activated receptor δ) to study the role of STAT6 (signal transducers and activators of transcription 6)/PPARδ signaling in CD137-induced M2 macrophage polarization in vitro. Results from both in vivo and in vitro experiments showed that CD137 signaling can transform macrophages into the M2 phenotype during the process of atherosclerotic plaque formation and regulate the angiogenic features of M2 macrophages. Furthermore, activation of the CD137 signaling pathway induces phosphorylation of STAT6 and enhances the expression of PPARδ. We further found that macrophage M2 polarization is reduced when the STAT6/PPARδ pathway is inhibited. Together, these data show a role for the STAT6/PPARδ signaling pathway in the CD137 signaling-induced M2 macrophage polarization pathway.
Collapse
Affiliation(s)
- Tianxin Geng
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212000, China
| | - Yang Yan
- Department of Cardiology, Ren Ji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China
| | - Liangjie Xu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212000, China
| | - Mengfei Cao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212000, China
| | - Yu Xu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212000, China
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China
| | - Jin Chuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212000, China.
| |
Collapse
|
83
|
Basu A, Dvorina N, Baldwin WM, Mazumder B. High-fat diet-induced GAIT element-mediated translational silencing of mRNAs encoding inflammatory proteins in macrophage protects against atherosclerosis. FASEB J 2020; 34:6888-6906. [PMID: 32232901 DOI: 10.1096/fj.201903119r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 11/11/2022]
Abstract
Previously, we identified a mechanism of inflammation control directed by ribosomal protein L13a and "GAIT" (Gamma Activated Inhibitor of Translation) elements in target mRNAs and showed that its elimination in myeloid cell-specific L13a knockout mice (L13a KO) increased atherosclerosis susceptibility and severity. Here, we investigated the mechanistic basis of this endogenous defense against atherosclerosis. We compared molecular and cellular aspects of atherosclerosis in high-fat diet (HFD)-fed L13a KO and intact (control) mice. HFD treatment of control mice induced release of L13a from 60S ribosome, formation of RNA-binding complex, and subsequent GAIT element-mediated translational silencing. Atherosclerotic plaques from HFD-treated KO mice showed increased infiltration of M1 type inflammatory macrophages. Macrophages from KO mice showed increased phagocytic activity and elevated expression of LDL receptor and pro-inflammatory mediators. NanoString analysis of the plaques from KO mice showed upregulation of a number of mRNAs encoding inflammatory proteins. Bioinformatics analysis suggests the presence of the potential GAIT elements in the 3'UTRs of several of these mRNAs. Macrophage induces L13a/GAIT-dependent translational silencing of inflammatory genes in response to HFD as an endogenous defense against atherosclerosis in ApoE-/- model.
Collapse
Affiliation(s)
- Abhijit Basu
- Department of Biology, Geology and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - Nina Dvorina
- Department of Inflammation and Immunity, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - William M Baldwin
- Department of Inflammation and Immunity, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Barsanjit Mazumder
- Department of Biology, Geology and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| |
Collapse
|
84
|
ALK5 deficiency inhibits macrophage inflammation and lipid loading by targeting KLF4. Biosci Rep 2020; 40:222146. [PMID: 32065217 PMCID: PMC7056445 DOI: 10.1042/bsr20194188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 11/17/2022] Open
Abstract
The transforming growth factor type-β (TGF-β) has been demonstrated to play an important role in the development of atherosclerosis through binding to the serine/threonine kinase transmembrane type I and type II receptors. However, as a key type I receptor for TGF-β, the exact role and the underlying mechanism of Activin receptor-like kinase 5 (ALK5) on macrophage activation involved in atherogenesis remain unclear. In the present study, enhanced ALK5 expression was found in bone marrow derived macrophages (BMDMs) upon OX-LDL stimulation tested by RT-PCR and Western blot, which was further verified by co-immunofluorescence staining. Next, the loss-of-function of ALK5 used AdshALK5 transfection was performed to test the effect of ALK5 on macrophage activation. We observed that ALK5 silencing inhibited pro-inflammatory but promoted anti-inflammatory macrophage markers expression. Moreover, decreased foam cell formation was found in ALK5 knockdown macrophages accompanied by increased cholesterol efflux. Mechanistically, ALK5 knockdown significantly increased KLF4 expression that was responsible for the attenuated macrophage activation induced by ALK5 knockdown. Collectively, these findings suggested that neutralization of ALK5 may act as a promising strategy for the management of atherosclerosis.
Collapse
|
85
|
Liao J, Yang X, Lin Q, Liu S, Xie Y, Xia Y, Li HH. Inhibition of the Ubiquitin-Activating Enzyme UBA1 Suppresses Diet-Induced Atherosclerosis in Apolipoprotein E-Knockout Mice. J Immunol Res 2020; 2020:7812709. [PMID: 32258175 PMCID: PMC7109586 DOI: 10.1155/2020/7812709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/04/2020] [Accepted: 02/28/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Ubiquitin-like modifier activating enzyme 1 (UBA1) is the first and major E1 activating enzyme in ubiquitin activation, the initial step of the ubiquitin-proteasome system. Defects in the expression or activity of UBA1 correlate with several neurodegenerative and cardiovascular disorders. However, whether UBA1 contributes to atherosclerosis is not defined. METHODS AND RESULTS Atherosclerosis was induced in apolipoprotein E-knockout (Apoe-/-) mice fed on an atherogenic diet. UBA1 expression, detected by immunohistochemical staining, was found to be significantly increased in the atherosclerotic plaques, which confirmed to be mainly derived from lesional CD68+ macrophages via immunofluorescence costaining. Inactivation of UBA1 by the specific inhibitor PYR-41 did not alter the main metabolic parameters during atherogenic diet feeding but suppressed atherosclerosis development with less macrophage infiltration and plaque necrosis. PYR-41 did not alter circulating immune cells determined by flow cytometry but significantly reduced aortic mRNA levels of cytokines related to monocyte recruitment (Mcp-1, Vcam-1, and Icam-1) and macrophage proinflammatory responses (Il-1β and Il-6). Besides, PYR-41 also suppressed aortic mRNA expression of NADPH oxidase (Nox1, Nox2, and Nox4) and lesional oxidative stress levels, determined by DHE staining. In vitro, PYR-41 blunted ox-LDL-induced lipid deposition and expression of proinflammatory cytokines (Il-1β and Il-6) and NADPH oxidases (Nox1, Nox2, and Nox4) in cultured RAW264.7 macrophages. CONCLUSIONS We demonstrated that UBA1 expression was upregulated and mainly derived from macrophages in the atherosclerotic plaques and inactivation of UBA1 by PYR-41 suppressed atherosclerosis development probably through inhibiting macrophage proinflammatory response and oxidative stress. Our data suggested that UBA1 might be explored as a potential pharmaceutical target against atherosclerosis.
Collapse
Affiliation(s)
- Jiawei Liao
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaolei Yang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Qiuyue Lin
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Shuang Liu
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, Dalian 116011, China
| | - Yunpeng Xie
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yunlong Xia
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
86
|
Wunderer F, Traeger L, Sigurslid HH, Meybohm P, Bloch DB, Malhotra R. The role of hepcidin and iron homeostasis in atherosclerosis. Pharmacol Res 2020; 153:104664. [PMID: 31991168 PMCID: PMC7066581 DOI: 10.1016/j.phrs.2020.104664] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/20/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023]
Abstract
Atherosclerotic cardiovascular disease is a major burden on global health and a leading cause of death worldwide. The pathophysiology of this chronic disease is complex, involving inflammation, lipoprotein oxidation and accumulation, plaque formation, and calcification. In 1981, Dr. Jerome Sullivan formulated the 'Iron Hypothesis', suggesting that higher levels of stored iron promote cardiovascular diseases, whereas iron deficiency may have an atheroprotective effect. This hypothesis has stimulated research focused on clarifying the role of iron in the development of atherosclerosis. However, preclinical and clinical studies have produced contradictory results and the observation that patients with hemochromatosis do not appear to have an increased risk of atherosclerosis seemed incongruous with Sullivan's initial hypothesis. The 'paradox' of systemic iron overload not being accompanied by an increased risk for atherosclerosis led to a refinement of the iron hypothesis focusing on intracellular macrophage iron. More recent in vitro and animal studies have elucidated the complex signaling pathways regulating iron, with a particular focus on hepcidin, the master regulator of body iron homeostasis. Bone morphogenetic protein (BMP) signaling is the major pathway that is required for induction of hepcidin expression in response to increasing levels of iron. Strong links between iron homeostasis, BMP signaling, inflammation and atherosclerosis have been established in both mechanistic and human studies. This review summarizes the current understanding of the role of iron homeostasis and hepcidin in the development of atherosclerosis and discusses the BMP-hepcidin-ferroportin axis as a novel therapeutic target for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Florian Wunderer
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Lisa Traeger
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Haakon H. Sigurslid
- Cardiovascular Research Center and the Cardiology Division of the Department of medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Patrick Meybohm
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
- Department of Anaesthesiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Donald B. Bloch
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
- Division of Rheumatology, Allergy and Immunology of the Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Rajeev Malhotra
- Cardiovascular Research Center and the Cardiology Division of the Department of medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
87
|
Kanchan RK, Siddiqui JA, Mahapatra S, Batra SK, Nasser MW. microRNAs Orchestrate Pathophysiology of Breast Cancer Brain Metastasis: Advances in Therapy. Mol Cancer 2020; 19:29. [PMID: 32059676 PMCID: PMC7023699 DOI: 10.1186/s12943-020-1140-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/16/2020] [Indexed: 02/06/2023] Open
Abstract
Brain metastasis (BM) predominantly occurs in triple-negative (TN) and epidermal growth factor 2 (HER2)-positive breast cancer (BC) patients, and currently, there is an unmet need for the treatment of these patients. BM is a complex process that is regulated by the formation of a metastatic niche. A better understanding of the brain metastatic processes and the crosstalk between cancer cells and brain microenvironment is essential for designing a novel therapeutic approach. In this context, the aberrant expression of miRNA has been shown to be associated with BM. These non-coding RNAs/miRNAs regulate metastasis through modulating the formation of a metastatic niche and metabolic reprogramming via regulation of their target genes. However, the role of miRNA in breast cancer brain metastasis (BCBM) is poorly explored. Thus, identification and understanding of miRNAs in the pathobiology of BCBM may identify a novel candidate miRNA for the early diagnosis and prevention of this devastating process. In this review, we focus on understanding the role of candidate miRNAs in the regulation of BC brain metastatic processes as well as designing novel miRNA-based therapeutic strategies for BCBM.
Collapse
Affiliation(s)
- Ranjana K Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mohd W Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA. .,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
88
|
Chen Z, Zhuo R, Zhao Y, Yang L, Zhou Y, Cheng X, Peng L, Jin X, Wang Y. Oleoylethanolamide stabilizes atherosclerotic plaque through regulating macrophage polarization via AMPK-PPARα pathway. Biochem Biophys Res Commun 2020; 524:308-316. [PMID: 31987499 DOI: 10.1016/j.bbrc.2020.01.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 01/16/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Atherosclerotic plaque rupture is the major trigger of acute cardiovascular risk events, and manipulation of M1/M2 macrophage homeostasis is an effective strategy for regulating atherosclerotic plaque stability. This study was aimed to illuminate the effects of oleoylethanolamide (OEA) on macrophage polarization and plaque stability. METHODS Macrophages derived from THP-1 were treated with OEA followed by LPS/IFN-γ, and the markers of M1, M2 macrophages were monitored by western blot, real-time PCR and immunofluorescence staining. The effect of OEA on macrophage polarization in the arch of aortic arteries was tested by immunofluorescence staining and western blot, and the plaque stability was completed by Masson's trichrome and hematoxylin and eosin (HE) in apolipoprotein E (ApoE)-/- mice. RESULTS OEA treatment enhanced the expression of two classic M2 macrophage markers, macrophage mannose receptor (CD206) and transforming growth factor (TGF-β), while the expression of iNOS (M1 macrophages) was decreased in THP-1-derived macrophages. Blocking of PPARα using siRNA and inhibition of AMP-activated protein kinase (AMPK) by its inhibitor compound C attenuated the OEA-induced expression of M2 macrophage markers. In addition, OEA significantly suppressed M1, promoted M2 macrophage polarization, increased collagen content and decreased necrotic core size in atherosclerotic plaques in ApoE-/- mice, which were linked with the expression of PPARα. CONCLUSIONS OEA improved atherosclerotic plaque stability through regulating macrophage polarization via AMPK-PPARα pathway.
Collapse
Affiliation(s)
- Zhengdong Chen
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China; Xiamen University Affiliated Zhongshan Hospital, Xiamen, China
| | - Rengong Zhuo
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Yun Zhao
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Lichao Yang
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Yu Zhou
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Xiaoling Cheng
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Lu Peng
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China
| | - Xin Jin
- Xiamen Key Laboratory of Chiral Drugs, Medical College, Xiamen University, Xiamen, China.
| | - Yiqing Wang
- Xiamen University Affiliated Zhongshan Hospital, Xiamen, China.
| |
Collapse
|
89
|
Wang W, Zhang K, Zhang H, Li M, Zhao Y, Wang B, Xin W, Yang W, Zhang J, Yue S, Yang X. Underlying Genes Involved in Atherosclerotic Macrophages: Insights from Microarray Data Mining. Med Sci Monit 2019; 25:9949-9962. [PMID: 31875420 PMCID: PMC6944040 DOI: 10.12659/msm.917068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background In an atherosclerotic artery wall, monocyte-derived macrophages are the principal mediators that respond to pathogens and inflammation. The present study aimed to investigate potential genetic changes in gene expression between normal tissue-resident macrophages and atherosclerotic macrophages in the human body. Material/Methods The expression profile data of GSE7074 acquired from the Gene Expression Omnibus (GEO) database, which includes the transcriptome of 4 types of macrophages, was downloaded. Differentially expressed genes (DEGs) were identified using R software, then we performed functional enrichment, protein-protein interaction (PPI) network construction, key node and module analysis, and prediction of microRNAs (miRNAs)/transcription factors (TFs) targeting genes. Results After data processing, 236 DEGs were identified, including 21 upregulated genes and 215 downregulated genes. The DEG set was enriched in 22 significant Gene Ontology (GO) terms and 25 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and the PPI network constructed with these DEGs comprised 6 key nodes with degrees ≥8. Key nodes in the PPI network and simultaneously involved in the prime modules, including rhodopsin (RHO), coagulation factor V (F5), and bestrophin-1 (BEST1), are promising for the prediction of atherosclerotic plaque formation. Furthermore, in the miRNA/TF-target network, hsa-miR-3177-5p might be involved in the pathogenesis of atherosclerosis via regulating BEST1, and the transcription factor early growth response-1 (EGR1) was found to be a potential promoter in atherogenesis. Conclusions The identified key hub genes, predicted miRNAs/TFs, and underlying molecular mechanisms may be involved in atherogenesis, thus potentially contributing to the treatment and diagnosis of patients with atherosclerotic disease.
Collapse
Affiliation(s)
- Weihan Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China (mainland)
| | - Kai Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Hao Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China (mainland)
| | - Mengqi Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China (mainland)
| | - Yan Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Bangyue Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Wenqiang Xin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China (mainland)
| | - Weidong Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China (mainland)
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China (mainland)
| | - Shuyuan Yue
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China (mainland)
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Tianjin Neurological Institute, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China (mainland)
| |
Collapse
|
90
|
Zhang Y, Cartland SP, Henriquez R, Patel S, Gammelgaard B, Flouda K, Hawkins CL, Rayner BS. Selenomethionine supplementation reduces lesion burden, improves vessel function and modulates the inflammatory response within the setting of atherosclerosis. Redox Biol 2019; 29:101409. [PMID: 31926617 PMCID: PMC6928357 DOI: 10.1016/j.redox.2019.101409] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the vasculature characterised by the infiltration of activated neutrophils and macrophages at sites of damage within the vessel wall, which contributes to lesion formation and plaque progression. Selenomethionine (SeMet) is an organic form of selenium (Se), an essential trace element that functions in the regulation of the immune response by both bolstering the endogenous thioredoxin and glutathione antioxidant defence systems and by directly scavenging damaging oxidant species. This study evaluated the effect of dietary SeMet supplementation within a high fat diet fed apolipoprotein E deficient (ApoE−/-) mouse model of atherosclerosis. Dietary supplementation with SeMet (2 mg/kg) increased the tissue concentration of Se, and the expression and activity of glutathione peroxidase, compared to non-supplemented controls. Supplementation with SeMet significantly reduced atherosclerotic plaque formation in mouse aortae, resulted in a more stable lesion phenotype and improved vessel function. Concurrent with these results, SeMet supplementation decreased lesion accumulation of M1 inflammatory type macrophages, and decreased the extent of extracellular trap release from phorbol myristate acetate (PMA)-stimulated mouse bone marrow-derived cells. Importantly, these latter results were replicated within ex-vivo experiments on cultured neutrophils isolated from acute coronary syndrome patients, indicating the ability of SeMet to alter the acute inflammatory response within a clinically-relevant setting. Together, these data highlight the potential beneficial effect of SeMet supplementation as a therapeutic strategy for atherosclerosis.
Collapse
Affiliation(s)
- Yunjia Zhang
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia; Sydney Medical School, Edward Ford Building A27, University of Sydney, Sydney, NSW, 2006, Australia
| | - Siân P Cartland
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia; Sydney Medical School, Edward Ford Building A27, University of Sydney, Sydney, NSW, 2006, Australia
| | - Rodney Henriquez
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia; Sydney Medical School, Edward Ford Building A27, University of Sydney, Sydney, NSW, 2006, Australia
| | - Sanjay Patel
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia; Sydney Medical School, Edward Ford Building A27, University of Sydney, Sydney, NSW, 2006, Australia; Department of Cardiology, Royal Prince Alfred Hospital, Missenden Rd, Camperdown, NSW, 2050, Australia
| | - Bente Gammelgaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen, DK-2100, Denmark
| | - Konstantina Flouda
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3, Copenhagen, DK-2200, Denmark
| | - Clare L Hawkins
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia; Sydney Medical School, Edward Ford Building A27, University of Sydney, Sydney, NSW, 2006, Australia; Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3, Copenhagen, DK-2200, Denmark
| | - Benjamin S Rayner
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW, 2042, Australia; Sydney Medical School, Edward Ford Building A27, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
91
|
van der Vorst EPC, Weber C. Novel Features of Monocytes and Macrophages in Cardiovascular Biology and Disease. Arterioscler Thromb Vasc Biol 2019; 39:e30-e37. [PMID: 30673349 DOI: 10.1161/atvbaha.118.312002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Emiel P C van der Vorst
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany (E.P.C.v.d.V., C.W.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany (E.P.C.v.d.V., C.W.).,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (C.W.).,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (C.W.)
| |
Collapse
|
92
|
Abstract
Macrophages play a central role in the development of atherosclerotic cardiovascular disease (ASCVD), which encompasses coronary artery disease, peripheral artery disease, cerebrovascular disease, and aortic atherosclerosis. In each vascular bed, macrophages contribute to the maintenance of the local inflammatory response, propagate plaque development, and promote thrombosis. These central roles, coupled with their plasticity, makes macrophages attractive therapeutic targets in stemming the development of and stabilizing existing atherosclerosis. In the context of ASCVD, classically activated M1 macrophages initiate and sustain inflammation, and alternatively activated M2 macrophages resolve inflammation. However, this classification is now considered an oversimplification, and a greater understanding of plaque macrophage physiology in ASCVD is required to aid in the development of therapeutics to promote ASCVD regression. Reviewed herein are the macrophage phenotypes and molecular regulators characteristic of ASCVD regression, and the current murine models of ASCVD regression.
Collapse
Affiliation(s)
- Tessa J. Barrett
- From the Division of Cardiology, Department of Medicine, New York University
| |
Collapse
|
93
|
Short-Term High-NaCl Dietary Intake Changes Leukocyte Expression of VLA-4, LFA-1, and Mac-1 Integrins in Both Healthy Humans and Sprague-Dawley Rats: A Comparative Study. Mediators Inflamm 2019; 2019:6715275. [PMID: 31636506 PMCID: PMC6766117 DOI: 10.1155/2019/6715275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/26/2019] [Accepted: 08/08/2019] [Indexed: 01/11/2023] Open
Abstract
This study is aimed at assessing the effects of a short-term high-salt (HS) diet on the peripheral blood leukocyte (PBL) activation status in healthy rats and young human individuals. Distribution of PBL subpopulations and surface expression of integrins were determined using flow cytometry in 36 men and women on a 7-day low-salt diet (<3.2 g salt/day) immediately followed by a 7-day HS diet (~14 g salt/day) or in Sprague-Dawley (SD) rats (n = 24) on a 0.4% NaCl diet (aLS group) or a 4% NaCl diet (aHS group) for 7 days. The aHS group presented with an increased frequency of granulocytes, while the frequency of lymphocytes was reduced. Although in humans HS diet reduced the expression of CD11b(act) integrin on lymphocytes, the frequency of CD11b(act)-bearing cells among all PBL subsets was increased. The aHS group of rats exhibited increased expression of total CD11b/c in granulocytes and CD3 lymphocytes. The expression of CD11a was significantly reduced in all PBL subsets from human subjects and increased in the aHS group. CD49d expression on all PBL subsets was significantly decreased in both humans and rats. In human subjects, we found reduced frequencies of intermediate monocytes accompanied by a reciprocal increase in classical monocytes. Present results suggest that a short-term HS diet can alter leukocytes' activation status and promote vascular low-grade inflammation.
Collapse
|
94
|
Abstract
PURPOSE OF REVIEW Monocytes and macrophages are key players in the pathogenesis of atherosclerosis and dictate atherogenesis growth and stability. The heterogeneous nature of myeloid cells concerning their metabolic and phenotypic function is increasingly appreciated. This review summarizes the recent monocyte and macrophage literature and highlights how differing subsets contribute to atherogenesis. RECENT FINDINGS Monocytes are short-lived cells generated in the bone marrow and released to circulation where they can produce inflammatory cytokines and, importantly, differentiate into long-lived macrophages. In the context of cardiovascular disease, a myriad of subtypes, exist with each differentially contributing to plaque development. Herein we describe recent novel characterizations of monocyte and macrophage subtypes and summarize the recent literature on mediators of myelopoiesis. SUMMARY An increased understanding of monocyte and macrophage phenotype and their molecular regulators is likely to translate to the development of new therapeutic targets to either stem the growth of existing plaques or promote plaque stabilization.
Collapse
Affiliation(s)
- Jaume Amengual
- Division of Nutritional Sciences, Department of Food Sciences and Human Nutrition, University of Illinois Urbana Champaign, Urbana, Illinois
| | - Tessa J. Barrett
- Division of Cardiology, Department of Medicine, New York University, New York, New York, USA
| |
Collapse
|
95
|
Singh S, Torzewski M. Fibroblasts and Their Pathological Functions in the Fibrosis of Aortic Valve Sclerosis and Atherosclerosis. Biomolecules 2019; 9:biom9090472. [PMID: 31510085 PMCID: PMC6769553 DOI: 10.3390/biom9090472] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases, such as atherosclerosis and aortic valve sclerosis (AVS) are driven by inflammation induced by a variety of stimuli, including low-density lipoproteins (LDL), reactive oxygen species (ROS), infections, mechanical stress, and chemical insults. Fibrosis is the process of compensating for tissue injury caused by chronic inflammation. Fibrosis is initially beneficial and maintains extracellular homeostasis. However, in the case of AVS and atherosclerosis, persistently active resident fibroblasts, myofibroblasts, and smooth muscle cells (SMCs) perpetually remodel the extracellular matrix under the control of autocrine and paracrine signaling from the immune cells. Myofibroblasts also produce pro-fibrotic factors, such as transforming growth factor-β1 (TGF-β1), angiotensin II (Ang II), and interleukin-1 (IL-1), which allow them to assist in the activation and migration of resident immune cells. Post wound repair, these cells undergo apoptosis or become senescent; however, in the presence of unresolved inflammation and persistence signaling for myofibroblast activation, the tissue homeostasis is disturbed, leading to excessive extracellular matrix (ECM) secretion, disorganized ECM, and thickening of the affected tissue. Accumulating evidence suggests that diverse mechanisms drive fibrosis in cardiovascular pathologies, and it is crucial to understand the impact and contribution of the various mechanisms for the control of fibrosis before the onset of a severe pathological consequence.
Collapse
Affiliation(s)
- Savita Singh
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tuebingen, 70376 Stuttgart, Germany.
| | - Michael Torzewski
- Department of Laboratory Medicine and Hospital Hygiene, Robert-Bosch-Hospital, 70376 Stuttgart, Germany.
| |
Collapse
|
96
|
Wei LK, Quan LS. Biomarkers for ischemic stroke subtypes: A protein-protein interaction analysis. Comput Biol Chem 2019; 83:107116. [PMID: 31561071 DOI: 10.1016/j.compbiolchem.2019.107116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/10/2019] [Accepted: 08/26/2019] [Indexed: 01/21/2023]
Abstract
According to the Trial of Org 10172 in Acute Stroke Treatment, ischemic stroke is classified into five subtypes. However, the predictive biomarkers of ischemic stroke subtypes are still largely unknown. The utmost objective of this study is to map, construct and analyze protein-protein interaction (PPI) networks for all subtypes of ischemic stroke, and to suggest the predominant biological pathways for each subtypes. Through 6285 protein data retrieved from PolySearch2 and STRING database, the first PPI networks for all subtypes of ischemic stroke were constructed. Notably, F2 and PLG were identified as the critical proteins for large artery atherosclerosis (LAA), lacunar, cardioembolic, stroke of other determined etiology (SOE) and stroke of undetermined etiology (SUE). Gene ontology and DAVID analysis revealed that GO:0030193 regulation of blood coagulation and GO:0051917 regulation of fibrinolysis were the important functional clusters for all the subtypes. In addition, inflammatory pathway was the key etiology for LAA and lacunar, while FOS and JAK2/STAT3 signaling pathways might contribute to cardioembolic stroke. Due to many risk factors associated with SOE and SUE, the precise etiology for these two subtypes remained to be concluded.
Collapse
Affiliation(s)
- Loo Keat Wei
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, 31900 Kampar, Perak, Malaysia.
| | - Leong Shi Quan
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, 31900 Kampar, Perak, Malaysia
| |
Collapse
|
97
|
Ding S, Lin N, Sheng X, Zhao Y, Su Y, Xu L, Tong R, Yan Y, Fu Y, He J, Gao Y, Yuan A, Ye L, Reiter RJ, Pu J. Melatonin stabilizes rupture-prone vulnerable plaques via regulating macrophage polarization in a nuclear circadian receptor RORα-dependent manner. J Pineal Res 2019; 67:e12581. [PMID: 31009101 DOI: 10.1111/jpi.12581] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/18/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023]
Abstract
Rupture of vulnerable plaques is the main trigger of acute cardio-cerebral vascular events, but mechanisms responsible for transforming a stable atherosclerotic into a vulnerable plaque remain largely unknown. Melatonin, an indoleamine hormone secreted by the pineal gland, plays pleiotropic roles in the cardiovascular system; however, the effect of melatonin on vulnerable plaque rupture and its underlying mechanisms remains unknown. Here, we generated a rupture-prone vulnerable carotid plaque model induced by endogenous renovascular hypertension combined with low shear stress in hypercholesterolemic ApoE-/- mice. Melatonin (10 mg/kg/d by oral administration for 9 weeks) significantly prevented vulnerable plaque rupture, with lower incidence of intraplaque hemorrhage (42.9% vs. 9.5%, P = 0.014) and of spontaneous plaque rupture with intraluminal thrombus formation (38.1% vs. 9.5%, P = 0.029). Mechanistic studies indicated that melatonin ameliorated intraplaque inflammation by suppressing the differentiation of intraplaque macrophages toward the proinflammatory M1 phenotype, and circadian nuclear receptor retinoid acid receptor-related orphan receptor-α (RORα) mediated melatonin-exerted vasoprotection against vulnerable plaque instability and intraplaque macrophage polarization. Further analysis in human monocyte-derived macrophages confirmed the role of melatonin in regulating macrophage polarization by regulating the AMPKα-STATs pathway in a RORα-dependent manner. In summary, our data provided the first evidence that melatonin-RORα axis acts as a novel endogenous protective signaling pathway in the vasculature, regulates intraplaque inflammation, and stabilizes rupture-prone vulnerable plaques.
Collapse
MESH Headings
- Animals
- Atherosclerosis/drug therapy
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Humans
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Melatonin/pharmacology
- Mice
- Mice, Knockout, ApoE
- Nuclear Receptor Subfamily 1, Group F, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Signal Transduction/drug effects
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Song Ding
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
| | - Nan Lin
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
| | - Xincheng Sheng
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
| | - Yichao Zhao
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
| | - Yuanyuan Su
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
| | - Longwei Xu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
| | - Renyang Tong
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
| | - Yang Yan
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
| | - Yanan Fu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
| | - Jie He
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
| | - Yu Gao
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
| | - Ancai Yuan
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
| | - Lei Ye
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore City, Singapore
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, Texas
| | - Jun Pu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
98
|
de Sousa JR, Da Costa Vasconcelos PF, Quaresma JAS. Functional aspects, phenotypic heterogeneity, and tissue immune response of macrophages in infectious diseases. Infect Drug Resist 2019; 12:2589-2611. [PMID: 31686866 PMCID: PMC6709804 DOI: 10.2147/idr.s208576] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/05/2019] [Indexed: 12/13/2022] Open
Abstract
Macrophages are a functionally heterogeneous group of cells with specialized functions depending not only on their subgroup but also on the function of the organ or tissue in which the cells are located. The concept of macrophage phenotypic heterogeneity has been investigated since the 1980s, and more recent studies have identified a diverse spectrum of phenotypic subpopulations. Several types of macrophages play a central role in the response to infectious agents and, along with other components of the immune system, determine the clinical outcome of major infectious diseases. Here, we review the functions of various macrophage phenotypic subpopulations, the concept of macrophage polarization, and the influence of these cells on the evolution of infections. In addition, we emphasize their role in the immune response in vivo and in situ, as well as the molecular effectors and signaling mechanisms used by these cells. Furthermore, we highlight the mechanisms of immune evasion triggered by infectious agents to counter the actions of macrophages and their consequences. Our aim here is to provide an overview of the role of macrophages in the pathogenesis of critical transmissible diseases and discuss how elucidation of this relationship could enhance our understanding of the host-pathogen association in organ-specific immune responses.
Collapse
Affiliation(s)
- Jorge Rodrigues de Sousa
- Tropical Medicine Center, Federal University of Pará, Belém, PA, Brazil
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
| | - Pedro Fernando Da Costa Vasconcelos
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
- Center of Biological and Health Sciences, State University of Pará, Belém, PA, Brazil
| | - Juarez Antonio Simões Quaresma
- Tropical Medicine Center, Federal University of Pará, Belém, PA, Brazil
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
- Center of Biological and Health Sciences, State University of Pará, Belém, PA, Brazil
- School of Medicine, São Paulo University, São Paulo, SP, Brazil
| |
Collapse
|
99
|
Rosenson RS, Kaul R. Cardiovascular Outcomes in Persons With HIV and Heart Failure: Medication Class or Suboptimal Viral Suppression? J Am Coll Cardiol 2019; 72:531-533. [PMID: 30049314 DOI: 10.1016/j.jacc.2018.05.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Robert S Rosenson
- Department of Medicine (Cardiology), Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Rupert Kaul
- Department of Medicine (Infectious Disease), University of Toronto and University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
100
|
Arnold KA, Blair JE, Paul JD, Shah AP, Nathan S, Alenghat FJ. Monocyte and macrophage subtypes as paired cell biomarkers for coronary artery disease. Exp Physiol 2019; 104:1343-1352. [PMID: 31264265 DOI: 10.1113/ep087827] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/01/2019] [Indexed: 12/24/2022]
Abstract
NEW FINDINGS What is the central question of this study? Are circulating monocyte markers correlated with their derived macrophage polarization patterns and coronary artery disease severity? What is the main finding and its importance? There was an inverse relationship between circulating CD16+ monocytes (high) and M2 macrophages (low) that marked coronary disease severity, and the differences in polarization of macrophages were seen despite a week of cell culture ex vivo. This study highlights the importance, and potential prognostic implications, of circulating monocyte and descendant macrophage phenotypes in coronary artery disease. ABSTRACT Monocytes and macrophages are central to atherosclerosis, but how they combine to mark progression of human coronary artery disease (CAD) is unclear. We tested whether patients' monocyte subtypes paired with their derived macrophage profiles were correlated with extent of CAD. Peripheral blood was collected from 40 patients undergoing cardiac catheterization, and patients were categorized as having no significant CAD, single vessel disease or multivessel disease according to the number of affected coronary arteries. Mononuclear cells were measured for the monocyte markers CD14 and CD16 by flow cytometry, and separate monocytes were cultured into macrophages over 7 days and measured for the polarization markers CD86 and CD206. At baseline, patients with a greater CAD burden were older, with higher rates of statin, β-blocker and antiplatelet drug use, whereas other characteristics were similar across the spectrum of coronary disease. CD16+ (both intermediate and non-classical) monocytes were elevated in patients with single vessel and multivessel disease compared with those without significant CAD (P < 0.05), whereas regulatory M2 macrophages (CD206+ ) were decreased in patients with single vessel and multivessel disease (P < 0.001). An inverse relationship between paired CD16+ monocytes and M2 macrophages marked CAD severity. On multivariable linear regression, CAD severity was associated, along with age and traditional cardiovascular risk factors, with CD16+ monocytes (directly) and M2 macrophages (inversely). Circulating monocytes may influence downstream polarization of lesional macrophages, and these measures of monocyte and macrophage subtypes hold potential as biomarkers in CAD.
Collapse
Affiliation(s)
- Kathryn A Arnold
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - John E Blair
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jonathan D Paul
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Atman P Shah
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Sandeep Nathan
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Francis J Alenghat
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|