51
|
Chowdhury B, Luu AZ, Luu VZ, Kabir MG, Pan Y, Teoh H, Quan A, Sabongui S, Al-Omran M, Bhatt DL, Mazer CD, Connelly KA, Verma S, Hess DA. The SGLT2 inhibitor empagliflozin reduces mortality and prevents progression in experimental pulmonary hypertension. Biochem Biophys Res Commun 2020; 524:50-56. [PMID: 31980166 DOI: 10.1016/j.bbrc.2020.01.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/01/2020] [Indexed: 12/21/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare, but progressive and devastating vascular disease with few treatment options to prevent the advancement to right ventricular dysfunction hypertrophy and failure. Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, enhances urinary glucose excretion as well as reduces cardiovascular events and mortality in individuals with type 2 diabetes. While empagliflozin has been reported to lower systemic hypertension due to increased diuresis, the effect of empagliflozin on PAH is unknown. We used monocrotaline (MCT)-treated Sprague-Dawley rats to determine if empagliflozin alters PAH-associated outcomes. Compared to vehicle control, daily empagliflozin administration significantly improved survival in rats with severe MCT-induced PAH. Hemodynamic assessments showed that empagliflozin treatment significantly reduced mean pulmonary artery pressure, right ventricular systolic pressure, and increased pulmonary acceleration time. Empagliflozin treatment resulted in reduced right ventricular hypertrophy and fibrosis. Histological and molecular assessments of lung vasculature revealed significantly reduced medial wall thickening and decreased muscularization of pulmonary arterioles after empagliflozin treatment compared to vehicle-treated rats. In summary, SGLT2 inhibition with empagliflozin lowered mortality, reduced right ventricle systolic pressure, and attenuated maladaptive pulmonary remodeling in MCT-induced PAH. Clinical studies evaluating the efficacy of SGLT-2 inhibition should be considered for patients with PAH.
Collapse
Affiliation(s)
- Biswajit Chowdhury
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Albert Z Luu
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Vincent Z Luu
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - M Golam Kabir
- Division of Cardiology, St. Michael's Hospital, Toronto, ON, Canada
| | - Yi Pan
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Hwee Teoh
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, ON, Canada; Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, ON, Canada
| | - Adrian Quan
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Sandra Sabongui
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Mohammed Al-Omran
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Division of Vascular Surgery, St. Michael's Hospital, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Deepak L Bhatt
- Brigham and Women's Hospital Heart and Vascular Center, Harvard Medical School, Boston, MA, USA
| | - C David Mazer
- Department of Anesthesia, St. Michael's Hospital, Toronto, ON, Canada; Department of Anesthesia, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Kim A Connelly
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, ON, Canada.
| | - David A Hess
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Division of Vascular Surgery, St. Michael's Hospital, Toronto, ON, Canada; Molecular Medicine Research Laboratories, Robarts Research Institute, London, ON, Canada; Department of Physiology and Pharmacology, Western University, London, ON, Canada
| |
Collapse
|
52
|
Delmotte P, Sieck GC. Endoplasmic Reticulum Stress and Mitochondrial Function in Airway Smooth Muscle. Front Cell Dev Biol 2020; 7:374. [PMID: 32010691 PMCID: PMC6974519 DOI: 10.3389/fcell.2019.00374] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammatory airway diseases such as asthma affect more than 300 million people world-wide. Inflammation triggers pathophysiology via such as tumor necrosis factor α (TNFα) and interleukins (e.g., IL-13). Hypercontraction of airway smooth muscle (ASM) and ASM cell proliferation are major contributors to the exaggerated airway narrowing that occurs during agonist stimulation. An emergent theme in this context is the role of inflammation-induced endoplasmic reticulum (ER) stress and altered mitochondrial function including an increase in the formation of reactive oxygen species (ROS). This may establish a vicious cycle as excess ROS generation leads to further ER stress. Yet, it is unclear whether inflammation-induced ROS is the major mechanism leading to ER stress or the consequence of ER stress. In various diseases, inflammation leads to an increase in mitochondrial fission (fragmentation), associated with reduced levels of mitochondrial fusion proteins, such as mitofusin 2 (Mfn2). Mitochondrial fragmentation may be a homeostatic response since it is generally coupled with mitochondrial biogenesis and mitochondrial volume density thereby reducing demand on individual mitochondrion. ER stress is triggered by the accumulation of unfolded proteins, which induces a homeostatic response to alter protein balance via effects on protein synthesis and degradation. In addition, the ER stress response promotes protein folding via increased expression of molecular chaperone proteins. Reduced Mfn2 and altered mitochondrial dynamics may not only be downstream to ER stress but also upstream such that a reduction in Mfn2 triggers further ER stress. In this review, we summarize the current understanding of the link between inflammation-induced ER stress and mitochondrial function and the role played in the pathophysiology of inflammatory airway diseases.
Collapse
Affiliation(s)
- Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
53
|
Rood K, Lopez V, La Frano MR, Fiehn O, Zhang L, Blood AB, Wilson SM. Gestational Hypoxia and Programing of Lung Metabolism. Front Physiol 2019; 10:1453. [PMID: 31849704 PMCID: PMC6895135 DOI: 10.3389/fphys.2019.01453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Gestational hypoxia is a risk factor in the development of pulmonary hypertension in the newborn and other sequela, however, the mechanisms associated with the disease remain poorly understood. This review highlights disruption of metabolism by antenatal high altitude hypoxia and the impact this has on pulmonary hypertension in the newborn with discussion of model organisms and human populations. There is particular emphasis on modifications in glucose and lipid metabolism along with alterations in mitochondrial function. Additional focus is placed on increases in oxidative stress and the progression of pulmonary vascular disease in the newborn and on the need for further exploration using a combination of contemporary and classical approaches.
Collapse
Affiliation(s)
- Kristiana Rood
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Vanessa Lopez
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Michael R La Frano
- Department of Food Science and Nutrition, Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, United States.,Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, United States
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States.,Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Arlin B Blood
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Sean M Wilson
- Lawrence D. Longo MD Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
54
|
Protein Misfolding and Endoplasmic Reticulum Stress in Chronic Lung Disease: Will Cell-Specific Targeting Be the Key to the Cure? Chest 2019; 157:1207-1220. [PMID: 31778676 DOI: 10.1016/j.chest.2019.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 12/31/2022] Open
Abstract
Chronic lung disease accounts for a significant global burden with respect to death, disability, and health-care costs. Due to the heterogeneous nature and limited treatment options for these diseases, it is imperative that the cellular and molecular mechanisms underlying the disease pathophysiology are further understood. The lung is a complex organ with a diverse cell population, and each cell type will likely have different roles in disease initiation, progression, and resolution. The effectiveness of a given therapeutic agent may depend on the net effect on each of these cell types. Over the past decade, it has been established that endoplasmic reticulum stress and the unfolded protein response are involved in the development of several chronic lung diseases. These conserved cellular pathways are important for maintaining cellular proteostasis, but their aberrant activation can result in pathology. This review discusses the current understanding of endoplasmic reticulum stress and the unfolded protein response at the cellular level in the development and progression of various chronic lung diseases. We highlight the need for increased understanding of the specific cellular contributions of unfolded protein response activation to these pathologies and suggest that the development of cell-specific targeted therapies is likely required to further decrease disease progression and to promote resolution of chronic lung disease.
Collapse
|
55
|
Alruwaili N, Kandhi S, Sun D, Wolin MS. Metabolism and Redox in Pulmonary Vascular Physiology and Pathophysiology. Antioxid Redox Signal 2019; 31:752-769. [PMID: 30403147 PMCID: PMC6708269 DOI: 10.1089/ars.2018.7657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: This review considers how some systems controlling pulmonary vascular function are potentially regulated by redox processes to examine how and why conditions such as prolonged hypoxia, pathological mediators, and other factors promoting vascular remodeling contribute to the development of pulmonary hypertension (PH). Recent Advances and Critical Issues: Aspects of vascular remodeling induction mechanisms described are associated with shifts in glucose metabolism through the pentose phosphate pathway and increased cytosolic NADPH generation by glucose-6-phosphate dehydrogenase, increased glycolysis generation of cytosolic NADH and lactate, mitochondrial dysfunction associated with superoxide dismutase-2 depletion, changes in reactive oxygen species and iron metabolism, and redox signaling. Future Directions: The regulation and impact of hypoxia-inducible factor and the function of cGMP-dependent and redox regulation of protein kinase G are considered for their potential roles as key sensors and coordinators of redox and metabolic processes controlling the progression of vascular pathophysiology in PH, and how modulating aspects of metabolic and redox regulatory systems potentially function in beneficial therapeutic approaches.
Collapse
Affiliation(s)
- Norah Alruwaili
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, New York
| |
Collapse
|
56
|
H 2S attenuates endoplasmic reticulum stress in hypoxia-induced pulmonary artery hypertension. Biosci Rep 2019; 39:BSR20190304. [PMID: 31239370 PMCID: PMC6614575 DOI: 10.1042/bsr20190304] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/11/2019] [Accepted: 06/20/2019] [Indexed: 01/07/2023] Open
Abstract
Background: Previous studies have found that hydrogen sulfide (H2S) has multiple functions such as anti-inflammatory, antioxidative in addition to biological effects among the various organs. Exaggerated proliferation and resistance to apoptosis of pulmonary artery smooth muscle cells (PASMCs) is a key component of vascular remodeling. We hypothesized that endogenous bioactive molecular known to suppress endoplasmic reticulum (ER) stress signaling, like H2S, will inhibit the disruption of the ER-mitochondrial unit and prevent/reverse pulmonary arterial hypertension (PAH). Methods and results: A hypoxic model was established with PASMCs to investigate the possible role of H2S in PAH. Effects of H2S on proliferation of PASMCs were evaluated by CCK-8 and EdU assay treated with or without GYY4137 (donor of H2S). H2S significantly inhibited hypoxia-induced increase in PASMCs proliferation in a dose-dependent manner. H2S by intraperitoneal injection with rats both prevented and reversed chronic hypoxia-induced pulmonary hypertension in rats, decreasing pulmonary vascular resistance, pulmonary artery remodeling and right ventricular hypertrophy, and improving functional capacity without affecting systemic hemodynamic. Exogenous H2S suppressed ER stress indexes in vivo and in vitro, decreased activating transcription factor 6 activation, and inhibited the hypoxia-induced decrease in mitochondrial calcium and mitochondrial function. Conclusion: H2S effectively inhibits hypoxia-induced increase in cell proliferation, migration, and oxidative stress in PASMCs, and NOX-4 might be the underlying mechanism of PAH. Attenuating ER stress with exogenous H2S may be a novel therapeutic strategy in pulmonary hypertension with high translational potential.
Collapse
|
57
|
C1q-TNF-related protein-3 attenuates pressure overload-induced cardiac hypertrophy by suppressing the p38/CREB pathway and p38-induced ER stress. Cell Death Dis 2019; 10:520. [PMID: 31285424 PMCID: PMC6614451 DOI: 10.1038/s41419-019-1749-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/25/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023]
Abstract
C1q-tumor necrosis factor-related protein-3 (CTRP3) is an adipokine, which exerts protective function in ischemic or diabetic heart injury. However, the role of CTRP3 in cardiac hypertrophy remains unclear. The aim of this study was to investigate the pharmacological effects of CTRP3 on pathological cardiac hypertrophy induced by hypertension. Male C57BL/6 J wild-type (WT) mice, Ctrp3 knockout mice, and mice infected with lentivirus overexpressing mouse Ctrp3 underwent sham surgery or transverse aortic constriction (TAC) surgery. After 4 weeks, cardiac hypertrophy, fibrosis, and cardiac function were examined. Compared with WT mice, Ctrp3 deficiency substantially impaired contractile dysfunction, exacerbated the enlargement of cardiomyocytes and myocardial fibrosis, and reprogramed the expression of pathological genes after TAC. Conversely, CTRP3 overexpression played a role in restoring the left ventricular cardiac contractile function, alleviating cardiac hypertrophy and fibrosis, and inhibiting the expression of hypertrophic and fibrotic signaling in mice after TAC. Furthermore, CTRP3 regulated the expression of the p38/CREB pathway and of the primary modulating factors of the endoplasmic reticulum stress, i.e., GRP78 and the downstream molecules eukaryotic translation inhibition factor 2 submit α, C/EBP homologous protein, and inositol-requiring enzyme-1. Further, inhibition of p38 MAPK by SB203580 blunted the ER stress intensified by Ctrp3 deficiency. In vitro, CTRP3 protected neonatal rat cardiac myocytes against phenylephrine-induced cardiomyocyte hypertrophy. We conclude that CTRP3 protects the host against pathological cardiac remodeling and left ventricular dysfunction induced by pressure overload largely by inhibiting the p38/CREB pathway and alleviating p38-induced ER stress.
Collapse
|
58
|
Yang YD, Li MM, Xu G, Zhang EL, Chen J, Sun B, Chen DW, Gao YQ. Targeting mitochondria-associated membranes as a potential therapy against endothelial injury induced by hypoxia. J Cell Biochem 2019; 120:18967-18978. [PMID: 31241212 DOI: 10.1002/jcb.29220] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023]
Abstract
Mitochondrial dysfunction plays a principal role in hypoxia-induced endothelial injury, which is involved in hypoxic pulmonary hypertension and ischemic cardiovascular diseases. Recent studies have identified mitochondria-associated membranes (MAMs) that modulate mitochondrial function under a variety of pathophysiological conditions such as high-fat diet-mediated insulin resistance, hypoxia reoxygenation-induced myocardial death, and hypoxia-evoked vascular smooth muscle cell proliferation. However, the role of MAMs in hypoxia-induced endothelial injury remains unclear. To explore this further, human umbilical vein endothelial cells and human pulmonary artery endothelial cells were exposed to hypoxia (1% O2 ) for 24 hours. An increase in MAM formation was uncovered by immunoblotting and immunofluorescence. Then, we performed small interfering RNA transfection targeted to MAM constitutive proteins and explored the biological effects. Knockdown of MAM constitutive proteins attenuated hypoxia-induced elevation of mitochondrial Ca2+ and repressed mitochondrial impairment, leading to an increase in mitochondrial membrane potential and ATP production and a decline in reactive oxygen species. Then, we found that MAM disruption mitigated cell apoptosis and promoted cell survival. Next, other protective effects, such as those pertaining to the repression of inflammatory response and the promotion of NO synthesis, were investigated. With the disruption of MAMs under hypoxia, inflammatory molecule expression was repressed, and the eNOS-NO pathway was enhanced. This study demonstrates that the disruption of MAMs might be of therapeutic value for treating endothelial injury under hypoxia, suggesting a novel strategy for preventing hypoxic pulmonary hypertension and ischemic injuries.
Collapse
Affiliation(s)
- Yi-Dong Yang
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Man-Man Li
- Genetics Laboratory, Hubei Maternal and Child Health Hospital, Wuhan, China
| | - Gang Xu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Er-Long Zhang
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Jian Chen
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - Binda Sun
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| | - De-Wei Chen
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China.,Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yu-Qi Gao
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China.,Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| |
Collapse
|
59
|
Zhou Q, Guo W, Jia Y, Xu J. Effect of 4-Phenylbutyric Acid and Tauroursodeoxycholic Acid on Magnesium and Calcium Metabolism in Streptozocin-Induced Type 1 Diabetic Mice. Biol Trace Elem Res 2019; 189:501-510. [PMID: 30171596 PMCID: PMC6469655 DOI: 10.1007/s12011-018-1494-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/24/2018] [Indexed: 12/19/2022]
Abstract
Recent evidence has identified a role of micronutrients, such as magnesium (Mg2+) and calcium (Ca2+), in glycemic control. 4-Phenylbutyric acid (PBA) and tauroursodeoxycholic acid (TUDCA) are molecular chaperones that can improve protein folding and alleviate endoplasmic reticulum (ER) stress. Increasingly, research is focusing on the association between molecular chaperones and micronutrients. This study established and characterized a mouse model of type 1 diabetes (T1D) and investigated the effect of PBA and TUDCA on Mg2+ and Ca2+ metabolism in these mice. T1D was established in Friend virus B-type mice using multiple low doses of streptozotocin. Mice were administered chaperones. Mg2+and Ca2+ levels in tissues and serum were detected using acid digestion and ICP-MS. At 2 weeks and 2 months after chaperone administration was initiated, Mg2+ levels in the heart, liver, kidney, and serum and Ca2+ levels in spleen and serum of T1D mice were significantly decreased compared with controls; Ca2+ levels in the kidney and muscle of T1D mice were significantly increased; Mg2+ and Ca2+ levels in the heart, liver, kidney, muscle, spleen, and serum were positively correlated in control and T1D mice; and PBA restored renal Mg2+ levels to normal values and TUDCA restored hepatic, renal, and serum Mg2+ levels and renal and serum Ca2+ levels to normal values in T1D mice. PBA restored muscular Ca2+ levels to normal values in T1D mice at 2 months after chaperone or vehicle administration was initiated. Further research is required to investigate the underlying mechanisms by which chaperones regulate micronutrients in diabetes.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Pediatrics, First Hospital of Jilin University, Changchun, 130021, China
| | - Wenjia Guo
- Department of Laboratory Medicine, First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Yanan Jia
- Department of Laboratory Medicine, First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Jiancheng Xu
- Department of Laboratory Medicine, First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
60
|
Yang YD, Li MM, Xu G, Feng L, Zhang EL, Chen J, Chen DW, Gao YQ. Nogo-B Receptor Directs Mitochondria-Associated Membranes to Regulate Vascular Smooth Muscle Cell Proliferation. Int J Mol Sci 2019; 20:ijms20092319. [PMID: 31083380 PMCID: PMC6540177 DOI: 10.3390/ijms20092319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/03/2019] [Accepted: 05/09/2019] [Indexed: 12/24/2022] Open
Abstract
Mitochondria-associated membranes (MAM) are a well-recognized contact link between the mitochondria and endoplasmic reticulum that affects mitochondrial biology and vascular smooth muscle cells (VSMCs) proliferation via the regulation of mitochondrial Ca2+(Ca2+m) influx. Nogo-B receptor (NgBR) plays a vital role in proliferation, epithelial-mesenchymal transition, and chemoresistance of some tumors. Recent studies have revealed that downregulation of NgBR, which stimulates the proliferation of VSMCs, but the underlying mechanism remains unclear. Here, we investigated the role of NgBR in MAM and VSMC proliferation. We analyzed the expression of NgBR in pulmonary arteries using a rat model of hypoxic pulmonary hypertension (HPH), in which rats were subjected to normoxic recovery after hypoxia. VSMCs exposed to hypoxia and renormoxia were used to assess the alterations in NgBR expression in vitro. The effect of NgBR downregulation and overexpression on VSMC proliferation was explored. The results revealed that NgBR expression was negatively related with VSMCs proliferation. Then, MAM formation and the phosphorylation of inositol 1,4,5-trisphosphate receptor type 3 (IP3R3) was detected. We found that knockdown of NgBR resulted in MAM disruption and augmented the phosphorylation of IP3R3 through pAkt, accompanied by mitochondrial dysfunction including decreased Ca2+m, respiration and mitochondrial superoxide, increased mitochondrial membrane potential and HIF-1α nuclear localization, which were determined by confocal microscopy and Seahorse XF-96 analyzer. By contrast, NgBR overexpression attenuated IP3R3 phosphorylation and HIF-1α nuclear localization under hypoxia. These results reveal that dysregulation of NgBR promotes VSMC proliferation via MAM disruption and increased IP3R3 phosphorylation, which contribute to the decrease of Ca2+m and mitochondrial impairment.
Collapse
Affiliation(s)
- Yi-Dong Yang
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China.
- Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China.
| | - Man-Man Li
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China.
- Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China.
- Department of High Altitude Physiology & Biology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China.
| | - Gang Xu
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China.
- Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China.
| | - Lan Feng
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China.
- Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China.
| | - Er-Long Zhang
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China.
- Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China.
| | - Jian Chen
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China.
- Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China.
| | - De-Wei Chen
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China.
- Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China.
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China.
| | - Yu-Qi Gao
- Institute of Medicine and Hygienic Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing 400038, China.
- Key Laboratory of High Altitude Medicine, PLA, Chongqing 400038, China.
| |
Collapse
|
61
|
Zhang YL, Zhang R, Shen YF, Huang KY, He YY, Zhao JH, Jing ZC. 3-Bromopyruvate Attenuates Experimental Pulmonary Hypertension via Inhibition of Glycolysis. Am J Hypertens 2019; 32:426-432. [PMID: 30561502 DOI: 10.1093/ajh/hpy191] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/10/2018] [Accepted: 12/12/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The shift of metabolism from mitochondrial oxidative phosphorylation to glycolysis and mitochondria binding partner of hexokinase are features common to cancer. These have been seen in pulmonary hypertension (PH) as well. An inhibitor of hexokinase 2 (HK 2), the small molecule 3-bromopyruvate (3-BrPA) is an incredibly powerful and swift-acting anticancer agent. However, whether it could be of potential benefit to PH has still been unknown. METHODS Sprague-Dawley rats with monocrotaline (MCT)-induced PH were administered 2 oral doses of 3-BrPA (15 and 30 mg/kg/day, respectively) for 14 days. Hemodynamic parameters were obtained by right heart catheterization. Histopathology, immunohistochemistry, transmission electron microscopy, flow cytometry, and assessments of relative protein expressions were conducted. RESULTS Compared with MCT treatment, 3-BrPA decreased mean pulmonary arterial pressure and pulmonary vascular resistance, and increased cardiac output. 3-BrPA significantly suppressed proliferation in addition to enhancing apoptosis of pulmonary artery smooth muscle cells, attenuating small pulmonary artery remodeling and right ventricular hypertrophy. Treatment with 3-BrPA markedly reduced the mitochondrial membrane potential and restored mitochondrial structure. Furthermore, 3-BrPA significantly inhibited HK 2 expression but not HK 1. The expression of both pyruvate dehydrogenase kinase and lactate dehydrogenase was decreased whereas that of pyruvate dehydrogenase and cytosolic cytochrome c was upregulated with 3-BrPA administration. CONCLUSION This study demonstrates the reversal of PH by 3-BrPA is related to alteration in glycolysis and improved mitochondria function, indicating the "metabolic targeting" as a rational therapeutic strategy for PH.
Collapse
Affiliation(s)
- Yun-Long Zhang
- Department of Bioengineering, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Rui Zhang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi-Fan Shen
- Department of Bioengineering, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Kai-Yue Huang
- Department of Bioengineering, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Yang-Yang He
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun-Han Zhao
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Cheng Jing
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Pulmonary Vascular Medicine and FuWai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
62
|
Han S, Bal NB, Sadi G, Usanmaz SE, Tuglu MM, Uludag MO, Demirel-Yilmaz E. Inhibition of endoplasmic reticulum stress protected DOCA-salt hypertension-induced vascular dysfunction. Vascul Pharmacol 2019; 113:38-46. [PMID: 30458302 DOI: 10.1016/j.vph.2018.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/21/2018] [Accepted: 11/16/2018] [Indexed: 01/08/2023]
Abstract
Hypertension has complex vascular pathogenesis and therefore the molecular etiology remains poorly elucidated. Endoplasmic reticulum stress (ERS), which is a condition of the unfolded/misfolded protein accumulation in the endoplasmic reticulum, has been defined as a potential target for cardiovascular disease. In the present study, the effects of ERS inhibition on hypertension-induced alterations in the vessels were investigated. In male Wistar albino rats, hypertension was induced through unilateral nephrectomy, deoxycorticosterone-acetate (DOCA) injection (20 mg/kg, twice a week) and 1% NaCl with 0.2% KCI added to drinking water for 12 weeks. An ERS inhibitor, tauroursodeoxycolic acid (TUDCA) (150 mg/kg/day, i.p.), was administered for the final four weeks. ERS inhibition in DOCA-salt induced hypertension was observed to have reduced systolic blood pressure, improved endothelial dysfunction, enhanced plasma nitric oxide (NO) level, reduced protein expressions of phosphorylated-double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (pPERK), 78 kDa glucose-regulated protein (GRP78), Inositol trisphosphate receptor1 (IP3R1) and Epidermal growth factor receptor (EGFR), increased expressions of endoplasmic reticulum Ca2+-ATPase2 (SERCA2) and B cell lymphoma2 (Bcl2) in vessels. These findings suggest that the beneficial effects of ERS inhibition on hypertension may be related to protection of vessel functions through restoration of endoplasmic reticulum calcium homeostasis, and apoptotic and mitotic pathways.
Collapse
Affiliation(s)
- Sevtap Han
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey.
| | - Nur Banu Bal
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey
| | - Gökhan Sadi
- Karamanoglu Mehmetbey University, K.Ö. Faculty of Science, Department of Biology, Karaman, Turkey
| | - Suzan Emel Usanmaz
- Ankara University, Faculty of Medicine, Department of Medical Pharmacology, Sihhiye, 06100 Ankara, Turkey
| | - Merve Matilda Tuglu
- Ankara University, Faculty of Medicine, Department of Medical Pharmacology, Sihhiye, 06100 Ankara, Turkey
| | - Mecit Orhan Uludag
- Gazi University, Faculty of Pharmacy, Department of Pharmacology, Etiler, 06330 Ankara, Turkey
| | - Emine Demirel-Yilmaz
- Ankara University, Faculty of Medicine, Department of Medical Pharmacology, Sihhiye, 06100 Ankara, Turkey
| |
Collapse
|
63
|
Hu H, Tian M, Ding C, Yu S. The C/EBP Homologous Protein (CHOP) Transcription Factor Functions in Endoplasmic Reticulum Stress-Induced Apoptosis and Microbial Infection. Front Immunol 2019; 9:3083. [PMID: 30662442 PMCID: PMC6328441 DOI: 10.3389/fimmu.2018.03083] [Citation(s) in RCA: 762] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022] Open
Abstract
Apoptosis is a form of cell death by which the body maintains the homeostasis of the internal environment. Apoptosis is an initiative cell death process that is controlled by genes and is mainly divided into endogenous pathways (mitochondrial pathway), exogenous pathways (death receptor pathway), and apoptotic pathways induced by endoplasmic reticulum (ER) stress. The homeostasis imbalance in ER results in ER stress. Under specific conditions, ER stress can be beneficial to the body; however, if ER protein homeostasis is not restored, the prolonged activation of the unfolded protein response may initiate apoptotic cell death via the up-regulation of the C/EBP homologous protein (CHOP). CHOP plays an important role in ER stress-induced apoptosis and this review focuses on its multifunctional roles in that process, as well as its role in apoptosis during microbial infection. We summarize the upstream and downstream pathways of CHOP in ER stress induced apoptosis. We also focus on the newest discoveries in the functions of CHOP-induced apoptosis during microbial infection, including DNA and RNA viruses and some species of bacteria. Understanding how CHOP functions during microbial infection will assist with the development of antimicrobial therapies.
Collapse
Affiliation(s)
- Hai Hu
- Department of Veterinary Public Health, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Mingxing Tian
- Department of Veterinary Public Health, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Veterinary Public Health, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shengqing Yu
- Department of Veterinary Public Health, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
64
|
Dickens JA, Malzer E, Chambers JE, Marciniak SJ. Pulmonary endoplasmic reticulum stress-scars, smoke, and suffocation. FEBS J 2019; 286:322-341. [PMID: 29323786 DOI: 10.1111/febs.14381] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/11/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
Protein misfolding within the endoplasmic reticulum (ER stress) can be a cause or consequence of pulmonary disease. Mutation of proteins restricted to the alveolar type II pneumocyte can lead to inherited forms of pulmonary fibrosis, but even sporadic cases of pulmonary fibrosis appear to be strongly associated with activation of the unfolded protein response and/or the integrated stress response. Inhalation of smoke can impair protein folding and may be an important cause of pulmonary ER stress. Similarly, tissue hypoxia can lead to impaired protein homeostasis (proteostasis). But the mechanisms linking smoke and hypoxia to ER stress are only partially understood. In this review, we will examine the role of ER stress in the pathogenesis of lung disease by focusing on fibrosis, smoke, and hypoxia.
Collapse
Affiliation(s)
- Jennifer A Dickens
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
| | - Elke Malzer
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
| | - Joseph E Chambers
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
| |
Collapse
|
65
|
Massaeli H, Viswanathan D, Pillai DG, Mesaeli N. Endoplasmic reticulum stress enhances endocytosis in calreticulin deficient cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:727-736. [PMID: 30529231 DOI: 10.1016/j.bbamcr.2018.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/18/2018] [Accepted: 12/03/2018] [Indexed: 01/01/2023]
Abstract
Calreticulin an endoplasmic reticulum (ER) chaperone that is involved in the quality control process and plays an important role as a regulator of intracellular calcium homeostasis. Previously, we illustrated that loss of calreticulin (crt-/-) results in the activation of ubiquitin-proteasome pathway facilitating the increased resistance to apoptosis. Our preliminary data illustrated a significant increase in the endocytosis in the calreticulin knockout mouse embryonic fibroblast cells (crt-/-). Therefore, we hypothesized that the mechanism for this increased endocytosis in the crt-/- cells is due to onset of ER stress. To test this hypothesis, we measured endocytosis in the wild type (wt) and crt-/- cells using uptake of fluorescent dextran and showed a significant increase in the rate of its uptake in crt-/- cells as compared to wt cells. To determine the endocytic pathway involved we examined both clathrin and caveolin-1 dependent endocytosis. Our results illustrated no change in the expression of clathrin heavy chain while there was a significant increase in the expression of caveolin-1 in the crt-/- cells as compared to the wt cells. Furthermore, using shRNA we illustrated that knockdown of clathrin heavy chain had no effect on endocytosis in the crt-/- cells. While knock-down of caveolin-1 significantly reduced endocytosis in the crt-/- cells. Finally, we illustrated that a chemical chaperone, 4‑phenylbutyrate significantly reduced both the endoplasmic reticulum stress and endocytosis in the crt-/- cells. Our data shows for the first time, that ER stress led to enhanced caveolin-1 mediated endocytosis and reversal of ER stress reduces endocytosis.
Collapse
Affiliation(s)
- Hamid Massaeli
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Doha, Qatar
| | - Divya Viswanathan
- Department of Biochemistry, Weill Cornell Medicine in Qatar, Doha, Qatar
| | | | - Nasrin Mesaeli
- Department of Biochemistry, Weill Cornell Medicine in Qatar, Doha, Qatar.
| |
Collapse
|
66
|
Ni XQ, Lu WW, Zhang JS, Zhu Q, Ren JL, Yu YR, Liu XY, Wang XJ, Han M, Jing Q, Du J, Tang CS, Qi YF. Inhibition of endoplasmic reticulum stress by intermedin1-53 attenuates angiotensin II-induced abdominal aortic aneurysm in ApoE KO Mice. Endocrine 2018; 62:90-106. [PMID: 29943223 DOI: 10.1007/s12020-018-1657-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/15/2018] [Indexed: 12/23/2022]
Abstract
Endoplasmic reticulum stress (ERS) is involved in the development of abdominal aortic aneurysm (AAA). Since bioactive peptide intermedin (IMD)1-53 protects against AAA formation, here we investigated whether IMD1-53 attenuates AAA by inhibiting ERS. AAA model was induced by angiotensin II (AngII) in ApoE KO mouse background. AngII-treated mouse aortas showed increased ERS gene transcription of caspase12, eukaryotic translation initiation factor 2a (eIf2a) and activating transcription factor 4(ATF4).The protein level of ERS marker glucose regulated protein 94(GRP94), ATF4 and C/EBP homologous protein 10(CHOP) was also up-regulated by AngII. Increased ERS levels were accompanied by severe VSMC apoptosis in human AAA aorta. In vivo administration of IMD1-53 greatly reduced AngII-induced AAA and abrogated the activation of ERS. To determine whether IMD inhibited AAA by ameliorating ERS, we used 2 non-selective ERS inhibitors phenyl butyrate (4-PBA) and taurine (TAU). Similar to IMD, PBA, and TAU significantly reduced the incidence of AAA and AAA-related pathological disorders. In vitro, AngII infusion up-regulated CHOP, caspase12 expression and led to VSMC apoptosis. IMD siRNA aggravated the CHOP, caspase12-mediated VSMC apoptosis, which was abolished by ATF4 silencing. IMD infusion promoted the phosphorylation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) in aortas in ApoE KO mice, and the AMPK inhibitor compound C abolished the protective effect of IMD on VSMC ERS and apoptosis induced by AngII. In conclusion, IMD may protect against AAA formation by inhibiting ERS via activating AMPK phosphorylation.
Collapse
MESH Headings
- Adenylate Kinase/metabolism
- Angiotensin II
- Animals
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/drug therapy
- Aortic Aneurysm, Abdominal/metabolism
- Apolipoproteins E/genetics
- Apolipoproteins E/metabolism
- Endoplasmic Reticulum Stress/drug effects
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Peptide Hormones/pharmacology
- Peptide Hormones/therapeutic use
- Phosphorylation/drug effects
Collapse
Affiliation(s)
- Xian-Qiang Ni
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, 100083, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China
- Department of Microbiology and Parasitology, School of Basic Medical Science, Peking University, 100083, Beijing, China
| | - Wei-Wei Lu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, 100083, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China
- Department of Microbiology and Parasitology, School of Basic Medical Science, Peking University, 100083, Beijing, China
| | - Jin-Sheng Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, 100083, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China
- Department of Microbiology and Parasitology, School of Basic Medical Science, Peking University, 100083, Beijing, China
| | - Qing Zhu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, 100083, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China
- Department of Microbiology and Parasitology, School of Basic Medical Science, Peking University, 100083, Beijing, China
| | - Jin-Ling Ren
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, 100083, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China
- Department of Microbiology and Parasitology, School of Basic Medical Science, Peking University, 100083, Beijing, China
| | - Yan-Rong Yu
- Department of Microbiology and Parasitology, School of Basic Medical Science, Peking University, 100083, Beijing, China
| | - Xiu-Ying Liu
- Key Laboratory of Genetic Network Biology, Collaborative Innovation Center of Genetics and Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiu-Jie Wang
- Key Laboratory of Genetic Network Biology, Collaborative Innovation Center of Genetics and Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, 050017, Shijiazhuang, China
| | - Qing Jing
- Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Science, Shanghai, China
| | - Jie Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing An Zhen Hospital, Ministry of Education, Capital Medical University, 100029, Beijing, China
| | - Chao-Shu Tang
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, 100083, Beijing, China.
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, 100083, Beijing, China.
| |
Collapse
|
67
|
Liu J, Cai G, Li M, Fan S, Yao B, Ping W, Huang Z, Cai H, Dai Y, Wang L, Huang X. Fibroblast growth factor 21 attenuates hypoxia-induced pulmonary hypertension by upregulating PPARγ expression and suppressing inflammatory cytokine levels. Biochem Biophys Res Commun 2018; 504:478-484. [PMID: 30197006 DOI: 10.1016/j.bbrc.2018.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/01/2018] [Indexed: 11/26/2022]
Abstract
Hypoxia-induced pulmonary hypertension (HPH) is a progressive disease characterized by a sustained, elevated pulmonary arterial pressure and vascular remodeling. The latter pathogenesis mainly involves overproliferation of pulmonary artery smooth muscle cells (PASMCs). Fibroblast growth factor 21 (FGF21) has recently emerged as a novel regulator that prevents cardiac hypertrophic remodeling. However, its possible role in pulmonary remodeling remains unclear. The activation of peroxisome proliferator activated receptor γ (PPARγ) is reported to attenuate HPH by suppressing proliferative signals. Loss of PPARγ in the lung contributes to abnormal proliferation of PASMCs. FGF21 is a key regulator of PPARγ activity in adipocytes, but its role has not been elucidated in PASMCs. Therefore, we hypothesized that FGF21 may confer therapeutic effects in HPH by upregulating the expression of PPARγ. Sprague-Dawley rats were exposed to hypoxia and treated with FGF21 for 4 weeks. In parallel, hypoxic conditions and FGF21 were administered to rat PASMCs for 48 h. FGF21 attenuated the hypoxia-induced elevation in mean pulmonary arterial pressure (mPAP), right ventricular hypertrophy (RVH), medial thickening and overproliferation of PASMCs. Furthermore, FGF21 abrogated the reductions in PPARγ expression and increases in TNF-α, IL-1 and IL-6 levels in PASMC culture media. Collectively, these results demonstrate that FGF21 could potentially attenuate the pathogenic derangements of HPH by targeting PPARγ and inflammatory cytokines.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Zhejiang, 325000, PR China
| | - Gexiang Cai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Zhejiang, 325000, PR China
| | - Manxiang Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Shanxi, 710061, PR China
| | - Shiqian Fan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Zhejiang, 325000, PR China
| | - Boyang Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Zhejiang, 325000, PR China
| | - Weidong Ping
- Chinese People's Liberation Army 117 Hospital, Zhejiang, 310013, PR China
| | - Zhifeng Huang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical University, Zhejiang, 325000, PR China
| | - Hui Cai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Zhejiang, 325000, PR China
| | - Yongyue Dai
- Department of Pathophysiology, Wenzhou Medical University, Zhejiang, 325000, PR China
| | - Liangxing Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Zhejiang, 325000, PR China.
| | - Xiaoying Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Zhejiang, 325000, PR China.
| |
Collapse
|
68
|
Abstract
Human heart failure is characterized by arrhythmogenic electrical remodeling consisting mostly of ion channel downregulations. Reversing these downregulations is a logical approach to antiarrhythmic therapy, but understanding the pathophysiological mechanisms of the reduced currents is crucial for finding the proper treatments. The unfolded protein response (UPR) is activated by endoplasmic reticulum (ER) stress and has been found to play pivotal roles in different diseases including neurodegenerative diseases, diabetes mellitus, and heart disease. Recently, the UPR is reported to regulate multiple cardiac ion channels, contributing to arrhythmias in heart disease. In this review, we will discuss which UPR modulators and effectors could be involved in regulation of cardiac ion channels in heart disease, and how the understanding of these regulating mechanisms may lead to new antiarrhythmic therapeutics that lack the proarrhythmic risk of current ion channel blocking therapies.
Collapse
Affiliation(s)
- Man Liu
- a Division of Cardiology, Department of Medicine, The Lillehei Heart Institute , University of Minnesota at Twin Cities , Minneapolis , USA
| | - Samuel C Dudley
- a Division of Cardiology, Department of Medicine, The Lillehei Heart Institute , University of Minnesota at Twin Cities , Minneapolis , USA
| |
Collapse
|
69
|
Wilstein Z, Alligood DM, McLure VL, Miller AC. Mathematical model of hypertension-induced arterial remodeling: A chemo-mechanical approach. Math Biosci 2018; 303:10-25. [PMID: 29758218 DOI: 10.1016/j.mbs.2018.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/31/2018] [Accepted: 05/04/2018] [Indexed: 01/22/2023]
Abstract
The development of chronic hypertension is a poorly described process involving many chemical and structural changes to the artery. Typically, mathematical models of this disease focus primarily on the mechanical aspects such as arterial geometry, elasticity, and tissue content, or alternatively on the chemical drivers of vasoactivity such as nitric oxide and reactive oxygen species. This paper presents a model that considers the powerful interaction between mechanical and biochemical drivers of hypertension and arterial remodeling. Based on biological processes thought to be involved in the development of hypertension, we have built a system of algebraic, differential, and integral equations. Endothelial dysfunction, which is known to limit vasodilation, is explicitly considered in the model and plays a vital role in the development of chronic hypertension. Numerical solutions to the system are consistent with available experimental data for normal and spontaneously-hypertensive rats.
Collapse
Affiliation(s)
- Zahava Wilstein
- Department of Mathematics & Computer Science, Berry College, Mount Berry, GA 30149, United States.
| | - Daniel M Alligood
- Department of Mathematics & Computer Science, Berry College, Mount Berry, GA 30149, United States.
| | - Valerie L McLure
- Department of Mathematics & Computer Science, Berry College, Mount Berry, GA 30149, United States.
| | - Austinn C Miller
- Mercer University School of Medicine, Macon, GA 31207, United States.
| |
Collapse
|
70
|
Chang J, Hu S, Wang W, Li Y, Zhi W, Lu S, Shi Q, Wang Y, Yang Y. Matrine inhibits prostate cancer via activation of the unfolded protein response/endoplasmic reticulum stress signaling and reversal of epithelial to mesenchymal transition. Mol Med Rep 2018; 18:945-957. [PMID: 29845238 PMCID: PMC6059727 DOI: 10.3892/mmr.2018.9061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is the second most commonly diagnosed malignancy and the sixth global primary cause of malignancy-associated fatality. Increased invasiveness and motility in prostate cancer cells are associated with ubiquitin proteasome system-regulated epithelial to mesenchymal transition (EMT). Impairment of the endoplasmic reticulum (ER) causes ER stress due to the accumulation of unfolded proteins and altered cell survival. In the current study, the effect and mechanism of matrine on cell apoptosis, viability, migration and invasion of human prostate cancer cells in vivo and in vitro through the unfolded protein response (UPR)/ER stress pathway were investigated. Matrine inhibited proteasomal chymotrypsin-like (CT-like) activity in the prostate carcinoma cellular proteasome. Upregulated vimentin and N-cadherin and downregulated E-cadherin were also observed in vitro and in vivo. In vitro analyses showed that matrine repressed cell motility, viability and invasion, arrested the cell cycle at the G0/G1 phase and induced prostate cancer cell apoptosis. Furthermore, matrine activated the UPR/ER stress signaling cascade in prostate cancer cells and tumor tissues of xenograft-bearing nude mice. Results also demonstrated that the anti-apoptotic protein Bcl-2 was downregulated, the pro-apoptotic protein Bak was upregulated and the cell growth and cell cycle-related proteins c-Myc, Cyclin B1, Cyclin D1 and CDK1 were downregulated. Moreover, matrine inhibited tumor growth and Ki-67 expression in xenograft-bearing nude mice. To the best of our knowledge, the present study indicated for the first time that matrine exerted marked anticancer functions in human prostate carcinoma in vivo and in vitro through activation of the proteasomal CT-like activity inhibition mediated by the UPR/ER stress signaling pathway.
Collapse
Affiliation(s)
- Junli Chang
- Department Orthopedics and Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Shaopu Hu
- Department Orthopedics and Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Wenyi Wang
- Department Orthopedics and Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Yimian Li
- Department Orthopedics and Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Wenlan Zhi
- Department Orthopedics and Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Sheng Lu
- Department Orthopedics and Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Qi Shi
- Department Orthopedics and Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Yongjun Wang
- Department Orthopedics and Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Yanping Yang
- Department Orthopedics and Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
71
|
The integrated stress response system in cardiovascular disease. Drug Discov Today 2018; 23:920-929. [DOI: 10.1016/j.drudis.2018.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/24/2018] [Accepted: 02/22/2018] [Indexed: 12/18/2022]
|
72
|
Ochoa CD, Wu RF, Terada LS. ROS signaling and ER stress in cardiovascular disease. Mol Aspects Med 2018; 63:18-29. [PMID: 29559224 DOI: 10.1016/j.mam.2018.03.002] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER) produces the vast majority of all proteins secreted into the extracellular space, including hormones and cytokines, as well as cell surface receptors and other proteins which interact with the environment. Accordingly, this organelle controls essentially all vital links to a cell's external milieu, responding to systemic metabolic, inflammatory, endocrine, and mechanical stimuli. The central role the ER plays in meeting protein synthetic and quality control requirements in the face of such demands is matched by an extensive and versatile ER stress response signaling network. ROS mediate several critical aspects of this response. Nox4, an ER resident capable of producing ROS, acts as a proximal signaling intermediate to transduce ER stress-related conditions to the unfolded protein response, a homeostatic corrective mechanism. However, chronic ER stress caused by unrelenting internal or external demands produces a secondary rise in ROS, generally resulting in cell death. Sorting out the involvement of ROS at different levels of the ER stress response in specific cell types is key to understanding the molecular basis for chronic diseases such as atherosclerosis, hypertension, and diabetes. Here, we provide an overview of ER stress signaling with an emphasis on the role of ROS.
Collapse
Affiliation(s)
- Cristhiaan D Ochoa
- Department of Internal Medicine, Pulmonary and Critical Care, University of Texas Southwestern, Dallas, TX, USA
| | - Ru Feng Wu
- Department of Internal Medicine, Pulmonary and Critical Care, University of Texas Southwestern, Dallas, TX, USA
| | - Lance S Terada
- Department of Internal Medicine, Pulmonary and Critical Care, University of Texas Southwestern, Dallas, TX, USA.
| |
Collapse
|
73
|
Liu M, Shi G, Zhou A, Rupert CE, Coulombe KLK, Dudley SC. Activation of the unfolded protein response downregulates cardiac ion channels in human induced pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol 2018; 117:62-71. [PMID: 29474817 DOI: 10.1016/j.yjmcc.2018.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/03/2018] [Accepted: 02/14/2018] [Indexed: 10/18/2022]
Abstract
RATIONALE Heart failure is characterized by electrical remodeling that contributes to arrhythmic risk. The unfolded protein response (UPR) is active in heart failure and can decrease protein levels by increasing mRNA decay, accelerating protein degradation, and inhibiting protein translation. OBJECTIVE Therefore, we investigated whether the UPR downregulated cardiac ion channels that may contribute to arrhythmogenic electrical remodeling. METHODS Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were used to study cardiac ion channels. Action potentials (APs) and ion channel currents were measured by patch clamp recording. The mRNA and protein levels of channels and the UPR effectors were determined by quantitative RT-PCR and Western blotting. Tunicamycin (TM, 50 ng/mL and 5 μg/mL), GSK2606414 (GSK, 300 nmol/L), and 4μ8C (5 μmol/L) were utilized to activate the UPR, inhibit protein kinase-like ER kinase (PERK) and inositol-requiring protein-1 (IRE1), respectively. RESULTS TM-induced activation of the UPR caused significant prolongation of the AP duration (APD) and a reduction of the maximum upstroke velocity (dV/dtmax) of the AP phase 0 in both acute (20-24 h) and chronic treatment (6 days). These changes were explained by reductions in the sodium, L-type calcium, the transient outward and rapidly/slowly activating delayed rectifier potassium currents. Nav1.5, Cav1.2, Kv4.3, and KvLQT1 channels showed concomitant reductions in mRNA and protein levels under activated UPR. Inhibition of PERK or IRE1 shortened the APD and reinstated dV/dtmax. The PERK branch regulated Nav1.5, Kv4.3, hERG, and KvLQT1. The IRE1 branch regulated Nav1.5, hERG, KvLQT1, and Cav1.2. CONCLUSIONS Activated UPR downregulates all major cardiac ion currents and results in electrical remodeling in hiPSC-CMs. Both PERK and IRE1 branches downregulate Nav1.5, hERG, and KvLQT1. The PERK branch specifically downregulates Kv4.3, while the IRE1 branch downregulates Cav1.2. Therefore, the UPR contributed to electrical remodeling, and targeting the UPR might be anti-arrhythmic.
Collapse
Affiliation(s)
- Man Liu
- Division of Cardiology, Dept. of Medicine, the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Guangbin Shi
- Division of Cardiology, Dept. of Medicine, The Warren Alpert School of Medicine, Brown University; Lifespan Cardiovascular Research Center, Providence, RI, United States
| | - Anyu Zhou
- Division of Cardiology, Dept. of Medicine, The Warren Alpert School of Medicine, Brown University; Lifespan Cardiovascular Research Center, Providence, RI, United States
| | - Cassady E Rupert
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| | - Samuel C Dudley
- Division of Cardiology, Dept. of Medicine, the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
74
|
Abstract
Following its initial description over a century ago, pulmonary arterial hypertension (PAH) continues to challenge researchers committed to understanding its pathobiology and finding a cure. The last two decades have seen major developments in our understanding of the genetics and molecular basis of PAH that drive cells within the pulmonary vascular wall to produce obstructive vascular lesions; presently, the field of PAH research has taken numerous approaches to dissect the complex amalgam of genetic, molecular and inflammatory pathways that interact to initiate and drive disease progression. In this review, we discuss the current understanding of PAH pathology and the role that genetic factors and environmental influences share in the development of vascular lesions and abnormal cell function. We also discuss how animal models can assist in elucidating gene function and the study of novel therapeutics, while at the same time addressing the limitations of the most commonly used rodent models. Novel experimental approaches based on application of next generation sequencing, bioinformatics and epigenetics research are also discussed as these are now being actively used to facilitate the discovery of novel gene mutations and mechanisms that regulate gene expression in PAH. Finally, we touch on recent discoveries concerning the role of inflammation and immunity in PAH pathobiology and how they are being targeted with immunomodulatory agents. We conclude that the field of PAH research is actively expanding and the major challenge in the coming years is to develop a unified theory that incorporates genetic and mechanistic data to address viable areas for disease modifying drugs that can target key processes that regulate the evolution of vascular pathology of PAH.
Collapse
|
75
|
Inhibition of mitochondrial fission prevents hypoxia-induced metabolic shift and cellular proliferation of pulmonary arterial smooth muscle cells. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2891-2903. [DOI: 10.1016/j.bbadis.2017.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022]
|
76
|
Federti E, Matté A, Ghigo A, Andolfo I, James C, Siciliano A, Leboeuf C, Janin A, Manna F, Choi SY, Iolascon A, Beneduce E, Melisi D, Kim DW, Levi S, De Franceschi L. Peroxiredoxin-2 plays a pivotal role as multimodal cytoprotector in the early phase of pulmonary hypertension. Free Radic Biol Med 2017; 112:376-386. [PMID: 28801243 DOI: 10.1016/j.freeradbiomed.2017.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 01/17/2023]
Abstract
Pulmonary-artery-hypertension (PAH) is a life-threatening and highly invalidating chronic disorder. Chronic oxidation contributes to lung damage and disease progression. Peroxiredoxin-2 (Prx2) is a typical 2-cysteine (Cys) peroxiredoxin but its role on lung homeostasis is yet to be fully defined. Here, we showed that Prx2-/- mice displayed chronic lung inflammatory disease associated with (i) abnormal pulmonary vascular dysfunction; and (ii) increased markers of extracellular-matrix remodeling. Hypoxia was used to induce PAH. We focused on the early phase PAH to dissect the role of Prx2 in generation of PAH. Hypoxic Prx2-/-mice showed (i) amplified inflammatory response combined with cytokine storm; (ii) vascular activation and dysfunction; (iii) increased PDGF-B lung levels, as marker of extracellular-matrix deposition and remodeling; and (iv) ER stress with activation of UPR system and autophagy. Rescue experiments with in vivo the administration of fused-recombinant-PEP-Prx2 show a reduction in pulmonary inflammatory vasculopathy and in ER stress with down-regulation of autophagy. Thus, we propose Prx2 plays a pivotal role in the early stage of PAH as multimodal cytoprotector, targeting oxidation, inflammatory vasculopathy and ER stress with inhibition of autophagy. Collectively, our data indicate that Prx2 is able to interrupt the hypoxia induced vicious cycle involving oxidation-inflammation-autophagy in the pathogenesis of PAH.
Collapse
Affiliation(s)
- Enrica Federti
- Dept. of Medicine, University of Verona-AOUI Verona, Verona, Italy
| | - Alessandro Matté
- Dept. of Medicine, University of Verona-AOUI Verona, Verona, Italy
| | - Alessandra Ghigo
- Molecular Biotechnology Center and Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | | | - Cimino James
- Molecular Biotechnology Center and Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Angela Siciliano
- Dept. of Medicine, University of Verona-AOUI Verona, Verona, Italy
| | | | - Anne Janin
- Inserm, U1165, Paris F-75010, France; Université Paris 7- Denis Diderot, Paris, France; AP-HP, Hôpital Saint-Louis, F-75010 Paris, France
| | - Francesco Manna
- CEINGE and Dept. of Biochemistry, University of Naples, Naples, Italy
| | - Soo Young Choi
- Institute of Bioscience and Biotechnology, Hallym University, Gangwon-do, Republic of Korea
| | - Achille Iolascon
- CEINGE and Dept. of Biochemistry, University of Naples, Naples, Italy
| | | | - Davide Melisi
- Dept. of Medicine, University of Verona-AOUI Verona, Verona, Italy
| | - Dae Won Kim
- Institute of Bioscience and Biotechnology, Hallym University, Gangwon-do, Republic of Korea
| | - Sonia Levi
- Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy; Vita-Salute San Raffaele University, Milano, Italy
| | | |
Collapse
|
77
|
Vierra NC, Dadi PK, Milian SC, Dickerson MT, Jordan KL, Gilon P, Jacobson DA. TALK-1 channels control β cell endoplasmic reticulum Ca 2+ homeostasis. Sci Signal 2017; 10:eaan2883. [PMID: 28928238 PMCID: PMC5672804 DOI: 10.1126/scisignal.aan2883] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ca2+ handling by the endoplasmic reticulum (ER) serves critical roles in controlling pancreatic β cell function and becomes perturbed during the pathogenesis of diabetes. ER Ca2+ homeostasis is determined by ion movements across the ER membrane, including K+ flux through K+ channels. We demonstrated that K+ flux through ER-localized TALK-1 channels facilitated Ca2+ release from the ER in mouse and human β cells. We found that β cells from mice lacking TALK-1 exhibited reduced basal cytosolic Ca2+ and increased ER Ca2+ concentrations, suggesting reduced ER Ca2+ leak. These changes in Ca2+ homeostasis were presumably due to TALK-1-mediated ER K+ flux, because we recorded K+ currents mediated by functional TALK-1 channels on the nuclear membrane, which is continuous with the ER. Moreover, overexpression of K+-impermeable TALK-1 channels in HEK293 cells did not reduce ER Ca2+ stores. Reduced ER Ca2+ content in β cells is associated with ER stress and islet dysfunction in diabetes, and islets from TALK-1-deficient mice fed a high-fat diet showed reduced signs of ER stress, suggesting that TALK-1 activity exacerbated ER stress. Our data establish TALK-1 channels as key regulators of β cell ER Ca2+ and suggest that TALK-1 may be a therapeutic target to reduce ER Ca2+ handling defects in β cells during the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Nicholas C Vierra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Sarah C Milian
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Matthew T Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Kelli L Jordan
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Patrick Gilon
- Pôle d'endocrinologie, diabète et nutrition, Institut de recherche expérimentale et clinique, Université catholique de Louvain, Brussels 1200, Belgium
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
78
|
Alhusban A, Kozak A, Pillai B, Ahmed H, Sayed MA, Johnson MH, Ishrat T, Ergul A, Fagan SC. Mechanisms of acute neurovascular protection with AT1 blockade after stroke: Effect of prestroke hypertension. PLoS One 2017; 12:e0178867. [PMID: 28640888 PMCID: PMC5480858 DOI: 10.1371/journal.pone.0178867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 05/19/2017] [Indexed: 01/13/2023] Open
Abstract
Stroke is a leading cause of adult disability worldwide. Improving stroke outcome requires an orchestrated interplay that involves up regulation of pro-survival pathways and a concomitant suppression of pro-apoptotic mediators. In this investigation, we assessed the involvement of eNOS in the AT1 blocker-mediated protective and pro-recovery effects in animals with hypertension. We also evaluated the effect of acute eNOS inhibition in hypertensive animals. To achieve these goals, spontaneously hypertensive rats (SHR) were implanted with blood pressure transmitters, and randomized to receive either an eNOS inhibitor (L-NIO) or saline one hour before cerebral ischemia induction. After 3 hours of ischemia, animals were further randomized to receive either candesartan or saline at the time of reperfusion and sacrificed either 24 hours or 7 days later. Candesartan induced an early protective effect that was independent of eNOS inhibition (50% improvement in motor function). However, the protective effect of candesartan was associated with about five fold up regulation of BDNF expression and about three fold reduction in ER stress markers, in an eNOS dependent manner. The early benefit of a single dose of candesartan, present at 24 hours after stroke, was diminished at 7 days, perhaps due to a failure to induce an angiogenic response in these hypertensive animals. In conclusion, our findings demonstrate an early prorecovery effect of candesartan at both functional and molecular levels. Candesartan induced prorecovery signaling was mediated through eNOS. This effect was not maintained at 7 days after experimental ischemia.
Collapse
Affiliation(s)
- Ahmed Alhusban
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
- College of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Anna Kozak
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
| | - Bindu Pillai
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
| | - Heba Ahmed
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
| | - Mohammed A. Sayed
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
| | - Maribeth H. Johnson
- Departments of Biostatistics, Medical College of Georgia, Augusta University, Augusta, Georgia, Unites States of America
| | - Tauheed Ishrat
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
| | - Adviye Ergul
- Program in Clinical and Experimental Therapeutics- Charlie Norwood VA Medical Center and College of Pharmacy, University of Georgia, Augusta, Georgia, United States of America
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Susan C. Fagan
- Departments of Biostatistics, Medical College of Georgia, Augusta University, Augusta, Georgia, Unites States of America
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| |
Collapse
|
79
|
Harvey LD, Chan SY. Emerging Metabolic Therapies in Pulmonary Arterial Hypertension. J Clin Med 2017; 6:jcm6040043. [PMID: 28375184 PMCID: PMC5406775 DOI: 10.3390/jcm6040043] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 12/26/2022] Open
Abstract
Pulmonary hypertension (PH) is an enigmatic vascular disorder characterized by pulmonary vascular remodeling and increased pulmonary vascular resistance, ultimately resulting in pressure overload, dysfunction, and failure of the right ventricle. Current medications for PH do not reverse or prevent disease progression, and current diagnostic strategies are suboptimal for detecting early-stage disease. Thus, there is a substantial need to develop new diagnostics and therapies that target the molecular origins of PH. Emerging investigations have defined metabolic aberrations as fundamental and early components of disease manifestation in both pulmonary vasculature and the right ventricle. As such, the elucidation of metabolic dysregulation in pulmonary hypertension allows for greater therapeutic insight into preventing, halting, or even reversing disease progression. This review will aim to discuss (1) the reprogramming and dysregulation of metabolic pathways in pulmonary hypertension; (2) the emerging therapeutic interventions targeting these metabolic pathways; and (3) further innovation needed to overcome barriers in the treatment of this devastating disease.
Collapse
Affiliation(s)
- Lloyd D Harvey
- Medical Scientist Training Program, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| | - Stephen Y Chan
- Division of Cardiology, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA.
| |
Collapse
|
80
|
Lopez-Crisosto C, Pennanen C, Vasquez-Trincado C, Morales PE, Bravo-Sagua R, Quest AFG, Chiong M, Lavandero S. Sarcoplasmic reticulum-mitochondria communication in cardiovascular pathophysiology. Nat Rev Cardiol 2017; 14:342-360. [PMID: 28275246 DOI: 10.1038/nrcardio.2017.23] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Repetitive, calcium-mediated contractile activity renders cardiomyocytes critically dependent on a sustained energy supply and adequate calcium buffering, both of which are provided by mitochondria. Moreover, in vascular smooth muscle cells, mitochondrial metabolism modulates cell growth and proliferation, whereas cytosolic calcium levels regulate the arterial vascular tone. Physical and functional communication between mitochondria and sarco/endoplasmic reticulum and balanced mitochondrial dynamics seem to have a critical role for optimal calcium transfer to mitochondria, which is crucial in calcium homeostasis and mitochondrial metabolism in both types of muscle cells. Moreover, mitochondrial dysfunction has been associated with myocardial damage and dysregulation of vascular smooth muscle proliferation. Therefore, sarco/endoplasmic reticulum-mitochondria coupling and mitochondrial dynamics are now viewed as relevant factors in the pathogenesis of cardiac and vascular diseases, including coronary artery disease, heart failure, and pulmonary arterial hypertension. In this Review, we summarize the evidence related to the role of sarco/endoplasmic reticulum-mitochondria communication in cardiac and vascular muscle physiology, with a focus on how perturbations contribute to the pathogenesis of cardiovascular disorders.
Collapse
Affiliation(s)
- Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Christian Pennanen
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Cesar Vasquez-Trincado
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile.,Instituto de Nutricion y Tecnologia de los Alimentos (INTA), Universidad de Chile, Avenida El Líbano 5524, Santiago 7830490, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile.,Centro de Estudios Moleculares de la Celula (CEMC), Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile.,Centro de Estudios Moleculares de la Celula (CEMC), Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75235, USA
| |
Collapse
|
81
|
Nogueira-Ferreira R, Ferreira-Pinto MJ, Silva AF, Vitorino R, Justino J, Costa R, Moreira-Gonçalves D, Quignard JF, Ducret T, Savineau JP, Leite-Moreira AF, Ferreira R, Henriques-Coelho T. HMGB1 down-regulation mediates terameprocol vascular anti-proliferative effect in experimental pulmonary hypertension. J Cell Physiol 2017; 232:3128-3138. [PMID: 28036116 DOI: 10.1002/jcp.25763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/23/2016] [Accepted: 12/29/2016] [Indexed: 11/07/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease with a poor prognosis. Pulmonary artery smooth muscle cells (PASMCs) play a crucial role in PAH pathophysiology, displaying a hyperproliferative, and apoptotic-resistant phenotype. In the present study, we evaluated the potential therapeutic role of terameprocol (TMP), an inhibitor of cellular proliferation and promoter of apoptosis, in a well-established pre-clinical model of PAH induced by monocrotaline (MCT) and studied the biological pathways modulated by TMP in PASMCs. Wistar rats injected with MCT or saline (SHAM group) were treated with TMP or vehicle. On day 21 after injection, we assessed bi-ventricular hemodynamics and cardiac and pulmonary morphometry. The effects of TMP on PASMCs were studied in a primary culture isolated from SHAM and MCT-treated rats, using an iTRAQ-based proteomic approach to investigate the molecular pathways modulated by this drug. In vivo, TMP significantly reduced pulmonary and cardiac remodeling and improved cardiac function in PAH. In vitro, TMP inhibited proliferation and induced apoptosis of PASMCs. A total of 65 proteins were differentially expressed in PASMCs from MCT rats treated with TMP, some of which involved in the modulation of transforming growth factor beta pathway and DNA transcription. Anti-proliferative effect of TMP seems to be explained, at least in part, by the down-regulation of the transcription factor HMGB1. Our findings support the beneficial role of TMP in PAH and suggest that it may be an effective therapeutic option to be considered in the clinical management of PAH.
Collapse
Affiliation(s)
- Rita Nogueira-Ferreira
- QOPNA, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.,Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal
| | - Manuel J Ferreira-Pinto
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal
| | - Ana Filipa Silva
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal
| | - Rui Vitorino
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal.,iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Joana Justino
- QOPNA, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Raquel Costa
- Departamento de Bioquímica, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal
| | - Daniel Moreira-Gonçalves
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal.,CIAFEL, Faculdade de Desporto, Universidade do Porto, Porto, Portugal
| | - Jean-François Quignard
- Université Bordeaux Segalen, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique, Bordeaux, France
| | - Thomas Ducret
- Université Bordeaux Segalen, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique, Bordeaux, France
| | - Jean-Pierre Savineau
- Université Bordeaux Segalen, Bordeaux, France.,Inserm, Centre de Recherche Cardio-Thoracique, Bordeaux, France
| | - Adelino F Leite-Moreira
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal
| | - Rita Ferreira
- QOPNA, Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Tiago Henriques-Coelho
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal
| |
Collapse
|
82
|
Wang G, Liu S, Wang L, Meng L, Cui C, Zhang H, Hu S, Ma N, Wei Y. Lipocalin-2 Promotes Endoplasmic Reticulum Stress and Proliferation by Augmenting Intracellular Iron in Human Pulmonary Arterial Smooth Muscle Cells. Int J Biol Sci 2017; 13:135-144. [PMID: 28255266 PMCID: PMC5332868 DOI: 10.7150/ijbs.17758] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/08/2016] [Indexed: 01/06/2023] Open
Abstract
Endoplasmic reticulum (ER) stress, a feature of many conditions associated with pulmonary hypertension (PH), is increasingly recognized as a common response to promote proliferation in the walls of pulmonary arteries. Increased expression of Lipocalin-2 in PH led us to test the hypothesis that Lipocalin-2, a protein known to sequester iron and regulate it intracellularly, might facilitate the ER stress and proliferation in pulmonary arterial smooth muscle cells (PASMCs). In this study, we observed greatly increased Lcn2 expression accompanied with increased ATF6 cleavage in a standard rat model of pulmonary hypertension induced by monocrotaline. In cultured human PASMCs, Lcn2 significantly promoted ER stress (determined by augmented cleavage and nuclear localization of ATF6, up-regulated transcription of GRP78 and NOGO, increased expression of SOD2, and mild augmented mitochondrial membrane potential) and proliferation (assessed by Ki67 staining and BrdU incorporation). Lcn2 promoted ER stress accompanied with augmented intracellular iron levels in human PASMCs. Treatment human PASMCs with FeSO4 induced the similar ER stress and proliferation response and iron chelator (deferoxamine) abrogated the ER stress and proliferation induced by Lcn2 in cultured human PASMCs. In conclusion, Lcn2 significantly promoted human PASMC ER stress and proliferation by augmenting intracellular iron. The up-regulation of Lcn2 probably involved in the pathogenesis and progression of PH.
Collapse
Affiliation(s)
- Guoliang Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shenghua Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liukun Meng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuanjue Cui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Ma
- Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yingjie Wei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
83
|
Restaino RM, Deo SH, Parrish AR, Fadel PJ, Padilla J. Increased monocyte-derived reactive oxygen species in type 2 diabetes: role of endoplasmic reticulum stress. Exp Physiol 2017; 102:139-153. [PMID: 27859785 DOI: 10.1113/ep085794] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 11/16/2016] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? Patients with type 2 diabetes exhibit increased oxidative stress in peripheral blood mononuclear cells, including monocytes; however, the mechanisms remain unknown. What is the main finding and its importance? The main finding of this study is that factors contained within the plasma of patients with type 2 diabetes can contribute to increased oxidative stress in monocytes, making them more adherent to endothelial cells. We show that these effects are largely mediated by the interaction between endoplasmic reticulum stress and NADPH oxidase activity. Recent evidence suggests that exposure of human monocytes to glucolipotoxic media to mimic the composition of plasma of patients with type 2 diabetes (T2D) results in the induction of endoplasmic reticulum (ER) stress markers and formation of reactive oxygen species (ROS). The extent to which these findings translate to patients with T2D remains unclear. Thus, we first measured ROS (dihydroethidium fluorescence) in peripheral blood mononuclear cells (PBMCs) from whole blood of T2D patients (n = 8) and compared the values with age-matched healthy control subjects (n = 8). The T2D patients exhibited greater basal intracellular ROS (mean ± SD, +3.4 ± 1.4-fold; P < 0.05) compared with control subjects. Next, the increase in ROS in PBMCs isolated from T2D patients was partly recapitulated in cultured human monocytes (THP-1 cells) exposed to plasma from T2D patients for 36 h (+1.3 ± 0.08-fold versus plasma from control subjects; P < 0.05). In addition, we found that increased ROS formation in THP-1 cells treated with T2D plasma was NADPH oxidase derived and led to increased endothelial cell adhesion (+1.8 ± 0.5-fold; P < 0.05) and lipid uptake (+1.3 ± 0.3-fold; P < 0.05). Notably, we found that T2D plasma-induced monocyte ROS and downstream functional effects were abolished by treating cells with tauroursodeoxycholic acid, a chemical chaperone known to inhibit ER stress. Collectively, these data indicate that monocyte ROS production with T2D can be attributed, in part, to signals from the circulating environment. Furthermore, an interplay between ER stress and NADPH oxidase activity contributes to ROS production and may be a mechanism mediating endothelial cell adhesion and foam cell formation in T2D.
Collapse
Affiliation(s)
- Robert M Restaino
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Shekhar H Deo
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Alan R Parrish
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Paul J Fadel
- Department of Kinesiology, University of Texas-Arlington, Arlington, TX, USA
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Child Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
84
|
Qin Y, Wang Y, Liu O, Jia L, Fang W, Du J, Wei Y. Tauroursodeoxycholic Acid Attenuates Angiotensin II Induced Abdominal Aortic Aneurysm Formation in Apolipoprotein E-deficient Mice by Inhibiting Endoplasmic Reticulum Stress. Eur J Vasc Endovasc Surg 2016; 53:337-345. [PMID: 27889204 DOI: 10.1016/j.ejvs.2016.10.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE/BACKGROUND Abdominal aortic aneurysm (AAA) is characterised by the infiltration of smooth muscle cell (SMC) apoptosis, inflammatory cells, neovascularisation, and degradation of the extracellular matrix. Previous work has shown that endoplasmic reticulum (ER) stress and SMC apoptosis were increased both in a mouse model and human thoracic aortic aneurysm. However, whether the ER stress is activated in AAA formation and whether suppressing ER stress attenuates AAA is unknown. METHODS Human AAA and control aorta samples were collected. Expression of ER stress chaperones glucose-regulated protein (GRP)-78 and GRP-94 was detected by immunohistochemical staining. The effect of ER stress inhibitor tauroursodeoxycholic acid (TUDCA) on AAA formation in angiotensin (Ang) II induced apolipoprotein E-/- mice was explored. Elastin staining was used to observe the rupture of elastic fragmentation. Immunohistochemistry and Western blot analysis were performed, to detect the protein expression of ER stress chaperones and apoptosis molecules. RESULTS There was significant upregulation of GRP-78 and GRP-94 in aneurysmal areas of human AAA and Ang II induced ApoE-/- mice (p < .05). TUDCA significantly attenuated the maximum diameters of abdominal aortas in Ang II induced ApoE-/- mice (p < .05). TUDCA significantly reduced expression of ER stress chaperones and the apoptotic cell numbers (p < .05). Furthermore, TUDCA significantly reduced expression of apoptosis molecules, such as caspase-3, caspase-12, C/EBP homologous protein, c-Jun N-terminal kinase activating transcription factor 4, X-box binding protein, and eukaryotic initiation factor 2α in Ang II induced ApoE-/- mice (p < .05). CONCLUSION The results suggest that ER stress is involved in human and Ang II induced AAA formation in ApoE-/- mice. TUDCA attenuates Ang II induced AAA formation in ApoE-/- mice by inhibiting ER stress mediated apoptosis.
Collapse
Affiliation(s)
- Y Qin
- The Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China.
| | - Y Wang
- The Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - O Liu
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - L Jia
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - W Fang
- The Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - J Du
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Y Wei
- The Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China.
| |
Collapse
|
85
|
Wang JJ, Zuo XR, Xu J, Zhou JY, Kong H, Zeng XN, Xie WP, Cao Q. Evaluation and Treatment of Endoplasmic Reticulum (ER) Stress in Right Ventricular Dysfunction during Monocrotaline-Induced Rat Pulmonary Arterial Hypertension. Cardiovasc Drugs Ther 2016; 30:587-598. [DOI: 10.1007/s10557-016-6702-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
86
|
Choi SK, Lim M, Byeon SH, Lee YH. Inhibition of endoplasmic reticulum stress improves coronary artery function in the spontaneously hypertensive rats. Sci Rep 2016; 6:31925. [PMID: 27550383 PMCID: PMC4994042 DOI: 10.1038/srep31925] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/28/2016] [Indexed: 12/13/2022] Open
Abstract
Endoplasmic reticulum (ER) stress has been shown to play a critical role in the pathogenesis of cardiovascular complications. However, the role and mechanisms of ER stress in hypertension remain unclear. Thus, we hypothesized that enhanced ER stress contributes to the maintenance of hypertension in spontaneously hypertensive rats (SHRs). Sixteen-week old male SHRs and Wistar Kyoto Rats (WKYs) were used in this study. The SHRs were treated with ER stress inhibitor (Tauroursodeoxycholic acid; TUDCA, 100 mg/kg/day) for two weeks. There was a decrease in systolic blood pressure in SHR treated with TUDCA. The pressure-induced myogenic tone was significantly increased, whereas endothelium-dependent relaxation was significantly attenuated in SHR compared with WHY. Interestingly, treatment of ER stress inhibitor normalized myogenic responses and endothelium-dependent relaxation in SHR. These data were associated with an increase in expression or phosphorylation of ER stress markers (Bip, ATF6, CHOP, IRE1, XBP1, PERK, and eIF2α) in SHRs, which were reduced by TUDCA treatment. Furthermore, phosphorylation of MLC20 was increased in SHRs, which was reduced by the treatment of TUDCA. Therefore, our results suggest that ER stress could be a potential target for hypertension.
Collapse
Affiliation(s)
- Soo-Kyoung Choi
- Department of Physiology, College of Medicine, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University, Seoul, Korea
| | - Mihwa Lim
- Department of Physiology, College of Medicine, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University, Seoul, Korea
| | - Seon-Hee Byeon
- Department of Physiology, College of Medicine, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University, Seoul, Korea
| | - Young-Ho Lee
- Department of Physiology, College of Medicine, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University, Seoul, Korea
| |
Collapse
|
87
|
Guignabert C, Phan C, Seferian A, Huertas A, Tu L, Thuillet R, Sattler C, Le Hiress M, Tamura Y, Jutant EM, Chaumais MC, Bouchet S, Manéglier B, Molimard M, Rousselot P, Sitbon O, Simonneau G, Montani D, Humbert M. Dasatinib induces lung vascular toxicity and predisposes to pulmonary hypertension. J Clin Invest 2016; 126:3207-18. [PMID: 27482885 DOI: 10.1172/jci86249] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease that can be induced by dasatinib, a dual Src and BCR-ABL tyrosine kinase inhibitor that is used to treat chronic myelogenous leukemia (CML). Today, key questions remain regarding the mechanisms involved in the long-term development of dasatinib-induced PAH. Here, we demonstrated that chronic dasatinib therapy causes pulmonary endothelial damage in humans and rodents. We found that dasatinib treatment attenuated hypoxic pulmonary vasoconstriction responses and increased susceptibility to experimental pulmonary hypertension (PH) in rats, but these effects were absent in rats treated with imatinib, another BCR-ABL tyrosine kinase inhibitor. Furthermore, dasatinib treatment induced pulmonary endothelial cell apoptosis in a dose-dependent manner, while imatinib did not. Dasatinib treatment mediated endothelial cell dysfunction via increased production of ROS that was independent of Src family kinases. Consistent with these findings, we observed elevations in markers of endothelial dysfunction and vascular damage in the serum of CML patients who were treated with dasatinib, compared with CML patients treated with imatinib. Taken together, our findings indicate that dasatinib causes pulmonary vascular damage, induction of ER stress, and mitochondrial ROS production, which leads to increased susceptibility to PH development.
Collapse
|
88
|
Durante W. Targeting endoplasmic reticulum stress in hypoxia-induced cardiac injury. Vascul Pharmacol 2016; 83:1-3. [PMID: 27234171 PMCID: PMC6605064 DOI: 10.1016/j.vph.2016.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 04/28/2016] [Accepted: 05/17/2016] [Indexed: 01/01/2023]
Affiliation(s)
- William Durante
- Department of Medical Pharmacology and Physiology, University of Missouri, M409 Medical Sciences Building, One Hospital Drive, Columbia, MO, USA
| |
Collapse
|
89
|
DNA Damage and Pulmonary Hypertension. Int J Mol Sci 2016; 17:ijms17060990. [PMID: 27338373 PMCID: PMC4926518 DOI: 10.3390/ijms17060990] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/01/2016] [Accepted: 06/16/2016] [Indexed: 01/21/2023] Open
Abstract
Pulmonary hypertension (PH) is defined by a mean pulmonary arterial pressure over 25 mmHg at rest and is diagnosed by right heart catheterization. Among the different groups of PH, pulmonary arterial hypertension (PAH) is characterized by a progressive obstruction of distal pulmonary arteries, related to endothelial cell dysfunction and vascular cell proliferation, which leads to an increased pulmonary vascular resistance, right ventricular hypertrophy, and right heart failure. Although the primary trigger of PAH remains unknown, oxidative stress and inflammation have been shown to play a key role in the development and progression of vascular remodeling. These factors are known to increase DNA damage that might favor the emergence of the proliferative and apoptosis-resistant phenotype observed in PAH vascular cells. High levels of DNA damage were reported to occur in PAH lungs and remodeled arteries as well as in animal models of PH. Moreover, recent studies have demonstrated that impaired DNA-response mechanisms may lead to an increased mutagen sensitivity in PAH patients. Finally, PAH was linked with decreased breast cancer 1 protein (BRCA1) and DNA topoisomerase 2-binding protein 1 (TopBP1) expression, both involved in maintaining genome integrity. This review aims to provide an overview of recent evidence of DNA damage and DNA repair deficiency and their implication in PAH pathogenesis.
Collapse
|
90
|
Wu Y, Adi D, Long M, Wang J, Liu F, Gai MT, Aierken A, Li MY, Li Q, Wu LQ, Ma YT, Hujiaaihemaiti M. 4-Phenylbutyric Acid Induces Protection against Pulmonary Arterial Hypertension in Rats. PLoS One 2016; 11:e0157538. [PMID: 27304885 PMCID: PMC4909300 DOI: 10.1371/journal.pone.0157538] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/01/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress has been implicated in the pathophysiology of various pulmonary diseases via the activation of the unfolded protein response. However, the role of ER stress in pulmonary arterial hypertension (PAH) remains unclear. The well-known chemical chaperone 4-phenylbutyric acid (4-PBA) inhibits ER stress signaling. We hypothesized that known chemical chaperones, including 4-PBA, would inhibit the activation of ER stress and prevent and/or reverse PAH. METHODS AND RESULTS Male Wistar rats were randomly divided into four groups: a normal control group (NORMAL group), a PAH group, and two PAH model plus 4-PBA treatment groups. The latter two groups included rats receiving 4-PBA by gavage each day as a preventive measure (the PRE group, with PBA starting on the day of PAH induction and continuing for 4 weeks) or as a reversal measure (the REV group, with PBA starting on the third week of PAH induction and continuing for 2 weeks). The PAH model was induced by intraperitoneally administering monocrotaline. The mean pulmonary artery pressure and mean right ventricular pressure were lower in the REV and PRE groups than in the NORMAL group. Furthermore, 4-PBA improved pulmonary arterial remodeling and suppressed the expression of ER stress indicators. CONCLUSION Our findings indicate that PAH induces ER stress and provokes pulmonary arterial and right ventricular remodeling. Additionally, we show that attenuation of ER stress has the potential to be an effective therapeutic strategy for protecting pulmonary arteries.
Collapse
Affiliation(s)
- Yun Wu
- Department of General Practice, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011 P.R., China
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011 P.R., China
| | - Dilare Adi
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011 P.R., China
| | - Mei Long
- Department of Mechanism and Function, Xinjiang Medical University, Urumqi, 830011 P.R., China
| | - Jie Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011 P.R., China
| | - Fen Liu
- Xinjiang Key Laboratory of Cardiovascular Disease Research, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011 P.R., China
| | - Min-Tao Gai
- Xinjiang Key Laboratory of Cardiovascular Disease Research, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011 P.R., China
| | - Alidan Aierken
- Department of General Practice, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011 P.R., China
| | - Ming-Yuan Li
- Department of General Practice, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011 P.R., China
| | - Qian Li
- Department of General Practice, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011 P.R., China
| | - Lei-Qi Wu
- Department of General Practice, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011 P.R., China
| | - Yi-Tong Ma
- Xinjiang Key Laboratory of Cardiovascular Disease Research, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011 P.R., China
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011 P.R., China
| | - Minawaer Hujiaaihemaiti
- Department of General Practice, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011 P.R., China
| |
Collapse
|
91
|
Munshi S, Dahl R. Cytoprotective small molecule modulators of endoplasmic reticulum stress. Bioorg Med Chem 2016; 24:2382-2388. [PMID: 27091069 DOI: 10.1016/j.bmc.2016.03.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/21/2016] [Accepted: 03/27/2016] [Indexed: 01/03/2023]
Abstract
Cellular health depends on the normal function of the endoplasmic reticulum (ER) to fold, assemble, and modify critical proteins to maintain viability. When the ER cannot process proteins effectively, a condition known as ER stress ensues. When this stress is excessive or prolonged, cell death via apoptotic pathways is triggered. Interestingly, most major diseases have been shown to be intimately linked to ER stress, including diabetes, stroke, neurodegeneration, and many cancers. Thus, controlling ER stress presents a significant strategy for drug development for these diseases. The goal of this review is to present various small molecules that alleviate ER stress with the intention that they may serve as useful starting points for therapeutic agent development.
Collapse
Affiliation(s)
- Soumyabrata Munshi
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Russell Dahl
- Neurodon LLC, 5700 Tanager St., Schererville, IN 46375, USA.
| |
Collapse
|
92
|
Borgdorff MAJ, Dickinson MG, Berger RMF, Bartelds B. Right ventricular failure due to chronic pressure load: What have we learned in animal models since the NIH working group statement? Heart Fail Rev 2016; 20:475-91. [PMID: 25771982 PMCID: PMC4463984 DOI: 10.1007/s10741-015-9479-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Right ventricular (RV) failure determines outcome in patients with pulmonary hypertension, congenital heart diseases and in left ventricular failure. In 2006, the Working Group on Cellular and Molecular Mechanisms of Right Heart Failure of the NIH advocated the development of preclinical models to study the pathophysiology and pathobiology of RV failure. In this review, we summarize the progress of research into the pathobiology of RV failure and potential therapeutic interventions. The picture emerging from this research is that RV adaptation to increased afterload is characterized by increased contractility, dilatation and hypertrophy. Clinical RV failure is associated with progressive diastolic deterioration and disturbed ventricular–arterial coupling in the presence of increased contractility. The pathobiology of the failing RV shows similarities with that of the LV and is marked by lack of adequate increase in capillary density leading to a hypoxic environment and oxidative stress and a metabolic switch from fatty acids to glucose utilization. However, RV failure also has characteristic features. So far, therapies aiming to specifically improve RV function have had limited success. The use of beta blockers and sildenafil may hold promise, but new therapies have to be developed. The use of recently developed animal models will aid in further understanding of the pathobiology of RV failure and development of new therapeutic strategies.
Collapse
Affiliation(s)
- Marinus A J Borgdorff
- Department of Pediatrics, Center for Congenital Heart Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands,
| | | | | | | |
Collapse
|
93
|
Jain K, Suryakumar G, Ganju L, Singh SB. Amelioration of ER stress by 4-phenylbutyric acid reduces chronic hypoxia induced cardiac damage and improves hypoxic tolerance through upregulation of HIF-1α. Vascul Pharmacol 2016; 83:36-46. [PMID: 27058435 DOI: 10.1016/j.vph.2016.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/27/2016] [Accepted: 03/12/2016] [Indexed: 12/14/2022]
Abstract
While endoplasmic reticulum (ER) stress has been observed in several human diseases, few studies have reported the involvement of ER stress in chronic hypoxia (CH) induced cardiac damage. Hypoxia, such as that prevalent at high altitude (HA), forms the underlying cause of several maladies including cardiovascular diseases. While the role of hypoxia inducible factor-1 (HIF-1α) in the adaptive responses to hypoxia is known, the role of the unfolded protein response (UPR) is only recently being explored in the HA pathophysiologies. The present study investigates the effect of ER stress modulation on CH mediated injury and the cardioprotective action of 4-phenylbutyric acid (PBA) in enhancing survival response under hypoxia. Here, we observed that exposure of rats, for 1, 7 and 14days CH to a simulated altitude of 7620m, led to cardiac hypertrophy and significant protein oxidation. This induced the activation of UPR signaling mechanisms, mediated by PERK, IRE1α and ATF6. By 14days, there was a marked upregulation of apoptosis, evident in increased CHOP and caspase-3/9 activity. PBA reduced CH induced right ventricular enlargement and apoptosis. Further, in contrast to tunicamycin, PBA considerably enhanced hypoxic tolerance. An elevation in the level of antioxidant enzymes, HIF-1α and its regulated proteins (HO-1, GLUT-1) was observed in the PBA administered animals, along with a concomitant suppression of UPR markers. Our study thus emphasizes upon the attenuation of ER stress by PBA as a mechanism to diminish CH induced cardiac injury and boost hypoxic survival, providing an insight into the novel relationship between the HIF-1α and UPR under hypoxia.
Collapse
Affiliation(s)
- Kanika Jain
- Cellular Biochemistry Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110 054, India
| | - Geetha Suryakumar
- Cellular Biochemistry Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110 054, India.
| | - Lilly Ganju
- Cellular Biochemistry Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110 054, India
| | - Shashi Bala Singh
- Cellular Biochemistry Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi 110 054, India
| |
Collapse
|
94
|
Zhou Q, Wang D, Xu J, Chi B. Effect of Tauroursodeoxycholic Acid and 4-Phenylbutyric Acid on Metabolism of Copper and Zinc in Type 1 Diabetic Mice Model. Biol Trace Elem Res 2016; 170:348-356. [PMID: 26282527 PMCID: PMC4791476 DOI: 10.1007/s12011-015-0474-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/10/2015] [Indexed: 12/22/2022]
Abstract
Alternations of copper (Cu) and zinc (Zn) status in diabetes have received a great attention. Tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid (PBA) could alleviate the increased endoplasmic reticulum (ER) stress and prevent insulin resistance. This study aimed to investigate the effect of TUDCA and PBA on metabolism of Cu and Zn in diabetic mice model. Diabetes was induced by streptozotocin in FVB mice treated with and without TUDCA and PBA. Determination of Cu and Zn in tissues and serum by acid digestion was followed by ICP-MS. The renal and serum Cu levels were significantly higher, while the hepatic Cu and Zn levels were significantly decreased in the diabetic mice at 2 weeks and 2 months after diabetes onset. The increase of cardiac Cu together with the decrease of muscular Zn was found in the diabetic mice only at 2 months. Cu levels were positively correlated with Zn in the heart, liver, kidney, muscle, spleen, and serum of diabetic and control mice at both 2 weeks and 2 months. Both PBA and TUDCA reduced serum Zn, and PBA reduced hepatic Cu to normal levels in the diabetic mice at two time points, while PBA normalized serum Cu in the diabetic mice only at 2 months. PBA increased hepatic Zn to normal levels in the diabetic mice at 2 weeks, while it partially increased hepatic Zn in the same group at 2 months. Therefore, maintaining homeostasis of Cu and Zn by TUDCA and PBA in diabetes needs to be received with special attention.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Pediatrics, First Hospital of Jilin University, Changchun, 130021, China
| | - Di Wang
- Department of Laboratory Medicine, First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Jiancheng Xu
- Department of Laboratory Medicine, First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| | - Baorong Chi
- Department of Hepatology, First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
95
|
Signal Mechanisms of Vascular Remodeling in the Development of Pulmonary Arterial Hypertension. J Cardiovasc Pharmacol 2016; 67:182-90. [DOI: 10.1097/fjc.0000000000000328] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
96
|
He Y, Cao X, Liu X, Li X, Xu Y, Liu J, Shi J. Quercetin reverses experimental pulmonary arterial hypertension by modulating the TrkA pathway. Exp Cell Res 2015; 339:122-34. [DOI: 10.1016/j.yexcr.2015.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/20/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023]
|
97
|
Simultaneous Increases in Proliferation and Apoptosis of Vascular Smooth Muscle Cells Accelerate Diabetic Mouse Venous Atherosclerosis. PLoS One 2015; 10:e0141375. [PMID: 26488175 PMCID: PMC4619075 DOI: 10.1371/journal.pone.0141375] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/06/2015] [Indexed: 12/20/2022] Open
Abstract
Aims This study was designed to demonstrate simultaneous increases in proliferation and apoptosis of vascular smooth muscle cells (VSMCs) leading to accelerated vein graft remodeling and to explore the underlying mechanisms. Methods Vein grafts were performed in non-diabetic and diabetic mice. The cultured quiescent VSMCs were subjected to mechanical stretch stress (SS) and/or advanced glycosylation end products (AGEs). Harvested vein grafts and treated VSMCs were used to detect cell proliferation, apoptosis, mitogen-activated protein kinases (MAPKs) activation and SM-α-actin expression. Results Significantly thicker vessel walls and greater increases in proliferation and apoptosis were observed in diabetic vein grafts than those in non-diabetic. Both SS and AGEs were found to induce different activation of three members of MAPKs and simultaneous increases in proliferation and apoptosis of VSMCs, and combined treatment with both had a synergistic effect. VSMCs with strong SM-α-actin expression represented more activated JNKs or p38MAPK, and cell apoptosis, while the cells with weak SM-α-actin expression demonstrated preferential activation of ERKs and cell proliferation. In contrast, inhibition of MAPKs signals triggered significant decreases in VSMC proliferation, and apoptosis. Treatment of the cells with RNA interference of receptor of AGEs (RAGE) also resulted in significant decreases in both proliferation and apoptosis. Conclusions Increased pressure-induced SS triggers simultaneous increases in proliferation and apoptosis of VSMCs in the vein grafts leading to vein arterializations, which can be synergistically accelerated by high glucose-induced AGEs resulting in vein graft atherosclerosis. Either SS or AGEs and their combination induce simultaneous increases in proliferation and apoptosis of VSMCs via different activation of three members of MAPKs resulting from different VSMC subtypes classified by SM-α-actin expression levels.
Collapse
|
98
|
Sardana M, Moll M, Farber HW. Novel investigational therapies for treating pulmonary arterial hypertension. Expert Opin Investig Drugs 2015; 24:1571-96. [DOI: 10.1517/13543784.2015.1098616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
99
|
Colvin KL, Yeager ME. Proteomics of pulmonary hypertension: could personalized profiles lead to personalized medicine? Proteomics Clin Appl 2015; 9:111-20. [PMID: 25408474 DOI: 10.1002/prca.201400157] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/13/2014] [Accepted: 11/13/2014] [Indexed: 12/12/2022]
Abstract
Pulmonary hypertension (PH) is a fatal syndrome that arises from a multifactorial and complex background, is characterized by increased pulmonary vascular resistance and right heart afterload, and often leads to cor pulmonale. Over the past decades, remarkable progress has been made in reducing patient symptoms and delaying the progression of the disease. Unfortunately, PH remains a disease with no cure. The substantial heterogeneity of PH continues to be a major limitation to the development of newer and more efficacious therapies. New advances in our understanding of the biological pathways leading to such a complex pathogenesis will require the identification of the important proteins and protein networks that differ between a healthy lung (or right ventricle) and a remodeled lung in an individual with PH. In this article, we present the case for the increased use of proteomics--the study of proteins and protein networks--as a discovery tool for key proteins and protein networks operational in the PH lung. We review recent applications of proteomics in PH, and summarize the biological pathways identified. Finally, we attempt to presage what the future will bring with regard to proteomics in PH and offer our perspectives on the prospects of developing personalized proteomics and custom-tailored therapies.
Collapse
Affiliation(s)
- Kelley L Colvin
- Department of Pediatrics-Critical Care, University of Colorado Denver, Aurora, CO, USA; Cardiovascular Pulmonary Research, University of Colorado Denver, Aurora, CO, USA; Department of Bioengineering, University of Colorado Denver, Aurora, CO, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Denver, Aurora, CO, USA
| | | |
Collapse
|
100
|
López-Crisosto C, Bravo-Sagua R, Rodriguez-Peña M, Mera C, Castro PF, Quest AFG, Rothermel BA, Cifuentes M, Lavandero S. ER-to-mitochondria miscommunication and metabolic diseases. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2096-105. [PMID: 26171812 DOI: 10.1016/j.bbadis.2015.07.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 12/17/2022]
Abstract
Eukaryotic cells contain a variety of subcellular organelles, each of which performs unique tasks. Thus follows that in order to coordinate these different intracellular functions, a highly dynamic system of communication must exist between the various compartments. Direct endoplasmic reticulum (ER)-mitochondria communication is facilitated by the physical interaction of their membranes in dedicated structural domains known as mitochondria-associated membranes (MAMs), which facilitate calcium (Ca(2+)) and lipid transfer between organelles and also act as platforms for signaling. Numerous studies have demonstrated the importance of MAM in ensuring correct function of both organelles, and recently MAMs have been implicated in the genesis of various human diseases. Here, we review the salient structural features of interorganellar communication via MAM and discuss the most common experimental techniques employed to assess functionality of these domains. Finally, we will highlight the contribution of MAM to a variety of cellular functions and consider the potential role of MAM in the genesis of metabolic diseases. In doing so, the importance for cell functions of maintaining appropriate communication between ER and mitochondria will be emphasized.
Collapse
Affiliation(s)
- Camila López-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Center for Molecular Studies of the Cell (CEMC), Faculty of Chemical & Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago 8380492, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Center for Molecular Studies of the Cell (CEMC), Faculty of Chemical & Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago 8380492, Chile
| | - Marcelo Rodriguez-Peña
- Advanced Center for Chronic Diseases (ACCDiS), Center for Molecular Studies of the Cell (CEMC), Faculty of Chemical & Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago 8380492, Chile
| | - Claudia Mera
- Advanced Center for Chronic Diseases (ACCDiS), Center for Molecular Studies of the Cell (CEMC), Faculty of Chemical & Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago 8380492, Chile
| | - Pablo F Castro
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8380492, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Center for Molecular Studies of the Cell (CEMC), Faculty of Chemical & Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago 8380492, Chile
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Mariana Cifuentes
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago 7830490, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Center for Molecular Studies of the Cell (CEMC), Faculty of Chemical & Pharmaceutical Sciences, Faculty of Medicine, University of Chile, Santiago 8380492, Chile; Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75235, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.
| |
Collapse
|