51
|
Deletion of Opg Leads to Increased Neovascularization and Expression of Inflammatory Cytokines in the Lumbar Intervertebral Disc of Mice. Spine (Phila Pa 1976) 2017; 42:E8-E14. [PMID: 27196016 DOI: 10.1097/brs.0000000000001701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Neovascularization and expression of inflammatory cytokines were examined in Osteoprotegerin (Opg) knockout (KO) mice that show intervertebral disc (IVD) degeneration. OBJECTIVE The aim of this study was to clarify the pathological changes in lumbar IVD degeneration in Opg KO mice. SUMMARY OF BACKGROUND DATA Osteoporosis is a controversial risk factor for IVD degeneration. Deletion of Opg resulted in IVD degeneration in mice. Neovascularization and inflammatory cytokines are key factors in IVD degeneration. METHODS Opg KO mice and their wild-type (WT) littermates were euthanized. Lumbar IVDs were harvested. Safranin O/Fast Green staining was performed to examine the pathological changes. Microcomputed tomographic (micro-CT) analysis was performed to determine the structural changes at the junction of lumbar IVD cartilage and vertebrae. Tartrate-resistant acid phosphatase (TRAP) staining was performed to evaluate osteoclast formation. Protein expression of vascular endothelial growth factor A (VEGF-A), CD31, VE-cadherin, CD 34, interleukin-1β (IL-1β), and tumor necrosis factors α (TNF-α) were analyzed by immunohistochemistry (IHC) assays. Gene expressions of IL-1β, IL-6, and TNF-α were analyzed by real-time polymerase chain reaction (RT-PCR). RESULTS In 12-week-old Opg KO mice, new bone was formed in the endplate cartilage of lumbar IVDs and this became more obvious in 24-week-old Opg KO mice. Three-dimensional (3D) μCT reconstruction analyses showed that the edges of the L4 and L5 vertebrae were rugged with bone marrow cavities in it. Protein expression of VEGF-A, CD31, VE-cadherin, and CD34 was increased in the endplate and growth plate of lumbar IVDs of Opg KO mice. Gene expression of IL-1β, IL-6, and TNF-α as well as protein expression of IL-1β and TNF-α were highly expressed in the lumbar IVDs of Opg KO mice. CONCLUSION Deletion of Opg leads to increased neovascularization and expression of inflammatory cytokines in the lumbar disc in Opg KO mice, which may play important roles in IVD degeneration. LEVEL OF EVIDENCE N/A.
Collapse
|
52
|
Contreras A, Orozco AF, Resende M, Schutt RC, Traverse JH, Henry TD, Lai D, Cooke JP, Bolli R, Cohen ML, Moyé L, Pepine CJ, Yang PC, Perin EC, Willerson JT, Taylor DA. Identification of cardiovascular risk factors associated with bone marrow cell subsets in patients with STEMI: a biorepository evaluation from the CCTRN TIME and LateTIME clinical trials. Basic Res Cardiol 2017; 112:3. [PMID: 27882430 PMCID: PMC5760218 DOI: 10.1007/s00395-016-0592-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022]
Abstract
Autologous bone marrow mononuclear cell (BM-MNC) therapy for patients with ST-segment elevation myocardial infarction (STEMI) has produced inconsistent results, possibly due to BM-MNC product heterogeneity. Patient-specific cardiovascular risk factors (CRFs) may contribute to variations in BM-MNC composition. We sought to identify associations between BM-MNC subset frequencies and specific CRFs in STEMI patients. Bone marrow was collected from 191 STEMI patients enrolled in the CCTRN TIME and LateTIME trials. Relationships between BM-MNC subsets and CRFs were determined with multivariate analyses. An assessment of CRFs showed that hyperlipidemia and hypertension were associated with a higher frequency of CD11b+ cells (P = 0.045 and P = 0.016, respectively). In addition, we found that females had lower frequencies of CD11b+ (P = 0.018) and CD45+CD14+ (P = 0.028) cells than males, age was inversely associated with the frequency of CD45+CD31+ cells (P = 0.001), smoking was associated with a decreased frequency of CD45+CD31+ cells (P = 0.013), glucose level was positively associated with the frequency of CD45+CD3+ cells, and creatinine level (an indicator of renal function) was inversely associated with the frequency of CD45+CD3+ cells (P = 0.015). In conclusion, the frequencies of monocytic, lymphocytic, and angiogenic BM-MNCs varied in relation to patients' CRFs. These phenotypic variations may affect cell therapy outcomes and might be an important consideration when selecting patients for and reviewing results from autologous cell therapy trials.
Collapse
Affiliation(s)
| | | | | | - Robert C Schutt
- Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Jay H Traverse
- Minneapolis Heart Institute Foundation, Abbott Northwestern Hospital, Minneapolis, MN, USA
| | | | - Dejian Lai
- UT Health School of Public Health, Houston, TX, USA
| | - John P Cooke
- Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Research Institute, Houston, TX, USA
| | | | | | - Lem Moyé
- UT Health School of Public Health, Houston, TX, USA.
| | - Carl J Pepine
- College of Medicine, University of Florida, Gainesville, FL, USA
| | - Phillip C Yang
- Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | |
Collapse
|
53
|
Lee S, Park C, Han JW, Kim JY, Cho K, Kim EJ, Kim S, Lee SJ, Oh SY, Tanaka Y, Park IH, An HJ, Shin CM, Sharma S, Yoon YS. Direct Reprogramming of Human Dermal Fibroblasts Into Endothelial Cells Using ER71/ETV2. Circ Res 2016; 120:848-861. [PMID: 28003219 DOI: 10.1161/circresaha.116.309833] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 12/14/2022]
Abstract
RATIONALE Direct conversion or reprogramming of human postnatal cells into endothelial cells (ECs), bypassing stem or progenitor cell status, is crucial for regenerative medicine, cell therapy, and pathophysiological investigation but has remained largely unexplored. OBJECTIVE We sought to directly reprogram human postnatal dermal fibroblasts to ECs with vasculogenic and endothelial transcription factors and determine their vascularizing and therapeutic potential. METHODS AND RESULTS We utilized various combinations of 7 EC transcription factors to transduce human postnatal dermal fibroblasts and found that ER71/ETV2 (ETS variant 2) alone best induced endothelial features. KDR+ (kinase insert domain receptor) cells sorted at day 7 from ER71/ETV2-transduced human postnatal dermal fibroblasts showed less mature but enriched endothelial characteristics and thus were referred to as early reprogrammed ECs (rECs), and did not undergo maturation by further culture. After a period of several weeks' transgene-free culture followed by transient reinduction of ER71/ETV2, early rECs matured during 3 months of culture and showed reduced ETV2 expression, reaching a mature phenotype similar to postnatal human ECs. These were termed late rECs. While early rECs exhibited an immature phenotype, their implantation into ischemic hindlimbs induced enhanced recovery from ischemia. These 2 rECs showed clear capacity for contributing to new vessel formation through direct vascular incorporation in vivo. Paracrine or proangiogenic effects of implanted early rECs played a significant role in repairing hindlimb ischemia. CONCLUSIONS This study for the first time demonstrates that ER71/ETV2 alone can directly reprogram human postnatal cells to functional, mature ECs after an intervening transgene-free period. These rECs could be valuable for cell therapy, personalized disease investigation, and exploration of the reprogramming process.
Collapse
Affiliation(s)
- Sangho Lee
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - Changwon Park
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - Ji Woong Han
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - Ju Young Kim
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - Kyuwon Cho
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - Eun Jae Kim
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - Sangsung Kim
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - Shin-Jeong Lee
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - Se Yeong Oh
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - Yoshiaki Tanaka
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - In-Hyun Park
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - Hyo Jae An
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - Claire Min Shin
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - Shraya Sharma
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| | - Young-Sup Yoon
- From the Department of Pharmacology, College of Medicine, University of Illinois at Chicago (C.P., E.J.K.); Department of Pediatrics, Children's Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA (C.P., J.Y.K., S.Y.O.); Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA (S.L., J.W.H., K.C., S.K., H.J.A., C.M.S., S.S., Y.-s.Y.); Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT (Y.T., I.-H.P.); and Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea (S.-J.L., Y.-s.Y.)
| |
Collapse
|
54
|
Wils J, Favre J, Bellien J. Modulating putative endothelial progenitor cells for the treatment of endothelial dysfunction and cardiovascular complications in diabetes. Pharmacol Ther 2016; 170:98-115. [PMID: 27773788 DOI: 10.1016/j.pharmthera.2016.10.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diabetes induces a decrease in the number and function of different pro-angiogenic cell types generically designated as putative endothelial progenitor cells (EPC), which encompasses cells from myeloid origin that act in a paracrine fashion to promote angiogenesis and putative "true" EPC that contribute to endothelial replacement. This not only compromises neovasculogenesis in ischemic tissues but also impairs, at an early stage, the reendotheliziation process at sites of injury, contributing to the development of endothelial dysfunction and cardiovascular complications. Hyperglycemia, insulin resistance and dyslipidemia promote putative EPC dysregulation by affecting the SDF-1/CXCR-4 and NO pathways and the p53/SIRT1/p66Shc axis that contribute to their mobilization, migration, homing and vasculogenic properties. To optimize the clinical management of patients with hypoglycemic agents, statins and renin-angiotensin system inhibitors, which display pleiotropic effects on putative EPC, is a first step to improve their number and angiogenic potential but specific strategies are needed. Among them, mobilizing therapies based on G-CSF, erythropoietin or CXCR-4 antagonism have been developed to increase putative EPC number to treat ischemic diseases with or without prior cell isolation and transplantation. Growth factors, genetic and pharmacological strategies are also evaluated to improve ex vivo cultured EPC function before transplantation. Moreover, pharmacological agents increasing in vivo the bioavailability of NO and other endothelial factors demonstrated beneficial effects on neovascularization in diabetic ischemic models but their effects on endothelial dysfunction remain poorly evaluated. More experiments are warranted to develop orally available drugs and specific agents targeting p66Shc to reverse putative EPC dysfunction in the expected goal of preventing endothelial dysfunction and diabetic cardiovascular complications.
Collapse
Affiliation(s)
- Julien Wils
- Department of Pharmacology, Rouen University Hospital, Rouen, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Julie Favre
- MITOVASC Institute, Angers, France; Centre National de la Recherche Scientifique (CNRS) UMR 6214, Angers, France; INSERM U1083, Angers, France; University of Angers, Angers, France
| | - Jérémy Bellien
- Department of Pharmacology, Rouen University Hospital, Rouen, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1096, Rouen, France; University of Rouen, Institute for Research and Innovation in Biomedicine, Rouen, France.
| |
Collapse
|
55
|
Ban K, Wile B, Cho KW, Kim S, Song MK, Kim SY, Singer J, Syed A, Yu SP, Wagner M, Bao G, Yoon YS. Non-genetic Purification of Ventricular Cardiomyocytes from Differentiating Embryonic Stem Cells through Molecular Beacons Targeting IRX-4. Stem Cell Reports 2016; 5:1239-1249. [PMID: 26651608 PMCID: PMC4682289 DOI: 10.1016/j.stemcr.2015.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 12/15/2022] Open
Abstract
Isolation of ventricular cardiomyocytes (vCMs) has been challenging due to the lack of specific surface markers. Here we show that vCMs can be purified from differentiating mouse embryonic stem cells (mESCs) using molecular beacons (MBs) targeting specific intracellular mRNAs. We designed MBs (IRX4 MBs) to target mRNA encoding Iroquois homeobox protein 4 (Irx4), a transcription factor specific for vCMs. To purify mESC vCMs, IRX4 MBs were delivered into cardiomyogenically differentiating mESCs, and IRX4 MBs-positive cells were FACS-sorted. We found that, of the cells isolated, ∼98% displayed vCM-like action potentials by electrophysiological analyses. These MB-purified vCMs continuously maintained their CM characteristics as verified by spontaneous beating, Ca2+ transient, and expression of vCM-specific proteins. Our study shows the feasibility of isolating pure vCMs via cell sorting without modifying host genes. The homogeneous and functional ventricular CMs generated via the MB-based method can be useful for disease investigation, drug discovery, and cell-based therapies. Molecular beacon (MB)-based method was developed to purify ventricular CMs from ESCs Ventricular CM-specific MBs targeting Irx4 mRNA were successfully generated About 98% of the CMs sorted via Irx4-MB displayed ventricular CM-like phenotypes Irx4-MB-based purified CMs continuously maintained ventricular CM characteristics
Collapse
Affiliation(s)
- Kiwon Ban
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Brian Wile
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Kyu-Won Cho
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sangsung Kim
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ming-Ke Song
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sang Yoon Kim
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jason Singer
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Anum Syed
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mary Wagner
- Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Gang Bao
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA.
| | - Young-Sup Yoon
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, Korea.
| |
Collapse
|
56
|
Cañete A, Comaills V, Prados I, Castro AM, Hammad S, Ybot-Gonzalez P, Bockamp E, Hengstler JG, Gottgens B, Sánchez MJ. Characterization of a Fetal Liver Cell Population Endowed with Long-Term Multiorgan Endothelial Reconstitution Potential. Stem Cells 2016; 35:507-521. [PMID: 27615355 PMCID: PMC5298023 DOI: 10.1002/stem.2494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/27/2016] [Accepted: 08/10/2016] [Indexed: 12/26/2022]
Abstract
Stable reconstitution of vascular endothelial beds upon transplantation of progenitor cells represents an important challenge due to the paucity and generally limited integration/expansion potential of most identified vascular related cell subsets. We previously showed that mouse fetal liver (FL) hemato/vascular cells from day 12 of gestation (E12), expressing the Stem Cell Leukaemia (SCL) gene enhancer transgene (SCL‐PLAP+ cells), had robust endothelial engraftment potential when transferred to the blood stream of newborns or adult conditioned recipients, compared to the scarce vascular contribution of adult bone marrow cells. However, the specific SCL‐PLAP+ hematopoietic or endothelial cell subset responsible for the long‐term reconstituting endothelial cell (LTR‐EC) activity and its confinement to FL developmental stages remained unknown. Using a busulfan‐treated newborn transplantation model, we show that LTR‐EC activity is restricted to the SCL‐PLAP+VE‐cadherin+CD45− cell population, devoid of hematopoietic reconstitution activity and largely composed by Lyve1+ endothelial‐committed cells. SCL‐PLAP+ Ve‐cadherin+CD45− cells contributed to the liver sinusoidal endothelium and also to the heart, kidney and lung microvasculature. LTR‐EC activity was detected at different stages of FL development, yet marginal activity was identified in the adult liver, revealing unknown functional differences between fetal and adult liver endothelial/endothelial progenitors. Importantly, the observations that expanding donor‐derived vascular grafts colocalize with proliferating hepatocyte‐like cells and participate in the systemic circulation, support their functional integration into young livers. These findings offer new insights into the engraftment, phonotypical, and developmental characterization of a novel endothelial/endothelial progenitor cell subtype with multiorgan LTR‐EC activity, potentially instrumental for the treatment/genetic correction of vascular diseases. Stem Cells2017;35:507–521
Collapse
Affiliation(s)
- Ana Cañete
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía (JA), Universidad Pablo de Olavide (UPO), Sevilla, Spain
| | - Valentine Comaills
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía (JA), Universidad Pablo de Olavide (UPO), Sevilla, Spain
| | - Isabel Prados
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía (JA), Universidad Pablo de Olavide (UPO), Sevilla, Spain
| | - Ana María Castro
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía (JA), Universidad Pablo de Olavide (UPO), Sevilla, Spain
| | - Seddik Hammad
- Faculty of Veterinary Medicine, Department of Forensic Medicine and Veterinary Toxicology, South Valley University, Qena, Egypt.,Leibniz Research Center for Working Environment and Human Factors (IfADo), TU Dortmund University, Dortmund, Germany
| | - Patricia Ybot-Gonzalez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Ernesto Bockamp
- Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Jan G Hengstler
- Leibniz Research Center for Working Environment and Human Factors (IfADo), TU Dortmund University, Dortmund, Germany
| | - Bertie Gottgens
- Cambridge Institute for Medical Research & Wellcome Trust and MRC Cambridge Stem Cell Institute, Cambridge University, United Kingdom
| | - María José Sánchez
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas (CSIC), Junta de Andalucía (JA), Universidad Pablo de Olavide (UPO), Sevilla, Spain
| |
Collapse
|
57
|
Campbell NG, Kaneko M, Shintani Y, Narita T, Sawhney V, Coppen SR, Yashiro K, Mathur A, Suzuki K. Cell Size Critically Determines Initial Retention of Bone Marrow Mononuclear Cells in the Heart after Intracoronary Injection: Evidence from a Rat Model. PLoS One 2016; 11:e0158232. [PMID: 27380410 PMCID: PMC4933345 DOI: 10.1371/journal.pone.0158232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/13/2016] [Indexed: 01/16/2023] Open
Abstract
Intracoronary injection of bone marrow mononuclear cells (BMMNC) is an emerging treatment for heart failure. Initial donor cell retention in the heart is the key to the success of this approach, but this process remains insufficiently characterized. Although it is assumed that cell size of injected cells may influence their initial retention, no scientific evidence has been reported. We developed a unique model utilizing an ex-vivo rat heart perfusion system, enabling quantitative assessment of retention of donor cells after intracoronary injection. The initial (5 minutes after intracoronary injection) retention rate of BMMNC was as low as approximately 20% irrespective of donor cell doses injected (1×106, 8×106, 4×107). Quantitative cell-size assessment revealed a positive relationship between the size of BMMNC and retention ratio; larger subpopulations of BMMNC were more preferentially retained compared to smaller ones. Furthermore, a larger cell type—bone marrow-derived mesenchymal stromal cells (median size = 11.5μm versus 7.0μm for BMMNC)—had a markedly increased retention rate (77.5±1.8%). A positive relationship between the cell size and retention ratio was also seen in mesenchymal stromal cells. Flow-cytometric studies showed expression of cell-surface proteins, including integrins and selectin-ligands, was unchanged between pre-injection BMMNC and those exited from the heart, suggesting that biochemical interaction between donor cells and host coronary endothelium is not critical for BMMNC retention. Histological analyses showed that retained BMMNC and mesenchymal stromal cells were entrapped in the coronary vasculature and did not extravasate by 60 minutes after transplantation. Whilst BMMNC did not change coronary flow after intracoronary injection, mesenchymal stromal cells reduced it, suggesting coronary embolism, which was supported by the histological finding of intravascular cell-clump formation. These data indicate that cell-size dependent, passive (mechanical), intravascular entrapment is responsible for the initial donor cell retention after intracoronary injection of BMMNC in the heart having normal vasculatures (at least).
Collapse
Affiliation(s)
- Niall G. Campbell
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Masahiro Kaneko
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Yasunori Shintani
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Takuya Narita
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Vinit Sawhney
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Steven R. Coppen
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Kenta Yashiro
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Anthony Mathur
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Ken Suzuki
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
58
|
Santosa M, Ilyas EI, Antarianto RD. The effect of moderate-intensity acute aerobic exercise duration on the percentage of circulating CD31<sup>+</sup> cells in lymphocyte population. MEDICAL JOURNAL OF INDONESIA 2016. [DOI: 10.13181/mji.v25i1.1277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Background: The increasing number of circulating CD31+ endothelial progenitor cells is one of the important factors for maintaining vascular homeostasis. Exercise will effectively increase the number of circulating CD31+ endothelial progenitor cells. This study aims to determine the effect of moderate-intensity acute aerobic exercise duration on the percentage of circulating CD31+ cells in untrained healthy young adult subjects.Methods: This study was an experimental study. Untrained healthy volunteers (n=20) performed ergocycle at moderate-intensity (64–74% maximum heart rate) for 10 minutes or 30 minutes. Immediately before and 10 minutes after exercise, venous blood samples were drawn. The percentage of CD31+ cells in peripheral blood was analyzed using flow cytometry. Data was statistically analyzed using student t-test.Results: There were no significant differences in the mean percentage of circulating CD31+ cells before and after exercise for 10 minutes and 30 minutes (p>0.05). However, there was a different trend in the percentage of circulating CD31+ cells after exercise for 10 minutes and 30 minutes. In the 10 minutes duration, 50% of subjects showed increase. Whereas in the 30 minutes duration, 80% of subjects showed increase.Conclusion: The percentage of circulating CD31+ cells before and after exercise for 10 minutes was not different compared to 30 minutes. However, data analysis shows that majority of subjects (80%) had increased in the percentage of circulating CD31+ cells after 30 minutes exercise.
Collapse
|
59
|
Tian C, Zhang Y. Purification of hematopoietic stem cells from bone marrow. Ann Hematol 2016; 95:543-7. [DOI: 10.1007/s00277-016-2608-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/31/2016] [Indexed: 12/22/2022]
|
60
|
Kan X, Wu Y, Ma Y, Zhang C, Li P, Wu L, Zhang S, Li Y, Du J. Deficiency of IL-12p35 improves cardiac repair after myocardial infarction by promoting angiogenesis. Cardiovasc Res 2016; 109:249-259. [DOI: 10.1093/cvr/cvv255] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
61
|
Lansford KA, Shill DD, Dicks AB, Marshburn MP, Southern WM, Jenkins NT. Effect of acute exercise on circulating angiogenic cell and microparticle populations. Exp Physiol 2015; 101:155-67. [DOI: 10.1113/ep085505] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 10/15/2015] [Indexed: 12/18/2022]
Affiliation(s)
| | - Daniel D. Shill
- Department of Kinesiology; University of Georgia; Athens GA USA
| | - Andrew B. Dicks
- Georgia Regents University-University of Georgia Medical Partnership; Athens GA USA
| | | | | | | |
Collapse
|
62
|
Woodell-May JE, Tan ML, King WJ, Swift MJ, Welch ZR, Murphy MP, McKale JM. Characterization of the Cellular Output of a Point-of-Care Device and the Implications for Addressing Critical Limb Ischemia. Biores Open Access 2015; 4:417-24. [PMID: 26634187 PMCID: PMC4652191 DOI: 10.1089/biores.2015.0006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Critical limb ischemia (CLI) is a terminal disease with high morbidity and healthcare costs due to limb loss. There are no effective medical therapies for patients with CLI to prevent amputation. Cell-based therapies are currently being investigated to address this unmet clinical need and have shown promising preliminary results. The purpose of this study was to characterize the output of a point-of-care cell separator (MarrowStim P.A.D. Kit), currently under investigation for the treatment of CLI, and compare its output with Ficoll-based separation. The outputs of the MarrowStim P.A.D. Kit and Ficoll separation were characterized using an automated hematology analyzer, colony-forming unit (CFU) assays, and tubulogenesis assays. Hematology analysis indicated that the MarrowStim P.A.D. Kit concentrated the total nucleated cells, mononuclear cells, and granulocytes compared with baseline bone marrow aspirate. Cells collected were positive for VEGFR-2, CD3, CD14, CD34, CD45, CD56, CD105, CD117, CD133, and Stro-1 antigen. CFU assays demonstrated that the MarrowStim P.A.D. Kit output a significantly greater number of mesenchymal stem cells and hematopoietic stem cells compared with cells output by Ficoll separation. There was no significant difference in the number of endothelial progenitor cells output by the two separation techniques. Isolated cells from both techniques formed interconnected nodes and microtubules in a three-dimensional cell culture assay. This information, along with data currently being collected in large-scale clinical trials, will help instruct how different cellular fractions may affect the outcomes for CLI patients.
Collapse
Affiliation(s)
- Jennifer E. Woodell-May
- Biomet Biologics, LLC., A Subsidiary of Biomet, Inc., Warsaw, Indiana
- Address correspondence to: Jennifer E. Woodell-May, PhD, Biomet Biologics, LLC., A subsidiary of Biomet, Inc., 56, East Bell Drive, Warsaw, IN 46581, E-mail:
| | - Matthew L. Tan
- Biomet Biologics, LLC., A Subsidiary of Biomet, Inc., Warsaw, Indiana
| | - William J. King
- Biomet Biologics, LLC., A Subsidiary of Biomet, Inc., Warsaw, Indiana
| | - Matthew J. Swift
- Biomet Biologics, LLC., A Subsidiary of Biomet, Inc., Warsaw, Indiana
| | - Zachary R. Welch
- Biomet Biologics, LLC., A Subsidiary of Biomet, Inc., Warsaw, Indiana
| | - Michael P. Murphy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - James M. McKale
- Biomet Biologics, LLC., A Subsidiary of Biomet, Inc., Warsaw, Indiana
| |
Collapse
|
63
|
Kim SW, Jin HL, Kang SM, Kim S, Yoo KJ, Jang Y, Kim HO, Yoon YS. Therapeutic effects of late outgrowth endothelial progenitor cells or mesenchymal stem cells derived from human umbilical cord blood on infarct repair. Int J Cardiol 2015; 203:498-507. [PMID: 26551883 DOI: 10.1016/j.ijcard.2015.10.110] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 10/11/2015] [Accepted: 10/14/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND This study sought to systematically investigate the derivation of late outgrowth endothelial progenitor cells (late EPC) and mesenchymal stem cells (MSC) from umbilical cord blood (UCB) and to examine their therapeutic effects on myocardial infarction (MI). METHODS The expression of angiogenic genes was determined by qRT-PCR. Myocardial infarction (MI) was induced in rats, and cells were directly transplanted into the border regions of ischemic heart tissue. RESULTS Culture of UCB mononuclear cells yielded two distinct types of cells by morphology after 2 weeks in the same culture conditions. These cells were identified as late EPC and MSC, and each was intramyocardially injected into rat hearts after induction of MI. Echocardiography and histologic analyses demonstrated that both EPC and MSC improved cardiac function and enhanced vascularization, although fibrosis was reduced only in the EPC transplanted hearts. Different paracrine factors were enriched in EPC and MSC. However, once injected into the hearts, they induced similar types of paracrine factors in the heart. Transplanted EPC or MSC were mostly localized at the perivascular areas. This study demonstrated that EPC and MSC can be simultaneously derived from UCB under the same initial culture conditions, and that common paracrine factors are involved in the repair of MI. CONCLUSION Late EPC and MSC are effective for infarct repair, apparently mediated through common humoral mechanisms.
Collapse
Affiliation(s)
- Sung-Whan Kim
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Department of Medicine, College of Medicine, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Hong Lian Jin
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seok-Min Kang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sinyoung Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Jong Yoo
- Department of Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yangsoo Jang
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Ok Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Young-sup Yoon
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
64
|
Landers-Ramos RQ, Sapp RM, Jenkins NT, Murphy AE, Cancre L, Chin ER, Spangenburg EE, Hagberg JM. Chronic endurance exercise affects paracrine action of CD31+ and CD34+ cells on endothelial tube formation. Am J Physiol Heart Circ Physiol 2015; 309:H407-20. [PMID: 26055789 PMCID: PMC4525090 DOI: 10.1152/ajpheart.00123.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/01/2015] [Indexed: 12/14/2022]
Abstract
We aimed to determine if chronic endurance-exercise habits affected redox status and paracrine function of CD34(+) and CD34(-)/CD31(+) circulating angiogenic cells (CACs). Subjects were healthy, nonsmoking men and women aged 18-35 yr and categorized by chronic physical activity habits. Blood was drawn from each subject for isolation and culture of CD34(+) and CD34(-)/CD31(+) CACs. No differences in redox status were found in any group across either cell type. Conditioned media (CM) was generated from the cultured CACs and used in an in vitro human umbilical vein endothelial cell-based tube assay. CM from CD34(+) cells from inactive individuals resulted in tube structures that were 29% shorter in length (P < 0.05) and 45% less complex (P < 0.05) than the endurance-trained group. CD34(-)/CD31(+) CM from inactive subjects resulted in tube structures that were 26% shorter in length (P < 0.05) and 42% less complex (P < 0.05) than endurance-trained individuals. Proteomics analyses identified S100A8 and S100A9 in the CM. S100A9 levels were 103% higher (P < 0.05) and S100A8 was 97% higher in the CD34(-)/CD31(+) CM of inactive subjects compared with their endurance-trained counterparts with no significant differences in either protein in the CM of CD34(+) CACs as a function of training status. Recombinant S100A8/A9 treatment at concentrations detected in inactive subjects' CD34(-)/CD31(+) CAC CM also reduced tube formation (P < 0.05). These findings are the first, to our knowledge, to demonstrate a differential paracrine role in CD34(+) and CD34(-)/CD31(+) CACs on tube formation as a function of chronic physical activity habits and identifies a differential secretion of S100A9 by CD34(-)/CD31(+) CACs due to habitual exercise.
Collapse
Affiliation(s)
- Rian Q Landers-Ramos
- Department of Kinesiology, School of Public Health, University of Maryland College Park, College Park, Maryland; and
| | - Ryan M Sapp
- Department of Kinesiology, School of Public Health, University of Maryland College Park, College Park, Maryland; and
| | - Nathan T Jenkins
- Department of Kinesiology, University of Georgia, Athens, Georgia
| | - Anna E Murphy
- Department of Kinesiology, School of Public Health, University of Maryland College Park, College Park, Maryland; and
| | - Lucile Cancre
- Department of Kinesiology, School of Public Health, University of Maryland College Park, College Park, Maryland; and
| | - Eva R Chin
- Department of Kinesiology, School of Public Health, University of Maryland College Park, College Park, Maryland; and
| | - Espen E Spangenburg
- Department of Kinesiology, School of Public Health, University of Maryland College Park, College Park, Maryland; and
| | - James M Hagberg
- Department of Kinesiology, School of Public Health, University of Maryland College Park, College Park, Maryland; and
| |
Collapse
|
65
|
Välimäki J, Uusitalo H. Matrix metalloproteinases (MMP-1, MMP-2, MMP-3 and MMP-9, and TIMP-1, TIMP-2 and TIMP-3) and markers for vascularization in functioning and non-functioning bleb capsules of glaucoma drainage implants. Acta Ophthalmol 2015; 93:450-456. [PMID: 25588965 DOI: 10.1111/aos.12654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 11/24/2014] [Indexed: 01/19/2023]
Abstract
PURPOSE To investigate and compare functioning versus non-functioning glaucoma drainage implant (GDI) capsules for selective markers of extracellular matrix degradation and vascularity. METHODS In three samples of both functioning and non-functioning blebs, immunohistochemistry was used to determine the expression of MMP-1, MMP-2, MMP-3, MMP-9, TIMP-1, TIMP-2, TIMP-3 and CD31. A non-functioning bleb was defined as IOP >21 mmHg or <20% reduction in IOP from baseline with maximal tolerated medication. The samples were classified into five grades based on immunostaining: no staining, no significant staining, mild, moderate or marked staining. RESULTS Expression of MMP-1, MMP-2 and MMP-3 was mostly low in both functioning and non-functioning blebs. However, immunostaining of MMP-9 was marked in samples taken from functioning GDIs and correlated with the presence of vascular profiles in the luminal bleb. CD31 immunoreactivity was more intense in the outer layers of the bleb than in the inner layers. In non-functioning blebs, immunoreactivity for TIMP-3 was significant through the whole bleb wall, but only mild in the inner zone of functioning blebs. TIMP-1 and TIMP-2 were barely detectable. CONCLUSION Staining of TIMP-3 was seen to be lower in the vicinity of the small blood vessels. In avascular bleb wall, increased expression of TIMP-3 suggests its potential role in the inhibition of angiogenesis as reported previously in vivo. The abundance of MMP-9 in bleb capsule wall of relatively old patients might lead to weakened bleb capsule wall architecture and increasing filtration of aqueous humour through the capsule, which are reflected in a lower IOP.
Collapse
Affiliation(s)
- Juha Välimäki
- Department of Ophthalmology; Päijät-Häme Central Hospital; Lahti Finland
| | - Hannu Uusitalo
- Department of Ophthalmology; SILK; School of Medicine; University of Tampere; Tampere Finland
- Tampere University Hospital; University of Tampere; Tampere Finland
| |
Collapse
|
66
|
Isolation of Foreign Material-Free Endothelial Progenitor Cells Using CD31 Aptamer and Therapeutic Application for Ischemic Injury. PLoS One 2015; 10:e0131785. [PMID: 26148001 PMCID: PMC4493074 DOI: 10.1371/journal.pone.0131785] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/05/2015] [Indexed: 01/09/2023] Open
Abstract
Endothelial progenitor cells (EPCs) can be isolated from human bone marrow or peripheral blood and reportedly contribute to neovascularization. Aptamers are 40-120-mer nucleotides that bind to a specific target molecule, as antibodies do. To utilize apatmers for isolation of EPCs, in the present study, we successfully generated aptamers that recognize human CD31, an endothelial cell marker. CD31 aptamers bound to human umbilical cord blood-derived EPCs and showed specific interaction with human CD31, but not with mouse CD31. However, CD31 aptamers showed non-specific interaction with CD31-negative 293FT cells and addition of polyanionic competitor dextran sulfate eliminated non-specific interaction without affecting cell viability. From the mixture of EPCs and 293FT cells, CD31 aptamers successfully isolated EPCs with 97.6% purity and 94.2% yield, comparable to those from antibody isolation. In addition, isolated EPCs were decoupled from CD31 aptamers with a brief treatment of high concentration dextran sulfate. EPCs isolated with CD31 aptamers and subsequently decoupled from CD31 aptamers were functional and enhanced the restoration of blood flow when transplanted into a murine hindlimb ischemia model. In this study, we demonstrated isolation of foreign material-free EPCs, which can be utilized as a universal protocol in preparation of cells for therapeutic transplantation.
Collapse
|
67
|
Lee S, Valmikinathan CM, Byun J, Kim S, Lee G, Mokarram N, Pai SB, Um E, Bellamkonda RV, Yoon YS. Enhanced therapeutic neovascularization by CD31-expressing cells and embryonic stem cell-derived endothelial cells engineered with chitosan hydrogel containing VEGF-releasing microtubes. Biomaterials 2015; 63:158-67. [PMID: 26102992 DOI: 10.1016/j.biomaterials.2015.06.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/07/2015] [Accepted: 06/10/2015] [Indexed: 12/14/2022]
Abstract
Various stem cells and their progeny have been used therapeutically for vascular regeneration. One of the major hurdles for cell-based therapy is low cell retention in vivo, and to improve cell survival several biomaterials have been used to encapsulate cells before transplantation. Vascular regeneration involves new blood vessel formation which consists of two processes, vasculogenesis and angiogenesis. While embryonic stem cell (ESC)-derived endothelial cells (ESC-ECs) have clearer vasculogenic potency, adult cells exert their effects mainly through paracrine angiogenic activities. While these two cells have seemingly complementary advantages, there have not been any studies to date combining these two cell types for vascular regeneration. We have developed a novel chitosan-based hydrogel construct that encapsulates both CD31-expressing BM-mononuclear cells (BM-CD31(+) cells) and ESC-ECs, and is loaded with VEGF-releasing microtubes. This cell construct showed high cell survival and minimal cytotoxicity in vitro. When implanted into a mouse model of hindlimb ischemia, it induced robust cell retention, neovascularization through vasculogenesis and angiogenesis, and efficiently induced recovery of blood flow in ischemic hindlimbs. This chitosan-based hydrogel encapsulating mixed adult and embryonic cell derivatives and containing VEGF can serve as a novel platform for treating various cardiovascular diseases.
Collapse
Affiliation(s)
- Sangho Lee
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Chandra M Valmikinathan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Jaemin Byun
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Sangsung Kim
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Geehee Lee
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Nassir Mokarram
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - S Balakrishna Pai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Elisa Um
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | - Ravi V Bellamkonda
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Young-sup Yoon
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, 313 Ferst Drive, Atlanta, GA 30332, USA; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, South Korea.
| |
Collapse
|
68
|
Chu LH, Vijay CG, Annex BH, Bader JS, Popel AS. PADPIN: protein-protein interaction networks of angiogenesis, arteriogenesis, and inflammation in peripheral arterial disease. Physiol Genomics 2015; 47:331-43. [PMID: 26058837 DOI: 10.1152/physiolgenomics.00125.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 06/04/2015] [Indexed: 11/22/2022] Open
Abstract
Peripheral arterial disease (PAD) results from an obstruction of blood flow in the arteries other than the heart, most commonly the arteries that supply the legs. The complexity of the known signaling pathways involved in PAD, including various growth factor pathways and their cross talks, suggests that analyses of high-throughput experimental data could lead to a new level of understanding of the disease as well as novel and heretofore unanticipated potential targets. Such bioinformatic analyses have not been systematically performed for PAD. We constructed global protein-protein interaction networks of angiogenesis (Angiome), immune response (Immunome), and arteriogenesis (Arteriome) using our previously developed algorithm GeneHits. The term "PADPIN" refers to the angiome, immunome, and arteriome in PAD. Here we analyze four microarray gene expression datasets from ischemic and nonischemic gastrocnemius muscles at day 3 posthindlimb ischemia (HLI) in two genetically different C57BL/6 and BALB/c mouse strains that display differential susceptibility to HLI to identify potential targets and signaling pathways in angiogenesis, immune, and arteriogenesis networks. We hypothesize that identification of the differentially expressed genes in ischemic and nonischemic muscles between the strains that recovers better (C57BL/6) vs. the strain that recovers more poorly (BALB/c) will help for the prediction of target genes in PAD. Our bioinformatics analysis identified several genes that are differentially expressed between the two mouse strains with known functions in PAD including TLR4, THBS1, and PRKAA2 and several genes with unknown functions in PAD including EphA4, TSPAN7, SLC22A4, and EIF2a.
Collapse
Affiliation(s)
- Liang-Hui Chu
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland;
| | - Chaitanya G Vijay
- Cardiovascular Medicine, Department of Medicine, and the Robert M. Berne Cardiovascular Research Center University of Virginia School of Medicine, Charlottesville, Virginia; and
| | - Brian H Annex
- Cardiovascular Medicine, Department of Medicine, and the Robert M. Berne Cardiovascular Research Center University of Virginia School of Medicine, Charlottesville, Virginia; and
| | - Joel S Bader
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland; High-Throughput Biology Center, Johns Hopkins University, Baltimore, Maryland
| | - Aleksander S Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
69
|
Oh BJ, Jin SM, Choi JM, Oh SH, Shim W, Lee MS, Lee MK, Kim JH. Improved revascularization of islet grafts using an angiogenic monocyte subpopulation derived from spheroid culture of bone marrow mononuclear cells. Am J Transplant 2015; 15:1543-54. [PMID: 25865268 DOI: 10.1111/ajt.13157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 11/10/2014] [Accepted: 12/09/2014] [Indexed: 02/06/2023]
Abstract
The spheroid culture method is an effective strategy for ex vivo expansion of an autologous therapeutic cell population. We investigated if cotransplantation of bone marrow-derived spheroids (BM-spheroid) formed using 3D culture of BM-derived mononuclear cells (BM-MNCs) could improve the posttransplant outcome of islet grafts using a mouse syngeneic marginal mass renal subcapsular islet transplantation model. Using green fluorescent protein transgenic (GFP-Tg) mice, the role of the BM-spheroids and the contribution of vessels derived from donors and recipients in grafted areas were assessed by immunohistochemistry. Compared to fresh BM-MNCs and nonspheroid remnant cells (BM-nonspheroid), the BM-spheroids, mainly composed of CXCR4(+) CD14(+) myeloid cells, showed higher angiogenic capacity, such as in vitro self-formed vessel structures; increased expression of angiogenic and chemoattractive factors; and incorporation into new vessel formation in basement membrane matrix plugs. BM-spheroid cotransplantation with islets improved the posttransplant outcomes in terms of glucose tolerance, serum insulin level, and diabetes reversal rate when compared with cotransplantation of BM-nonspheroids. Immunohistochemistry revealed that cotransplantation of the BM-spheroids increased vessel density, area of grafted endocrine and non-endocrine tissue, and β cell proliferation. In conclusion, cotransplantation of islets and BM-spheroids improved islet function through facilitation of revascularization and an increase in cell proliferation and islet cell mass.
Collapse
Affiliation(s)
- B J Oh
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Samsung Biomedical Research Institute, Seoul, Republic of Korea
| | - S-M Jin
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - J-M Choi
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - S-H Oh
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - W Shim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - M-S Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - M-K Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - J H Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
70
|
Wilson GC, Freeman CM, Kuethe JW, Quillin RC, Nojima H, Schuster R, Blanchard J, Edwards MJ, Caldwell CC, Lentsch AB. CXC chemokine receptor-4 signaling limits hepatocyte proliferation after hepatic ischemia-reperfusion in mice. Am J Physiol Gastrointest Liver Physiol 2015; 308:G702-G709. [PMID: 25721302 PMCID: PMC4398844 DOI: 10.1152/ajpgi.00257.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 02/18/2015] [Indexed: 01/31/2023]
Abstract
The role of stromal cell-derived factor-1 (SDF-1 or CXCL12) and its receptor CXC chemokine receptor-4 (CXCR4) in ischemic liver injury and recovery has not been studied. Some reports suggest that this chemokine may aid in liver regeneration, but others suggest that it may be profibrotic through its activation of hepatic stellate cells. In this study we sought to elucidate the role of SDF-1 and its receptor CXCR4 during liver injury, recovery, and regeneration after ischemia-reperfusion (I/R). A murine model of partial (70%) I/R was used to induce liver injury and study the reparative and regenerative response. CXCR4 was expressed constitutively in the liver, and hepatic levels of SDF-1 peaked 8 h after reperfusion but remained significantly increased for 96 h. Treatment of mice with the CXCR4 antagonist AMD3100 or agonist SDF-1 had no effect on acute liver injury assessed 8 h after I/R. However, treatment with AMD3100 increased hepatocyte proliferation after 72 and 96 h of reperfusion and reduced the amount of liver necrosis. In contrast, treatment with SDF-1 significantly decreased hepatocyte proliferation. These effects appeared to be dependent on the presence of liver injury, as AMD3100 and SDF-1 had no effect on hepatocyte proliferation or liver mass in mice undergoing 70% partial hepatectomy. The data suggest that signaling through CXCR4 is detrimental to liver recovery and regeneration after I/R and that clinical therapy with a CXCR4 antagonist may improve hepatic recovery following acute liver injury.
Collapse
Affiliation(s)
- Gregory C Wilson
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Christopher M Freeman
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Joshua W Kuethe
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ralph C Quillin
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Hiroyuki Nojima
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Rebecca Schuster
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - John Blanchard
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michael J Edwards
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Charles C Caldwell
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Alex B Lentsch
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
71
|
Experimental cell therapy: the search for the best stem cell continues. J Am Coll Cardiol 2015; 64:1695-7. [PMID: 25323257 DOI: 10.1016/j.jacc.2014.07.974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 07/08/2014] [Indexed: 12/31/2022]
|
72
|
Schutt RC, Trachtenberg BH, Cooke JP, Traverse JH, Henry TD, Pepine CJ, Willerson JT, Perin EC, Ellis SG, Zhao DXM, Bhatnagar A, Johnstone BH, Lai D, Resende M, Ebert RF, Wu JC, Sayre SL, Orozco A, Zierold C, Simari RD, Moyé L, Cogle CR, Taylor DA. Bone marrow characteristics associated with changes in infarct size after STEMI: a biorepository evaluation from the CCTRN TIME trial. Circ Res 2015; 116:99-107. [PMID: 25406300 PMCID: PMC4282599 DOI: 10.1161/circresaha.116.304710] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/10/2014] [Indexed: 12/15/2022]
Abstract
RATIONALE Despite significant interest in bone marrow mononuclear cell (BMC) therapy for ischemic heart disease, current techniques have resulted in only modest benefits. However, selected patients have shown improvements after autologous BMC therapy, but the contributing factors are unclear. OBJECTIVE The purpose of this study was to identify BMC characteristics associated with a reduction in infarct size after ST-segment-elevation-myocardial infarction. METHODS AND RESULTS This prospective study comprised patients consecutively enrolled in the CCTRN TIME (Cardiovascular Cell Therapy Research Network Timing in Myocardial Infarction Evaluation) trial who agreed to have their BMCs stored and analyzed at the CCTRN Biorepository. Change in infarct size between baseline (3 days after percutaneous coronary intervention) and 6-month follow-up was measured by cardiac MRI. Infarct-size measurements and BMC phenotype and function data were obtained for 101 patients (mean age, 56.5 years; mean screening ejection fraction, 37%; mean baseline cardiac MRI ejection fraction, 45%). At 6 months, 75 patients (74.3%) showed a reduction in infarct size (mean change, -21.0±17.6%). Multiple regression analysis indicated that infarct size reduction was greater in patients who had a larger percentage of CD31(+) BMCs (P=0.046) and in those with faster BMC growth rates in colony-forming unit Hill and endothelial-colony forming cell functional assays (P=0.033 and P=0.032, respectively). CONCLUSIONS This study identified BMC characteristics associated with a better clinical outcome in patients with segment-elevation-myocardial infarction and highlighted the importance of endothelial precursor activity in regenerating infarcted myocardium. Furthermore, it suggests that for these patients with segment-elevation-myocardial infarction, myocardial repair was more dependent on baseline BMC characteristics than on whether the patient underwent intracoronary BMC transplantation. CLINICAL TRIAL REGISTRATION INFORMATION URL http://www.clinicaltrials.gov. Unique identifier: NCT00684021.
Collapse
Affiliation(s)
- Robert C Schutt
- From the Houston Methodist DeBakey Heart and Vascular Center (R.C.S., B.H.T., J.P.C.) and Houston Methodist Research Institute (R.C.S., B.H.T., J.P.C.), TX; Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T.); Cedars-Sinai Heart Institute, Los Angeles, CA (T.D.H.); University of Florida College of Medicine, Gainesville (C.J.P., C.R.C.); Texas Heart Institute, CHI St. Luke's Health, Houston (J.T.W., E.C.P., M.R., A.O., D.A.T.); University of Minnesota School of Medicine, Minneapolis (C.Z.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest, School of Medicine, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (A.B.); Indiana University School of Medicine, Indianapolis (B.H.J.); The University of Texas Health Science Center, School of Public Health, Houston (D.L., S.L.S., L.M.); National Heart, Lung, and Blood Institute, Bethesda, MD (R.F.E.); Stanford University, School of Medicine, CA (J.C.W.); and Kansas University Medical Center, School of Medicine, Kansas City (R.D.S.)
| | - Barry H Trachtenberg
- From the Houston Methodist DeBakey Heart and Vascular Center (R.C.S., B.H.T., J.P.C.) and Houston Methodist Research Institute (R.C.S., B.H.T., J.P.C.), TX; Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T.); Cedars-Sinai Heart Institute, Los Angeles, CA (T.D.H.); University of Florida College of Medicine, Gainesville (C.J.P., C.R.C.); Texas Heart Institute, CHI St. Luke's Health, Houston (J.T.W., E.C.P., M.R., A.O., D.A.T.); University of Minnesota School of Medicine, Minneapolis (C.Z.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest, School of Medicine, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (A.B.); Indiana University School of Medicine, Indianapolis (B.H.J.); The University of Texas Health Science Center, School of Public Health, Houston (D.L., S.L.S., L.M.); National Heart, Lung, and Blood Institute, Bethesda, MD (R.F.E.); Stanford University, School of Medicine, CA (J.C.W.); and Kansas University Medical Center, School of Medicine, Kansas City (R.D.S.)
| | - John P Cooke
- From the Houston Methodist DeBakey Heart and Vascular Center (R.C.S., B.H.T., J.P.C.) and Houston Methodist Research Institute (R.C.S., B.H.T., J.P.C.), TX; Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T.); Cedars-Sinai Heart Institute, Los Angeles, CA (T.D.H.); University of Florida College of Medicine, Gainesville (C.J.P., C.R.C.); Texas Heart Institute, CHI St. Luke's Health, Houston (J.T.W., E.C.P., M.R., A.O., D.A.T.); University of Minnesota School of Medicine, Minneapolis (C.Z.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest, School of Medicine, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (A.B.); Indiana University School of Medicine, Indianapolis (B.H.J.); The University of Texas Health Science Center, School of Public Health, Houston (D.L., S.L.S., L.M.); National Heart, Lung, and Blood Institute, Bethesda, MD (R.F.E.); Stanford University, School of Medicine, CA (J.C.W.); and Kansas University Medical Center, School of Medicine, Kansas City (R.D.S.)
| | - Jay H Traverse
- From the Houston Methodist DeBakey Heart and Vascular Center (R.C.S., B.H.T., J.P.C.) and Houston Methodist Research Institute (R.C.S., B.H.T., J.P.C.), TX; Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T.); Cedars-Sinai Heart Institute, Los Angeles, CA (T.D.H.); University of Florida College of Medicine, Gainesville (C.J.P., C.R.C.); Texas Heart Institute, CHI St. Luke's Health, Houston (J.T.W., E.C.P., M.R., A.O., D.A.T.); University of Minnesota School of Medicine, Minneapolis (C.Z.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest, School of Medicine, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (A.B.); Indiana University School of Medicine, Indianapolis (B.H.J.); The University of Texas Health Science Center, School of Public Health, Houston (D.L., S.L.S., L.M.); National Heart, Lung, and Blood Institute, Bethesda, MD (R.F.E.); Stanford University, School of Medicine, CA (J.C.W.); and Kansas University Medical Center, School of Medicine, Kansas City (R.D.S.)
| | - Timothy D Henry
- From the Houston Methodist DeBakey Heart and Vascular Center (R.C.S., B.H.T., J.P.C.) and Houston Methodist Research Institute (R.C.S., B.H.T., J.P.C.), TX; Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T.); Cedars-Sinai Heart Institute, Los Angeles, CA (T.D.H.); University of Florida College of Medicine, Gainesville (C.J.P., C.R.C.); Texas Heart Institute, CHI St. Luke's Health, Houston (J.T.W., E.C.P., M.R., A.O., D.A.T.); University of Minnesota School of Medicine, Minneapolis (C.Z.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest, School of Medicine, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (A.B.); Indiana University School of Medicine, Indianapolis (B.H.J.); The University of Texas Health Science Center, School of Public Health, Houston (D.L., S.L.S., L.M.); National Heart, Lung, and Blood Institute, Bethesda, MD (R.F.E.); Stanford University, School of Medicine, CA (J.C.W.); and Kansas University Medical Center, School of Medicine, Kansas City (R.D.S.)
| | - Carl J Pepine
- From the Houston Methodist DeBakey Heart and Vascular Center (R.C.S., B.H.T., J.P.C.) and Houston Methodist Research Institute (R.C.S., B.H.T., J.P.C.), TX; Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T.); Cedars-Sinai Heart Institute, Los Angeles, CA (T.D.H.); University of Florida College of Medicine, Gainesville (C.J.P., C.R.C.); Texas Heart Institute, CHI St. Luke's Health, Houston (J.T.W., E.C.P., M.R., A.O., D.A.T.); University of Minnesota School of Medicine, Minneapolis (C.Z.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest, School of Medicine, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (A.B.); Indiana University School of Medicine, Indianapolis (B.H.J.); The University of Texas Health Science Center, School of Public Health, Houston (D.L., S.L.S., L.M.); National Heart, Lung, and Blood Institute, Bethesda, MD (R.F.E.); Stanford University, School of Medicine, CA (J.C.W.); and Kansas University Medical Center, School of Medicine, Kansas City (R.D.S.)
| | - James T Willerson
- From the Houston Methodist DeBakey Heart and Vascular Center (R.C.S., B.H.T., J.P.C.) and Houston Methodist Research Institute (R.C.S., B.H.T., J.P.C.), TX; Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T.); Cedars-Sinai Heart Institute, Los Angeles, CA (T.D.H.); University of Florida College of Medicine, Gainesville (C.J.P., C.R.C.); Texas Heart Institute, CHI St. Luke's Health, Houston (J.T.W., E.C.P., M.R., A.O., D.A.T.); University of Minnesota School of Medicine, Minneapolis (C.Z.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest, School of Medicine, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (A.B.); Indiana University School of Medicine, Indianapolis (B.H.J.); The University of Texas Health Science Center, School of Public Health, Houston (D.L., S.L.S., L.M.); National Heart, Lung, and Blood Institute, Bethesda, MD (R.F.E.); Stanford University, School of Medicine, CA (J.C.W.); and Kansas University Medical Center, School of Medicine, Kansas City (R.D.S.)
| | - Emerson C Perin
- From the Houston Methodist DeBakey Heart and Vascular Center (R.C.S., B.H.T., J.P.C.) and Houston Methodist Research Institute (R.C.S., B.H.T., J.P.C.), TX; Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T.); Cedars-Sinai Heart Institute, Los Angeles, CA (T.D.H.); University of Florida College of Medicine, Gainesville (C.J.P., C.R.C.); Texas Heart Institute, CHI St. Luke's Health, Houston (J.T.W., E.C.P., M.R., A.O., D.A.T.); University of Minnesota School of Medicine, Minneapolis (C.Z.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest, School of Medicine, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (A.B.); Indiana University School of Medicine, Indianapolis (B.H.J.); The University of Texas Health Science Center, School of Public Health, Houston (D.L., S.L.S., L.M.); National Heart, Lung, and Blood Institute, Bethesda, MD (R.F.E.); Stanford University, School of Medicine, CA (J.C.W.); and Kansas University Medical Center, School of Medicine, Kansas City (R.D.S.)
| | - Stephen G Ellis
- From the Houston Methodist DeBakey Heart and Vascular Center (R.C.S., B.H.T., J.P.C.) and Houston Methodist Research Institute (R.C.S., B.H.T., J.P.C.), TX; Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T.); Cedars-Sinai Heart Institute, Los Angeles, CA (T.D.H.); University of Florida College of Medicine, Gainesville (C.J.P., C.R.C.); Texas Heart Institute, CHI St. Luke's Health, Houston (J.T.W., E.C.P., M.R., A.O., D.A.T.); University of Minnesota School of Medicine, Minneapolis (C.Z.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest, School of Medicine, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (A.B.); Indiana University School of Medicine, Indianapolis (B.H.J.); The University of Texas Health Science Center, School of Public Health, Houston (D.L., S.L.S., L.M.); National Heart, Lung, and Blood Institute, Bethesda, MD (R.F.E.); Stanford University, School of Medicine, CA (J.C.W.); and Kansas University Medical Center, School of Medicine, Kansas City (R.D.S.)
| | - David X M Zhao
- From the Houston Methodist DeBakey Heart and Vascular Center (R.C.S., B.H.T., J.P.C.) and Houston Methodist Research Institute (R.C.S., B.H.T., J.P.C.), TX; Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T.); Cedars-Sinai Heart Institute, Los Angeles, CA (T.D.H.); University of Florida College of Medicine, Gainesville (C.J.P., C.R.C.); Texas Heart Institute, CHI St. Luke's Health, Houston (J.T.W., E.C.P., M.R., A.O., D.A.T.); University of Minnesota School of Medicine, Minneapolis (C.Z.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest, School of Medicine, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (A.B.); Indiana University School of Medicine, Indianapolis (B.H.J.); The University of Texas Health Science Center, School of Public Health, Houston (D.L., S.L.S., L.M.); National Heart, Lung, and Blood Institute, Bethesda, MD (R.F.E.); Stanford University, School of Medicine, CA (J.C.W.); and Kansas University Medical Center, School of Medicine, Kansas City (R.D.S.)
| | - Aruni Bhatnagar
- From the Houston Methodist DeBakey Heart and Vascular Center (R.C.S., B.H.T., J.P.C.) and Houston Methodist Research Institute (R.C.S., B.H.T., J.P.C.), TX; Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T.); Cedars-Sinai Heart Institute, Los Angeles, CA (T.D.H.); University of Florida College of Medicine, Gainesville (C.J.P., C.R.C.); Texas Heart Institute, CHI St. Luke's Health, Houston (J.T.W., E.C.P., M.R., A.O., D.A.T.); University of Minnesota School of Medicine, Minneapolis (C.Z.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest, School of Medicine, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (A.B.); Indiana University School of Medicine, Indianapolis (B.H.J.); The University of Texas Health Science Center, School of Public Health, Houston (D.L., S.L.S., L.M.); National Heart, Lung, and Blood Institute, Bethesda, MD (R.F.E.); Stanford University, School of Medicine, CA (J.C.W.); and Kansas University Medical Center, School of Medicine, Kansas City (R.D.S.)
| | - Brian H Johnstone
- From the Houston Methodist DeBakey Heart and Vascular Center (R.C.S., B.H.T., J.P.C.) and Houston Methodist Research Institute (R.C.S., B.H.T., J.P.C.), TX; Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T.); Cedars-Sinai Heart Institute, Los Angeles, CA (T.D.H.); University of Florida College of Medicine, Gainesville (C.J.P., C.R.C.); Texas Heart Institute, CHI St. Luke's Health, Houston (J.T.W., E.C.P., M.R., A.O., D.A.T.); University of Minnesota School of Medicine, Minneapolis (C.Z.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest, School of Medicine, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (A.B.); Indiana University School of Medicine, Indianapolis (B.H.J.); The University of Texas Health Science Center, School of Public Health, Houston (D.L., S.L.S., L.M.); National Heart, Lung, and Blood Institute, Bethesda, MD (R.F.E.); Stanford University, School of Medicine, CA (J.C.W.); and Kansas University Medical Center, School of Medicine, Kansas City (R.D.S.)
| | - Dejian Lai
- From the Houston Methodist DeBakey Heart and Vascular Center (R.C.S., B.H.T., J.P.C.) and Houston Methodist Research Institute (R.C.S., B.H.T., J.P.C.), TX; Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T.); Cedars-Sinai Heart Institute, Los Angeles, CA (T.D.H.); University of Florida College of Medicine, Gainesville (C.J.P., C.R.C.); Texas Heart Institute, CHI St. Luke's Health, Houston (J.T.W., E.C.P., M.R., A.O., D.A.T.); University of Minnesota School of Medicine, Minneapolis (C.Z.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest, School of Medicine, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (A.B.); Indiana University School of Medicine, Indianapolis (B.H.J.); The University of Texas Health Science Center, School of Public Health, Houston (D.L., S.L.S., L.M.); National Heart, Lung, and Blood Institute, Bethesda, MD (R.F.E.); Stanford University, School of Medicine, CA (J.C.W.); and Kansas University Medical Center, School of Medicine, Kansas City (R.D.S.)
| | - Micheline Resende
- From the Houston Methodist DeBakey Heart and Vascular Center (R.C.S., B.H.T., J.P.C.) and Houston Methodist Research Institute (R.C.S., B.H.T., J.P.C.), TX; Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T.); Cedars-Sinai Heart Institute, Los Angeles, CA (T.D.H.); University of Florida College of Medicine, Gainesville (C.J.P., C.R.C.); Texas Heart Institute, CHI St. Luke's Health, Houston (J.T.W., E.C.P., M.R., A.O., D.A.T.); University of Minnesota School of Medicine, Minneapolis (C.Z.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest, School of Medicine, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (A.B.); Indiana University School of Medicine, Indianapolis (B.H.J.); The University of Texas Health Science Center, School of Public Health, Houston (D.L., S.L.S., L.M.); National Heart, Lung, and Blood Institute, Bethesda, MD (R.F.E.); Stanford University, School of Medicine, CA (J.C.W.); and Kansas University Medical Center, School of Medicine, Kansas City (R.D.S.)
| | - Ray F Ebert
- From the Houston Methodist DeBakey Heart and Vascular Center (R.C.S., B.H.T., J.P.C.) and Houston Methodist Research Institute (R.C.S., B.H.T., J.P.C.), TX; Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T.); Cedars-Sinai Heart Institute, Los Angeles, CA (T.D.H.); University of Florida College of Medicine, Gainesville (C.J.P., C.R.C.); Texas Heart Institute, CHI St. Luke's Health, Houston (J.T.W., E.C.P., M.R., A.O., D.A.T.); University of Minnesota School of Medicine, Minneapolis (C.Z.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest, School of Medicine, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (A.B.); Indiana University School of Medicine, Indianapolis (B.H.J.); The University of Texas Health Science Center, School of Public Health, Houston (D.L., S.L.S., L.M.); National Heart, Lung, and Blood Institute, Bethesda, MD (R.F.E.); Stanford University, School of Medicine, CA (J.C.W.); and Kansas University Medical Center, School of Medicine, Kansas City (R.D.S.)
| | - Joseph C Wu
- From the Houston Methodist DeBakey Heart and Vascular Center (R.C.S., B.H.T., J.P.C.) and Houston Methodist Research Institute (R.C.S., B.H.T., J.P.C.), TX; Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T.); Cedars-Sinai Heart Institute, Los Angeles, CA (T.D.H.); University of Florida College of Medicine, Gainesville (C.J.P., C.R.C.); Texas Heart Institute, CHI St. Luke's Health, Houston (J.T.W., E.C.P., M.R., A.O., D.A.T.); University of Minnesota School of Medicine, Minneapolis (C.Z.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest, School of Medicine, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (A.B.); Indiana University School of Medicine, Indianapolis (B.H.J.); The University of Texas Health Science Center, School of Public Health, Houston (D.L., S.L.S., L.M.); National Heart, Lung, and Blood Institute, Bethesda, MD (R.F.E.); Stanford University, School of Medicine, CA (J.C.W.); and Kansas University Medical Center, School of Medicine, Kansas City (R.D.S.)
| | - Shelly L Sayre
- From the Houston Methodist DeBakey Heart and Vascular Center (R.C.S., B.H.T., J.P.C.) and Houston Methodist Research Institute (R.C.S., B.H.T., J.P.C.), TX; Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T.); Cedars-Sinai Heart Institute, Los Angeles, CA (T.D.H.); University of Florida College of Medicine, Gainesville (C.J.P., C.R.C.); Texas Heart Institute, CHI St. Luke's Health, Houston (J.T.W., E.C.P., M.R., A.O., D.A.T.); University of Minnesota School of Medicine, Minneapolis (C.Z.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest, School of Medicine, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (A.B.); Indiana University School of Medicine, Indianapolis (B.H.J.); The University of Texas Health Science Center, School of Public Health, Houston (D.L., S.L.S., L.M.); National Heart, Lung, and Blood Institute, Bethesda, MD (R.F.E.); Stanford University, School of Medicine, CA (J.C.W.); and Kansas University Medical Center, School of Medicine, Kansas City (R.D.S.)
| | - Aaron Orozco
- From the Houston Methodist DeBakey Heart and Vascular Center (R.C.S., B.H.T., J.P.C.) and Houston Methodist Research Institute (R.C.S., B.H.T., J.P.C.), TX; Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T.); Cedars-Sinai Heart Institute, Los Angeles, CA (T.D.H.); University of Florida College of Medicine, Gainesville (C.J.P., C.R.C.); Texas Heart Institute, CHI St. Luke's Health, Houston (J.T.W., E.C.P., M.R., A.O., D.A.T.); University of Minnesota School of Medicine, Minneapolis (C.Z.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest, School of Medicine, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (A.B.); Indiana University School of Medicine, Indianapolis (B.H.J.); The University of Texas Health Science Center, School of Public Health, Houston (D.L., S.L.S., L.M.); National Heart, Lung, and Blood Institute, Bethesda, MD (R.F.E.); Stanford University, School of Medicine, CA (J.C.W.); and Kansas University Medical Center, School of Medicine, Kansas City (R.D.S.)
| | - Claudia Zierold
- From the Houston Methodist DeBakey Heart and Vascular Center (R.C.S., B.H.T., J.P.C.) and Houston Methodist Research Institute (R.C.S., B.H.T., J.P.C.), TX; Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T.); Cedars-Sinai Heart Institute, Los Angeles, CA (T.D.H.); University of Florida College of Medicine, Gainesville (C.J.P., C.R.C.); Texas Heart Institute, CHI St. Luke's Health, Houston (J.T.W., E.C.P., M.R., A.O., D.A.T.); University of Minnesota School of Medicine, Minneapolis (C.Z.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest, School of Medicine, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (A.B.); Indiana University School of Medicine, Indianapolis (B.H.J.); The University of Texas Health Science Center, School of Public Health, Houston (D.L., S.L.S., L.M.); National Heart, Lung, and Blood Institute, Bethesda, MD (R.F.E.); Stanford University, School of Medicine, CA (J.C.W.); and Kansas University Medical Center, School of Medicine, Kansas City (R.D.S.)
| | - Robert D Simari
- From the Houston Methodist DeBakey Heart and Vascular Center (R.C.S., B.H.T., J.P.C.) and Houston Methodist Research Institute (R.C.S., B.H.T., J.P.C.), TX; Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T.); Cedars-Sinai Heart Institute, Los Angeles, CA (T.D.H.); University of Florida College of Medicine, Gainesville (C.J.P., C.R.C.); Texas Heart Institute, CHI St. Luke's Health, Houston (J.T.W., E.C.P., M.R., A.O., D.A.T.); University of Minnesota School of Medicine, Minneapolis (C.Z.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest, School of Medicine, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (A.B.); Indiana University School of Medicine, Indianapolis (B.H.J.); The University of Texas Health Science Center, School of Public Health, Houston (D.L., S.L.S., L.M.); National Heart, Lung, and Blood Institute, Bethesda, MD (R.F.E.); Stanford University, School of Medicine, CA (J.C.W.); and Kansas University Medical Center, School of Medicine, Kansas City (R.D.S.)
| | - Lem Moyé
- From the Houston Methodist DeBakey Heart and Vascular Center (R.C.S., B.H.T., J.P.C.) and Houston Methodist Research Institute (R.C.S., B.H.T., J.P.C.), TX; Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T.); Cedars-Sinai Heart Institute, Los Angeles, CA (T.D.H.); University of Florida College of Medicine, Gainesville (C.J.P., C.R.C.); Texas Heart Institute, CHI St. Luke's Health, Houston (J.T.W., E.C.P., M.R., A.O., D.A.T.); University of Minnesota School of Medicine, Minneapolis (C.Z.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest, School of Medicine, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (A.B.); Indiana University School of Medicine, Indianapolis (B.H.J.); The University of Texas Health Science Center, School of Public Health, Houston (D.L., S.L.S., L.M.); National Heart, Lung, and Blood Institute, Bethesda, MD (R.F.E.); Stanford University, School of Medicine, CA (J.C.W.); and Kansas University Medical Center, School of Medicine, Kansas City (R.D.S.).
| | - Christopher R Cogle
- From the Houston Methodist DeBakey Heart and Vascular Center (R.C.S., B.H.T., J.P.C.) and Houston Methodist Research Institute (R.C.S., B.H.T., J.P.C.), TX; Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T.); Cedars-Sinai Heart Institute, Los Angeles, CA (T.D.H.); University of Florida College of Medicine, Gainesville (C.J.P., C.R.C.); Texas Heart Institute, CHI St. Luke's Health, Houston (J.T.W., E.C.P., M.R., A.O., D.A.T.); University of Minnesota School of Medicine, Minneapolis (C.Z.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest, School of Medicine, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (A.B.); Indiana University School of Medicine, Indianapolis (B.H.J.); The University of Texas Health Science Center, School of Public Health, Houston (D.L., S.L.S., L.M.); National Heart, Lung, and Blood Institute, Bethesda, MD (R.F.E.); Stanford University, School of Medicine, CA (J.C.W.); and Kansas University Medical Center, School of Medicine, Kansas City (R.D.S.)
| | - Doris A Taylor
- From the Houston Methodist DeBakey Heart and Vascular Center (R.C.S., B.H.T., J.P.C.) and Houston Methodist Research Institute (R.C.S., B.H.T., J.P.C.), TX; Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, MN (J.H.T.); Cedars-Sinai Heart Institute, Los Angeles, CA (T.D.H.); University of Florida College of Medicine, Gainesville (C.J.P., C.R.C.); Texas Heart Institute, CHI St. Luke's Health, Houston (J.T.W., E.C.P., M.R., A.O., D.A.T.); University of Minnesota School of Medicine, Minneapolis (C.Z.); Cleveland Clinic Foundation, OH (S.G.E.); Wake Forest, School of Medicine, Winston-Salem, NC (D.X.M.Z.); University of Louisville, School of Medicine, KY (A.B.); Indiana University School of Medicine, Indianapolis (B.H.J.); The University of Texas Health Science Center, School of Public Health, Houston (D.L., S.L.S., L.M.); National Heart, Lung, and Blood Institute, Bethesda, MD (R.F.E.); Stanford University, School of Medicine, CA (J.C.W.); and Kansas University Medical Center, School of Medicine, Kansas City (R.D.S.)
| |
Collapse
|
73
|
Picozza M, Pompilio G, Capogrossi MC. Bone good to the heart: bone marrow cell characteristics and cardiac repair after STEMI in the CCTRN TIME cohort. Circ Res 2015; 116:16-8. [PMID: 25552689 DOI: 10.1161/circresaha.114.305502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mario Picozza
- From the Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy (M.P., M.C.C.); Laboratory of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Milan, Italy (G.P.); and Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy (G.P.)
| | - Giulio Pompilio
- From the Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy (M.P., M.C.C.); Laboratory of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Milan, Italy (G.P.); and Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy (G.P.)
| | - Maurizio C Capogrossi
- From the Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy (M.P., M.C.C.); Laboratory of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino-IRCCS, Milan, Italy (G.P.); and Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy (G.P.).
| |
Collapse
|
74
|
Banerjee S, Ghosh T, Barik S, Das A, Ghosh S, Bhuniya A, Bose A, Baral R. Neem leaf glycoprotein prophylaxis transduces immune dependent stop signal for tumor angiogenic switch within tumor microenvironment. PLoS One 2014; 9:e110040. [PMID: 25391149 PMCID: PMC4229107 DOI: 10.1371/journal.pone.0110040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/12/2014] [Indexed: 01/27/2023] Open
Abstract
We have reported that prophylactic as well as therapeutic administration of neem leaf glycoprotein (NLGP) induces significant restriction of solid tumor growth in mice. Here, we investigate whether the effect of such pretreatment (25µg/mice; weekly, 4 times) benefits regulation of tumor angiogenesis, an obligate factor for tumor progression. We show that NLGP pretreatment results in vascular normalization in melanoma and carcinoma bearing mice along with downregulation of CD31, VEGF and VEGFR2. NLGP pretreatment facilitates profound infiltration of CD8+ T cells within tumor parenchyma, which subsequently regulates VEGF-VEGFR2 signaling in CD31+ vascular endothelial cells to prevent aberrant neovascularization. Pericyte stabilization, VEGF dependent inhibition of VEC proliferation and subsequent vascular normalization are also experienced. Studies in immune compromised mice confirmed that these vascular and intratumoral changes in angiogenic profile are dependent upon active adoptive immunity particularly those mediated by CD8+ T cells. Accumulated evidences suggest that NLGP regulated immunomodulation is active in tumor growth restriction and normalization of tumor angiogenesis as well, thereby, signifying its clinical translation.
Collapse
Affiliation(s)
- Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Subhasis Barik
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Arnab Das
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Sarbari Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| |
Collapse
|
75
|
Lee JY, Park S, Min WS, Kim HJ. Restoration of natural killer cell cytotoxicity by VEGFR-3 inhibition in myelogenous leukemia. Cancer Lett 2014; 354:281-289. [DOI: 10.1016/j.canlet.2014.08.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/19/2014] [Accepted: 08/19/2014] [Indexed: 01/21/2023]
|
76
|
Ban K, Park HJ, Kim S, Andukuri A, Cho KW, Hwang JW, Cha HJ, Kim SY, Kim WS, Jun HW, Yoon YS. Cell therapy with embryonic stem cell-derived cardiomyocytes encapsulated in injectable nanomatrix gel enhances cell engraftment and promotes cardiac repair. ACS NANO 2014; 8:10815-25. [PMID: 25210842 PMCID: PMC4212793 DOI: 10.1021/nn504617g] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/11/2014] [Indexed: 05/25/2023]
Abstract
A significant barrier to the therapeutic use of stem cells is poor cell retention in vivo. Here, we evaluate the therapeutic potential and long-term engraftment of cardiomyocytes (CMs) derived from mouse embryonic stem cells (mESCs) encapsulated in an injectable nanomatrix gel consisting of peptide amphiphiles incorporating cell adhesive ligand Arg-Gly-Asp-Ser (PA-RGDS) in experimental myocardial infarction (MI). We cultured rat neonatal CMs in PA-RGDS for 7 days and found that more than 90% of the CMs survived. Next, we intramyocardially injected mouse CM cell line HL-1 CMs with or without PA-RGDS into uninjured hearts. Histologic examination and flow cytometry analysis of digested heart tissues showed approximately 3-fold higher engraftment in the mice that received CMs with PA-RGDS compared to those without PA-RGDS. We further investigated the therapeutic effects and long-term engraftment of mESC-CMs with PA-RGDS on MI in comparison with PBS control, CM-only, and PA-RGDS only. Echocardiography demonstrated that the CM-only and CM+PA-RGDS groups showed higher cardiac function at week 2 compared to other groups. However, from 3 weeks, higher cardiac function was maintained only in the CM+PA-RGDS group; this was sustained for 12 weeks. Confocal microscopic examination of the cardiac tissues harvested at 14 weeks demonstrated sustained engraftment and integration of mESC-CMs into host myocardium in the CM+PA-RGDS group only. This study for the first time demonstrated that PA-RGDS encapsulation can enhance survival of mESC-derived CMs and improve cardiac function post-MI. This nanomatrix gel-mediated stem cell therapy can be a promising option for treating MI.
Collapse
Affiliation(s)
- Kiwon Ban
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Hun-Jun Park
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sangsung Kim
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Adinarayana Andukuri
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Kyu-Won Cho
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Jung Wook Hwang
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Ho Jin Cha
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Sang Yoon Kim
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Woan-Sang Kim
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Ho-Wook Jun
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35203, United States
| | - Young-Sup Yoon
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| |
Collapse
|
77
|
Mao SZ, Ye X, Liu G, Song D, Liu SF. An obligatory role of NF-κB in mediating bone marrow derived endothelial progenitor cell recruitment and proliferation following endotoxemic multiple organ injury in mice. PLoS One 2014; 9:e111087. [PMID: 25333282 PMCID: PMC4205081 DOI: 10.1371/journal.pone.0111087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Recruitment of bone marrow derived endothelial progenitor cells (BMDEPCs) alleviates multiple organ injury (MOI) and improves outcomes. However, mechanisms mediating BMDEPC recruitment following septic MOI remain largely unknown. This study characterized the kinetics of BMDEPC recruitment and proliferation and defined the role of NF-κB in regulating BMDEPC recruitment and proliferation. METHODS AND MAIN FINDINGS Chimeric mice with an intact or disrupted NF-κB p50 gene and BMDEPC-restricted expression of green fluorescent protein were created and injected with LPS (2 mg/kg, i.p.). BMDEPC recruitment and proliferation in multiple organs were quantified. BMDEPC recruitment and proliferation are highly organ-dependent. Lungs had the highest number of BMDEPC recruitment, whereas heart, liver and kidney had only a small fraction of the number of BMDEPCs in lungs. Number of proliferating BMDEPCs was several-fold higher in lungs than in other 3 organs. Kinetically, BMDEPC recruitment into different organs showed different time course profiles. NF-κB plays obligatory roles in mediating BMDEPC recruitment and proliferation. Universal deletion of NF-κB p50 gene inhibited LPS-induced BMDEPC recruitment and proliferation by 95% and 69% in heart. However, the contribution of NF-κB to these regulations varies significantly between organs. In liver, universal p50 gene deletion reduced LPS-induced BMDEPC recruitment and proliferation only by 49% and 35%. NF-κB activities in different tissue compartments play distinct roles. Selective p50 gene deletion either in stromal/parenchymal cells or in BM/blood cells inhibited BMDEPC recruitment by a similar extent. However, selective p50 gene deletion in BM/blood cells inhibited, but in stromal/parenchymal cells augmented BMDEPC proliferation. CONCLUSIONS BMDEPC recruitment and proliferation display different kinetics in different organs following endotoxemic MOI. NF-κB plays obligatory and organ-dependent roles in regulating BMDEPC recruitment and proliferation. NF-κB activities in different tissue compartments play distinct roles in regulating BMDEPC proliferation.
Collapse
Affiliation(s)
- Sun-Zhong Mao
- Centers for Heart and Lung Research and Pulmonary and Critical Care Medicine, the Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaobing Ye
- Centers for Heart and Lung Research and Pulmonary and Critical Care Medicine, the Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Gang Liu
- Centers for Heart and Lung Research and Pulmonary and Critical Care Medicine, the Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Dongmei Song
- Centers for Heart and Lung Research and Pulmonary and Critical Care Medicine, the Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Shu Fang Liu
- Centers for Heart and Lung Research and Pulmonary and Critical Care Medicine, the Feinstein Institute for Medical Research, Manhasset, New York, United States of America
- Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
78
|
Kim SW, Houge M, Brown M, Davis ME, Yoon YS. Cultured human bone marrow-derived CD31(+) cells are effective for cardiac and vascular repair through enhanced angiogenic, adhesion, and anti-inflammatory effects. J Am Coll Cardiol 2014; 64:1681-94. [PMID: 25323256 PMCID: PMC4201782 DOI: 10.1016/j.jacc.2014.06.1204] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/26/2014] [Accepted: 06/30/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Cell therapy for cardiovascular disease has been limited by low engraftment of administered cells and modest therapeutic effects. Bone marrow (BM) -derived CD31(+) cells are a promising cell source owing to their high angiovasculogenic and paracrine activities. OBJECTIVES This study sought to identify culture conditions that could augment the cell adhesion, angiogenic, and anti-inflammatory activities of BM-derived CD31(+) cells, and to determine whether these cultured CD31(+) cells are effective for cardiac and vascular repair. METHODS CD31(+) cells were isolated from human BM by magnetic-activated cell sorting and cultured for 10 days under hematopoietic stem cell, mesenchymal stem cell, or endothelial cell culture conditions. These cells were characterized by adhesion, angiogenesis, and inflammatory assays. The best of the cultured cells were implanted into myocardial infarction (MI) and hindlimb ischemia (HLI) models to determine therapeutic effects and underlying mechanisms. RESULTS The CD31(+) cells cultured in endothelial cell medium (EC-CD31(+) cells) showed the highest adhesion and angiogenic activities and lowest inflammatory properties in vitro compared with uncultured or other cultured CD31(+) cells. When implanted into mouse MI or HLI models, EC-CD31(+) cells improved cardiac function and repaired limb ischemia to a greater extent than uncultured CD31(+) cells. Histologically, injected EC-CD31(+) cells exhibited higher retention, neovascularization, and cardiomyocyte proliferation. Importantly, cell retention and endothelial transdifferentiation was sustained up to 1 year. CONCLUSIONS Short-term cultured EC-CD31(+) cells have higher cell engraftment, vessel-formation, cardiomyocyte proliferation, and anti-inflammatory potential, are highly effective for both cardiac and peripheral vascular repair, and enhance survival of mice with heart failure. These cultured CD31(+) cells may be a promising source for treating ischemic cardiovascular diseases.
Collapse
Affiliation(s)
- Sung-Whan Kim
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia; Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Incheon, South Korea; International St. Mary's Hospital, Incheon, South Korea; Department of Anatomy and Cell Biology and Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, Busan, South Korea; Department of Cardiology, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Mackenzie Houge
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Milton Brown
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia
| | - Michael E Davis
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia
| | - Young-Sup Yoon
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
79
|
Jadczyk T, Faulkner A, Madeddu P. Stem cell therapy for cardiovascular disease: the demise of alchemy and rise of pharmacology. Br J Pharmacol 2014; 169:247-68. [PMID: 22712727 DOI: 10.1111/j.1476-5381.2012.01965.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Regenerative medicine holds great promise as a way of addressing the limitations of current treatments of ischaemic disease. In preclinical models, transplantation of different types of stem cells or progenitor cells results in improved recovery from ischaemia. Furthermore, experimental studies indicate that cell therapy influences a spectrum of processes, including neovascularization and cardiomyogenesis as well as inflammation, apoptosis and interstitial fibrosis. Thus, distinct strategies might be required for specific regenerative needs. Nonetheless, clinical studies have so far investigated a relatively small number of options, focusing mainly on the use of bone marrow-derived cells. Rapid clinical translation resulted in a number of small clinical trials that do not have sufficient power to address the therapeutic potential of the new approach. Moreover, full exploitation has been hindered so far by the absence of a solid theoretical framework and inadequate development plans. This article reviews the current knowledge on cell therapy and proposes a model theory for interpretation of experimental and clinical outcomes from a pharmacological perspective. Eventually, with an increased association between cell therapy and traditional pharmacotherapy, we will soon need to adopt a unified theory for understanding how the two practices additively interact for a patient's benefit.
Collapse
Affiliation(s)
- T Jadczyk
- Third Division of Cardiology, Medical University of Silesia, Katovice, Poland
| | | | | |
Collapse
|
80
|
Lee S, Yoon YS. Revisiting cardiovascular regeneration with bone marrow-derived angiogenic and vasculogenic cells. Br J Pharmacol 2014; 169:290-303. [PMID: 22250888 DOI: 10.1111/j.1476-5381.2012.01857.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cell-based therapy has emerged as a promising therapy for cardiovascular disease. Particularly, bone marrow (BM)-derived cells have been most extensively investigated and have shown encouraging results in preclinical studies. Clinical trials, however, have demonstrated split results in post-myocardial infarction cardiac repair. Mechanistically, transdifferentiation of BM-derived cells into cardiovascular tissue demonstrated by earlier studies is now known to play a minor role in functional recovery, and humoral and paracrine effects turned out to be main mechanisms responsible for tissue regeneration and functional recovery. With this advancement in the mechanistic insight of BM-derived cells, new efforts have been made to identify cell population, which can be readily isolated and obtained in sufficient quantity without mobilization and have higher therapeutic potential. Recently, haematopoietic CD31(+) cells, which are more prevalent in bone marrow and peripheral blood, have been revealed to have angiogenic and vasculogenic activities and strong potential for therapeutic neovascularization in ischaemic tissues. This article will cover the recent advances in BM-derived cell-based therapy and implication of CD31(+) cells.
Collapse
Affiliation(s)
- Sangho Lee
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
81
|
CD31+ cell transplantation promotes recovery from peripheral neuropathy. Mol Cell Neurosci 2014; 62:60-7. [DOI: 10.1016/j.mcn.2014.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/20/2014] [Accepted: 08/12/2014] [Indexed: 12/16/2022] Open
|
82
|
Kwon SM, Lee JH, Lee SH, Jung SY, Kim DY, Kang SH, Yoo SY, Hong JK, Park JH, Kim JH, Kim SW, Kim YJ, Lee SJ, Kim HG, Asahara T. Cross talk with hematopoietic cells regulates the endothelial progenitor cell differentiation of CD34 positive cells. PLoS One 2014; 9:e106310. [PMID: 25166961 PMCID: PMC4148437 DOI: 10.1371/journal.pone.0106310] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/29/2014] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Despite the crucial role of endothelial progenitor cells (EPCs) in vascular regeneration, the specific interactions between EPCs and hematopoietic cells remain unclear. METHODS In EPC colony forming assays, we first demonstrated that the formation of EPC colonies was drastically increased in the coculture of CD34+ and CD34- cells, and determined the optimal concentrations of CD34+ cells and CD34- cells for spindle-shaped EPC differentiation. RESULTS Functionally, the coculture of CD34+ and CD34- cells resulted in a significant enhancement of adhesion, tube formation, and migration capacity compared with culture of CD34+ cells alone. Furthermore, blood flow recovery and capillary formation were remarkably increased by the coculture of CD34+ and CD34- cells in a murine hind-limb ischemia model. To elucidate further the role of hematopoietic cells in EPC differentiation, we isolated different populations of hematopoietic cells. T lymphocytes (CD3+) markedly accelerated the early EPC status of CD34+ cells, while macrophages (CD11b+) or megakaryocytes (CD41+) specifically promoted large EPC colonies. CONCLUSION Our results suggest that specific populations of hematopoietic cells play a role in the EPC differentiation of CD34+ cells, a finding that may aid in the development of a novel cell therapy strategy to overcome the quantitative and qualitative limitations of EPC therapy.
Collapse
Affiliation(s)
- Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan, Korea
- * E-mail: (SMK); (TA)
| | - Jun-Hee Lee
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Sang-Hun Lee
- Soonchunhyang Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Seok-Yun Jung
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Da-Yeon Kim
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Song-Hwa Kang
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan, Korea
| | - So-Young Yoo
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Jong-Kyu Hong
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Ji-Hye Park
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Jung-Hee Kim
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Sung-Wook Kim
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Yeon-Ju Kim
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Sun-Jin Lee
- Laboratory for Vascular Medicine and Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Hwi-Gon Kim
- Department of Obstetrics and Gynecology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Takayuki Asahara
- Department Regenerative Medicine Science, Tokai University School of Medicine, Isehara, Japan
- * E-mail: (SMK); (TA)
| |
Collapse
|
83
|
Kim H, Han JW, Lee JY, Choi YJ, Sohn YD, Song M, Yoon YS. Diabetic Mesenchymal Stem Cells Are Ineffective for Improving Limb Ischemia Due to Their Impaired Angiogenic Capability. Cell Transplant 2014; 24:1571-84. [PMID: 25008576 DOI: 10.3727/096368914x682792] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The purpose of this study was to investigate the effects of diabetes on mesenchymal stem cells (MSCs) in terms of their angiogenic and therapeutic potential for repairing tissue ischemia. We culture-isolated MSCs from streptozotocin-induced diabetic rats (D-MSCs) and compared their proliferation, differentiation, and angiogenic effects with those from normal rats (N-MSCs). The angiogenic effects of MSCs were evaluated by real-time PCR, in vitro tube formation assay, and transplantation of the MSCs into a hindlimb ischemia model followed by laser Doppler perfusion imaging. The number of MSCs derived from diabetic rats was smaller, and their proliferation rate was slower than N-MSCs. Upon induction of differentiation, the osteogenic and angiogenic differentiation of D-MSCs were aberrant compared to N-MSCs. The expression of angiogenic factors was lower in D-MSCs than N-MSCs. D-MSCs cocultured with endothelial cells resulted in decreased tube formation compared to N-MSCs. D-MSCs were ineffective to improve hindlimb ischemia and showed lower capillary density and angiogenic gene expression in ischemic limbs than N-MSCs. D-MSCs have defective proliferation and angiogenic activities and are ineffective for repairing hindlimb ischemia. Newer measures are needed before MSCs can be employed as a source for autologous cell therapy.
Collapse
Affiliation(s)
- Hyongbum Kim
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Wang J, Fu X, Jiang C, Yu L, Wang M, Han W, Liu L, Wang J. Bone marrow mononuclear cell transplantation promotes therapeutic angiogenesis via upregulation of the VEGF-VEGFR2 signaling pathway in a rat model of vascular dementia. Behav Brain Res 2014; 265:171-80. [PMID: 24589546 DOI: 10.1016/j.bbr.2014.02.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 01/07/2023]
Abstract
Bone marrow mononuclear cells (BMMNCs) are important for angiogenesis after stroke. We investigated the effects of BMMNCs on cognitive function, angiogenesis, and the vascular endothelial growth factor (VEGF)-VEGF receptor 2 (VEGFR2) signaling pathway in a rat model of vascular dementia. We transplanted BMMNCs into rats that had undergone permanent bilateral occlusion of the common carotid arteries (2VO) and observed their migration in vivo. On day 28, we assessed cognitive function with the Morris Water Maze test and examined vascular density and white matter damage within the corpus striatum by staining with fluorescein lycopersicon esculentum (tomato) lectin or Luxol fast blue. We evaluated expression of VEGF, rapidly accelerated fibrosarcoma 1 (Raf1), and extracellular-signal-regulated kinases 1 and 2 (ERK1/2) in the ischemic hemisphere by Western blot analysis on day 7 after cell transplantation. Contribution of the VEGF-VEGFR2 signaling pathway was confirmed by using VEGFR2 inhibitor SU5416. BMMNCs penetrated the blood-brain barrier and reached the ischemic cortex and white matter or incorporated into vascular walls of 2VO rats. BMMNC-treated 2VO rats had better learning and memory, higher vascular density, and less white matter damage than did vehicle-treated rats. The beneficial effects of BMMNCs were abolished by pretreatment of rats with SU5416. Protein expression of VEGF and phosphorylated Raf1 and ERK1/2 was also significantly increased by BMMNC treatment, but this upregulation was reversed by SU5416. BMMNCs can enhance angiogenesis, reduce white matter damage, and promote cognitive recovery in 2VO rats. The angiogenic effect may result from upregulation of the VEGF-VEGFR2 signaling pathway.
Collapse
Affiliation(s)
- Jianping Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Xiaojie Fu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Lie Yu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Menghan Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Wei Han
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Liu Liu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
85
|
Prognostic significance of circulating and endothelial progenitor cell markers in type 2 diabetic foot. Int J Vasc Med 2014; 2014:589412. [PMID: 24624298 PMCID: PMC3929532 DOI: 10.1155/2014/589412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 11/10/2013] [Indexed: 12/18/2022] Open
Abstract
Objective. We studied circulating precursor cells (CPC) in type 2 diabetes mellitus (T2DM) with neuropathic foot lesions with or without critical limb ischemia and relationships between endothelial precursor cells (EPC) and peripheral neuropathy. Methods and Subjects. We measured peripheral blood CD34, CD133, and CD45 markers for CPC and KDR, CD31 markers for EPC by citofluorimetry and systemic neural nociceptor CGRP (calcitonin gene related protein) by ELISA in 8 healthy controls (C) and 62 T2DM patients: 14 with neuropathy (N), 20 with neuropathic foot lesions (N1), and 28 with neuroischemic recent revascularized (N2) foot lesions. Timing of lesions was: acute (until 6 weeks), healed, and not healed. Results. CD34+ and CD133+ were reduced in N, N1, and N2 versus C, and CD34+ were lower in N2 versus N1 (P = 0.03). In N2 CD34+KDR+ remain elevated in healed versus chronic lesions and, in N1 CD133+31+ were elevated in acute lesions. CGRP was reduced in N2 and N1 versus C (P < 0.04 versus C 26 ± 2 pg/mL). CD34+KDR+ correlated in N2 with oximetry and negatively in N1 with CGRP. Conclusions. CD34+ CPC are reduced in diabetes with advanced complications and diabetic foot. CD34+KDR+ and CD31+133+ EPC differentiation could have a prognostic and therapeutic significance in the healing process of neuropathic and neuroischemic lesions.
Collapse
|
86
|
Soumya SJ, Binu S, Helen A, Reddanna P, Sudhakaran PR. 15(S)-HETE-induced angiogenesis in adipose tissue is mediated through activation of PI3K/Akt/mTOR signaling pathway. Biochem Cell Biol 2013; 91:498-505. [PMID: 24219292 DOI: 10.1139/bcb-2013-0037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chronic low-grade inflammation underlies obesity and associated metabolic dysfunctions. Lipoxygenase pathways are activated in adipose tissue during obese conditions. Since adipogenesis is associated with angiogenesis, the present study was designed to examine the role of 15-lipoxygenase metabolite, 15(S)-hydroxyeicosatetraenoic acid [15(S)-HETE] on angiogenesis in adipose tissue. Results showed that 15(S)-HETE induced sprouting in fat pad stromovascular tissues, induced morphological changes relevant to angiogenesis in endothelial cells derived from adipose tissue, upregulated the production of CD31, upregulated the gene level expression and production of vascular endothelial growth factor (VEGF), indicating the pro-angiogenic effect of 15(S)-HETE. LY294002, an inhibitor of PI3K-Akt pathway, and rapamycin, inhibitor of mammalian target of rapamycin (mTOR), significantly reversed the effect of 15(S)-HETE. 15(S)-HETE also induced activation of Akt and mTOR. These observations suggest that 15(S)-HETE stimulates angiogenesis in adipose tissue through activation of PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Sasikumar J Soumya
- a Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala 695 581, India
| | | | | | | | | |
Collapse
|
87
|
Circulation Research Thematic Synopsis: stem cells & cardiac progenitor cells. Circ Res 2013; 113:e10-29. [PMID: 23833297 DOI: 10.1161/circresaha.113.301919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
88
|
Toupadakis CA, Granick JL, Sagy M, Wong A, Ghassemi E, Chung DJ, Borjesson DL, Yellowley CE. Mobilization of endogenous stem cell populations enhances fracture healing in a murine femoral fracture model. Cytotherapy 2013; 15:1136-47. [PMID: 23831362 DOI: 10.1016/j.jcyt.2013.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 03/26/2013] [Accepted: 05/08/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND AIMS Delivery of bone marrow-derived stem and progenitor cells to the site of injury is an effective strategy to enhance bone healing. An alternate approach is to mobilize endogenous, heterogeneous stem cells that will home to the site of injury. AMD3100 is an antagonist of the chemokine receptor 4 (CXCR4) that rapidly mobilizes stem cell populations into peripheral blood. Our hypothesis was that increasing circulating numbers of stem and progenitor cells using AMD3100 will improve bone fracture healing. METHODS A transverse femoral fracture was induced in C57BL/6 mice, after which they were subcutaneously injected for 3 d with AMD3100 or saline control. Mesenchymal stromal cells, hematopoietic stem and progenitor cells and endothelial progenitor cells in the peripheral blood and bone marrow were evaluated by means of flow cytometry, automated hematology analysis and cell culture 24 h after injection and/or fracture. Healing was assessed up to 84 d after fracture by histomorphometry and micro-computed tomography. RESULTS AMD3100 injection resulted in higher numbers of circulating mesenchymal stromal cells, hematopoietic stem cells and endothelial progenitor cells. Micro-computed tomography data demonstrated that the fracture callus was significantly larger compared with the saline controls at day 21 and significantly smaller (remodeled) at day 84. AMD3100-treated mice have a significantly higher bone mineral density than do saline-treated counterparts at day 84. CONCLUSIONS Our data demonstrate that early cell mobilization had significant positive effects on healing throughout the regenerative process. Rapid mobilization of endogenous stem cells could provide an effective alternative strategy to cell transplantation for enhancing tissue regeneration.
Collapse
Affiliation(s)
- Chrisoula A Toupadakis
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Kim WS, Lee S, Yoon YS. Cardiovascular repair with bone marrow-derived cells. Blood Res 2013; 48:76-86. [PMID: 23826576 PMCID: PMC3698412 DOI: 10.5045/br.2013.48.2.76] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 12/31/2022] Open
Abstract
While bone marrow (BM)-derived cells have been comprehensively studied for their propitious pre-clinical results, clinical trials have shown controversial outcomes. Unlike previously acknowledged, more recent studies have now confirmed that humoral and paracrine effects are the key mechanisms for tissue regeneration and functional recovery, instead of transdifferentiation of BM-derived cells into cardiovascular tissues. The progression of the understanding of BM-derived cells has further led to exploring efficient methods to isolate and obtain, without mobilization, sufficient number of cell populations that would eventually have a higher therapeutic potential. As such, hematopoietic CD31+ cells, prevalent in both bone marrow and peripheral blood, have been discovered, in recent studies, to have angiogenic and vasculogenic activities and to show strong potential for therapeutic neovascularization in ischemic tissues. This article will discuss recent advancement on BM-derived cell therapy and the implication of newly discovered CD31+ cells.
Collapse
Affiliation(s)
- Woan-Sang Kim
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, GA, USA
| | | | | |
Collapse
|
90
|
Chang P, Qu Y, Liu Y, Cui S, Zhu D, Wang H, Jin X. Multi-therapeutic effects of human adipose-derived mesenchymal stem cells on radiation-induced intestinal injury. Cell Death Dis 2013; 4:e685. [PMID: 23788042 PMCID: PMC3698545 DOI: 10.1038/cddis.2013.178] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Radiation-induced intestinal injuries (RIII) commonly occur in patients who suffer from pelvic or abdominal cancer. However, current management of these injuries is ineffective. Recently, mesenchymal stem cells (MSCs) have been extensively used in regenerative medicine and have achieved a high level of efficacy. In the present study, we hypothesised that human adipose-derived mesenchymal stem cells (hAd-MSCs) could be used as potential tools to heal RIII. We observed that adult Sprague-Dawley rats that received whole-abdominal irradiation benefitted from hAd-MSC injection. hAd-MSCs had RIII-healing effects, including anti-inflammation, neovascularisation and maintenance of epithelium homeostasis, as indicated by elevated serum IL-10, upregulation of vascular endothelial growth factor, basic fibroblast growth factor and epidermal growth factor in irradiated intestine, mobilisation of CD31-positive haematopoietic stem cells or haematopoietic progenitor cells, and the prolonged presence of Bmi1-positive cells within crypts. Consequently, after hAd-MSC treatment, irradiated rats survived longer than non-treated animals. These results suggest that hAd-MSCs have therapeutic potential for RIII management.
Collapse
Affiliation(s)
- P Chang
- Cancer Center, The First Bethune Hospital of Jilin University, Changchun 130021, China
| | | | | | | | | | | | | |
Collapse
|
91
|
Ge Y, Cheng S, Larson MG, Ghorbani A, Martin RP, Klein RJ, O'Donnell CJ, Vasan RS, Shaw SY, Wang TJ, Cohen KS. Circulating CD31+ leukocyte frequency is associated with cardiovascular risk factors. Atherosclerosis 2013; 229:228-33. [PMID: 23701996 DOI: 10.1016/j.atherosclerosis.2013.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 03/01/2013] [Accepted: 04/07/2013] [Indexed: 01/09/2023]
Abstract
OBJECTIVES CD31 identifies a heterogeneous population of cells in the blood, consisting of mature leukocytes and platelets, as well as smaller numbers of endothelial and progenitor cells. Because unfractionated CD31+ blood cells have demonstrated angiogenic properties in vivo, we hypothesized that circulating CD31+ cells would be related to the presence of cardiovascular risk factors in humans. METHODS AND RESULTS We studied 1487 participants, free of cardiovascular disease, from the Framingham Offspring Study. Using anti-human CD31 and CD45 antibodies, distinct CD31+/CD45+ leukocyte populations were enumerated in blood samples by FACS analysis. We used linear regression analyses to investigate the relation of each cell phenotype with cardiovascular risk factors. We identified 3 distinct leukocyte populations: CD31-, CD31 dim, and CD31 bright cells. Using forward/side scatter analyses, CD31- and CD31 dim cells mapped to lymphoid gates while CD31 bright cells were monocytoid. In multivariable analyses, higher frequency of CD31 bright cells was associated with older age, male sex, HDL cholesterol, and CRP (all P < 0.01). In contrast, CD31 dim was inversely associated with age, male sex, CRP, and smoking (all P < 0.01). Framingham Risk Score was positively associated with CD31 bright frequency (P = 0.002), and negatively associated with CD31 dim frequency (P = 0.020). CONCLUSIONS CD31+ staining identifies 2 major leukocyte populations, CD31 bright and CD31 dim, which demonstrated significant and opposite associations with cardiovascular risk in humans. Further research is needed to define the biological and potential therapeutic roles of CD31+ subpopulations in vascular disease.
Collapse
Affiliation(s)
- Yin Ge
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Lee MY, Yu JH, Kim JY, Seo JH, Park ES, Kim CH, Kim H, Cho SR. Alteration of synaptic activity-regulating genes underlying functional improvement by long-term exposure to an enriched environment in the adult brain. Neurorehabil Neural Repair 2013; 27:561-74. [PMID: 23558143 DOI: 10.1177/1545968313481277] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Housing animals in an enriched environment (EE) enhances behavioral function. However, the mechanism underlying this EE-mediated functional improvement and the resultant changes in gene expression have yet to be elucidated. OBJECTIVES We attempted to investigate the underlying mechanisms associated with long-term exposure to an EE by evaluating gene expression patterns. METHODS We housed 6-week-old CD-1 (ICR) mice in standard cages or an EE comprising a running wheel, novel objects, and social interaction for 2 months. Motor and cognitive performances were evaluated using the rotarod test and passive avoidance test, and gene expression profile was investigated in the cerebral hemispheres using microarray and gene set enrichment analysis (GSEA). RESULTS In behavioral assessment, an EE significantly enhanced rotarod performance and short-term working memory. Microarray analysis revealed that genes associated with neuronal activity were significantly altered by an EE. GSEA showed that genes involved in synaptic transmission and postsynaptic signal transduction were globally upregulated, whereas those associated with reuptake by presynaptic neurotransmitter transporters were downregulated. In particular, both microarray and GSEA demonstrated that EE exposure increased opioid signaling, acetylcholine release cycle, and postsynaptic neurotransmitter receptors but decreased Na+ / Cl- -dependent neurotransmitter transporters, including dopamine transporter Slc6a3 in the brain. Western blotting confirmed that SLC6A3, DARPP32 (PPP1R1B), and P2RY12 were largely altered in a region-specific manner. CONCLUSION An EE enhanced motor and cognitive function through the alteration of synaptic activity-regulating genes, improving the efficient use of neurotransmitters and synaptic plasticity by the upregulation of genes associated with postsynaptic receptor activity and downregulation of presynaptic reuptake by neurotransmitter transporters.
Collapse
Affiliation(s)
- Min-Young Lee
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Bieback K, Vinci M, Elvers-Hornung S, Bartol A, Gloe T, Czabanka M, Klüter H, Augustin H, Vajkoczy P. Recruitment of human cord blood-derived endothelial colony-forming cells to sites of tumor angiogenesis. Cytotherapy 2013; 15:726-39. [PMID: 23491253 DOI: 10.1016/j.jcyt.2013.01.215] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/18/2012] [Accepted: 01/29/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND AIMS Endothelial progenitor cells (EPCs) specifically home to sites of malignant growth, rendering them attractive for anti-cancer therapies. Data are conflicting on the phenotype and quantitative contribution toward tumor angiogenesis based on differing culture assays to outgrow EPCs. To evaluate the origin and early phenotype of EPCs and to define a population with enhanced tumor-targeting capacity, we evaluated a hierarchy of cord blood-derived EPCs modeling the multi-step nature of tumor homing. METHODS CD34(+) mononuclear cells were isolated from fresh cord blood and cultured to derive endothelial colony-forming cells (ECFCs). Human umbilical vein endothelial cells (HUVECs) served as control. Using intra-vital microscopy, the recruitment was analyzed in mice bearing C6 xenografts. Adhesion, migration, transmigration and differentiation were further addressed. RESULTS Within the primary passage, ECFCs underwent a rapid maturation from a CD45(+) and CD31(+) phenotype to a CD45(-) and endothelial marker positive phenotype. Assessing in vivo tumor recruitment, ECFCs had the highest activity in all steps analyzed. In vitro, ECFCs demonstrated significantly higher adhesion under static and flow conditions. Similarly, ECFCs exhibited highest migratory and trans-migratory activity toward tumor-conditioned medium. On subcutaneous implantation, only ECFCs formed blood vessels covered with perivascular cells, similar to HUVECs. CONCLUSIONS Our study indicates that ECFCs emerge from a CD45(+) and CD31(+) progenitor and rapidly mature in culture. ECFCs have a significantly higher potential for tumor targeting than non-cultured CD34(+) cells and HUVECs. They are ideal candidates for future cell-based anti-cancer therapies.
Collapse
Affiliation(s)
- Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Sohn YD, Somasuntharam I, Che PL, Jayswal R, Murthy N, Davis ME, Yoon YS. Induction of pluripotency in bone marrow mononuclear cells via polyketal nanoparticle-mediated delivery of mature microRNAs. Biomaterials 2013; 34:4235-41. [PMID: 23489923 DOI: 10.1016/j.biomaterials.2013.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/01/2013] [Indexed: 12/20/2022]
Abstract
Since the successful generation of induced pluripotent stem cells (iPSC) from adult somatic cells using integrating-viral methods, various methods have been tried for iPSC generation using non-viral and non-integrating technique for clinical applications. Recently, various non-viral approaches such as protein, mRNA, microRNA, and small molecule transduction were developed to avoid genomic integration and generate stem cell-like cells from mouse and human fibroblasts. Despite these successes, there has been no successful generation of iPSC from bone marrow (BM)-derived hematopoietic cells derived using non-viral methods to date. Previous reports demonstrate the ability of polymeric micro and nanoparticles made from polyketals to deliver various molecules to macrophages. MicroRNA-loaded nanoparticles were created using the polyketal polymer PK3 (PK3-miR) and delivered to somatic cells for 6 days, resulting in the formation of colonies. Isolated cells from these colonies were assayed and substantial induction of the pluripotency markers Oct4, Sox2, and Nanog were detected. Moreover, colonies transferred to feeder layers also stained positive for pluripotency markers including SSEA-1. Here, we demonstrate successful activation of pluripotency-associated genes in mouse BM-mononuclear cells using embryonic stem cell (ESC)-specific microRNAs encapsulated in the acid sensitive polyketal PK3. These reprogramming results demonstrate that a polyketal-microRNA delivery vehicle can be used to generate various reprogrammed cells without permanent genetic manipulation in an efficient manner.
Collapse
Affiliation(s)
- Young-Doug Sohn
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
A VEGFR-3 Antagonist Increases IFN-γ Expression on Low Functioning NK Cells in Acute Myeloid Leukemia. J Clin Immunol 2013; 33:826-37. [DOI: 10.1007/s10875-013-9877-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 02/04/2013] [Indexed: 02/02/2023]
|
96
|
Abstract
BACKGROUND The role of bone marrow-derived cells in stimulating angiogenesis, vascular repair or remodelling has been well established, but the nature of the circulating angiogenic cells is still controversial. DESIGN The existing literature on different cell types that contribute to angiogenesis in multiple pathologies, most notably ischaemic and tumour angiogenesis, is reviewed, with a focus on subtypes of angiogenic mononuclear cells and their local recruitment and activation. RESULTS A large number of different cells of myeloid origin support angiogenesis without incorporating permanently into the newly formed vessel, which distinguishes these circulating angiogenic cells (CAC) from endothelial progenitor cells (EPC). Although CAC frequently express individual endothelial markers, they all share multiple characteristics of monocytes and only express a limited set of discriminative surface markers in the circulation. When cultured ex vivo, or surrounding the angiogenic vessel in vivo, however, many of them acquire similar additional markers, making their discrimination in situ difficult. CONCLUSION Different subsets of monocytes show angiogenic properties, but the distinct microenvironment, in vitro or in vivo, is needed for the development of their pro-angiogenic function.
Collapse
Affiliation(s)
- Julie Favre
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | | | | |
Collapse
|
97
|
Andukuri A, Sohn YD, Anakwenze CP, Lim DJ, Brott BC, Yoon YS, Jun HW. Enhanced human endothelial progenitor cell adhesion and differentiation by a bioinspired multifunctional nanomatrix. Tissue Eng Part C Methods 2012; 19:375-85. [PMID: 23126402 DOI: 10.1089/ten.tec.2012.0312] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Endothelial progenitor cell (EPC)-capturing techniques have led to revolutionary strategies that can improve the performance of cardiovascular implant devices and engineered tissues by enhancing re-endothelialization and angiogenesis. However, these strategies are limited by controversies regarding the phenotypic identities of EPCs as well as their inability to target and prevent the other afflictions associated with current therapies, namely, thrombosis and neointimal hyperplasia. Therefore, the goal of this study was to study the efficacy of a bioinspired multifunctional nanomatrix in recruiting and promoting the differentiation of EPCs toward an endothelial lineage. The bioinspired nanomatrix combines multiple components, including self-assembled peptide amphiphiles (PAs) that include cell adhesive ligands, nitric oxide (NO)-producing donors, and enzyme-mediated degradable sequences to achieve an endothelium-mimicking character. In this study, human peripheral blood mononuclear cells (PBMNCs) were isolated and cultured on the bioinspired multifunctional nanomatrix. Initial cell adhesion, lectin staining, acetylated low-density lipoprotein uptake, and expression of endothelial markers, including CD31, CD34, von Willebrand Factor, and VEGFR2, were analyzed. The results from this study indicate that the NO releasing bioinspired multifunctional nanomatrix promotes initial adhesion of EPCs when compared to control surfaces. The expression of endothelial markers is also increased on the bioinspired multifunctional nanomatrix, suggesting that it directs the differentiation of EPCs toward an endothelial phenotype. The bioinspired nanomatrix therefore provides a novel biomaterial-based platform for capturing as well as directing EPC behavior. Therefore, this study has the potential to positively impact the patency of cardiovascular devices such as stents and vascular grafts as well as enhanced angiogenesis for ischemic or engineered tissues.
Collapse
Affiliation(s)
- Adinarayana Andukuri
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Spinetti G, Cordella D, Fortunato O, Sangalli E, Losa S, Gotti A, Carnelli F, Rosa F, Riboldi S, Sessa F, Avolio E, Beltrami AP, Emanueli C, Madeddu P. Global remodeling of the vascular stem cell niche in bone marrow of diabetic patients: implication of the microRNA-155/FOXO3a signaling pathway. Circ Res 2012; 112:510-22. [PMID: 23250986 DOI: 10.1161/circresaha.112.300598] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE The impact of diabetes mellitus on bone marrow (BM) structure is incompletely understood. OBJECTIVE Investigate the effect of type-2 diabetes mellitus (T2DM) on BM microvascular and hematopoietic cell composition in patients without vascular complications. METHODS AND RESULTS Bone samples were obtained from T2DM patients and nondiabetic controls (C) during hip replacement surgery and from T2DM patients undergoing amputation for critical limb ischemia. BM composition was assessed by histomorphometry, immunostaining, and flow cytometry. Expressional studies were performed on CD34(pos) immunosorted BM progenitor cells (PCs). Diabetes mellitus causes a reduction of hematopoietic tissue, fat deposition, and microvascular rarefaction, especially when associated with critical limb ischemia. Immunohistochemistry documented increased apoptosis and reduced abundance of CD34(pos)-PCs in diabetic groups. Likewise, flow cytometry showed scarcity of BM PCs in T2DM and T2DM+critical limb ischemia compared with C, but similar levels of mature hematopoietic cells. Activation of apoptosis in CD34(pos)-PCs was associated with upregulation and nuclear localization of the proapoptotic factor FOXO3a and induction of FOXO3a targets, p21 and p27(kip1). Moreover, microRNA-155, which regulates cell survival through inhibition of FOXO3a, was downregulated in diabetic CD34(pos)-PCs and inversely correlated with FOXO3a levels. The effect of diabetes mellitus on anatomic and molecular end points was confirmed when considering background covariates. Furthermore, exposure of healthy CD34(pos)-PCs to high glucose reproduced the transcriptional changes induced by diabetes mellitus, with this effect being reversed by forced expression of microRNA-155. CONCLUSIONS We provide new anatomic and molecular evidence for the damaging effect of diabetes mellitus on human BM, comprising microvascular rarefaction and shortage of PCs attributable to activation of proapoptotic pathway.
Collapse
Affiliation(s)
- Gaia Spinetti
- Laboratories of Experimental Cardiovascular Medicine, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Moon SH, Ban K, Kim C, Kim SS, Byun J, Song MK, Park IH, Yu SP, Yoon YS. Development of a novel two-dimensional directed differentiation system for generation of cardiomyocytes from human pluripotent stem cells. Int J Cardiol 2012; 168:41-52. [PMID: 23044428 DOI: 10.1016/j.ijcard.2012.09.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 06/18/2012] [Accepted: 09/14/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Human pluripotent stem cells (hPSCs) hold great promise for treating ischemic heart disease. However, current protocols for differentiating hPSCs either result in low yields or require expensive cytokines. METHODS Here we developed a novel two dimensional (2D) stepwise differentiation system that generates a high yield of cardiomyocytes (CMs) from hPSCs without using special cytokines. Initially, undifferentiated hPSCs were transferred onto Matrigel-coated plates without forming embryoid bodies (EBs) for a few days and were cultured in bFGF-depleted human embryonic stem cells (hESCs) medium. When linear cell aggregation appeared in the margins of the hPSC colonies, the medium was changed to DMEM supplemented with 10% fetal bovine serum (FBS). Thereafter when cell clusters became visible, the medium was changed to DMEM with 20% FBS. RESULTS AND CONCLUSIONS At about two weeks of culture, contracting clusters began to appear and the number of contracting clusters continuously increased, reaching approximately 70% of all clusters. These clusters were dissociated by two-step enzyme treatment to monolayered CMs, of which ~90% showed CM phenotypes confirmed by an α-myosin heavy chain reporter system. Electrophysiologic studies demonstrated that the hPSC-derived CMs showed three major CM action potential types with 61 to 78% having a ventricular-CM phenotype. This differentiation system showed a clear spatiotemporal role of the surrounding endodermal cells for differentiation of mesodermal cell clusters into CMs. In conclusion, this system provides a novel platform to generate CMs from hPSCs at high yield without using cytokines and to study the development of hPSCs into CMs.
Collapse
Affiliation(s)
- Sung-Hwan Moon
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Shih YT, Wang MC, Yang TL, Zhou J, Lee DY, Lee PL, Yet SF, Chiu JJ. β(2)-Integrin and Notch-1 differentially regulate CD34(+)CD31(+) cell plasticity in vascular niches. Cardiovasc Res 2012; 96:296-307. [PMID: 22865639 DOI: 10.1093/cvr/cvs256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The implication of circulating haematopoietic CD34(+) progenitors in the vasculature is unclear due to the lack of understanding of their characteristics and plasticity mediated by their cellular microenvironment. We investigated how vascular smooth muscle cells (SMCs) and their interactions with endothelial cells (ECs) affect the behaviour and plasticity of CD34(+)CD31(+) progenitors and the underlying mechanisms. METHODS AND RESULTS Human peripheral blood-derived CD34(+)CD31(+) cells were directly transplanted into injured arteries in vivo and co-cultured with ECs and SMCs in vitro. CD34(+)CD31(+) progenitors injected into wire-injured mouse arteries differentiate into ECs and macrophages in the neoendothelial layer and neointima, respectively. SMC-co-culture increases CD34(+)CD31(+) cell mobility and adhesion to and transmigration across ECs. Sorted CD34(+)CD31(+) progenitors that adhered to ECs co-cultured with SMCs have the capacity to form capillary-like structures in Matrigel and chimeric blood vessels in vivo. Sorted transmigrated progenitors give rise to macrophages with increased pro-angiogenic activity. These differentiations of CD34(+)CD31(+) progenitors into ECs and macrophages are mediated by β(2)-integrin and Notch-1, respectively. β(2)-Integrin and Notch-1 are activated by their counterligands, intercellular adhesion molecule-1 (ICAM-1) and jagged-1, which are highly expressed in the neoendothelium and neointima in injured arteries. Intra-arterial injection of β(2)-integrin-activated CD34(+)CD31(+) progenitors into wire-injured mouse arteries inhibits neointima formation. CONCLUSION Our findings indicate that the peripheral vascular niches composed of ECs and SMCs may predispose haematopoietic CD34(+)CD31(+) progenitors to differentiate into ECs and macrophages through the activations of the ICAM-1/β(2)-integrin and jagged-1/Notch-1 cascades, respectively.
Collapse
Affiliation(s)
- Yu-Tsung Shih
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 350, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|