51
|
Geng X, Cha B, Mahamud MR, Srinivasan RS. Intraluminal valves: development, function and disease. Dis Model Mech 2018; 10:1273-1287. [PMID: 29125824 PMCID: PMC5719258 DOI: 10.1242/dmm.030825] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The circulatory system consists of the heart, blood vessels and lymphatic vessels, which function in parallel to provide nutrients and remove waste from the body. Vascular function depends on valves, which regulate unidirectional fluid flow against gravitational and pressure gradients. Severe valve disorders can cause mortality and some are associated with severe morbidity. Although cardiac valve defects can be treated by valve replacement surgery, no treatment is currently available for valve disorders of the veins and lymphatics. Thus, a better understanding of valves, their development and the progression of valve disease is warranted. In the past decade, molecules that are important for vascular function in humans have been identified, with mouse studies also providing new insights into valve formation and function. Intriguing similarities have recently emerged between the different types of valves concerning their molecular identity, architecture and development. Shear stress generated by fluid flow has also been shown to regulate endothelial cell identity in valves. Here, we review our current understanding of valve development with an emphasis on its mechanobiology and significance to human health, and highlight unanswered questions and translational opportunities.
Collapse
Affiliation(s)
- Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Md Riaj Mahamud
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
52
|
McGowan SE, McCoy DM. Neuropilin-1 and platelet-derived growth factor receptors cooperatively regulate intermediate filaments and mesenchymal cell migration during alveolar septation. Am J Physiol Lung Cell Mol Physiol 2018. [PMID: 29543041 DOI: 10.1152/ajplung.00511.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Generation of secondary alveolar septa occurs primarily after birth in humans and is complete in mice postnatally, when mechanical stresses vary as air space pressure oscillates. Alveolar mesenchymal cells deposit elastic fibers, which limit cell strain; although when the elastic fiber network is incomplete, this function is also served by the intracellular cytoskeleton. Intermediate filament proteins support deformation during cell division and migration, which occur during septal elongation. Because platelet-derived growth factor receptor-α (PDGFRα) signaling is essential for alveolar septation, we hypothesized that neuropilin-1 (NRP1) may link PDGFRα to cytoskeletal deformation. During cell migration, NRP1 links receptor tyrosine kinase signaling to cytoskeletal and focal adhesion remodeling. Therefore, we examined the consequences of nrp1 gene deletion in alveolar mesenchymal cells (myofibroblasts and pericytes). NRP1 depletion reduced the proportion of mesenchymal cells that contain nestin and desmin within the subpopulation that lacked PDGFRα but contained PDGFRβ. Desmin was reduced at alveolar entry rings, air spaces were enlarged, and surface area was reduced after NRP1 depletion. PDGFRα and NRP1 colocalized to membrane lipid rafts, which are known to contain Src kinase. NRP1 depletion reduced alveolar mesenchymal cell migration and PDGF-A-mediated activation of Src kinase, which may limit accumulation of desmin at septal tips (alveolar entry rings). Cooperation between NRP1 and PDGF signaling is required for secondary septation, and manipulation of NRP1 could promote alveolar regeneration without producing fibrosis.
Collapse
Affiliation(s)
- Stephen E McGowan
- Department of Veterans Affairs Research Service and Department of Internal Medicine, University of Iowa Carver College of Medicine , Iowa City, Iowa
| | - Diann M McCoy
- Department of Veterans Affairs Research Service and Department of Internal Medicine, University of Iowa Carver College of Medicine , Iowa City, Iowa
| |
Collapse
|
53
|
Abstract
Semaphorins are extracellular signaling proteins that are essential for the development and maintenance of many organs and tissues. The more than 20-member semaphorin protein family includes secreted, transmembrane and cell surface-attached proteins with diverse structures, each characterized by a single cysteine-rich extracellular sema domain, the defining feature of the family. Early studies revealed that semaphorins function as axon guidance molecules, but it is now understood that semaphorins are key regulators of morphology and motility in many different cell types including those that make up the nervous, cardiovascular, immune, endocrine, hepatic, renal, reproductive, respiratory and musculoskeletal systems, as well as in cancer cells. Semaphorin signaling occurs predominantly through Plexin receptors and results in changes to the cytoskeletal and adhesive machinery that regulate cellular morphology. While much remains to be learned about the mechanisms underlying the effects of semaphorins, exciting work has begun to reveal how semaphorin signaling is fine-tuned through different receptor complexes and other mechanisms to achieve specific outcomes in various cellular contexts and physiological systems. These and future studies will lead to a more complete understanding of semaphorin-mediated development and to a greater understanding of how these proteins function in human disease.
Collapse
Affiliation(s)
- Laura Taylor Alto
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jonathan R Terman
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
54
|
Urner S, Kelly-Goss M, Peirce SM, Lammert E. Mechanotransduction in Blood and Lymphatic Vascular Development and Disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 81:155-208. [PMID: 29310798 DOI: 10.1016/bs.apha.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The blood and lymphatic vasculatures are hierarchical networks of vessels, which constantly transport fluids and, therefore, are exposed to a variety of mechanical forces. Considering the role of mechanotransduction is key for fully understanding how these vascular systems develop, function, and how vascular pathologies evolve. During embryonic development, for example, initiation of blood flow is essential for early vascular remodeling, and increased interstitial fluid pressure as well as initiation of lymph flow is needed for proper development and maturation of the lymphatic vasculature. In this review, we introduce specific mechanical forces that affect both the blood and lymphatic vasculatures, including longitudinal and circumferential stretch, as well as shear stress. In addition, we provide an overview of the role of mechanotransduction during atherosclerosis and secondary lymphedema, which both trigger tissue fibrosis.
Collapse
Affiliation(s)
- Sofia Urner
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Molly Kelly-Goss
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
55
|
Bernier-Latmani J, Petrova TV. Intestinal lymphatic vasculature: structure, mechanisms and functions. Nat Rev Gastroenterol Hepatol 2017; 14:510-526. [PMID: 28655884 DOI: 10.1038/nrgastro.2017.79] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammalian intestine is richly supplied with lymphatic vasculature, which has functions ranging from maintenance of interstitial fluid balance to transport of antigens, antigen-presenting cells, dietary lipids and fat-soluble vitamins. In this Review, we provide in-depth information concerning the organization and structure of intestinal lymphatics, the current view of their developmental origins, as well as molecular mechanisms of intestinal lymphatic patterning and maintenance. We will also discuss physiological aspects of intestinal lymph flow regulation and the known and emerging roles of intestinal lymphatic vessels in human diseases, such as IBD, infection and cancer.
Collapse
Affiliation(s)
- Jeremiah Bernier-Latmani
- Department of Fundamental Oncology, Ludwig Institute for Cancer Research and Institute of Pathology, Centre Hospitalier Universitaire Vaudois and University of Lausanne (UNIL), Chemin des Boveresses 155, Epalinges, Switzerland
| | - Tatiana V Petrova
- Department of Fundamental Oncology, Ludwig Institute for Cancer Research and Institute of Pathology, Centre Hospitalier Universitaire Vaudois and University of Lausanne (UNIL), Chemin des Boveresses 155, Epalinges, Switzerland.,Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology Lausanne, Route Cantonale 1015, Lausanne, Switzerland
| |
Collapse
|
56
|
Wang Y, Jin Y, Mäe MA, Zhang Y, Ortsäter H, Betsholtz C, Mäkinen T, Jakobsson L. Smooth muscle cell recruitment to lymphatic vessels requires PDGFB and impacts vessel size but not identity. Development 2017; 144:3590-3601. [PMID: 28851707 PMCID: PMC5665477 DOI: 10.1242/dev.147967] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 08/21/2017] [Indexed: 12/13/2022]
Abstract
Tissue fluid drains through blind-ended lymphatic capillaries, via smooth muscle cell (SMC)-covered collecting vessels into venous circulation. Both defective SMC recruitment to collecting vessels and ectopic recruitment to lymphatic capillaries are thought to contribute to vessel failure, leading to lymphedema. However, mechanisms controlling lymphatic SMC recruitment and its role in vessel maturation are unknown. Here, we demonstrate that platelet-derived growth factor B (PDGFB) regulates lymphatic SMC recruitment in multiple vascular beds. PDGFB is selectively expressed by lymphatic endothelial cells (LECs) of collecting vessels. LEC-specific deletion of Pdgfb prevented SMC recruitment causing dilation and failure of pulsatile contraction of collecting vessels. However, vessel remodelling and identity were unaffected. Unexpectedly, Pdgfb overexpression in LECs did not induce SMC recruitment to capillaries. This was explained by the demonstrated requirement of PDGFB extracellular matrix (ECM) retention for lymphatic SMC recruitment, and the low presence of PDGFB-binding ECM components around lymphatic capillaries. These results demonstrate the requirement of LEC-autonomous PDGFB expression and retention for SMC recruitment to lymphatic vessels, and suggest an ECM-controlled checkpoint that prevents SMC investment of capillaries, which is a common feature in lymphedematous skin. Summary:Pdgfb mutant mice provide insight into the recruitment and function of smooth muscle cells in the lymphatic vasculature, and shed new light on mechanisms of lymph vessel-associated diseases.
Collapse
Affiliation(s)
- Yixin Wang
- Karolinska Institutet, Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Scheeles Väg 2, SE171 77 Stockholm, Sweden
| | - Yi Jin
- Karolinska Institutet, Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Scheeles Väg 2, SE171 77 Stockholm, Sweden
| | - Maarja Andaloussi Mäe
- Uppsala University, Dept. Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE751 85 Uppsala, Sweden
| | - Yang Zhang
- Uppsala University, Dept. Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE751 85 Uppsala, Sweden
| | - Henrik Ortsäter
- Uppsala University, Dept. Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE751 85 Uppsala, Sweden
| | - Christer Betsholtz
- Uppsala University, Dept. Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE751 85 Uppsala, Sweden.,Integrated Cardio Metabolic Centre (ICMC), Karolinska Institutet, Novum, Blickagången 6, SE14157 Huddinge, Sweden
| | - Taija Mäkinen
- Uppsala University, Dept. Immunology, Genetics and Pathology, Rudbeck Laboratory, Dag Hammarskjölds väg 20, SE751 85 Uppsala, Sweden
| | - Lars Jakobsson
- Karolinska Institutet, Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Scheeles Väg 2, SE171 77 Stockholm, Sweden
| |
Collapse
|
57
|
Meens MJ, Kutkut I, Rochemont V, Dubrot J, Kaladji FR, Sabine A, Lyons O, Hendrikx S, Bernier-Latmani J, Kiefer F, Smith A, Hugues S, Petrova TV, Kwak BR. Cx47 fine-tunes the handling of serum lipids but is dispensable for lymphatic vascular function. PLoS One 2017; 12:e0181476. [PMID: 28732089 PMCID: PMC5521787 DOI: 10.1371/journal.pone.0181476] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/30/2017] [Indexed: 12/04/2022] Open
Abstract
Mutations in the gap junction protein connexin47 (Cx47) are associated with lymphedema. However, the role of Cx47 in lymphatic pathophysiology is unknown. We demonstrate that Cx47 is expressed in lymphatic endothelial cells by whole-mount immunostaining and qPCR. To determine if Cx47 plays a role in lymphatic vessel function we analysed Cx47-/- mice. Cx47-deficiency did not affect lymphatic contractility (contractile amplitude or frequency) or lymphatic morphology (vessel diameter or number of valves). Interstitial fluid drainage or dendritic cell migration through lymphatic vessels was also not affected by Cx47-deficiency. Cx47 is dispensable for long-chain fatty acid absorption from the gut but rather promotes serum lipid handling as prolonged elevated triglyceride levels were observed in Cx47-deficient mice after oral lipid tolerance tests. When crossed with Apolipoprotein E-deficient (Apoe-/-) mice, LDL-cholesterol was decreased in young Cx47-/-Apoe-/- adults as compared to Apoe-/- mice, which was inverted later in life. Finally, advanced atherosclerotic plaques in thoracic-abdominal aortas of 15 months-old mice tended to be larger in Cx47-/-Apoe-/- mice. These plaques contained fewer macrophages but similar amounts of T lymphocytes, collagen and lipids than plaques of Apoe-/- mice. In conclusion, Cx47 is expressed in lymphatic endothelium and seems modestly implicated in multiple aspects of lymphatic pathophysiology.
Collapse
Affiliation(s)
- Merlijn J. Meens
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- * E-mail:
| | - Issa Kutkut
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Viviane Rochemont
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Juan Dubrot
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Fouad R. Kaladji
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Amélie Sabine
- Department of Fundamental Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
- Division of Experimental Pathology, Institute of Pathology, CHUV, Lausanne, Switzerland
| | - Oliver Lyons
- Academic Department of Vascular Surgery, Cardiovascular Division, King's College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at King's Health Partners, St Thomas' Hospital, London, United Kingdom
| | - Stefanie Hendrikx
- Department of Fundamental Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
- Division of Experimental Pathology, Institute of Pathology, CHUV, Lausanne, Switzerland
| | - Jeremiah Bernier-Latmani
- Department of Fundamental Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
- Division of Experimental Pathology, Institute of Pathology, CHUV, Lausanne, Switzerland
| | - Friedemann Kiefer
- Mammalian Cell Signalling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Alberto Smith
- Academic Department of Vascular Surgery, Cardiovascular Division, King's College London, BHF Centre of Research Excellence & NIHR Biomedical Research Centre at King's Health Partners, St Thomas' Hospital, London, United Kingdom
| | - Stéphanie Hugues
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Tatiana V. Petrova
- Department of Fundamental Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
- Division of Experimental Pathology, Institute of Pathology, CHUV, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland
| | - Brenda R. Kwak
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Department of Medical Specialties – Cardiology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
58
|
Betterman KL, Harvey NL. The lymphatic vasculature: development and role in shaping immunity. Immunol Rev 2016; 271:276-92. [PMID: 27088921 DOI: 10.1111/imr.12413] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The lymphatic vasculature is an integral component of the immune system. Lymphatic vessels are a key highway via which immune cells are trafficked, serving not simply as a passive route of transport, but to actively shape and coordinate immune responses. Reciprocally, immune cells provide signals that impact the growth, development, and activity of the lymphatic vasculature. In addition to immune cell trafficking, lymphatic vessels are crucial for fluid homeostasis and lipid absorption. The field of lymphatic vascular research is rapidly expanding, fuelled by rapidly advancing technology that has enabled the manipulation and imaging of lymphatic vessels, together with an increasing recognition of the involvement of lymphatic vessels in a myriad of human pathologies. In this review we provide an overview of the genetic pathways and cellular processes important for development and maturation of the lymphatic vasculature, discuss recent work revealing important roles for the lymphatic vasculature in directing immune cell traffic and coordinating immune responses and highlight the involvement of lymphatic vessels in a range of pathological settings.
Collapse
Affiliation(s)
- Kelly L Betterman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.,School of Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
59
|
Wnuk M, Anderegg MA, Graber WA, Buergy R, Fuster DG, Djonov V. Neuropilin1 regulates glomerular function and basement membrane composition through pericytes in the mouse kidney. Kidney Int 2016; 91:868-879. [PMID: 27988210 DOI: 10.1016/j.kint.2016.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 12/28/2022]
Abstract
Neuropilin1 (Nrp1) is a co-receptor best known to regulate the development of endothelial cells and is a target of anticancer therapies. However, its role in other vascular cells including pericytes is emergent. The kidney is an organ with high pericyte density and cancer patients develop severe proteinuria following administration of NRP1B-neutralizing antibody combined with bevacizumab. Therefore, we investigated whether Nrp1 regulates glomerular capillary integrity after completion of renal development using two mouse models; tamoxifen-inducible NG2Cre to delete Nrp1 specifically in pericytes and administration of Nrp1-neutralizing antibodies. Specific Nrp1 deletion in pericytes did not affect pericyte number but mutant mice developed hematuria with glomerular basement membrane defects. Despite foot process effacement, albuminuria was absent and expression of podocyte proteins remained unchanged upon Nrp1 deletion. Additionally, these mice displayed dilation of the afferent arteriole and glomerular capillaries leading to glomerular hyperfiltration. Nidogen-1 mRNA was downregulated and collagen4α3 mRNA was upregulated with no significant effect on the expression of other basement membrane genes in the mutant mice. These features were phenocopied by treating wild-type mice with Nrp1-neutralizing antibodies. Thus, our results reveal a postdevelopmental role of Nrp1 in renal pericytes as an important regulator of glomerular basement membrane integrity. Furthermore, our study offers novel mechanistic insights into renal side effects of Nrp1 targeting cancer therapies.
Collapse
Affiliation(s)
- Monika Wnuk
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Manuel A Anderegg
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | | | - Regula Buergy
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Daniel G Fuster
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland; Division of Nephrology, Hypertension, and Clinical Pharmacology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Bern, Switzerland.
| |
Collapse
|
60
|
Munger SJ, Davis MJ, Simon AM. Defective lymphatic valve development and chylothorax in mice with a lymphatic-specific deletion of Connexin43. Dev Biol 2016; 421:204-218. [PMID: 27899284 DOI: 10.1016/j.ydbio.2016.11.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022]
Abstract
Lymphatic valves (LVs) are cusped luminal structures that permit the movement of lymph in only one direction and are therefore critical for proper lymphatic vessel function. Congenital valve aplasia or agenesis can, in some cases, be a direct cause of lymphatic disease. Knowledge about the molecular mechanisms operating during the development and maintenance of LVs may thus aid in the establishment of novel therapeutic approaches to treat lymphatic disorders. In this study, we examined the role of Connexin43 (Cx43), a gap junction protein expressed in lymphatic endothelial cells (LECs), during valve development. Mouse embryos with a null mutation in Cx43 (Gja1) were previously shown to completely lack mesenteric LVs at embryonic day 18. However, interpreting the phenotype of Cx43-/- mice was complicated by the fact that global deletion of Cx43 causes perinatal death due to heart defects during embryogenesis. We have now generated a mouse model (Cx43∆LEC) with a lymphatic-specific ablation of Cx43 and show that the absence of Cx43 in LECs causes a delay (rather than a complete block) in LV initiation, an increase in immature valves with incomplete leaflet elongation, a reduction in the total number of valves, and altered lymphatic capillary patterning. The physiological consequences of these lymphatic changes were leaky valves, insufficient lymph transport and reflux, and a high incidence of lethal chylothorax. These results demonstrate that the expression of Cx43 is specifically required in LECs for normal development of LVs.
Collapse
Affiliation(s)
| | - Michael J Davis
- Dept. of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO, USA.
| | - Alexander M Simon
- Department of Physiology, University of Arizona, Tucson AZ 85724, USA.
| |
Collapse
|
61
|
Abstract
The lymphatic vasculature is not considered a formal part of the immune system, but it is critical to immunity. One of its major roles is in the coordination of the trafficking of antigen and immune cells. However, other roles in immunity are emerging. Lymphatic endothelial cells, for example, directly present antigen or express factors that greatly influence the local environment. We cover these topics herein and discuss how other properties of the lymphatic vasculature, such as mechanisms of lymphatic contraction (which immunologists traditionally do not take into account), are nonetheless integral in the immune system. Much is yet unknown, and this nascent subject is ripe for exploration. We argue that to consider the impact of lymphatic biology in any given immunological interaction is a key step toward integrating immunology with organ physiology and ultimately many complex pathologies.
Collapse
Affiliation(s)
- Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110;
| | - Stoyan Ivanov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110;
| | - Bernd H Zinselmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110;
| | - Joshua P Scallan
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida 33612
| |
Collapse
|
62
|
Liu X, Uemura A, Fukushima Y, Yoshida Y, Hirashima M. Semaphorin 3G Provides a Repulsive Guidance Cue to Lymphatic Endothelial Cells via Neuropilin-2/PlexinD1. Cell Rep 2016; 17:2299-2311. [DOI: 10.1016/j.celrep.2016.11.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/12/2016] [Accepted: 10/28/2016] [Indexed: 11/24/2022] Open
|
63
|
Neufeld G, Mumblat Y, Smolkin T, Toledano S, Nir-Zvi I, Ziv K, Kessler O. The semaphorins and their receptors as modulators of tumor progression. Drug Resist Updat 2016; 29:1-12. [DOI: 10.1016/j.drup.2016.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/31/2016] [Accepted: 08/23/2016] [Indexed: 12/16/2022]
|
64
|
Scallan JP, Zawieja SD, Castorena-Gonzalez JA, Davis MJ. Lymphatic pumping: mechanics, mechanisms and malfunction. J Physiol 2016; 594:5749-5768. [PMID: 27219461 PMCID: PMC5063934 DOI: 10.1113/jp272088] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/17/2016] [Indexed: 12/19/2022] Open
Abstract
A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The effectiveness of the lymph pump system impacts not only interstitial fluid balance but other aspects of overall homeostasis. This review focuses on the mechanisms that regulate the intrinsic, active contractions of collecting lymphatic vessels in relation to their ability to actively transport lymph. Lymph propulsion requires not only robust contractions of lymphatic muscle cells, but contraction waves that are synchronized over the length of a lymphangion as well as properly functioning intraluminal valves. Normal lymphatic pump function is determined by the intrinsic properties of lymphatic muscle and the regulation of pumping by lymphatic preload, afterload, spontaneous contraction rate, contractility and neural influences. Lymphatic contractile dysfunction, barrier dysfunction and valve defects are common themes among pathologies that directly involve the lymphatic system, such as inherited and acquired forms of lymphoedema, and pathologies that indirectly involve the lymphatic system, such as inflammation, obesity and metabolic syndrome, and inflammatory bowel disease.
Collapse
Affiliation(s)
- Joshua P Scallan
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | | | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
65
|
Dashkevich A, Hagl C, Beyersdorf F, Nykänen AI, Lemström KB. VEGF Pathways in the Lymphatics of Healthy and Diseased Heart. Microcirculation 2016; 23:5-14. [PMID: 26190445 DOI: 10.1111/micc.12220] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/13/2015] [Indexed: 12/17/2022]
Abstract
Cardiac lymphatic system is a rare focus of the modern cardiovascular research. Nevertheless, the growing body of evidence is depicting lymphatic endothelium as an important functional unit in healthy and diseased myocardium. Since the discovery of angiogenic VEGF-A in 1983 and lymphangiogenic VEGF-C in 1997, an increasing amount of knowledge has accumulated on the essential roles of VEGF ligands and receptors in physiological and pathological angiogenesis and lymphangiogenesis. Tissue adaptation to several stimuli such as hypoxia, pathogen invasion, degenerative process and inflammation often involves coordinated changes in both blood and lymphatic vessels. As lymphatic vessels are involved in the initiation and resolution of inflammation and regulation of tissue edema, VEGF family members may have important roles in myocardial lymphatics in healthy and in cardiac disease. We will review the properties of VEGF ligands and receptors concentrating on their lymphatic vessel effects first in normal myocardium and then in cardiac disease.
Collapse
Affiliation(s)
- Alexey Dashkevich
- Cardiac Surgery, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.,Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland.,Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Christian Hagl
- Cardiac Surgery, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| | | | - Antti I Nykänen
- Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland.,Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Karl B Lemström
- Cardiac Surgery, Heart and Lung Center, Helsinki University Central Hospital, Helsinki, Finland.,Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
66
|
Sabine A, Saygili Demir C, Petrova TV. Endothelial Cell Responses to Biomechanical Forces in Lymphatic Vessels. Antioxid Redox Signal 2016; 25:451-65. [PMID: 27099026 DOI: 10.1089/ars.2016.6685] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
SIGNIFICANCE Lymphatic vessels are important components of the cardiovascular and immune systems. They contribute both to the maintenance of normal homeostasis and to many pathological conditions, such as cancer and inflammation. The lymphatic vasculature is subjected to a variety of biomechanical forces, including fluid shear stress and vessel circumferential stretch. RECENT ADVANCES This review will discuss recent advances in our understanding of biomechanical forces in lymphatic vessels and their role in mammalian lymphatic vascular development and function. CRITICAL ISSUES We will highlight the importance of fluid shear stress generated by lymph flow in organizing the lymphatic vascular network. We will also describe how mutations in mechanosensitive genes lead to lymphatic vascular dysfunction. FUTURE DIRECTIONS Better understanding of how biomechanical and biochemical stimuli are perceived and interpreted by lymphatic endothelial cells is important for targeting regulation of lymphatic function in health and disease. Important remaining critical issues and future directions in the field will be discussed in this review. Antioxid. Redox Signal. 25, 451-465.
Collapse
Affiliation(s)
- Amélie Sabine
- 1 Ludwig Institute for Cancer Research, University of Lausanne Branch & Department of Fundamental Oncology, CHUV and University of Lausanne , Epalinges, Switzerland
| | - Cansaran Saygili Demir
- 1 Ludwig Institute for Cancer Research, University of Lausanne Branch & Department of Fundamental Oncology, CHUV and University of Lausanne , Epalinges, Switzerland
| | - Tatiana V Petrova
- 1 Ludwig Institute for Cancer Research, University of Lausanne Branch & Department of Fundamental Oncology, CHUV and University of Lausanne , Epalinges, Switzerland .,2 Division of Experimental Pathology, Institute of Pathology , CHUV, Lausanne, Switzerland .,3 Swiss Institute for Experimental Cancer Research , EPFL, Switzerland
| |
Collapse
|
67
|
Ochsenbein AM, Karaman S, Proulx ST, Berchtold M, Jurisic G, Stoeckli ET, Detmar M. Endothelial cell-derived semaphorin 3A inhibits filopodia formation by blood vascular tip cells. Development 2016; 143:589-94. [PMID: 26884395 DOI: 10.1242/dev.127670] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vascular endothelial growth factor (VEGF)-A is a well-known major chemoattractant driver of angiogenesis--the formation of new blood vessels from pre-existing ones. However, the repellent factors that fine-tune this angiogenic process remain poorly characterized. We investigated the expression and functional role of endothelial cell-derived semaphorin 3A (Sema3A) in retinal angiogenesis, using genetic mouse models. We found Sema3a mRNA expression in the ganglion cell layer and the presence of Sema3A protein on larger blood vessels and at the growing front of blood vessels in neonatal retinas. The Sema3A receptors neuropilin-1 and plexin-A1 were expressed by retinal blood vessels. To study the endothelial cell-specific role of Sema3A, we generated endothelial cell-specific Sema3A knockout mouse strains by constitutive or inducible vascular endothelial cadherin-Cre-mediated gene disruption. We found that in neonatal retinas of these mice, both the number and the length of tip cell filopodia were significantly increased and the leading edge growth pattern was irregular. Retinal explant experiments showed that recombinant Sema3A significantly decreased VEGF-A-induced filopodia formation. Endothelial cell-specific knockout of Sema3A had no impact on blood vessel density or skin vascular leakage in adult mice. These findings indicate that endothelial cell-derived Sema3A exerts repelling functions on VEGF-A-induced tip cell filopodia and that a lack of this signaling cannot be rescued by paracrine sources of Sema3A.
Collapse
Affiliation(s)
- Alexandra M Ochsenbein
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich 8093, Switzerland
| | - Sinem Karaman
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich 8093, Switzerland
| | - Steven T Proulx
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich 8093, Switzerland
| | - Michaela Berchtold
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich 8093, Switzerland
| | - Giorgia Jurisic
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich 8093, Switzerland
| | - Esther T Stoeckli
- Institute of Molecular Life Sciences, University of Zurich, Zurich 8057, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
68
|
Fatima A, Wang Y, Uchida Y, Norden P, Liu T, Culver A, Dietz WH, Culver F, Millay M, Mukouyama YS, Kume T. Foxc1 and Foxc2 deletion causes abnormal lymphangiogenesis and correlates with ERK hyperactivation. J Clin Invest 2016; 126:2437-51. [PMID: 27214551 PMCID: PMC4922698 DOI: 10.1172/jci80465] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/05/2016] [Indexed: 01/12/2023] Open
Abstract
The lymphatic vasculature is essential for maintaining interstitial fluid homeostasis, and dysfunctional lymphangiogenesis contributes to various pathological processes, including inflammatory disease and tumor metastasis. Mutations in FOXC2 are dominantly associated with late-onset lymphedema; however, the precise role of FOXC2 and a closely related factor, FOXC1, in the lymphatic system remains largely unknown. Here we identified a molecular cascade by which FOXC1 and FOXC2 regulate ERK signaling in lymphatic vessel growth. In mice, lymphatic endothelial cell-specific (LEC-specific) deletion of Foxc1, Foxc2, or both resulted in increased LEC proliferation, enlarged lymphatic vessels, and abnormal lymphatic vessel morphogenesis. Compared with LECs from control animals, LECs from mice lacking both Foxc1 and Foxc2 exhibited aberrant expression of Ras regulators, and embryos with LEC-specific deletion of Foxc1 and Foxc2, alone or in combination, exhibited ERK hyperactivation. Pharmacological ERK inhibition in utero abolished the abnormally enlarged lymphatic vessels in FOXC-deficient embryos. Together, these results identify FOXC1 and FOXC2 as essential regulators of lymphangiogenesis and indicate a new potential mechanistic basis for lymphatic-associated diseases.
Collapse
Affiliation(s)
- Anees Fatima
- Feinberg Cardiovascular Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ying Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Yutaka Uchida
- Laboratory of Stem Cell and Neuro-Vascular Biology, Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Pieter Norden
- Feinberg Cardiovascular Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ting Liu
- Feinberg Cardiovascular Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Austin Culver
- Feinberg Cardiovascular Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - William H. Dietz
- Feinberg Cardiovascular Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ford Culver
- Feinberg Cardiovascular Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Meredith Millay
- Feinberg Cardiovascular Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Yoh-suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Tsutomu Kume
- Feinberg Cardiovascular Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
69
|
Abstract
The mammalian circulatory system comprises both the cardiovascular system and the lymphatic system. In contrast to the blood vascular circulation, the lymphatic system forms a unidirectional transit pathway from the extracellular space to the venous system. It actively regulates tissue fluid homeostasis, absorption of gastrointestinal lipids, and trafficking of antigen-presenting cells and lymphocytes to lymphoid organs and on to the systemic circulation. The cardinal manifestation of lymphatic malfunction is lymphedema. Recent research has implicated the lymphatic system in the pathogenesis of cardiovascular diseases including obesity and metabolic disease, dyslipidemia, inflammation, atherosclerosis, hypertension, and myocardial infarction. Here, we review the most recent advances in the field of lymphatic vascular biology, with a focus on cardiovascular disease.
Collapse
Affiliation(s)
- Aleksanteri Aspelund
- From the Wihuri Research Institute (A.A., M.R.R., S.K., K.A.) and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (A.A., M.R.R., K.A.); and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (T.M.)
| | - Marius R Robciuc
- From the Wihuri Research Institute (A.A., M.R.R., S.K., K.A.) and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (A.A., M.R.R., K.A.); and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (T.M.)
| | - Sinem Karaman
- From the Wihuri Research Institute (A.A., M.R.R., S.K., K.A.) and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (A.A., M.R.R., K.A.); and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (T.M.)
| | - Taija Makinen
- From the Wihuri Research Institute (A.A., M.R.R., S.K., K.A.) and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (A.A., M.R.R., K.A.); and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (T.M.)
| | - Kari Alitalo
- From the Wihuri Research Institute (A.A., M.R.R., S.K., K.A.) and Translational Cancer Biology Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (A.A., M.R.R., K.A.); and Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden (T.M.).
| |
Collapse
|
70
|
Raimondi C, Brash JT, Fantin A, Ruhrberg C. NRP1 function and targeting in neurovascular development and eye disease. Prog Retin Eye Res 2016; 52:64-83. [PMID: 26923176 PMCID: PMC4854174 DOI: 10.1016/j.preteyeres.2016.02.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/08/2016] [Accepted: 02/10/2016] [Indexed: 12/19/2022]
Abstract
Neuropilin 1 (NRP1) is expressed by neurons, blood vessels, immune cells and many other cell types in the mammalian body and binds a range of structurally and functionally diverse extracellular ligands to modulate organ development and function. In recent years, several types of mouse knockout models have been developed that have provided useful tools for experimental investigation of NRP1 function, and a multitude of therapeutics targeting NRP1 have been designed, mostly with the view to explore them for cancer treatment. This review provides a general overview of current knowledge of the signalling pathways that are modulated by NRP1, with particular focus on neuronal and vascular roles in the brain and retina. This review will also discuss the potential of NRP1 inhibitors for the treatment for neovascular eye diseases.
Collapse
Affiliation(s)
- Claudio Raimondi
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - James T Brash
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Alessandro Fantin
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK.
| |
Collapse
|
71
|
VanKlompenberg MK, Manjarín R, Donovan CE, Trott JF, Hovey RC. Regulation and localization of vascular endothelial growth factor within the mammary glands during the transition from late gestation to lactation. Domest Anim Endocrinol 2016; 54:37-47. [PMID: 26490114 DOI: 10.1016/j.domaniend.2015.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/08/2015] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
Abstract
The vascular network within the developing mammary gland (MG) grows in concert with the epithelium to prepare for lactation, although the mechanisms coordinating this vascular development are unresolved. Vascular endothelial growth factor A (VEGF-A) mediates angiogenesis and vascular permeability in the MG during pregnancy and lactation, where its expression is upregulated by prolactin. Given our previous finding that late-gestational hyperprolactinemia induced by domperidone (DOM) increased subsequent milk yield from gilts, we sought to establish changes in vascular development during late gestation and lactation in the MGs of these pigs and determine whether DOM altered MG angiogenesis and the factors regulating it. Gilts received either no treatment (n = 6) or DOM (n = 6) during late gestation, then had their MG biopsied from late gestation through lactation to assess microvessel density, VEGF-A distribution and messenger RNA expression, and aquaporin (AQP) gene expression. Microvessel density in the MG was unchanged during gestation then increased between days 2 and 21 of lactation (P < 0.05). The local expression of messenger RNA for VEGF-A120, VEGF-A147, VEGF-A164, VEGF-A164b, VEGF-A188, VEGF receptors-1 and -2, and AQP1 and AQP3 all generally increased during the transition from gestation to lactation (P < 0.05). Immunostaining localized VEGF-A to the apical cytoplasm of secretory epithelial cells, consistent with a far greater concentration of VEGF-A in colostrum and/or milk vs plasma (P < 0.0001). There was no effect of DOM on any of the variables analyzed. In summary, we found that vascular development in the MG increases during lactation in first-parity gilts and that VEGF-A is a part of the mammary secretome. Although late-gestational hyperprolactinemia increases milk yield, there was no evidence that it altered vascular development.
Collapse
Affiliation(s)
- M K VanKlompenberg
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - R Manjarín
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - C E Donovan
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - J F Trott
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - R C Hovey
- Department of Animal Science, University of California Davis, Davis, CA, USA.
| |
Collapse
|
72
|
Wakisaka N, Hasegawa Y, Yoshimoto S, Miura K, Shiotani A, Yokoyama J, Sugasawa M, Moriyama-Kita M, Endo K, Yoshizaki T. Primary Tumor-Secreted Lymphangiogenic Factors Induce Pre-Metastatic Lymphvascular Niche Formation at Sentinel Lymph Nodes in Oral Squamous Cell Carcinoma. PLoS One 2015; 10:e0144056. [PMID: 26630663 PMCID: PMC4668078 DOI: 10.1371/journal.pone.0144056] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/12/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The objectives of this study were to evaluate the formation of lymphvascular niches in lymph nodes of patients with oral squamous cell carcinoma (OSCC), and investigate the roles of lymphangiogenic and angiogenic factors, such as vascular endothelial growth factor (VEGF)-A, VEGF-C, and VEGF-D, expressed in the primary tumors. MATERIALS AND METHODS Forty-four patients with previously untreated clinically late T2 or T3 OSCC of cN0 were evaluated for primary tumors and 166 sentinel lymph nodes (SLNs). Primary tumors were immunohistochemically analyzed for expressions of VEGFs. Densities of lymphatic vessels (LVDpodoplanin) and high endothelial venules (HEVD) in the SLNs were also calculated using antibodies for each marker, podoplanin and MECA-79, respectively. RESULTS In 25 patients, all lymph nodes were metastasis-negative, whereas, in 19 patients, metastasis was positive for at least one lymph node (either at SLN, non-SLN, or nodal recurrence). From the analyses of 140 SLNs without metastasis, LVDpodoplanin in 50 SLNs of metastasis-positive cases was significantly higher than that in 90 SLNs of metastasis-negative cases (p = 0.0025). HEVD was not associated with lymph node metastasis. The patients with VEGF-A-High or VEGF-D-High tumors had significantly higher LVDpodoplanin than patients with their Low counterparts (p = 0.0233 and p = 0.0209, respectively). In cases with lymph node metastasis, the VEGF-D-expression score was significantly higher than in those without lymph node metastasis (p = 0.0006). CONCLUSIONS These results suggest that lymph node lymphangiogenesis occurs before metastasis in OSCC. VEGF-A and VEGF-D play critical roles in this process. VEGF-D is a potential predictive marker of positive lymph node metastasis in cN0 patients.
Collapse
Affiliation(s)
- Naohiro Wakisaka
- Division of Otolaryngology, and Head & Neck Surgery, Kanazawa University, Kanazawa, Ishikawa, Japan
- * E-mail:
| | - Yasuhisa Hasegawa
- Department of Head and Neck Surgery, Aichi Cancer Center, Nagoya, Aichi, Japan
| | - Seiichi Yoshimoto
- Department of Head and Neck Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Kouki Miura
- Department of Head and Neck Oncology and Surgery, International University of Health and Welfare Mita Hospital, Minato-ku, Tokyo, Japan
| | - Akihiro Shiotani
- Department of Otolaryngology-Head & Neck Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Junkichi Yokoyama
- Department of Otorhinolaryngology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Masashi Sugasawa
- Department of Head and Neck Surgery and Otolaryngology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Makiko Moriyama-Kita
- Division of Otolaryngology, and Head & Neck Surgery, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuhira Endo
- Division of Otolaryngology, and Head & Neck Surgery, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tomokazu Yoshizaki
- Division of Otolaryngology, and Head & Neck Surgery, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
73
|
Kazenwadel J, Harvey NL. Morphogenesis of the lymphatic vasculature: A focus on new progenitors and cellular mechanisms important for constructing lymphatic vessels. Dev Dyn 2015; 245:209-19. [DOI: 10.1002/dvdy.24313] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/22/2015] [Accepted: 07/22/2015] [Indexed: 12/29/2022] Open
Affiliation(s)
- Jan Kazenwadel
- Centre for Cancer Biology, University of South Australia and SA Pathology; Adelaide Australia
| | - Natasha L. Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology; Adelaide Australia
- School of Medicine, University of Adelaide; Adelaide Australia
| |
Collapse
|
74
|
Uchida Y, James JM, Suto F, Mukouyama YS. Class 3 semaphorins negatively regulate dermal lymphatic network formation. Biol Open 2015; 4:1194-205. [PMID: 26319580 PMCID: PMC4582121 DOI: 10.1242/bio.012302] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The development of a patterned lymphatic vascular network is essential for proper lymphatic functions during organ development and homeostasis. Here we report that class 3 semaphorins (SEMA3s), SEMA3F and SEMA3G negatively regulate lymphatic endothelial cell (LEC) growth and sprouting to control dermal lymphatic network formation. Neuropilin2 (NRP2) functions as a receptor for SEMA3F and SEMA3G, as well as vascular endothelial growth factor C (VEGFC). In culture, Both SEMA3F and SEMA3G inhibit VEGFC-mediated sprouting and proliferation of human dermal LECs. In the developing mouse skin, Sema3f is expressed in the epidermis and Sema3g expression is restricted to arteries, whereas their receptor Nrp2 is preferentially expressed by lymphatic vessels. Both Sema3f;Sema3g double mutants and Nrp2 mutants exhibit increased LEC growth in the skin. In contrast, Sema3f;Sema3g double mutants display increased lymphatic branching, while Nrp2 mutants exhibit reduced lymphatic branching. A targeted mutation in PlexinA1 or PlexinA2, signal transducers forming a receptor complex with NRP2 for SEMA3s, exhibits an increase in LEC growth and lymphatic branching as observed in Sema3f;Sema3g double mutants. Our results provide the first evidence that SEMA3F and SEMA3G function as a negative regulator for dermal lymphangiogenesis in vivo. The reciprocal phenotype in lymphatic branching between Sema3f;Sema3g double mutants and Nrp2 mutants suggest a complex NRP2 function that regulates LEC behavior both positively and negatively, through a binding with VEGFC or SEMA3s.
Collapse
Affiliation(s)
- Yutaka Uchida
- Laboratory of Stem Cell and Neuro-Vascular Biology, Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/6C103, 10 Center Drive, Bethesda, MD 20892, USA
| | - Jennifer M James
- Laboratory of Stem Cell and Neuro-Vascular Biology, Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/6C103, 10 Center Drive, Bethesda, MD 20892, USA
| | - Fumikazu Suto
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | - Yoh-Suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Genetics and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10/6C103, 10 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
75
|
Kazenwadel J, Betterman KL, Chong CE, Stokes PH, Lee YK, Secker GA, Agalarov Y, Demir CS, Lawrence DM, Sutton DL, Tabruyn SP, Miura N, Salminen M, Petrova TV, Matthews JM, Hahn CN, Scott HS, Harvey NL. GATA2 is required for lymphatic vessel valve development and maintenance. J Clin Invest 2015. [PMID: 26214525 DOI: 10.1172/jci78888] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heterozygous germline mutations in the zinc finger transcription factor GATA2 have recently been shown to underlie a range of clinical phenotypes, including Emberger syndrome, a disorder characterized by lymphedema and predisposition to myelodysplastic syndrome/acute myeloid leukemia (MDS/AML). Despite well-defined roles in hematopoiesis, the functions of GATA2 in the lymphatic vasculature and the mechanisms by which GATA2 mutations result in lymphedema have not been characterized. Here, we have provided a molecular explanation for lymphedema predisposition in a subset of patients with germline GATA2 mutations. Specifically, we demonstrated that Emberger-associated GATA2 missense mutations result in complete loss of GATA2 function, with respect to the capacity to regulate the transcription of genes that are important for lymphatic vessel valve development. We identified a putative enhancer element upstream of the key lymphatic transcriptional regulator PROX1 that is bound by GATA2, and the transcription factors FOXC2 and NFATC1. Emberger GATA2 missense mutants had a profoundly reduced capacity to bind this element. Conditional Gata2 deletion in mice revealed that GATA2 is required for both development and maintenance of lymphovenous and lymphatic vessel valves. Together, our data unveil essential roles for GATA2 in the lymphatic vasculature and explain why a select catalogue of human GATA2 mutations results in lymphedema.
Collapse
|
76
|
Cdk5 controls lymphatic vessel development and function by phosphorylation of Foxc2. Nat Commun 2015; 6:7274. [PMID: 26027726 DOI: 10.1038/ncomms8274] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/24/2015] [Indexed: 12/21/2022] Open
Abstract
The lymphatic system maintains tissue fluid balance, and dysfunction of lymphatic vessels and valves causes human lymphedema syndromes. Yet, our knowledge of the molecular mechanisms underlying lymphatic vessel development is still limited. Here, we show that cyclin-dependent kinase 5 (Cdk5) is an essential regulator of lymphatic vessel development. Endothelial-specific Cdk5 knockdown causes congenital lymphatic dysfunction and lymphedema due to defective lymphatic vessel patterning and valve formation. We identify the transcription factor Foxc2 as a key substrate of Cdk5 in the lymphatic vasculature, mechanistically linking Cdk5 to lymphatic development and valve morphogenesis. Collectively, our findings show that Cdk5-Foxc2 interaction represents a critical regulator of lymphatic vessel development and the transcriptional network underlying lymphatic vascular remodeling.
Collapse
|
77
|
EphB4 forward signalling regulates lymphatic valve development. Nat Commun 2015; 6:6625. [PMID: 25865237 PMCID: PMC4403310 DOI: 10.1038/ncomms7625] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 02/12/2015] [Indexed: 01/08/2023] Open
Abstract
Bidirectional signalling is regarded as a notable hallmark of the Eph-ephrin signalling system: Eph-dependent forward signalling in Eph-expressing cells and ephrin-dependent reverse signalling in Ephrin-expressing cells. The notion of ephrin-dependent reverse signalling derives from genetic experiments utilizing mice carrying mutations in the intracellular region of ephrinBs. Here we show that EphB4-dependent forward signalling regulates lymphatic valve development, a process previously thought to be regulated by ephrinB2-dependent reverse signalling. We develop antibodies that selectively target EphB4 and ephrinB2. We find that mice bearing genetically altered cytoplasmic region of ephrinB2 have significantly altered EphB4-dependent forward signalling. Selective inhibition of EphB4 using a functional blocking antibody results in defective lymphatic valve development. Furthermore, a chemical genetic approach is used to unequivocally show that the kinase activity of EphB4 is essential for lymphatic valve development.
Collapse
|
78
|
Bianchi R, Teijeira A, Proulx ST, Christiansen AJ, Seidel CD, Rülicke T, Mäkinen T, Hägerling R, Halin C, Detmar M. A transgenic Prox1-Cre-tdTomato reporter mouse for lymphatic vessel research. PLoS One 2015; 10:e0122976. [PMID: 25849579 PMCID: PMC4388455 DOI: 10.1371/journal.pone.0122976] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 02/26/2015] [Indexed: 01/08/2023] Open
Abstract
The lymphatic vascular system plays an active role in immune cell trafficking, inflammation and cancer spread. In order to provide an in vivo tool to improve our understanding of lymphatic vessel function in physiological and pathological conditions, we generated and characterized a tdTomato reporter mouse and crossed it with a mouse line expressing Cre recombinase under the control of the lymphatic specific promoter Prox1 in an inducible fashion. We found that the tdTomato fluorescent signal recapitulates the expression pattern of Prox1 in lymphatic vessels and other known Prox1-expressing organs. Importantly, tdTomato co-localized with the lymphatic markers Prox1, LYVE-1 and podoplanin as assessed by whole-mount immunofluorescence and FACS analysis. The tdTomato reporter was brighter than a previously established red fluorescent reporter line. We confirmed the applicability of this animal model to intravital microscopy of dendritic cell migration into and within lymphatic vessels, and to fluorescence-activated single cell analysis of lymphatic endothelial cells. Additionally, we were able to describe the early morphological changes of the lymphatic vasculature upon induction of skin inflammation. The Prox1-Cre-tdTomato reporter mouse thus shows great potential for lymphatic research.
Collapse
Affiliation(s)
- Roberta Bianchi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Alvaro Teijeira
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Steven T. Proulx
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Ailsa J. Christiansen
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Catharina D. Seidel
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Thomas Rülicke
- Institute of Laboratory Animal Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - René Hägerling
- Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max-Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
79
|
Abstract
Semaphorins were originally identified as neuronal guidance molecules mediating their attractive or repulsive signals by forming complexes with plexin and neuropilin receptors. Subsequent research has identified functions for semaphorin signaling in many organs and tissues outside of the nervous system. Vital roles for semaphorin signaling in vascular patterning and cardiac morphogenesis have been demonstrated, and impaired semaphorin signaling has been associated with various human cardiovascular disorders, including persistent truncus arteriosus, sinus bradycardia and anomalous pulmonary venous connections. Here, we review the functions of semaphorins and their receptors in cardiovascular development and disease and highlight important recent discoveries in the field.
Collapse
Affiliation(s)
- Jonathan A Epstein
- Department of Cell and Developmental Biology, Cardiovascular Institute and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA.
| | - Haig Aghajanian
- Department of Cell and Developmental Biology, Cardiovascular Institute and Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Manvendra K Singh
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School Singapore, and the National Heart Research Institute Singapore, National Heart Center Singapore, Singapore.
| |
Collapse
|
80
|
Qu X, Zhou B, Scott Baldwin H. Tie1 is required for lymphatic valve and collecting vessel development. Dev Biol 2015; 399:117-128. [PMID: 25576926 DOI: 10.1016/j.ydbio.2014.12.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 12/10/2014] [Accepted: 12/17/2014] [Indexed: 12/29/2022]
Abstract
Tie1 is a receptor tyrosine kinase with broad expression in embryonic endothelium. Reduction of Tie1 levels in mouse embryos with a hypomorphic Tie1 allele resulted in abnormal lymphatic patterning and architecture, decreased lymphatic draining efficiency, and ultimately, embryonic demise. Here we report that Tie1 is present uniformly throughout the lymphatics and from late embryonic/early postnatal stages, becomes more restricted to lymphatic valve regions. To investigate later events of lymphatic development, we employed Cre-loxP recombination utilizing a floxed Tie1 allele and an Nfatc1Cre line, to provide loxP excision predominantly in lymphatic endothelium and developing valves. Interestingly, unlike the early prenatal defects previously described by ubiquitous endothelial deletion, excision of Tie1 with Nfatc1Cre resulted in abnormal lymphatic defects in postnatal mice and was characterized by agenesis of lymphatic valves and a deficiency of collecting lymphatic vessels. Attenuation of Tie1 signaling in lymphatic endothelium prevented initiation of lymphatic valve specification by Prox1 high expression lymphatic endothelial cells that is associated with the onset of turbulent flow in the lymphatic circulation. Our findings reveal a fundamental role for Tie1 signaling during lymphatic vessel remodeling and valve morphogenesis and implicate it as a candidate gene involved in primary lymphedema.
Collapse
Affiliation(s)
- Xianghu Qu
- Department of Pediatrics (Cardiology), Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bin Zhou
- Department of Genetics, Albert Einstein College of Medicine, NY 10461, USA
| | - H Scott Baldwin
- Department of Pediatrics (Cardiology), Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Development Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
81
|
Liu X, Pasula S, Song H, Tessneer KL, Dong Y, Hahn S, Yago T, Brophy ML, Chang B, Cai X, Wu H, McManus J, Ichise H, Georgescu C, Wren JD, Griffin C, Xia L, Srinivasan RS, Chen H. Temporal and spatial regulation of epsin abundance and VEGFR3 signaling are required for lymphatic valve formation and function. Sci Signal 2014; 7:ra97. [PMID: 25314967 DOI: 10.1126/scisignal.2005413] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lymphatic valves prevent the backflow of the lymph fluid and ensure proper lymphatic drainage throughout the body. Local accumulation of lymphatic fluid in tissues, a condition called lymphedema, is common in individuals with malformed lymphatic valves. The vascular endothelial growth factor receptor 3 (VEGFR3) is required for the development of lymphatic vascular system. The abundance of VEGFR3 in collecting lymphatic trunks is high before valve formation and, except at valve regions, decreases after valve formation. We found that in mesenteric lymphatics, the abundance of epsin 1 and 2, which are ubiquitin-binding adaptor proteins involved in endocytosis, was low at early stages of development. After lymphatic valve formation, the initiation of steady shear flow was associated with an increase in the abundance of epsin 1 and 2 in collecting lymphatic trunks, but not in valve regions. Epsin 1 and 2 bound to VEGFR3 and mediated the internalization and degradation of VEGFR3, resulting in termination of VEGFR3 signaling. Mice with lymphatic endothelial cell-specific deficiency of epsin 1 and 2 had dilated lymphatic capillaries, abnormally high VEGFR3 abundance in collecting lymphatics, immature lymphatic valves, and defective lymph drainage. Deletion of a single Vegfr3 allele or pharmacological suppression of VEGFR3 signaling restored normal lymphatic valve development and lymph drainage in epsin-deficient mice. Our findings establish a critical role for epsins in the temporal and spatial regulation of VEGFR3 abundance and signaling in collecting lymphatic trunks during lymphatic valve formation.
Collapse
Affiliation(s)
- Xiaolei Liu
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA. Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma, OK 73104, USA
| | - Satish Pasula
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Hoogeun Song
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Kandice L Tessneer
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Yunzhou Dong
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Scott Hahn
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Tadayuki Yago
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Megan L Brophy
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA. Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma, OK 73104, USA
| | - Baojun Chang
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Xiaofeng Cai
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Hao Wu
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - John McManus
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Hirotake Ichise
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Constantin Georgescu
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Jonathan D Wren
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma, OK 73104, USA. Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Courtney Griffin
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA. Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73126, USA
| | - Lijun Xia
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA. Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma, OK 73104, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Hong Chen
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA. Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma, OK 73104, USA.
| |
Collapse
|
82
|
Corà D, Astanina E, Giraudo E, Bussolino F. Semaphorins in cardiovascular medicine. Trends Mol Med 2014; 20:589-98. [PMID: 25154329 DOI: 10.1016/j.molmed.2014.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/12/2014] [Accepted: 07/23/2014] [Indexed: 01/08/2023]
Abstract
During organogenesis, patterning is primarily achieved by the combined actions of morphogens. Among these, semaphorins represent a general system for establishing the appropriate wiring architecture of biological nets. Originally discovered as evolutionarily conserved steering molecules for developing axons, subsequent studies on semaphorins expanded their functions to the cardiovascular and immune systems. Semaphorins participate in cardiac organogenesis and control physiological vasculogenesis and angiogenesis, which result from a balance between pro- and anti-angiogenic signals. These signals are altered in several diseases. In this review, we discuss the role of semaphorins in vascular biology, emphasizing the mechanisms by which these molecules control vascular patterning and lymphangiogenesis, as well as in genetically inherited and degenerative vascular diseases.
Collapse
Affiliation(s)
- Davide Corà
- Department of Oncology, University of Torino, Torino, Italy; Candiolo Cancer Institute, Torino, Candiolo, Italy
| | - Elena Astanina
- Department of Oncology, University of Torino, Torino, Italy; Candiolo Cancer Institute, Torino, Candiolo, Italy
| | - Enrico Giraudo
- Candiolo Cancer Institute-FPO, IRCCS, Torino, Candiolo, Italy; Department of Science and Drug Technology, University of Torino, Torino, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, Torino, Italy; Candiolo Cancer Institute, Torino, Candiolo, Italy.
| |
Collapse
|
83
|
Migliozzi MT, Mucka P, Bielenberg DR. Lymphangiogenesis and metastasis--a closer look at the neuropilin/semaphorin3 axis. Microvasc Res 2014; 96:68-76. [PMID: 25087623 DOI: 10.1016/j.mvr.2014.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 01/13/2023]
Abstract
Metastasis is the leading cause of cancer-related deaths. Understanding how the lymphatic system responds to its environment and local stimuli may lead to therapies to combat metastasis and other lymphatic-associated diseases. This review compares lymphatic vessels and blood vessels, discusses markers of lymphatic vasculature, and elucidates some of the signaling motifs involved in lymphangiogenesis. Recent progress implicating the neuropilin and semaphorin axes in this process is discussed.
Collapse
Affiliation(s)
- Matthew T Migliozzi
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Mucka
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
84
|
Bazigou E, Wilson JT, Moore JE. Primary and secondary lymphatic valve development: molecular, functional and mechanical insights. Microvasc Res 2014; 96:38-45. [PMID: 25086182 DOI: 10.1016/j.mvr.2014.07.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 01/27/2023]
Abstract
Fluid homeostasis in vertebrates critically relies on the lymphatic system forming a hierarchical network of lymphatic capillaries and collecting lymphatics, for the efficient drainage and transport of extravasated fluid back to the cardiovascular system. Blind-ended lymphatic capillaries employ specialized junctions and anchoring filaments to encourage a unidirectional flow of the interstitial fluid into the initial lymphatic vessels, whereas collecting lymphatics are responsible for the active propulsion of the lymph to the venous circulation via the combined action of lymphatic muscle cells and intraluminal valves. Here we describe recent findings on molecular and physical factors regulating the development and maturation of these two types of valves and examine their role in tissue-fluid homeostasis.
Collapse
Affiliation(s)
- Eleni Bazigou
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - John T Wilson
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - James E Moore
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
85
|
Vittet D. Lymphatic collecting vessel maturation and valve morphogenesis. Microvasc Res 2014; 96:31-7. [PMID: 25020266 DOI: 10.1016/j.mvr.2014.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 12/12/2022]
Abstract
The lymphatic vasculature plays an essential role in the maintenance of tissue interstitial fluid balance and in the immune response. After capture of fluids, proteins and antigens by lymphatic capillaries, lymphatic collecting vessels ensure lymph transport. An important component to avoid lymph backflow and to allow a unidirectional flow is the presence of intraluminal valves. Defects in the function of collecting vessels lead to lymphedema. Several important factors and signaling pathways involved in lymphatic collecting vessel maturation and valve morphogenesis have now been discovered. The present review summarizes the current knowledge about the key steps of lymphatic collecting vessel development and maturation and focuses on the regulatory mechanisms involved in lymphatic valve formation.
Collapse
Affiliation(s)
- Daniel Vittet
- Inserm, U1036, Grenoble, F-38000 France, CEA, DSV, iRTSV, Laboratoire Biologie du Cancer et de l'Infection, Grenoble, F-38000 France, Univ Grenoble Alpes, Grenoble, F-38000 France.
| |
Collapse
|
86
|
Wang Y, Simons M. Flow-regulated lymphatic vasculature development and signaling. Vasc Cell 2014; 6:14. [PMID: 25053993 PMCID: PMC4105398 DOI: 10.1186/2045-824x-6-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/29/2014] [Indexed: 12/29/2022] Open
Abstract
The role of blood flow in regulating signaling pathways and gene expression in the blood vasculature is well known. Recent studies have identified equally important roles of flow-mediated signaling in the lymphatic circulation including control of lymphatic vascular growth, remodeling, regeneration and maintenance of the lymphatic fate. In this review, we summarize these advances focusing on the role of fluid dynamics in control of lymphatic vasculature formation.
Collapse
Affiliation(s)
- Yingdi Wang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, 300 George St, New Haven, CT 06520, USA
| | - Michael Simons
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, 300 George St, New Haven, CT 06520, USA ; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
87
|
Russo E, Nitschké M, Halin C. Dendritic cell interactions with lymphatic endothelium. Lymphat Res Biol 2014; 11:172-82. [PMID: 24044757 DOI: 10.1089/lrb.2013.0008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Afferent lymphatic vessels fulfill essential immune functions by transporting leukocytes and lymph-borne antigen to draining lymph nodes (dLNs). An important cell type migrating through lymphatic vessels are dendritic cells (DCs). DCs reside in peripheral tissues like the skin, where they take up antigen and transport it via the lymphatic vascular network to dLNs for subsequent presentation to T cells. As such, DCs play a key role in the induction of adaptive immune responses during infection and vaccination, but also for the maintenance of tolerance. Although the migratory pattern of DCs has been known for long time, interactions between DCs and lymphatic vessels are only now starting to be unraveled at the cellular level. In particular, new tools for visualizing lymphatic vessels in combination with time-lapse microscopy have recently generated valuable insights into the process of DC migration to dLNs. In this review we summarize and discuss current approaches for visualizing DCs and lymphatic vessels in tissues for imaging applications. Furthermore, we review the current state of knowledge about DC migration towards, into and within lymphatic vessels, particularly focusing on the cellular interactions that take place between DCs and the lymphatic endothelium.
Collapse
Affiliation(s)
- Erica Russo
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology , ETH Zurich, Switzerland
| | | | | |
Collapse
|
88
|
Abstract
The two vascular systems of our body are the blood and lymphatic vasculature. Our understanding of the cellular and molecular processes controlling the development of the lymphatic vasculature has progressed significantly in the last decade. In mammals, this is a stepwise process that starts in the embryonic veins, where lymphatic EC (LEC) progenitors are initially specified. The differentiation and maturation of these progenitors continues as they bud from the veins to produce scattered primitive lymph sacs, from which most of the lymphatic vasculature is derived. Here, we summarize our current understanding of the key steps leading to the formation of a functional lymphatic vasculature.
Collapse
|
89
|
Abstract
Lymphangiogenesis, the growth of lymphatic vessels, is essential in embryonic development. In adults, it is involved in many pathological processes such as lymphedema, inflammatory diseases, and tumor metastasis. Advances during the past decade have dramatically increased the knowledge of the mechanisms of lymphangiogenesis, including the roles of transcription factors, lymphangiogenic growth factors and their receptors, and intercellular and intracellular signaling cascades. Strategies based on these mechanisms are being tested in the treatment of various human diseases such as cancer, lymphedema, and tissue allograft rejection. This Review summarizes the recent progress on lymphangiogenic mechanisms and their applications in disease treatment.
Collapse
|
90
|
Sabine A, Petrova TV. Interplay of mechanotransduction, FOXC2, connexins, and calcineurin signaling in lymphatic valve formation. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2014; 214:67-80. [PMID: 24276887 DOI: 10.1007/978-3-7091-1646-3_6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The directional flow of lymph is maintained by hundreds of intraluminal lymphatic valves. Lymphatic valves are crucial to prevent lymphedema, accumulation of fluid in the tissues, and to ensure immune surveillance; yet, the mechanisms of valve formation are only beginning to be elucidated. In this chapter, we will discuss the main steps of lymphatic valve morphogenesis, the important role of mechanotransduction in this process, and the genetic program regulated by the transcription factor Foxc2, which is indispensable for all steps of valve development. Failure to form mature collecting lymphatic vessels and valves causes the majority of postsurgical lymphedema, e.g., in breast cancer patients. Therefore, this knowledge will be useful for diagnostics and development of better treatments of secondary lymphedema.
Collapse
Affiliation(s)
- Amélie Sabine
- Department of Oncology, CHUV-UNIL, Ch. des Boveresses 155, CH-1066, Epalinges, Switzerland
| | | |
Collapse
|
91
|
Tatin F. [Lymphatic valve morphogenesis]. Med Sci (Paris) 2013; 29:1074-6. [PMID: 24356131 DOI: 10.1051/medsci/20132912004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Florence Tatin
- Lymphatic development, Cancer Research-London Research Institute, 44 Lincoln Inn's Fields, WC2A 3LY London, Royaume-Uni
| |
Collapse
|
92
|
|
93
|
Valtcheva N, Primorac A, Jurisic G, Hollmén M, Detmar M. The orphan adhesion G protein-coupled receptor GPR97 regulates migration of lymphatic endothelial cells via the small GTPases RhoA and Cdc42. J Biol Chem 2013; 288:35736-48. [PMID: 24178298 DOI: 10.1074/jbc.m113.512954] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The important role of the lymphatic vascular system in pathological conditions such as inflammation and cancer has been increasingly recognized, but its potential as a pharmacological target is poorly exploited. Our study aimed at the identification and molecular characterization of lymphatic-specific G protein-coupled receptors (GPCRs) to assess new targets for pharmacological manipulation of the lymphatic vascular system. We used a TaqMan quantitative RT-PCR-based low density array to determine the GPCR expression profiles of ex vivo isolated intestinal mouse lymphatic (LECs) and blood vascular endothelial cells (BECs). GPR97, an orphan adhesion GPCR of unknown function, was the most highly and specifically expressed GPCR in mouse lymphatic endothelium. Using siRNA silencing, we found that GPR97-deficient primary human LECs displayed increased adhesion and collective cell migration, whereas single cell migration was decreased as compared with nontargeting siRNA-transfected control LECs. Loss of GPR97 shifted the ratio of active Cdc42 and RhoA and initiated cytoskeletal rearrangements, including F-actin redistribution, paxillin and PAK4 phosphorylation, and β1-integrin activation. Our data suggest a possible role of GPR97 in lymphatic remodeling and furthermore provide the first insights into the biological functions of GPR97.
Collapse
Affiliation(s)
- Nadejda Valtcheva
- From the Institute of Pharmaceutical Sciences, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
94
|
EMILIN1/α9β1 integrin interaction is crucial in lymphatic valve formation and maintenance. Mol Cell Biol 2013; 33:4381-94. [PMID: 24019067 DOI: 10.1128/mcb.00872-13] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Lymphatic vasculature plays a crucial role in the maintenance of tissue interstitial fluid balance. The role of functional collecting lymphatic vessels in lymph transport has been recently highlighted in pathologies leading to lymphedema, for which treatments are currently unavailable. Intraluminal valves are of paramount importance in this process. However, valve formation and maturation have not been entirely elucidated yet, in particular, the role played by the extracellular matrix (ECM). We hypothesized that EMILIN1, an ECM multidomain glycoprotein, regulates lymphatic valve formation and maintenance. Using a mouse knockout model, we show that in the absence of EMILIN1, mice exhibit defects in lymphatic valve structure and in lymph flow. By applying morphometric in vitro and in vivo functional assays, we conclude that this impaired phenotype depends on the lack of α9β1 integrin engagement, the specific lymphatic endothelial cell receptor for EMILIN1, and the ensuing derangement of cell proliferation and migration. Our data demonstrate a fundamental role for EMILIN1-integrin α9 interaction in lymphatic vasculature, especially in lymphatic valve formation and maintenance, and underline the importance of this ECM component in displaying a regulatory function in proliferation and acting as a "guiding" molecule in migration of lymphatic endothelial cells.
Collapse
|
95
|
The role of immune semaphorins in cancer progression. Exp Cell Res 2013; 319:1635-43. [DOI: 10.1016/j.yexcr.2013.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 01/13/2023]
|
96
|
Martinez-Corral I, Makinen T. Regulation of lymphatic vascular morphogenesis: Implications for pathological (tumor) lymphangiogenesis. Exp Cell Res 2013; 319:1618-25. [DOI: 10.1016/j.yexcr.2013.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/26/2013] [Indexed: 11/24/2022]
|
97
|
Bone morphogenetic protein 9 (BMP9) controls lymphatic vessel maturation and valve formation. Blood 2013; 122:598-607. [PMID: 23741013 DOI: 10.1182/blood-2012-12-472142] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lymphatic vessels are critical for the maintenance of tissue fluid homeostasis and their dysfunction contributes to several human diseases. The activin receptor-like kinase 1 (ALK1) is a transforming growth factor-β family type 1 receptor that is expressed on both blood and lymphatic endothelial cells (LECs). Its high-affinity ligand, bone morphogenetic protein 9 (BMP9), has been shown to be critical for retinal angiogenesis. The aim of this work was to investigate whether BMP9 could play a role in lymphatic development. We found that Bmp9 deficiency in mice causes abnormal lymphatic development. Bmp9-knockout (KO) pups presented hyperplastic mesenteric collecting vessels that maintained LYVE-1 expression. In accordance with this result, we found that BMP9 inhibited LYVE-1 expression in LECs in an ALK1-dependent manner. Bmp9-KO pups also presented a significant reduction in the number and in the maturation of mesenteric lymphatic valves at embryonic day 18.5 and at postnatal days 0 and 4. Interestingly, the expression of several genes known to be involved in valve formation (Foxc2, Connexin37, EphrinB2, and Neuropilin1) was upregulated by BMP9 in LECS. Finally, we demonstrated that Bmp9-KO neonates and adult mice had decreased lymphatic draining efficiency. These data identify BMP9 as an important extracellular regulator in the maturation of the lymphatic vascular network affecting valve development and lymphatic vessel function.
Collapse
|
98
|
Koltowska K, Betterman KL, Harvey NL, Hogan BM. Getting out and about: the emergence and morphogenesis of the vertebrate lymphatic vasculature. Development 2013; 140:1857-70. [DOI: 10.1242/dev.089565] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The lymphatic vascular system develops from the pre-existing blood vasculature of the vertebrate embryo. New insights into lymphatic vascular development have recently been achieved with the use of alternative model systems, new molecular tools, novel imaging technologies and growing interest in the role of lymphatic vessels in human disorders. The signals and cellular mechanisms that facilitate the emergence of lymphatic endothelial cells from veins, guide migration through the embryonic environment, mediate interactions with neighbouring tissues and control vessel maturation are beginning to emerge. Here, we review the most recent advances in lymphatic vascular development, with a major focus on mouse and zebrafish model systems.
Collapse
Affiliation(s)
- Katarzyna Koltowska
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kelly L. Betterman
- Division of Haematology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, 5000, Australia
| | - Natasha L. Harvey
- Division of Haematology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, 5000, Australia
- Discipline of Medicine, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Benjamin M. Hogan
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
99
|
Chauvet S, Burk K, Mann F. Navigation rules for vessels and neurons: cooperative signaling between VEGF and neural guidance cues. Cell Mol Life Sci 2013; 70:1685-703. [PMID: 23475066 PMCID: PMC11113827 DOI: 10.1007/s00018-013-1278-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 12/22/2022]
Abstract
Many organs, such as lungs, nerves, blood and lymphatic vessels, consist of complex networks that carry flows of information, gases, and nutrients within the body. The morphogenetic patterning that generates these organs involves the coordinated action of developmental signaling cues that guide migration of specialized cells. Precision guidance of endothelial tip cells by vascular endothelial growth factors (VEGFs) is well established, and several families of neural guidance molecules have been identified to exert guidance function in both the nervous and the vascular systems. This review discusses recent advances in VEGF research, focusing on the emerging role of neural guidance molecules as key regulators of VEGF function during vascular development and on the novel role of VEGFs in neural cell migration and nerve wiring.
Collapse
Affiliation(s)
- Sophie Chauvet
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Campus de Luminy Case 908, 13288 Marseille Cedex 9, France
| | - Katja Burk
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Campus de Luminy Case 908, 13288 Marseille Cedex 9, France
| | - Fanny Mann
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Campus de Luminy Case 908, 13288 Marseille Cedex 9, France
| |
Collapse
|
100
|
Circulation Research
Thematic Synopsis: Cardiovascular Development. Circ Res 2013. [DOI: 10.1161/circresaha.113.301305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|