51
|
Fang Q, Huang K, Yao X, Peng Y, Kan A, Song Y, Wang X, Xiao X, Gong L. The application of radiology for dilated cardiomyopathy diagnosis, treatment, and prognosis prediction: a bibliometric analysis. Quant Imaging Med Surg 2023; 13:7012-7028. [PMID: 37869323 PMCID: PMC10585513 DOI: 10.21037/qims-23-34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 08/11/2023] [Indexed: 10/24/2023]
Abstract
Background Radiology plays a highly crucial role in the diagnosis, treatment, and prognosis prediction of dilated cardiomyopathy (DCM). Related research has increased rapidly over the past few years, but systematic analyses are lacking. This study thus aimed to provide a reference for further research by analyzing the knowledge field, development trends, and research hotspots of radiology in DCM using bibliometric methods. Methods Articles on the radiology of DCM published between 2002 and 2021 in the Web of Science Core Collection database (WoSCCd) were searched and analyzed. Data were retrieved and analyzed using CiteSpace V, VOSviewer, and Scimago Graphic software, and included the name, research institution, and nationality of authors; journals of publication; and the number of citations. Results A total of 4,257 articles were identified on radiology of DCM from WoSCCd. The number of articles published in this field has grown steadily from 2002 to 2021 and is expected to reach 392 annually by 2024. According to subfields, the number of papers published in cardiac magnetic resonance field increased steadily. The authors from the United States published the most (1,364 articles, 32.04%) articles. The author with the most articles published was Bax JJ (54 articles, 1.27%) from Leiden University Medical Center. The most cited article was titled "2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure", with 138 citations. Citation-based clustering showed that arrhythmogenic cardiomyopathy, T1 mapping, and endomyocardial biopsy are the current hots pots for research in DCM radiology. The most frequently occurring keyword was "dilated cardiomyopathy". The keyword-based clusters mainly included "late gadolinium enhancement", "congestive heart failure", "cardiovascular magnetic resonance", "sudden cardiac death", "ventricular arrhythmia", and "cardiac resynchronization therapy". Conclusions The United States and Northern Europe are the most influential countries in research on DCM radiology, with many leading distinguished research institutions. The current research hots pots are myocardial fibrosis, risk stratification of ventricular arrhythmia, the prognosis of cardiac resynchronization therapy (CRT) treatment, and subtype classification of DCM.
Collapse
Affiliation(s)
- Qimin Fang
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kaiyao Huang
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xinyu Yao
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yun Peng
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ao Kan
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yipei Song
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiwen Wang
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Xiao
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lianggeng Gong
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
52
|
Pan J, Ng SM, Neubauer S, Rider OJ. Phenotyping heart failure by cardiac magnetic resonance imaging of cardiac macro- and microscopic structure: state of the art review. Eur Heart J Cardiovasc Imaging 2023; 24:1302-1317. [PMID: 37267310 PMCID: PMC10531211 DOI: 10.1093/ehjci/jead124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
Heart failure demographics have evolved in past decades with the development of improved diagnostics, therapies, and prevention. Cardiac magnetic resonance (CMR) has developed in a similar timeframe to become the gold-standard non-invasive imaging modality for characterizing diseases causing heart failure. CMR techniques to assess cardiac morphology and function have progressed since their first use in the 1980s. Increasingly efficient acquisition protocols generate high spatial and temporal resolution images in less time. This has enabled new methods of characterizing cardiac systolic and diastolic function such as strain analysis, exercise real-time cine imaging and four-dimensional flow. A key strength of CMR is its ability to non-invasively interrogate the myocardial tissue composition. Gadolinium contrast agents revolutionized non-invasive cardiac imaging with the late gadolinium enhancement technique. Further advances enabled quantitative parametric mapping to increase sensitivity at detecting diffuse pathology. Novel methods such as diffusion tensor imaging and artificial intelligence-enhanced image generation are on the horizon. Magnetic resonance spectroscopy (MRS) provides a window into the molecular environment of the myocardium. Phosphorus (31P) spectroscopy can inform the status of cardiac energetics in health and disease. Proton (1H) spectroscopy complements this by measuring creatine and intramyocardial lipids. Hyperpolarized carbon (13C) spectroscopy is a novel method that could further our understanding of dynamic cardiac metabolism. CMR of other organs such as the lungs may add further depth into phenotypes of heart failure. The vast capabilities of CMR should be deployed and interpreted in context of current heart failure challenges.
Collapse
Affiliation(s)
- Jiliu Pan
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 0, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Sher May Ng
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 0, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Stefan Neubauer
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 0, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Oliver J Rider
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Level 0, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|
53
|
Zhang J, Xu Y, Li W, Zhang C, Liu W, Li D, Chen Y. The Predictive Value of Myocardial Native T1 Mapping Radiomics in Dilated Cardiomyopathy: A Study in a Chinese Population. J Magn Reson Imaging 2023; 58:772-779. [PMID: 36416613 DOI: 10.1002/jmri.28527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Investigation of the factors influencing dilated cardiomyopathy (DCM) prognosis is important as it could facilitate risk stratification and guide clinical decision-making. PURPOSE To assess the prognostic value of magnetic resonance imaging (MRI) radiomics analysis of native T1 mapping in DCM. STUDY TYPE Prospective. SUBJECTS Three hundred and thirty consecutive patients with non-ischemic DCM (mean age 48.42 ± 14.20 years, 247 males). FIELD STRENGTH/SEQUENCE Balanced steady-state free precession and modified Look-Locker inversion recovery T1 mapping sequences at 3 T. ASSESSMENT Clinical characteristics, conventional MRI parameters (ventricular volumes, function, and mass), native myocardial T1, and radiomics features extracted from native T1 mapping were obtained. The study endpoint was defined as all-cause mortality or heart transplantation. Models were developed based on 1) clinical data; 2) radiomics data based on T1 mapping; 3) clinical and conventional MRI data; 4) clinical, conventional MRI, and native T1 data; and 5) clinical, conventional MRI, and radiomics T1 mapping data. Each prediction model was trained according to follow-up results with AdaBoost, random forest, and logistic regression classifiers. STATISTICAL TESTS The predictive performance was evaluated using the area under the receiver operating characteristic curve (AUC) and F1 score by 5-fold cross-validation. RESULTS During a median follow-up of 53.5 months (interquartile range, 41.6-69.5 months), 77 patients with DCM experienced all-cause mortality or heart transplantation. The random forest model based on radiomics combined with clinical and conventional MRI parameters achieved the best performance, with AUC and F1 score of 0.95 and 0.89, respectively. DATA CONCLUSION A machine-learning framework based on radiomics analysis of T1 mapping prognosis prediction in DCM. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Jian Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Yuanwei Xu
- Division of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Weihao Li
- Division of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Wentao Liu
- Fundamental Technology Center of CCB Financial Technology Co., Ltd, Shanghai, China
| | - Dong Li
- Division of Hospital Medicine, Emory School of Medicine, Atlanta, Georgia, USA
| | - Yucheng Chen
- Division of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
54
|
Di Marco A, Claver E, Anguera I. Impact of Cardiac Magnetic Resonance to Arrhythmic Risk Stratification in Nonischemic Cardiomyopathy. Card Electrophysiol Clin 2023; 15:379-390. [PMID: 37558307 DOI: 10.1016/j.ccep.2023.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Left ventricular ejection fraction-based arrhythmic risk stratification in nonischemic cardiomyopathy (NICM) is insufficient and has led to the failure of primary prevention implantable cardioverter defibrillator trials, mainly due to the inability of selecting patients at high risk for sudden cardiac death (SCD). Cardiac magnetic resonance offers unique opportunities for tissue characterization and has gained a central role in arrhythmic risk stratification in NICM. The presence of myocardial scar, denoted by late gadolinium enhancement, is a significant, independent, and strong predictor of ventricular arrhythmias and SCD with high negative predictive value. T1 maps and extracellular volume fraction, which are able to quantify diffuse fibrosis, hold promise as complementary tools but need confirmatory results from large studies.
Collapse
Affiliation(s)
- Andrea Di Marco
- Department of Cardiology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain; Bioheart-Cardiovascular Diseases Group, Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| | - Eduard Claver
- Department of Cardiology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain; Bioheart-Cardiovascular Diseases Group, Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ignasi Anguera
- Department of Cardiology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain; Bioheart-Cardiovascular Diseases Group, Cardiovascular, Respiratory and Systemic Diseases and Cellular Aging Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
55
|
Nikolaidou C, Ormerod JO, Ziakas A, Neubauer S, Karamitsos TD. The Role of Cardiovascular Magnetic Resonance Imaging in Patients with Cardiac Arrhythmias. Rev Cardiovasc Med 2023; 24:252. [PMID: 39076394 PMCID: PMC11262447 DOI: 10.31083/j.rcm2409252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 07/31/2024] Open
Abstract
Cardiac arrhythmias are associated with significant morbidity, mortality and poor quality of life. Cardiovascular magnetic resonance (CMR) imaging, with its unsurpassed capability of non-invasive tissue characterisation, high accuracy, and reproducibility of measurements, plays an integral role in determining the underlying aetiology of cardiac arrhytmias. CMR can reliably diagnose previous myocardial infarction, non-ischemic cardiomyopathy, characterise congenital heart disease and valvular pathologies, and also detect the underlying substrate concealed on conventional investigations in a significant proportion of patients with arrhythmias. Determining the underlying substrate of arrhythmia is of paramount importance for treatment planning and prognosis. However, CMR imaging in patients with irregular heart rates can be problematic. Understanding the different ways to overcome the limitations of CMR in arrhythmia is essential for providing high-quality imaging, comprehensive information, and definitive answers in this diverse group of patients.
Collapse
Affiliation(s)
- Chrysovalantou Nikolaidou
- Oxford Centre for Clinical Magnetic Resonance Research, University of
Oxford, John Radcliffe Hospital, Headington, OX3 9DU Oxford, UK
| | - Julian O.M. Ormerod
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine,
University of Oxford, John Radcliffe Hospital, Headington, OX3 9DU
Oxford, UK
| | - Antonios Ziakas
- First Department of Cardiology, AHEPA Hospital, School of Medicine,
Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636
Thessaloniki, Greece
| | - Stefan Neubauer
- Oxford Centre for Clinical Magnetic Resonance Research, University of
Oxford, John Radcliffe Hospital, Headington, OX3 9DU Oxford, UK
| | - Theodoros D. Karamitsos
- Oxford Centre for Clinical Magnetic Resonance Research, University of
Oxford, John Radcliffe Hospital, Headington, OX3 9DU Oxford, UK
- First Department of Cardiology, AHEPA Hospital, School of Medicine,
Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636
Thessaloniki, Greece
| |
Collapse
|
56
|
Theerasuwipakorn N, Chokesuwattanaskul R, Phannajit J, Marsukjai A, Thapanasuta M, Klem I, Chattranukulchai P. Impact of late gadolinium-enhanced cardiac MRI on arrhythmic and mortality outcomes in nonischemic dilated cardiomyopathy: updated systematic review and meta-analysis. Sci Rep 2023; 13:13775. [PMID: 37612359 PMCID: PMC10447440 DOI: 10.1038/s41598-023-41087-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 08/22/2023] [Indexed: 08/25/2023] Open
Abstract
Risk stratification based mainly on the impairment of left ventricular ejection fraction has limited performance in patients with nonischemic dilated cardiomyopathy (NIDCM). Evidence is rapidly growing for the impact of myocardial scar identified by late gadolinium enhancement (LGE) cardiac magnetic resonance imaging (CMR) on cardiovascular events. We aim to assess the prognostic value of LGE on long-term arrhythmic and mortality outcomes in patients with NIDCM. PubMed, Scopus, and Cochrane databases were searched from inception to January 21, 2022. Studies that included disease-specific subpopulations of NIDCM were excluded. Data were independently extracted and combined via random-effects meta-analysis using a generic inverse-variance strategy. Data from 60 studies comprising 15,217 patients were analyzed with a 3-year median follow-up. The presence of LGE was associated with major ventricular arrhythmic events (pooled OR: 3.99; 95% CI 3.08, 5.16), all-cause mortality (pooled OR: 2.14; 95% CI 1.81, 2.52), cardiovascular mortality (pooled OR 2.83; 95% CI 2.23, 3.60), and heart failure hospitalization (pooled OR: 2.53; 95% CI 1.78, 3.59). Real-world evidence suggests that the presence of LGE on CMR was a strong predictor of adverse long-term outcomes in patients with NIDCM. Scar assessment should be incorporated as a primary determinant in the patient selection criteria for primary prophylactic implantable cardioverter-defibrillator placement.
Collapse
Affiliation(s)
- Nonthikorn Theerasuwipakorn
- Division of Cardiovascular Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Cardiac Center, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Ronpichai Chokesuwattanaskul
- Division of Cardiovascular Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Cardiac Center, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Jeerath Phannajit
- Division of Clinical Epidemiology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Apichai Marsukjai
- Division of Cardiovascular Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Cardiac Center, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Mananchaya Thapanasuta
- Division of Cardiovascular Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Cardiac Center, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand
| | - Igor Klem
- Duke Cardiovascular Magnetic Resonance Center, Division of Cardiology, Duke University Medical Center, Durham, NC, USA
| | - Pairoj Chattranukulchai
- Division of Cardiovascular Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Cardiac Center, King Chulalongkorn Memorial Hospital, Bangkok, 10330, Thailand.
| |
Collapse
|
57
|
Yuan Y, Yang K, Liu Q, Song W, Jin D, Zhao S. Nonspecific intraventricular conduction delay predicts the prognosis of dilated cardiomyopathy. BMC Cardiovasc Disord 2023; 23:409. [PMID: 37596522 PMCID: PMC10439585 DOI: 10.1186/s12872-023-03437-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023] Open
Abstract
PURPOSE Left bundle branch block (LBBB) has been confirmed to be independently associated with adverse outcomes in dilated cardiomyopathy (DCM). However, prognostic data on nonspecific intraventricular conduction delay (NSIVCD) are still limited and conflicting. We aimed to evaluate the prognosis of DCM with NSIVCD. METHODS A total of 548 DCM patients who underwent cardiovascular magnetic resonance imaging (CMR) from January 2016 to December 2017 were consecutively enrolled. The cohort was divided into four groups: 87 with LBBB, 27 with RBBB, 61 with NSIVCD, and 373 without intraventricular conduction delay (IVCD). After a median follow-up of 58 months (interquartile range: 47-65), 123 patients reached the composite endpoints, which included cardiovascular death, heart transplantation, and malignant arrhythmias. The associations between different patterns of IVCD and the outcomes of DCM were analysed by Kaplan‒Meier analysis and Cox proportional hazards regression analysis. RESULTS Of 548 DCM patients, there were 398 males (72.6%), and the average age was 46 ± 15 years, ranging from 18 to 76 years. In Kaplan‒Meier analysis, patients with NSIVCD and LBBB showed higher event rates than patients without IVCD, while RBBB patients did not. By multivariate Cox regression analysis, LBBB, NSIVCD, NYHA class, left ventricular ejection fraction (LVEF), indexed left ventricular end-diastolic diameter (LVEDDI), percentage of late gadolinium enhancement mass (LGE%), and global longitudinal strain (GLS) were found to be independently associated with the outcomes of DCM. CONCLUSIONS In addition to LBBB, NSIVCD was an unfavourable prognostic marker in patients with DCM, independent of LVEDDI, NYHA class, LVEF, LGE%, and GLS.
Collapse
Affiliation(s)
- Yong Yuan
- Department of Magnetic Resonance Imaging, Cardiovascular Imaging and Intervention Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- Department of Diagnostic Imaging, Geriatric Hospital of Nanjing Medical University, Nanjing, 210024, China
| | - Kai Yang
- Department of Magnetic Resonance Imaging, Cardiovascular Imaging and Intervention Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Qianjun Liu
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Weixiang Song
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Dongsheng Jin
- Department of Diagnostic Imaging, Geriatric Hospital of Nanjing Medical University, Nanjing, 210024, China.
| | - Shihua Zhao
- Department of Magnetic Resonance Imaging, Cardiovascular Imaging and Intervention Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
58
|
Becker MAJ, van der Lingen ALCJ, Cornel JH, van de Ven PM, van Rossum AC, Allaart CP, Germans T. Septal Midwall Late Gadolinium Enhancement in Ischemic Cardiomyopathy and Nonischemic Dilated Cardiomyopathy-Characteristics and Prognosis. Am J Cardiol 2023; 201:294-301. [PMID: 37393732 DOI: 10.1016/j.amjcard.2023.06.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/12/2023] [Accepted: 06/11/2023] [Indexed: 07/04/2023]
Abstract
Septal midwall late gadolinium enhancement (LGE) is a characteristic finding on cardiac magnetic resonance imaging (CMR) in nonischemic dilated cardiomyopathy (DCM) and is associated with adverse events. Its significance in ischemic cardiomyopathy (ICM) is unknown. With this multicenter observational study, we aimed to study the characteristics of septal midwall LGE and evaluate its prognostic value in ICM. A total of 1,084 patients with an impaired left ventricular (LV) ejection fraction (<50%) on LGE-CMR, either because of ICM (53%) or DCM, were included retrospectively. Septal midwall LGE was defined as midmyocardial stripe-like or patchy LGE in septal segments and was present in 10% of patients with ICM compared with 34% of patients with DCM (p <0.001). It was significantly associated with larger LV volumes and lower LV ejection fraction, irrespective of etiology. The primary endpoint was all-cause mortality and secondary endpoint was ventricular arrhythmias (VAs), including resuscitated cardiac arrest, sustained VA, and appropriate implantable cardioverter-defibrillator (ICD) therapy. During a median follow-up of 2.7 years, we found a significant association between septal midwall LGE and mortality in patients with DCM (hazard ratio [HR] 1.92, p = 0.03), but not in patients with ICM (HR 1.35, p = 0.39). Risk of VAs was significantly higher in patients with septal midwall LGE on CMR, both in DCM (HR 2.80, p <0.01) and in ICM (HR 2.70, p <0.01). In conclusion, septal midwall LGE, typically seen in DCM, was also present in 10% of patients with ICM and was associated with increased LV dilation and worse function, irrespective of etiology. When present, septal midwall LGE was associated with adverse outcome.
Collapse
Affiliation(s)
- Marthe A J Becker
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Anne-Lotte C J van der Lingen
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jan H Cornel
- Department of Cardiology, Northwest Clinics Alkmaar, Alkmaar, The Netherlands; Department of Cardiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter M van de Ven
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Albert C van Rossum
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Cornelis P Allaart
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Tjeerd Germans
- Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Cardiology, Northwest Clinics Alkmaar, Alkmaar, The Netherlands
| |
Collapse
|
59
|
Brendel JM, Holtackers RJ, Geisel JN, Kübler J, Hagen F, Gawaz M, Nikolaou K, Greulich S, Krumm P. Dark-Blood Late Gadolinium Enhancement MRI Is Noninferior to Bright-Blood LGE in Non-Ischemic Cardiomyopathies. Diagnostics (Basel) 2023; 13:1634. [PMID: 37175026 PMCID: PMC10178168 DOI: 10.3390/diagnostics13091634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
(1) Background and Objectives: Dark-blood late gadolinium enhancement has been shown to be a reliable cardiac magnetic resonance (CMR) method for assessing viability and depicting myocardial scarring in ischemic cardiomyopathy. The aim of this study was to evaluate dark-blood LGE imaging compared with conventional bright-blood LGE for the detection of myocardial scarring in non-ischemic cardiomyopathies. (2) Materials and Methods: Patients with suspected non-ischemic cardiomyopathy were prospectively enrolled in this single-centre study from January 2020 to March 2023. All patients underwent 1.5 T CMR with both dark-blood and conventional bright-blood LGE imaging. Corresponding short-axis stacks of both techniques were analysed for the presence, distribution, pattern, and localisation of LGE, as well as the quantitative scar size (%). (3) Results: 343 patients (age 44 ± 17 years; 124 women) with suspected non-ischemic cardiomyopathy were examined. LGE was detected in 123 of 343 cases (36%) with excellent inter-reader agreement (κ 0.97-0.99) for both LGE techniques. Dark-blood LGE showed a sensitivity of 99% (CI 98-100), specificity of 99% (CI 98-100), and an accuracy of 99% (CI 99-100) for the detection of non-ischemic scarring. No significant difference in total scar size (%) was observed. Dark-blood imaging with mean 5.35 ± 4.32% enhanced volume of total myocardial volume, bright-blood with 5.24 ± 4.28%, p = 0.84. (4) Conclusions: Dark-blood LGE imaging is non-inferior to conventional bright-blood LGE imaging in detecting non-ischemic scarring. Therefore, dark-blood LGE imaging may become an equivalent method for the detection of both ischemic and non-ischemic scars.
Collapse
Affiliation(s)
- Jan M. Brendel
- Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Robert J. Holtackers
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jan N. Geisel
- Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Jens Kübler
- Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Florian Hagen
- Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Meinrad Gawaz
- Department of Internal Medicine III, Cardiology and Angiology, University of Tübingen Otfried-Müller-Straße 10, 72076 Tübingen, Germany
| | - Konstantin Nikolaou
- Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| | - Simon Greulich
- Department of Internal Medicine III, Cardiology and Angiology, University of Tübingen Otfried-Müller-Straße 10, 72076 Tübingen, Germany
| | - Patrick Krumm
- Department of Radiology, Diagnostic and Interventional Radiology, University of Tübingen Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| |
Collapse
|
60
|
Pio Loco detto Gava C, Merlo M, Paldino A, Korcova R, Massa L, Porcari A, Zecchin M, Perotto M, Rossi M, Sinagra G. New perspectives in diagnosis and risk stratification of non-ischaemic dilated cardiomyopathy. Eur Heart J Suppl 2023; 25:C137-C143. [PMID: 37125318 PMCID: PMC10132605 DOI: 10.1093/eurheartjsupp/suad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Dilated cardiomyopathy is a primitive heart muscle condition, characterized by structural and functional abnormalities, in the absence of a specific cause sufficient to determine the disease. It is, though, an 'umbrella' term that describes the final common pathway of different pathogenic processes and gene-environment interactions. Performing an accurate diagnostic workup and appropriate characterization of the patient has a direct impact on the patient's outcome. The physician should adapt a multiparametric approach, including a careful anamnesis and physical examination and integrating imaging data and genetic testing. Aetiological characterization should be pursued, and appropriate arrhythmic risk stratification should be performed. Evaluations should be repeated thoroughly at follow-up, as the disease is dynamical over time and individual risk might evolve. The goal is an all-around characterization of the patient, a personalized medicine approach, in order to establish a diagnosis and therapy tailored for the individual patient.
Collapse
Affiliation(s)
| | - Marco Merlo
- Cardiothoracovascular Department, Cardiology, Giuliano Isontina University Health Authority (ASUGI), European Reference Network for rare, low-prevalence, or complex diseases of the Heart (ERN GUARD-Heart), University of Trieste, Via Pietro Valdoni, 7, 34149 Trieste (TS), Italy
| | - Alessia Paldino
- Cardiothoracovascular Department, Cardiology, Giuliano Isontina University Health Authority (ASUGI), European Reference Network for rare, low-prevalence, or complex diseases of the Heart (ERN GUARD-Heart), University of Trieste, Via Pietro Valdoni, 7, 34149 Trieste (TS), Italy
| | - Renata Korcova
- Cardiothoracovascular Department, Cardiology, Giuliano Isontina University Health Authority (ASUGI), European Reference Network for rare, low-prevalence, or complex diseases of the Heart (ERN GUARD-Heart), University of Trieste, Via Pietro Valdoni, 7, 34149 Trieste (TS), Italy
| | - Laura Massa
- Cardiothoracovascular Department, Cardiology, Giuliano Isontina University Health Authority (ASUGI), European Reference Network for rare, low-prevalence, or complex diseases of the Heart (ERN GUARD-Heart), University of Trieste, Via Pietro Valdoni, 7, 34149 Trieste (TS), Italy
| | - Aldostefano Porcari
- Cardiothoracovascular Department, Cardiology, Giuliano Isontina University Health Authority (ASUGI), European Reference Network for rare, low-prevalence, or complex diseases of the Heart (ERN GUARD-Heart), University of Trieste, Via Pietro Valdoni, 7, 34149 Trieste (TS), Italy
| | - Massimo Zecchin
- Cardiothoracovascular Department, Cardiology, Giuliano Isontina University Health Authority (ASUGI), European Reference Network for rare, low-prevalence, or complex diseases of the Heart (ERN GUARD-Heart), University of Trieste, Via Pietro Valdoni, 7, 34149 Trieste (TS), Italy
| | - Maria Perotto
- Cardiothoracovascular Department, Cardiology, Giuliano Isontina University Health Authority (ASUGI), European Reference Network for rare, low-prevalence, or complex diseases of the Heart (ERN GUARD-Heart), University of Trieste, Via Pietro Valdoni, 7, 34149 Trieste (TS), Italy
| | - Maddalena Rossi
- Cardiothoracovascular Department, Cardiology, Giuliano Isontina University Health Authority (ASUGI), European Reference Network for rare, low-prevalence, or complex diseases of the Heart (ERN GUARD-Heart), University of Trieste, Via Pietro Valdoni, 7, 34149 Trieste (TS), Italy
| | | |
Collapse
|
61
|
Autore C, Bariani R, Bauce B, Biagini E, Canepa M, Castelletti S, Crotti L, Limongelli G, Merlo M, Monda E, Pio Loco Detto Gava C, Parisi V, Tini G, Imazio M. From the phenotype to precision medicine: an update on the cardiomyopathies diagnostic workflow. J Cardiovasc Med (Hagerstown) 2023; 24:e178-e186. [PMID: 37186568 DOI: 10.2459/jcm.0000000000001424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cardiomyopathies are disease of the cardiac muscle largely due to genetic alterations of proteins with 'structural' or 'functional' roles within the cardiomyocyte, going from the regulation of contraction-relaxation, metabolic and energetic processes to ionic fluxes. Modifications occurring to these proteins are responsible, in the vast majority of cases, for the phenotypic manifestations of the disease, including hypertrophic, dilated, arrhythmogenic and restrictive cardiomyopathies. Secondary nonhereditary causes to be excluded include infections, toxicity from drugs or alcohol or medications, hormonal imbalance and so on. Obtaining a phenotypic definition and an etiological diagnosis is becoming increasingly relevant and feasible, thanks to the availability of new tailored treatments and the diagnostic advancements made particularly in the field of genetics. This is, for example, the case for transthyretin cardiac amyloidosis, Fabry disease or dilated cardiomyopathies due to laminopathies. For these diseases, specific medications have been developed, and a more tailored arrhythmic risk stratification guides the implantation of a defibrillator. In addition, new medications directly targeting the altered protein responsible for the phenotype are becoming available (including the myosin inhibitors mavacantem and aficamten, monoclonal antibodies against Ras-MAPK, genetic therapies for sarcoglycanopathies), thus making a precision medicine approach less unrealistic even in the field of cardiomyopathies. For these reasons, a contemporary approach to cardiomyopathies must consider diagnostic algorithms founded on the clinical suspicion of the disease and developed towards a more precise phenotypic definition and etiological diagnosis, based on a multidisciplinary methodology putting together specialists from different disciplines, facilities for advanced imaging testing and genetic and anatomopathological competencies.
Collapse
Affiliation(s)
- Camillo Autore
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome
| | - Riccardo Bariani
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua
| | - Barbara Bauce
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua
| | - Elena Biagini
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy and European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart
| | - Marco Canepa
- Department of Internal Medicine, Università degli Studi di Genova
- Cardiovascular Unit, IRCCS Ospedale Policlinico San Martino, Genova
| | - Silvia Castelletti
- Istituto Auxologico Italiano, IRCCS San Luca Hospital, Cardiology Department Milan
| | - Lia Crotti
- Istituto Auxologico Italiano, IRCCS San Luca Hospital, Cardiology Department Milan
- University of Milano-Bicocca, Department of Medicine and Surgery, Milan
| | - Giuseppe Limongelli
- Dipartimento di Scienze Mediche Traslazionali -Università della Campania 'Luigi Vanvitelli' - Osp. Monaldi, AORN Colli, Ospedale Monaldi, Napoli
| | - Marco Merlo
- Centre for Diagnosis and Management of Cardiomyopathy, Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste, Trieste
| | - Emanuele Monda
- Dipartimento di Scienze Mediche Traslazionali -Università della Campania 'Luigi Vanvitelli' - Osp. Monaldi, AORN Colli, Ospedale Monaldi, Napoli
| | - Carola Pio Loco Detto Gava
- Centre for Diagnosis and Management of Cardiomyopathy, Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste, Trieste
| | - Vanda Parisi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy and European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart
| | - Giacomo Tini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome
| | - Massimo Imazio
- Dipartimento Cardiotoracico, Ospedale Santa Maria della Misericordia, Azienda Sanitaria Universitaria del Friuli Centrale (ASUFC), Udine, Italy
| |
Collapse
|
62
|
Evertz R, Hub S, Beuthner BE, Backhaus SJ, Lange T, Schulz A, Toischer K, Seidler T, von Haehling S, Puls M, Kowallick JT, Zeisberg EM, Hasenfuß G, Schuster A. Aortic valve calcification and myocardial fibrosis determine outcome following transcatheter aortic valve replacement. ESC Heart Fail 2023. [PMID: 37060191 PMCID: PMC10375183 DOI: 10.1002/ehf2.14307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/03/2022] [Accepted: 01/04/2023] [Indexed: 04/16/2023] Open
Abstract
AIMS There is evidence to suggest that the subtype of aortic stenosis (AS), the degree of myocardial fibrosis (MF), and level of aortic valve calcification (AVC) are associated with adverse cardiac outcome in AS. Because little is known about their respective contribution, we sought to investigate their relative importance and interplay as well as their association with adverse cardiac events following transcatheter aortic valve replacement (TAVR). METHODS AND RESULTS One hundred consecutive patients with severe AS and indication for TAVR were prospectively enrolled between January 2017 and October 2018. Patients underwent transthoracic echocardiography, multidetector computed tomography, and left ventricular endomyocardial biopsies at the time of TAVR. The final study cohort consisted of 92 patients with a completed study protocol, 39 (42.4%) of whom showed a normal ejection fraction (EF) high-gradient (NEFHG) AS, 13 (14.1%) a low EF high-gradient (LEFHG) AS, 25 (27.2%) a low EF low-gradient (LEFLG) AS, and 15 (16.3%) a paradoxical low-flow, low-gradient (PLFLG) AS. The high-gradient phenotypes (NEFHG and LEFHG) showed the largest amount of AVC (807 ± 421 and 813 ± 281 mm3 , respectively) as compared with the low-gradient phenotypes (LEFLG and PLFLG; 503 ± 326 and 555 ± 594 mm3 , respectively, P < 0.05). Conversely, MF was most prevalent in low-output phenotypes (LEFLG > LEFHG > PLFLG > NEFHG, P < 0.05). This was paralleled by a greater cardiovascular (CV) mortality within 600 days after TAVR (LEFLG 28% > PLFLG 26.7% > LEFHG 15.4% > NEFHG 2.5%; P = 0.023). In patients with a high MF burden, a higher AVC was associated with a lower mortality following TAVR (P = 0.045, hazard ratio 0.261, 95% confidence interval 0.07-0.97). CONCLUSIONS MF is associated with adverse CV outcome following TAVR, which is most prevalent in low EF situations. In the presence of large MF burden, patients with large AVC have better outcome following TAVR. Conversely, worse outcome in large MF and relatively little AVC may be explained by a relative prominence of an underlying cardiomyopathy. The better survival rates in large AVC patients following TAVR indicate TAVR induced relief of severe AS-associated pressure overload with subsequently improved outcome.
Collapse
Affiliation(s)
- Ruben Evertz
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Georg August University of Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany
| | - Sebastian Hub
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Georg August University of Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany
| | - Bo Eric Beuthner
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Georg August University of Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany
| | - Sören J Backhaus
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Georg August University of Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany
| | - Torben Lange
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Georg August University of Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany
| | - Alexander Schulz
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Georg August University of Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany
| | - Karl Toischer
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Georg August University of Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany
| | - Tim Seidler
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Georg August University of Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Georg August University of Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany
| | - Miriam Puls
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Georg August University of Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany
| | - Johannes T Kowallick
- Department of Diagnostic and Interventional Radiology, University Medical Center Göttingen (UMG), Georg August University of Göttingen, Göttingen, Germany
| | - Elisabeth M Zeisberg
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Georg August University of Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Georg August University of Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany
| | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Georg August University of Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany
| |
Collapse
|
63
|
Zaman S, Vimalesvaran K, Howard JP, Chappell D, Varela M, Peters NS, Francis DP, Bharath AA, Linton NWF, Cole GD. Efficient labelling for efficient deep learning: the benefit of a multiple-image-ranking method to generate high volume training data applied to ventricular slice level classification in cardiac MRI. JOURNAL OF MEDICAL ARTIFICIAL INTELLIGENCE 2023; 6:4. [PMID: 37346802 PMCID: PMC7614685 DOI: 10.21037/jmai-22-55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Background Getting the most value from expert clinicians' limited labelling time is a major challenge for artificial intelligence (AI) development in clinical imaging. We present a novel method for ground-truth labelling of cardiac magnetic resonance imaging (CMR) image data by leveraging multiple clinician experts ranking multiple images on a single ordinal axis, rather than manual labelling of one image at a time. We apply this strategy to train a deep learning (DL) model to classify the anatomical position of CMR images. This allows the automated removal of slices that do not contain the left ventricular (LV) myocardium. Methods Anonymised LV short-axis slices from 300 random scans (3,552 individual images) were extracted. Each image's anatomical position relative to the LV was labelled using two different strategies performed for 5 hours each: (I) 'one-image-at-a-time': each image labelled according to its position: 'too basal', 'LV', or 'too apical' individually by one of three experts; and (II) 'multiple-image-ranking': three independent experts ordered slices according to their relative position from 'most-basal' to 'most apical' in batches of eight until each image had been viewed at least 3 times. Two convolutional neural networks were trained for a three-way classification task (each model using data from one labelling strategy). The models' performance was evaluated by accuracy, F1-score, and area under the receiver operating characteristics curve (ROC AUC). Results After excluding images with artefact, 3,323 images were labelled by both strategies. The model trained using labels from the 'multiple-image-ranking strategy' performed better than the model using the 'one-image-at-a-time' labelling strategy (accuracy 86% vs. 72%, P=0.02; F1-score 0.86 vs. 0.75; ROC AUC 0.95 vs. 0.86). For expert clinicians performing this task manually the intra-observer variability was low (Cohen's κ=0.90), but the inter-observer variability was higher (Cohen's κ=0.77). Conclusions We present proof of concept that, given the same clinician labelling effort, comparing multiple images side-by-side using a 'multiple-image-ranking' strategy achieves ground truth labels for DL more accurately than by classifying images individually. We demonstrate a potential clinical application: the automatic removal of unrequired CMR images. This leads to increased efficiency by focussing human and machine attention on images which are needed to answer clinical questions.
Collapse
Affiliation(s)
- Sameer Zaman
- National Heart and Lung Institute, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
- AI for Healthcare Centre for Doctoral Training, Imperial College London, London, UK
| | - Kavitha Vimalesvaran
- National Heart and Lung Institute, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
- AI for Healthcare Centre for Doctoral Training, Imperial College London, London, UK
| | - James P. Howard
- National Heart and Lung Institute, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| | - Digby Chappell
- AI for Healthcare Centre for Doctoral Training, Imperial College London, London, UK
| | - Marta Varela
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Darrel P. Francis
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Anil A. Bharath
- Department of Bioengineering, Imperial College London, London, UK
| | - Nick W. F. Linton
- Imperial College Healthcare NHS Trust, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Graham D. Cole
- Imperial College Healthcare NHS Trust, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
64
|
Golukhova EZ, Bulaeva NI, Alexandrova SA, Mrikaev DV, Gromova OI, Ruzina EV, Berdibekov BS. The extent of late gadolinium enhancement predicts mortality, sudden death and major adverse cardiovascular events in patients with nonischaemic cardiomyopathy: a systematic review and meta-analysis. Clin Radiol 2023; 78:e342-e349. [PMID: 36707397 DOI: 10.1016/j.crad.2022.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/26/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023]
Abstract
AIM To conduct a systematic review and meta-analysis with the objective of evaluating the prognostic value of extent of myocardial fibrosis by late gadolinium-enhanced cardiac magnetic resonance imaging (CMR) in non-ischaemic dilated cardiomyopathy (NICM). MATERIAL AND METHODS The databases PubMed, EMBASE, and Google Scholar were searched for studies that investigated the prognostic value of quantification of late gadolinium enhancement (LGE) in patients with NICM. Unadjusted and adjusted hazard ratios (HRs) of uniformly defined predictors were pooled for meta-analysis. RESULTS Fourteen studies were retrieved from 884 publications for this systematic review and meta-analysis. In total, 4,336 patients (mean age 51.2 years; mean follow-up 35.1 months) were included in the analysis. Meta-analysis showed the extent of LGE was associated with an increased risk of all-cause mortality (HR: 1.07/1% LGE; 95% confidence interval [CI]: 1.03-1.11; p=0.0003), composite arrhythmic endpoint (HR: 1.09/1% LGE; 95% CI: 1.03-1.15; p=0.002) and major adverse cardiovascular events (MACE; HR: 1.06/1% LGE; 95% CI: 1.02-1.11; p=0.005). After adjusting for baseline characteristics, the higher extent of LGE remained associated with the risk of all-cause mortality (HRadjusted: 1.07/1% LGE; 95% CI: 1.00-1.14; p=0.04), also strongly associated with the risk of composite arrhythmic endpoint (HRadjusted: 1.07; 95% CI: 1.02-1.012; p=0.004) and MACE (HRadjusted: 1.04; 95% CI: 1.01-1.08; p=0.005). CONCLUSIONS Extent of LGE in CMR predicts all-cause mortality, arrhythmic events, and MACE. Collectively, these findings emphasise that extent of LGE by CMR may have value for optimising current predictive models for clinical events or mortality in patients with NICM.
Collapse
Affiliation(s)
- E Z Golukhova
- Bakulev Scientific Center for Cardiovascular Surgery, 121552 Moscow, Russia
| | - N I Bulaeva
- Bakulev Scientific Center for Cardiovascular Surgery, 121552 Moscow, Russia
| | - S A Alexandrova
- Bakulev Scientific Center for Cardiovascular Surgery, 121552 Moscow, Russia
| | - D V Mrikaev
- Bakulev Scientific Center for Cardiovascular Surgery, 121552 Moscow, Russia
| | - O I Gromova
- Bakulev Scientific Center for Cardiovascular Surgery, 121552 Moscow, Russia
| | - E V Ruzina
- Bakulev Scientific Center for Cardiovascular Surgery, 121552 Moscow, Russia
| | - B Sh Berdibekov
- Bakulev Scientific Center for Cardiovascular Surgery, 121552 Moscow, Russia.
| |
Collapse
|
65
|
Li Y, Xu Y, Li W, Guo J, Wan K, Wang J, Xu Z, Han Y, Sun J, Chen Y. Cardiac MRI to Predict Sudden Cardiac Death Risk in Dilated Cardiomyopathy. Radiology 2023; 307:e222552. [PMID: 36916890 DOI: 10.1148/radiol.222552] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Background Sudden cardiac death (SCD) is one of the leading causes of death in individuals with nonischemic dilated cardiomyopathy (DCM). However, the risk stratification of SCD events remains challenging in clinical practice. Purpose To determine whether myocardial tissue characterization with cardiac MRI could be used to predict SCD events and to explore a SCD stratification algorithm in nonischemic DCM. Materials and Methods In this prospective single-center study, adults with nonischemic DCM who underwent cardiac MRI between June 2012 and August 2020 were enrolled. SCD-related events included SCD, appropriate implantable cardioverter-defibrillator shock, and resuscitation after cardiac arrest. Competing risk regression analysis and Kaplan-Meier analysis were performed to identify the association of myocardial tissue characterization with outcomes. Results Among the 858 participants (mean age, 48 years; age range, 18-83 years; 603 men), 70 (8%) participants experienced SCD-related events during a median follow-up of 33.0 months. In multivariable competing risk analysis, late gadolinium enhancement (LGE) (hazard ratio [HR], 1.87; 95% CI: 1.07, 3.27; P = .03), native T1 (per 10-msec increase: HR, 1.07; 95% CI: 1.04, 1.11; P < .001), and extracellular volume fraction (per 3% increase: HR, 1.26; 95% CI: 1.11, 1.44; P < .001) were independent predictors of SCD-related events after adjustment of systolic blood pressure, atrial fibrillation, and left ventricular ejection fraction. An SCD risk stratification category was developed with a combination of native T1 and LGE. Participants with a native T1 value 4 or more SDs above the mean (1382 msec) had the highest annual SCD-related events rate of 9.3%, and participants with a native T1 value 2 SDs below the mean (1292 msec) and negative LGE had the lowest rate of 0.6%. This category showed good prediction ability (C statistic = 0.74) and could be used to discriminate SCD risk and competing heart failure risk. Conclusion Myocardial tissue characteristics derived from cardiac MRI were independent predictors of sudden cardiac death (SCD)-related events in individuals with nonischemic dilated cardiomyopathy and could be used to stratify participants according to different SCD risk categories. Clinical trial registration no. ChiCTR1800017058 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Sakuma in this issue.
Collapse
Affiliation(s)
- Yangjie Li
- From the Departments of Cardiology (Y.L., Y.X., W.L., J.G., J.W., Z.X., Y.C.), Geriatrics (K.W.), and Radiology (J.S.), West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; and Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, Ohio (Y.H.)
| | - Yuanwei Xu
- From the Departments of Cardiology (Y.L., Y.X., W.L., J.G., J.W., Z.X., Y.C.), Geriatrics (K.W.), and Radiology (J.S.), West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; and Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, Ohio (Y.H.)
| | - Weihao Li
- From the Departments of Cardiology (Y.L., Y.X., W.L., J.G., J.W., Z.X., Y.C.), Geriatrics (K.W.), and Radiology (J.S.), West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; and Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, Ohio (Y.H.)
| | - Jiajun Guo
- From the Departments of Cardiology (Y.L., Y.X., W.L., J.G., J.W., Z.X., Y.C.), Geriatrics (K.W.), and Radiology (J.S.), West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; and Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, Ohio (Y.H.)
| | - Ke Wan
- From the Departments of Cardiology (Y.L., Y.X., W.L., J.G., J.W., Z.X., Y.C.), Geriatrics (K.W.), and Radiology (J.S.), West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; and Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, Ohio (Y.H.)
| | - Jie Wang
- From the Departments of Cardiology (Y.L., Y.X., W.L., J.G., J.W., Z.X., Y.C.), Geriatrics (K.W.), and Radiology (J.S.), West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; and Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, Ohio (Y.H.)
| | - Ziqian Xu
- From the Departments of Cardiology (Y.L., Y.X., W.L., J.G., J.W., Z.X., Y.C.), Geriatrics (K.W.), and Radiology (J.S.), West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; and Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, Ohio (Y.H.)
| | - Yuchi Han
- From the Departments of Cardiology (Y.L., Y.X., W.L., J.G., J.W., Z.X., Y.C.), Geriatrics (K.W.), and Radiology (J.S.), West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; and Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, Ohio (Y.H.)
| | - Jiayu Sun
- From the Departments of Cardiology (Y.L., Y.X., W.L., J.G., J.W., Z.X., Y.C.), Geriatrics (K.W.), and Radiology (J.S.), West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; and Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, Ohio (Y.H.)
| | - Yucheng Chen
- From the Departments of Cardiology (Y.L., Y.X., W.L., J.G., J.W., Z.X., Y.C.), Geriatrics (K.W.), and Radiology (J.S.), West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; and Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, Ohio (Y.H.)
| |
Collapse
|
66
|
Sakuma H. Myocardial T1 Mapping to Identify Risk of Sudden Death in Heart Failure. Radiology 2023; 307:e230323. [PMID: 36916897 DOI: 10.1148/radiol.230323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Hajime Sakuma
- From the Department of Radiology, Mie University Hospital, 2-174 Edobashi, Tsu, Mie 5148507, Japan
| |
Collapse
|
67
|
Li S, Wang Y, Yang W, Zhou D, Zhuang B, Xu J, He J, Yin G, Fan X, Wu W, Sharma P, Sirajuddin A, Arai AE, Zhao S, Lu M. Cardiac MRI Risk Stratification for Dilated Cardiomyopathy with Left Ventricular Ejection Fraction of 35% or Higher. Radiology 2023; 306:e213059. [PMID: 36318031 PMCID: PMC9968772 DOI: 10.1148/radiol.213059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 08/05/2022] [Accepted: 09/22/2022] [Indexed: 02/22/2023]
Abstract
Background Studies over the past 15 years have demonstrated that a considerable number of patients with dilated cardiomyopathy (DCM) who died from sudden cardiac death (SCD) had a left ventricular (LV) ejection fraction (LVEF) of 35% or higher. Purpose To identify clinical and cardiac MRI risk factors for adverse events in patients with DCM and LVEF of 35% or higher. Materials and Methods In this retrospective study, consecutive patients with DCM and LVEF of 35% or higher who underwent cardiac MRI between January 2010 and December 2017 were included. The primary end point was a composite of SCD or aborted SCD. The secondary end point was a composite of all-cause mortality, heart transplant, or hospitalization for heart failure. The risk factors for the primary and secondary end points were identified with multivariable Cox analysis. Results A total of 466 patients with DCM and LVEF of 35% or higher (mean age, 44 years ± 14 [SD]; 358 men) were included. During a mean follow-up of 79 months ± 30 (SD) (range, 7-143 months), 40 patients reached the primary end point and 61 reached the secondary end point. In the adjusted analysis, age (hazard ratio [HR], 1.03 per year [95% CI: 1.00, 1.05]; P = .04), family history of SCD (HR, 3.4 [95% CI: 1.3, 8.8]; P = .01), New York Heart Association (NYHA) class III or IV (HR vs NYHA class I or II, 2.1 [95% CI: 1.1, 3.9]; P = .02), and myocardial scar at late gadolinium enhancement (LGE) MRI greater than or equal to 7.1% of the LV mass (HR, 4.4 [95% CI: 2.4, 8.3]; P < .001) were associated with SCD or aborted SCD. For the composite secondary end point, LGE greater than or equal to 7.1% of the LV mass (HR vs LGE <7.1%, 2.0 [95% CI: 1.2, 3.4]; P = .01), left atrial maximum volume index, and reduced global longitudinal strain were independent predictors. Conclusion For patients with dilated cardiomyopathy and left ventricular (LV) ejection fraction of 35% or higher, cardiac MRI-defined myocardial scar greater than or equal to 7.1% of the LV mass was associated with sudden cardiac death (SCD) or aborted SCD. © RSNA, 2022 Online supplemental material is available for this article.
Collapse
Affiliation(s)
| | | | - Wenjing Yang
- From the Department of Magnetic Resonance Imaging (S.L., Y.W., W.Y.,
D.Z., B.Z., J.X., J.H., G.Y., S.Z., M.L.), Cardiac Arrhythmia Center (X.F.), and
Department of Echocardiography (W.W.), Fuwai Hospital, State Key Laboratory of
Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese
Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi
Rd, Beijing 100037, China; Department of Medicine, Saint James School of
Medicine, Park Ridge, Ill (P.S.); Department of Health and Human Services,
Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md
(A.S.); Kensington, Md (A.E.A.); and Key Laboratory of Cardiovascular Imaging
(Cultivation), Chinese Academy of Medical Sciences, Beijing, China (G.Y., W.W.,
M.L.)
| | - Di Zhou
- From the Department of Magnetic Resonance Imaging (S.L., Y.W., W.Y.,
D.Z., B.Z., J.X., J.H., G.Y., S.Z., M.L.), Cardiac Arrhythmia Center (X.F.), and
Department of Echocardiography (W.W.), Fuwai Hospital, State Key Laboratory of
Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese
Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi
Rd, Beijing 100037, China; Department of Medicine, Saint James School of
Medicine, Park Ridge, Ill (P.S.); Department of Health and Human Services,
Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md
(A.S.); Kensington, Md (A.E.A.); and Key Laboratory of Cardiovascular Imaging
(Cultivation), Chinese Academy of Medical Sciences, Beijing, China (G.Y., W.W.,
M.L.)
| | - Baiyan Zhuang
- From the Department of Magnetic Resonance Imaging (S.L., Y.W., W.Y.,
D.Z., B.Z., J.X., J.H., G.Y., S.Z., M.L.), Cardiac Arrhythmia Center (X.F.), and
Department of Echocardiography (W.W.), Fuwai Hospital, State Key Laboratory of
Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese
Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi
Rd, Beijing 100037, China; Department of Medicine, Saint James School of
Medicine, Park Ridge, Ill (P.S.); Department of Health and Human Services,
Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md
(A.S.); Kensington, Md (A.E.A.); and Key Laboratory of Cardiovascular Imaging
(Cultivation), Chinese Academy of Medical Sciences, Beijing, China (G.Y., W.W.,
M.L.)
| | - Jing Xu
- From the Department of Magnetic Resonance Imaging (S.L., Y.W., W.Y.,
D.Z., B.Z., J.X., J.H., G.Y., S.Z., M.L.), Cardiac Arrhythmia Center (X.F.), and
Department of Echocardiography (W.W.), Fuwai Hospital, State Key Laboratory of
Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese
Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi
Rd, Beijing 100037, China; Department of Medicine, Saint James School of
Medicine, Park Ridge, Ill (P.S.); Department of Health and Human Services,
Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md
(A.S.); Kensington, Md (A.E.A.); and Key Laboratory of Cardiovascular Imaging
(Cultivation), Chinese Academy of Medical Sciences, Beijing, China (G.Y., W.W.,
M.L.)
| | - Jian He
- From the Department of Magnetic Resonance Imaging (S.L., Y.W., W.Y.,
D.Z., B.Z., J.X., J.H., G.Y., S.Z., M.L.), Cardiac Arrhythmia Center (X.F.), and
Department of Echocardiography (W.W.), Fuwai Hospital, State Key Laboratory of
Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese
Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi
Rd, Beijing 100037, China; Department of Medicine, Saint James School of
Medicine, Park Ridge, Ill (P.S.); Department of Health and Human Services,
Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md
(A.S.); Kensington, Md (A.E.A.); and Key Laboratory of Cardiovascular Imaging
(Cultivation), Chinese Academy of Medical Sciences, Beijing, China (G.Y., W.W.,
M.L.)
| | - Gang Yin
- From the Department of Magnetic Resonance Imaging (S.L., Y.W., W.Y.,
D.Z., B.Z., J.X., J.H., G.Y., S.Z., M.L.), Cardiac Arrhythmia Center (X.F.), and
Department of Echocardiography (W.W.), Fuwai Hospital, State Key Laboratory of
Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese
Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi
Rd, Beijing 100037, China; Department of Medicine, Saint James School of
Medicine, Park Ridge, Ill (P.S.); Department of Health and Human Services,
Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md
(A.S.); Kensington, Md (A.E.A.); and Key Laboratory of Cardiovascular Imaging
(Cultivation), Chinese Academy of Medical Sciences, Beijing, China (G.Y., W.W.,
M.L.)
| | - Xiaohan Fan
- From the Department of Magnetic Resonance Imaging (S.L., Y.W., W.Y.,
D.Z., B.Z., J.X., J.H., G.Y., S.Z., M.L.), Cardiac Arrhythmia Center (X.F.), and
Department of Echocardiography (W.W.), Fuwai Hospital, State Key Laboratory of
Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese
Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi
Rd, Beijing 100037, China; Department of Medicine, Saint James School of
Medicine, Park Ridge, Ill (P.S.); Department of Health and Human Services,
Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md
(A.S.); Kensington, Md (A.E.A.); and Key Laboratory of Cardiovascular Imaging
(Cultivation), Chinese Academy of Medical Sciences, Beijing, China (G.Y., W.W.,
M.L.)
| | - Weichun Wu
- From the Department of Magnetic Resonance Imaging (S.L., Y.W., W.Y.,
D.Z., B.Z., J.X., J.H., G.Y., S.Z., M.L.), Cardiac Arrhythmia Center (X.F.), and
Department of Echocardiography (W.W.), Fuwai Hospital, State Key Laboratory of
Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese
Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi
Rd, Beijing 100037, China; Department of Medicine, Saint James School of
Medicine, Park Ridge, Ill (P.S.); Department of Health and Human Services,
Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md
(A.S.); Kensington, Md (A.E.A.); and Key Laboratory of Cardiovascular Imaging
(Cultivation), Chinese Academy of Medical Sciences, Beijing, China (G.Y., W.W.,
M.L.)
| | - Piyush Sharma
- From the Department of Magnetic Resonance Imaging (S.L., Y.W., W.Y.,
D.Z., B.Z., J.X., J.H., G.Y., S.Z., M.L.), Cardiac Arrhythmia Center (X.F.), and
Department of Echocardiography (W.W.), Fuwai Hospital, State Key Laboratory of
Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese
Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi
Rd, Beijing 100037, China; Department of Medicine, Saint James School of
Medicine, Park Ridge, Ill (P.S.); Department of Health and Human Services,
Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md
(A.S.); Kensington, Md (A.E.A.); and Key Laboratory of Cardiovascular Imaging
(Cultivation), Chinese Academy of Medical Sciences, Beijing, China (G.Y., W.W.,
M.L.)
| | - Arlene Sirajuddin
- From the Department of Magnetic Resonance Imaging (S.L., Y.W., W.Y.,
D.Z., B.Z., J.X., J.H., G.Y., S.Z., M.L.), Cardiac Arrhythmia Center (X.F.), and
Department of Echocardiography (W.W.), Fuwai Hospital, State Key Laboratory of
Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese
Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi
Rd, Beijing 100037, China; Department of Medicine, Saint James School of
Medicine, Park Ridge, Ill (P.S.); Department of Health and Human Services,
Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md
(A.S.); Kensington, Md (A.E.A.); and Key Laboratory of Cardiovascular Imaging
(Cultivation), Chinese Academy of Medical Sciences, Beijing, China (G.Y., W.W.,
M.L.)
| | | | | | - Minjie Lu
- From the Department of Magnetic Resonance Imaging (S.L., Y.W., W.Y.,
D.Z., B.Z., J.X., J.H., G.Y., S.Z., M.L.), Cardiac Arrhythmia Center (X.F.), and
Department of Echocardiography (W.W.), Fuwai Hospital, State Key Laboratory of
Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese
Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi
Rd, Beijing 100037, China; Department of Medicine, Saint James School of
Medicine, Park Ridge, Ill (P.S.); Department of Health and Human Services,
Radiology and Imaging Sciences, National Institutes of Health, Bethesda, Md
(A.S.); Kensington, Md (A.E.A.); and Key Laboratory of Cardiovascular Imaging
(Cultivation), Chinese Academy of Medical Sciences, Beijing, China (G.Y., W.W.,
M.L.)
| |
Collapse
|
68
|
Du L, Sun X, Gong H, Wang T, Jiang L, Huang C, Xu X, Li Z, Xu H, Ma L, Li W, Chen T, Xu Q. Single cell and lineage tracing studies reveal the impact of CD34 + cells on myocardial fibrosis during heart failure. Stem Cell Res Ther 2023; 14:33. [PMID: 36805782 PMCID: PMC9942332 DOI: 10.1186/s13287-023-03256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND CD34+ cells have been used to treat the patients with heart failure, but the outcome is variable. It is of great significance to scrutinize the fate and the mechanism of CD34+ cell differentiation in vivo during heart failure and explore its intervention strategy. METHODS We performed single-cell RNA sequencing (scRNA-seq) of the total non-cardiomyocytes and enriched Cd34-tdTomato+ lineage cells in the murine (male Cd34-CreERT2; Rosa26-tdTomato mice) pressure overload model (transverse aortic constriction, TAC), and total non-cardiomyocytes from human adult hearts. Then, in order to determine the origin of CD34+ cell that plays a role in myocardial fibrosis, bone marrow transplantation model was performed. Furthermore, to further clarify the role of CD34 + cells in myocardial remodeling in response to TAC injury, we generated Cd34-CreERT2; Rosa26-eGFP-DTA (Cre/DTA) mice. RESULTS By analyzing the transcriptomes of 59,505 single cells from the mouse heart and 22,537 single cells from the human heart, we illustrated the dynamics of cell landscape during the progression of heart hypertrophy, including CD34+ cells, fibroblasts, endothelial and immune cells. By combining genetic lineage tracing and bone marrow transplantation models, we demonstrated that non-bone-marrow-derived CD34+ cells give rise to fibroblasts and endothelial cells, while bone-marrow-derived CD34+ cell turned into immune cells only in response to pressure overload. Interestingly, partial depletion of CD34+ cells alleviated the severity of myocardial fibrosis with a significant improvement of cardiac function in Cd34-CreERT2; Rosa26-eGFP-DTA model. Similar changes of non-cardiomyocyte composition and cellular heterogeneity of heart failure were also observed in human patient with heart failure. Furthermore, immunostaining showed a double labeling of CD34 and fibroblast markers in human heart tissue. Mechanistically, our single-cell pseudotime analysis of scRNA-seq data and in vitro cell culture study revealed that Wnt-β-catenin and TGFβ1/Smad pathways are critical in regulating CD34+ cell differentiation toward fibroblasts. CONCLUSIONS Our study provides a cellular landscape of CD34+ cell-derived cells in the hypertrophy heart of human and animal models, indicating that non-bone-marrow-derived CD34+ cells differentiating into fibroblasts largely account for cardiac fibrosis. These findings may provide novel insights for the pathogenesis of cardiac fibrosis and have further potential therapeutic implications for the heart failure.
Collapse
Affiliation(s)
- Luping Du
- grid.452661.20000 0004 1803 6319Department of Cardiology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Xiaotong Sun
- grid.452661.20000 0004 1803 6319Department of Cardiology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Hui Gong
- grid.452661.20000 0004 1803 6319Department of Cardiology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Ting Wang
- grid.452661.20000 0004 1803 6319Department of Cardiology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Liujun Jiang
- grid.452661.20000 0004 1803 6319Department of Cardiology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Chengchen Huang
- grid.452661.20000 0004 1803 6319Department of Cardiology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Xiaodong Xu
- grid.452661.20000 0004 1803 6319Department of Cardiology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Zhoubin Li
- grid.13402.340000 0004 1759 700XDepartment of Lung Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Hongfei Xu
- grid.13402.340000 0004 1759 700XDepartment of Cardiovascular Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Liang Ma
- grid.13402.340000 0004 1759 700XDepartment of Cardiovascular Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003 Zhejiang China
| | - Weidong Li
- Department of Cardiovascular Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Ting Chen
- Department of Cardiology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China. .,Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China.
| | - Qingbo Xu
- Department of Cardiology, School of Medicine, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
69
|
Olausson E, Wertz J, Fridman Y, Bering P, Maanja M, Niklasson L, Wong TC, Fukui M, Cavalcante JL, Cater G, Kellman P, Bukhari S, Miller CA, Saba S, Ugander M, Schelbert EB. Diffuse myocardial fibrosis associates with incident ventricular arrhythmia in implantable cardioverter defibrillator recipients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.15.23285925. [PMID: 36824921 PMCID: PMC9949189 DOI: 10.1101/2023.02.15.23285925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Background Diffuse myocardial fibrosis (DMF) quantified by extracellular volume (ECV) may represent a vulnerable phenotype and associate with life threatening ventricular arrhythmias more than focal myocardial fibrosis. This principle remains important because 1) risk stratification for implantable cardioverter defibrillators (ICD) remains challenging, and 2) DMF may respond to current or emerging medical therapies (reversible substrate). Objectives To evaluate the association between quantified by ECV in myocardium without focal fibrosis by late gadolinium enhancement (LGE) with time from ICD implantation to 1) appropriate shock, or 2) shock or anti-tachycardia pacing. Methods Among patients referred for cardiovascular magnetic resonance (CMR) without congenital disease, hypertrophic cardiomyopathy, or amyloidosis who received ICDs (n=215), we used Cox regression to associate ECV with incident ICD therapy. Results After a median of 2.9 (IQR 1.5-4.2) years, 25 surviving patients experienced ICD shock and 44 experienced shock or anti-tachycardia pacing. ECV ranged from 20.2% to 39.4%. No patient with ECV<25% experienced an ICD shock. ECV associated with both endpoints, e.g., hazard ratio 2.17 (95%CI 1.17-4.00) for every 5% increase in ECV, p=0.014 in a stepwise model for ICD shock adjusting for ICD indication, age, smoking, atrial fibrillation, and myocardial infarction, whereas focal fibrosis by LGE and global longitudinal strain (GLS) did not. Conclusions DMF measured by ECV associates with ventricular arrhythmias requiring ICD therapy in a dose-response fashion, even adjusting for potential confounding variables, focal fibrosis by LGE, and GLS. ECV-based risk stratification and DMF representing a therapeutic target to prevent ventricular arrhythmia warrant further investigation.
Collapse
Affiliation(s)
- Eric Olausson
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden
| | | | - Yaron Fridman
- Asheville Cardiology Associates, Mission Hospital, Asheville, NC, USA
| | | | - Maren Maanja
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden
| | - Louise Niklasson
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden
| | - Timothy C Wong
- Heart and Vascular Institute, UPMC, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Cardiovascular Magnetic Resonance Center, Pittsburgh, PA, USA
| | - Miho Fukui
- Minneapolis Heart Institute, Abbott Northwestern Hospital, Minneapolis, Minnesota
| | - João L. Cavalcante
- Minneapolis Heart Institute, Abbott Northwestern Hospital, Minneapolis, Minnesota
| | - George Cater
- Heart and Vascular Institute, UPMC, Pittsburgh, PA, USA
- UPMC Cardiovascular Magnetic Resonance Center, Pittsburgh, PA, USA
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Syed Bukhari
- Department of Medicine, Temple University, Philadelphia, PA, USA
| | - Christopher A. Miller
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester, M23 9LT, UK
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Kolling Institute, Royal North Shore Hospital, and Sydney Medical School, Northern Clinical School, University of Sydney, Sydney, Australia
| | - Samir Saba
- Heart and Vascular Institute, UPMC, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Martin Ugander
- Department of Clinical Physiology, Karolinska University Hospital, and Karolinska Institutet, Stockholm, Sweden
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Kolling Institute, Royal North Shore Hospital, and Sydney Medical School, Northern Clinical School, University of Sydney, Sydney, Australia
| | - Erik B. Schelbert
- Heart and Vascular Institute, UPMC, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Cardiovascular Magnetic Resonance Center, Pittsburgh, PA, USA
- Minneapolis Heart Institute, Abbott Northwestern Hospital, Minneapolis, Minnesota
- Minneapolis Heart Institute East, United Hospital, Saint Paul, Minnesota
| |
Collapse
|
70
|
Lanzafame LRM, Bucolo GM, Muscogiuri G, Sironi S, Gaeta M, Ascenti G, Booz C, Vogl TJ, Blandino A, Mazziotti S, D’Angelo T. Artificial Intelligence in Cardiovascular CT and MR Imaging. Life (Basel) 2023; 13:507. [PMID: 36836864 PMCID: PMC9968221 DOI: 10.3390/life13020507] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
The technological development of Artificial Intelligence (AI) has grown rapidly in recent years. The applications of AI to cardiovascular imaging are various and could improve the radiologists' workflow, speeding up acquisition and post-processing time, increasing image quality and diagnostic accuracy. Several studies have already proved AI applications in Coronary Computed Tomography Angiography and Cardiac Magnetic Resonance, including automatic evaluation of calcium score, quantification of coronary stenosis and plaque analysis, or the automatic quantification of heart volumes and myocardial tissue characterization. The aim of this review is to summarize the latest advances in the field of AI applied to cardiovascular CT and MR imaging.
Collapse
Affiliation(s)
- Ludovica R. M. Lanzafame
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Giuseppe M. Bucolo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Giuseppe Muscogiuri
- Department of Radiology, Istituto Auxologico Italiano IRCCS, San Luca Hospital, 20149 Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Milan, Italy
| | - Sandro Sironi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Milan, Italy
- Department of Radiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Michele Gaeta
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Giorgio Ascenti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
| | - Thomas J. Vogl
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
| | - Alfredo Blandino
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Silvio Mazziotti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Tommaso D’Angelo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 Rotterdam, The Netherlands
| |
Collapse
|
71
|
DSP-Related Cardiomyopathy as a Distinct Clinical Entity? Emerging Evidence from an Italian Cohort. Int J Mol Sci 2023; 24:ijms24032490. [PMID: 36768812 PMCID: PMC9916412 DOI: 10.3390/ijms24032490] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Variants in desmoplakin gene (DSP MIM *125647) have been usually associated with Arrhythmogenic Cardiomyopathy (ACM), or Dilated Cardiomyopathy (DCM) inherited in an autosomal dominant manner. A cohort of 18 probands, characterized as heterozygotes for DSP variants by a target Next Generation Sequencing (NGS) cardiomyopathy panel, was analyzed. Cardiological, genetic data, and imaging features were retrospectively collected. A total of 16 DSP heterozygous pathogenic or likely pathogenic variants were identified, 75% (n = 12) truncating variants, n = 2 missense variants, n = 1 splicing variant, and n = 1 duplication variant. The mean age at diagnosis was 40.61 years (IQR 31-47.25), 61% of patients being asymptomatic (n = 11, New York Heart Association (NYHA) class I) and 39% mildly symptomatic (n = 7, NYHA class II). Notably, 39% of patients (n = 7) presented with a clinical history of presumed myocarditis episodes, characterized by chest pain, myocardial enzyme release, 12-lead electrocardiogram abnormalities with normal coronary arteries, which were recurrent in 57% of cases (n = 4). About half of the patients (55%, n = 10) presented with a varied degree of left ventricular enlargement (LVE), four showing biventricular involvement. Eleven patients (61%) underwent implantable cardioverter defibrillator (ICD) implantation, with a mean age of 46.81 years (IQR 36.00-64.00). Cardiac magnetic resonance imaging (CMRI) identified in all 18 patients a delayed enhancement (DE) area consistent with left ventricular (LV) myocardial fibrosis, with a larger localization and extent in patients presenting with recurrent episodes of myocardial injury. These clinical and genetic data confirm that DSP-related cardiomyopathy may represent a distinct clinical entity characterized by a high arrhythmic burden, variable degrees of LVE, Late Gadolinium Enhancement (LGE) with subepicardial distribution and episodes of myocarditis-like picture.
Collapse
|
72
|
Merlo M, Gagno G, Baritussio A, Bauce B, Biagini E, Canepa M, Cipriani A, Castelletti S, Dellegrottaglie S, Guaricci AI, Imazio M, Limongelli G, Musumeci MB, Parisi V, Pica S, Pontone G, Todiere G, Torlasco C, Basso C, Sinagra G, Filardi PP, Indolfi C, Autore C, Barison A. Clinical application of CMR in cardiomyopathies: evolving concepts and techniques : A position paper of myocardial and pericardial diseases and cardiac magnetic resonance working groups of Italian society of cardiology. Heart Fail Rev 2023; 28:77-95. [PMID: 35536402 PMCID: PMC9902331 DOI: 10.1007/s10741-022-10235-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Cardiac magnetic resonance (CMR) has become an essential tool for the evaluation of patients affected or at risk of developing cardiomyopathies (CMPs). In fact, CMR not only provides precise data on cardiac volumes, wall thickness, mass and systolic function but it also a non-invasive characterization of myocardial tissue, thus helping the early diagnosis and the precise phenotyping of the different CMPs, which is essential for early and individualized treatment of patients. Furthermore, several CMR characteristics, such as the presence of extensive LGE or abnormal mapping values, are emerging as prognostic markers, therefore helping to define patients' risk. Lastly new experimental CMR techniques are under investigation and might contribute to widen our knowledge in the field of CMPs. In this perspective, CMR appears an essential tool to be systematically applied in the diagnostic and prognostic work-up of CMPs in clinical practice. This review provides a deep overview of clinical applicability of standard and emerging CMR techniques in the management of CMPs.
Collapse
Affiliation(s)
- Marco Merlo
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Giulia Gagno
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Anna Baritussio
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Barbara Bauce
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Elena Biagini
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138 Bologna, Italy
| | - Marco Canepa
- Cardiologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Medicina Interna e Specialità Mediche, Università degli Studi di Genova, Genova, Italy
| | - Alberto Cipriani
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Silvia Castelletti
- Department of Cardiology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Santo Dellegrottaglie
- Division of Cardiology, Ospedale Accreditato Villa dei Fiori, 80011 Acerra, Naples, Italy
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Massimo Imazio
- Cardiothoracic Department, University Hospital “Santa Maria Della Misericordia”, Udine, Italy
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, AORN Dei Colli, Monaldi Hospital, Naples, Italy
| | - Maria Beatrice Musumeci
- Cardiology, Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Vanda Parisi
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138 Bologna, Italy
| | - Silvia Pica
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Milan, Italy
| | - Gianluca Pontone
- Dipartimento di Cardiologia Perioperatoria e Imaging Cardiovascolare, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | | | - Camilla Torlasco
- Department of Cardiology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Cristina Basso
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Pasquale Perrone Filardi
- Dipartimento Scienze Biomediche Avanzate, Università degli Studi Federico II, Mediterranea CardioCentro, Naples, Italy
| | - Ciro Indolfi
- Dipartimento di Scienze Mediche e Chirurgiche, Cattedra di Cardiologia, Università Magna Graecia, Catanzaro, Mediterranea Cardiocentro, Napoli, Italy
| | - Camillo Autore
- Cardiology, Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | | |
Collapse
|
73
|
Pandozi C, Mariani MV, Chimenti C, Maestrini V, Filomena D, Magnocavallo M, Straito M, Piro A, Russo M, Galeazzi M, Ficili S, Colivicchi F, Severino P, Mancone M, Fedele F, Lavalle C. The scar: the wind in the perfect storm-insights into the mysterious living tissue originating ventricular arrhythmias. J Interv Card Electrophysiol 2023; 66:27-38. [PMID: 35072829 PMCID: PMC9931863 DOI: 10.1007/s10840-021-01104-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Arrhythmic death is very common among patients with structural heart disease, and it is estimated that in European countries, 1 per 1000 inhabitants yearly dies for sudden cardiac death (SCD), mainly as a result of ventricular arrhythmias (VA). The scar is the result of cardiac remodelling process that occurs in several cardiomyopathies, both ischemic and non-ischemic, and is considered the perfect substrate for re-entrant and non-re-entrant arrhythmias. METHODS Our aim was to review published evidence on the histological and electrophysiological properties of myocardial scar and to review the central role of cardiac magnetic resonance (CMR) in assessing ventricular arrhythmias substrate and its potential implication in risk stratification of SCD. RESULTS Scarring process affects both structural and electrical myocardial properties and paves the background for enhanced arrhythmogenicity. Non-uniform anisotropic conduction, gap junctions remodelling, source to sink mismatch and refractoriness dispersion are some of the underlining mechanisms contributing to arrhythmic potential of the scar. All these mechanisms lead to the initiation and maintenance of VA. CMR has a crucial role in the evaluation of patients suffering from VA, as it is considered the gold standard imaging test for scar characterization. Mounting evidences support the use of CMR not only for the definition of gross scar features, as size, localization and transmurality, but also for the identification of possible conducting channels suitable of discrete ablation. Moreover, several studies call out the CMR-based scar characterization as a stratification tool useful in selecting patients at risk of SCD and amenable to implantable cardioverter-defibrillator (ICD) implantation. CONCLUSIONS Scar represents the substrate of ventricular arrhythmias. CMR, defining scar presence and its features, may be a useful tool for guiding ablation procedures and for identifying patients at risk of SCD amenable to ICD therapy.
Collapse
Affiliation(s)
- C. Pandozi
- grid.416357.2Department of Cardiology, San Filippo Neri Hospital, Rome, Italy
| | - Marco Valerio Mariani
- Department of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| | - C. Chimenti
- grid.7841.aDepartment of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - V. Maestrini
- grid.7841.aDepartment of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - D. Filomena
- grid.7841.aDepartment of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - M. Magnocavallo
- grid.7841.aDepartment of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - M. Straito
- grid.7841.aDepartment of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - A. Piro
- grid.7841.aDepartment of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - M. Russo
- grid.416357.2Department of Cardiology, San Filippo Neri Hospital, Rome, Italy
| | - M. Galeazzi
- grid.416357.2Department of Cardiology, San Filippo Neri Hospital, Rome, Italy
| | - S. Ficili
- ASP, Ragusa Maggiore Hospital, Modica, Italy
| | - F. Colivicchi
- grid.416357.2Department of Cardiology, San Filippo Neri Hospital, Rome, Italy
| | - P. Severino
- grid.7841.aDepartment of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - M. Mancone
- grid.7841.aDepartment of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - F. Fedele
- grid.7841.aDepartment of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - C. Lavalle
- grid.7841.aDepartment of Cardiovascular, Respiratory, Nephrological, Aenesthesiological and Geriatric Sciences “Sapienza” University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
74
|
Al-Sadawi M, Aslam F, Tao M, Fan R, Singh A, Rashba E. Association of Late-Gadolinium Enhancement in Cardiac Magnetic Resonance with Mortality, Ventricular Arrhythmias, and Heart Failure in Patients with Non-Ischemic Cardiomyopathy: A Systematic Review and Meta-Analysis. Heart Rhythm O2 2023; 4:241-250. [PMID: 37124560 PMCID: PMC10134398 DOI: 10.1016/j.hroo.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Late gadolinium enhancement (LGE) on cardiac magnetic resonance is a predictor of adverse events in patients with nonischemic cardiomyopathy (NICM). Objective This meta-analysis evaluated the correlation between LGE and mortality, ventricular arrhythmias (VAs) and sudden cardiac death (SCD), and heart failure (HF) outcomes. Methods A literature search was conducted for studies reporting the association between LGE in NICM and the study endpoints. The primary endpoint was mortality. Secondary endpoints included VA and SCD, HF hospitalization, improvement in left ventricular ejection fraction (LVEF) to >35%, and heart transplantation referral. The search was not restricted to time or publication status. The minimum follow-up duration was 1 year. Results A total of 46 studies and 10,548 NICM patients (4610 with LGE, 5938 without LGE) were included; mean follow-up was 3 years (range 13-71 months). LGE was associated with increased mortality (odds ratio [OR] 2.9; 95% confidence interval [CI] 2.3-3.8; P < .01) and VA and SCD (OR 4.6; 95% CI 3.5-6.0; P < .01). LGE was associated with an increased risk of HF hospitalization (OR 3.4; 95% CI 2.3-5.0; P < .01), referral for transplantation (OR 5.1; 95% CI 2.5-10.4; P < .01), and decreased incidence of LVEF improvement to >35% (OR 0.2; 95% CI 0.03-0.85; P = .03). Conclusion LGE in NICM patients is associated with increased mortality, VA and SCD, and HF hospitalization and heart transplantation referral during long-term follow up. Given these competing risks of mortality and HF progression, prospective randomized controlled trials are required to determine if LGE is useful for guiding prophylactic implantable cardioverter-defibrillator placement in NICM patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Eric Rashba
- Address reprint requests and correspondence: Dr Eric Rashba, Stony Brook Heart Rhythm Center, Stony Brook Medicine, 101 Nicolls Road, Stony Brook, NY 11794.
| |
Collapse
|
75
|
Isbister JC, Gray B, Offen S, Yeates L, Naoum C, Medi C, Raju H, Semsarian C, Puranik R, Sy RW. Longitudinal assessment of structural phenotype in Brugada syndrome using cardiac magnetic resonance imaging. Heart Rhythm O2 2023; 4:34-41. [PMID: 36713046 PMCID: PMC9877394 DOI: 10.1016/j.hroo.2022.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background Despite historically being considered a channelopathy, subtle structural changes have been reported in Brugada syndrome (BrS) on histopathology and cardiac magnetic resonance (CMR) imaging. It is not known if these structural changes progress over time. Objective The study sought to assess if structural changes in BrS evolve over time with serial CMR assessment and to investigate the utility of parametric mapping techniques to identify diffuse fibrosis in BrS. Methods Patients with a diagnosis of BrS based on international guidelines and normal CMR at least 3 years prior to the study period were invited to undergo repeat CMR. CMR images were analyzed de novo and compared at baseline and follow-up. Results Eighteen patients with BrS (72% men; mean age at follow-up 47.4 ± 8.9 years) underwent serial CMR with an average of 5.0 ± 1.7 years between scans. No patients had late gadolinium enhancement (LGE) on baseline CMR, but 4 (22%) developed LGE on follow-up, typically localized to the right ventricular (RV) side of the basal septum. RV end-systolic volume increased over time (P = .04) and was associated with a trend toward reduction in RV ejection fraction (P = .07). Four patients showed a reduction in RV ejection fraction >10%. There was no evidence of diffuse myocardial fibrosis observed on parametric mapping. Conclusions Structural changes may evolve over time with development of focal fibrosis, evidenced by LGE on CMR in a significant proportion of patients with BrS. These findings have implications for our understanding of the pathological substrate in BrS and the longitudinal evaluation of patients with BrS.
Collapse
Affiliation(s)
- Julia C. Isbister
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Heath, University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Belinda Gray
- Faculty of Medicine and Heath, University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Sophie Offen
- Faculty of Medicine and Heath, University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Laura Yeates
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Heath, University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research, University of New South Wales, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Chris Naoum
- Department of Cardiology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Caroline Medi
- Faculty of Medicine and Heath, University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Hariharan Raju
- Faculty of Medicine and Heath, University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Heath, University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Rajesh Puranik
- Faculty of Medicine and Heath, University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Raymond W. Sy
- Faculty of Medicine and Heath, University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Department of Cardiology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
76
|
Rabbat MG, Kwong RY, Heitner JF, Young AA, Shanbhag SM, Petersen SE, Selvanayagam JB, Berry C, Nagel E, Heydari B, Maceira AM, Shenoy C, Dyke C, Bilchick KC. The Future of Cardiac Magnetic Resonance Clinical Trials. JACC Cardiovasc Imaging 2022; 15:2127-2138. [PMID: 34922874 DOI: 10.1016/j.jcmg.2021.07.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 05/17/2021] [Accepted: 07/27/2021] [Indexed: 01/13/2023]
Abstract
Over the past 2 decades, cardiac magnetic resonance (CMR) has become an essential component of cardiovascular clinical care and contributed to imaging-guided diagnosis and management of coronary artery disease, cardiomyopathy, congenital heart disease, cardio-oncology, valvular, and vascular disease, amongst others. The widespread availability, safety, and capability of CMR to provide corresponding anatomical, physiological, and functional data in 1 imaging session can improve the design and conduct of clinical trials through both a reduction of sample size and provision of important mechanistic data that may augment clinical trial findings. Moreover, prospective imaging-guided strategies using CMR can enhance safety, efficacy, and cost-effectiveness of cardiovascular pathways in clinical practice around the world. As the future of large-scale clinical trial design evolves to integrate personalized medicine, cost-effectiveness, and mechanistic insights of novel therapies, the integration of CMR will continue to play a critical role. In this document, the attributes, limitations, and challenges of CMR's integration into the future design and conduct of clinical trials will also be covered, and recommendations for trialists will be explored. Several prominent examples of clinical trials that test the efficacy of CMR-imaging guided pathways will also be discussed.
Collapse
Affiliation(s)
- Mark G Rabbat
- Division of Cardiology, Loyola University Chicago, Chicago, Illinois, USA; Division of Cardiology, Edward Hines Jr VA Hospital, Hines, Illinois, USA
| | - Raymond Y Kwong
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| | - John F Heitner
- Department of Medicine, New York-Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York, USA
| | - Alistair A Young
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Sujata M Shanbhag
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Steffen E Petersen
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, West Smithfield, London, United Kingdom; National Institute for Health Research Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Joseph B Selvanayagam
- College of Medicine, Flinders University of South Australia, Department of Cardiovascular Medicine, Flinders Medical Centre, Southern Adelaide Local Health Network, and Cardiac Imaging Research Group, South Australian Health and Medical Research Institute, Adelaide, South Australia
| | - Colin Berry
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, and British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| | - Eike Nagel
- Institute for Experimental and Translational Cardiovascular Imaging, Klinikum der Johann Wolfgang Goethe-Universitat Frankfurt, Frankfurt am Main, Germany
| | - Bobak Heydari
- Stephenson Cardiac Imaging Centre and Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, and Department of Cardiac Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Alicia M Maceira
- Cardiovascular Unit, Ascires Biomedical Group, and Department of Medicine, Health Sciences School, UCH-CEU University, Valencia, Spain
| | - Chetan Shenoy
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Christopher Dyke
- Division of Cardiology, National Jewish Health, Denver, Colorado, USA
| | - Kenneth C Bilchick
- Division of Cardiovascular Medicine, University of Virginia Health System, Charlottesville, Virginia, USA
| | | |
Collapse
|
77
|
Abstract
Dilated cardiomyopathy represents a common phenotype expressed in individuals with a family of overlapping myocardial diseases due to acquired and/or genetic susceptibility. Disease trajectory, response to therapy and outcomes vary widely; therefore, further refinement of the diagnosis can help guide therapy and inform prognosis. Multimodality imaging plays a key role in this process, as well as excluding alternative causes which may mimic a primary myocardial disease. The following article discusses the role of different imaging modalities as well as what the future may look like in the context of recent research innovations.
Collapse
Affiliation(s)
- Brian P Halliday
- CMR Unit and Inherited Cardiac Conditions Care Group, Royal Brompton and Harefield Hospitals, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
78
|
Association of Whole-Heart Myocardial Mechanics by Transthoracic Echocardiography with Presence of Late Gadolinium Enhancement by CMR in Non-Ischemic Dilated Cardiomyopathy. J Clin Med 2022; 11:jcm11226607. [PMID: 36431084 PMCID: PMC9697251 DOI: 10.3390/jcm11226607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Background: In patients with non-ischemic dilated cardiomyopathy (NIDCM), myocardial fibrosis (MF) is related to adverse cardiovascular outcomes. The purpose of this study was to evaluate the potential relationship between the myocardial mechanics of different chambers of the heart and the presence of MF and to determine the accuracy of the whole-heart myocardial strain parameters to predict MF in patients with NIDCM. Methods: We studied 101 patients (64% male; 50 ± 11 years) with a first-time diagnosis of NIDCM who were referred for a clinical cardiovascular magnetic resonance (CMR) and speckle tracking 2D echocardiography examination. We analyzed MF by late gadolinium enhancement (LGE), and the whole-heart myocardial mechanics were assessed by speckle tracking. The presence of MF was related to worse strain parameters in both ventricles and atria. The strongest correlations were found between MF and left ventricle (LV) global longitudinal strain (GLS) (r = −0.586, p < 0.001), global circumferential strain (GCS) (r = −0.609, p < 0.001), LV ejection fraction (LVEF) (r = 0.662, p < 0.001), and left atrial strain during the reservoir phase (LASr) (r = 0.588, p < 0.001). However, the binary logistic regression analysis revealed that only LV GLS, GCS, and LASr were independently associated with the presence of MF (area under the curves of 0.84, 0.85, and 0.64, respectively). None of the echocardiographic parameters correlated with fibrosis localization. Conclusions: In NIDCM patients, MF is correlated with reduced mechanical parameters in both ventricles and atria. LV GLS, LASr, and LV GCS are the most accurate 2D echocardiography predictive factors for the presence of MF.
Collapse
|
79
|
Tang CX, Zhou Z, Zhang JY, Xu L, Lv B, Jiang Zhang L. Cardiovascular Imaging in China: Yesterday, Today, and Tomorrow. J Thorac Imaging 2022; 37:355-365. [PMID: 36162066 DOI: 10.1097/rti.0000000000000678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The high prevalence and mortality of cardiovascular diseases in China's large population has increased the use of cardiovascular imaging for the assessment of conditions in recent years. In this study, we review the past 20 years of cardiovascular imaging in China, the increasingly important role played by cardiovascular computed tomography in coronary artery disease and pulmonary embolism assessment, magnetic resonance imaging's use for cardiomyopathy assessment, the development and application of artificial intelligence in cardiovascular imaging, and the future of Chinese cardiovascular imaging.
Collapse
Affiliation(s)
- Chun Xiang Tang
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province
| | - Zhen Zhou
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University
| | - Jia Yin Zhang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Xu
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University
| | - Bin Lv
- Department of Radiology, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences
- State Key Laboratory and National Center for Cardiovascular Diseases, Beijing
| | - Long Jiang Zhang
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province
| |
Collapse
|
80
|
Bazoukis G, Liatakis I, Vassiliou VS, Tse G, Gounopoulos P, Saplaouras A, Letsas KP, Vlachos K, Papadatos SS, Konstantinidou E, Lakoumentas I, Sideris A, Efremidis M. The role of late gadolinium enhancement in predicting arrhythmic events in cardiac sarcoidosis patients - a mini-review. Acta Cardiol 2022; 77:768-773. [PMID: 35086421 DOI: 10.1080/00015385.2022.2029231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/26/2021] [Accepted: 01/10/2022] [Indexed: 01/13/2023]
Abstract
Sarcoidosis is a multisystem inflammatory disorder with an unknown origin. Symptomatic cardiac involvement is rare and occurs in about 5% of patients with sarcoidosis. Fatal ventricular arrhythmias are the most severe clinical presentation of the disease. Cardiac magnetic resonance (CMR) is a useful non-invasive tool for the risk stratification of ventricular arrhythmias and sudden cardiac death (SCD) in patients with cardiac sarcoidosis (CS). More specifically, late gadolinium enhancement (LGE), a CMR tool for scar detection, has been found to be significantly associated with arrhythmic events in CS patients. This review aims to present the existing evidence regarding the association of LGE with adverse events and especially with fatal ventricular arrhythmias.
Collapse
Affiliation(s)
- George Bazoukis
- Department of Cardiology, Larnaca General Hospital, Larnaca, Cyprus
- University of Nicosia Medical School, Nicosia, Cyprus
| | - Ioannis Liatakis
- Second Department of Cardiology, General Hospital of Athens "Evangelismos", Athens, Greece
| | | | - Gary Tse
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease Tianjin Institute of Cardiology Second Hospital of Tianjin Medical University Tianjin, PR China
- Kent and Medway Medical School, Canterbury, UK
| | - Pantelis Gounopoulos
- Second Department of Cardiology, General Hospital of Athens "Evangelismos", Athens, Greece
| | - Athanasios Saplaouras
- Second Department of Cardiology, General Hospital of Athens "Evangelismos", Athens, Greece
| | | | | | - Stamatis S Papadatos
- Department of Anatomy, Histology and Embryology, Medical School, University of Ioannina, Ioannina, Greece
| | - Eleni Konstantinidou
- Second Department of Cardiology, General Hospital of Athens "Evangelismos", Athens, Greece
| | - Ioannis Lakoumentas
- Second Department of Cardiology, General Hospital of Athens "Evangelismos", Athens, Greece
| | - Antonios Sideris
- Second Department of Cardiology, General Hospital of Athens "Evangelismos", Athens, Greece
| | | |
Collapse
|
81
|
Babes EE, Tit DM, Bungau AF, Bustea C, Rus M, Bungau SG, Babes VV. Myocardial Viability Testing in the Management of Ischemic Heart Failure. Life (Basel) 2022; 12:1760. [PMID: 36362914 PMCID: PMC9698475 DOI: 10.3390/life12111760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Although major advances have occurred lately in medical therapy, ischemic heart failure remains an important cause of death and disability. Viable myocardium represents a cause of reversible ischemic left ventricular dysfunction. Coronary revascularization may improve left ventricular function and prognosis in patients with viable myocardium. Although patients with impaired left ventricular function and multi-vessel coronary artery disease benefit the most from revascularization, they are at high risk of complications related to revascularization procedure. An important element in selecting the patients for myocardial revascularization is the presence of the viable myocardium. Multiple imaging modalities can assess myocardial viability and predict functional improvement after revascularization, with dobutamine stress echocardiography, nuclear imaging tests and magnetic resonance imaging being the most frequently used. However, the role of myocardial viability testing in the management of patients with ischemic heart failure is still controversial due to the failure of randomized controlled trials of revascularization to reveal clear benefits of viability testing. This review summarizes the current knowledge regarding the concept of viable myocardium, depicts the role and tools for viability testing, discusses the research involving this topic and the controversies related to the utility of myocardial viability testing and provides a patient-centered approach for clinical practice.
Collapse
Affiliation(s)
- Elena Emilia Babes
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Alexa Florina Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Cristiana Bustea
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Marius Rus
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Victor Vlad Babes
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
82
|
Tat E, Ball C, Camren GP, Wroblewski I, Dajani KA, Goldberg A, Kinno M, Sanagala T, Syed MA, Wilber DJ, Rabbat M. Impact of late gadolinium enhancement extent, location, and pattern on ventricular tachycardia and major adverse cardiac events in patients with ischemic vs. non-ischemic cardiomyopathy. Front Cardiovasc Med 2022; 9:1026215. [PMID: 36330014 PMCID: PMC9622951 DOI: 10.3389/fcvm.2022.1026215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background Left ventricular late gadolinium enhancement (LGE) by cardiac magnetic resonance (CMR) has been associated with increased risk for life-threatening ventricular tachyarrhythmias. The differences in association between LGE characteristics and prognosis in patients with ischemic (ICM) vs. non-ischemic (NICM) cardiomyopathy is incompletely understood. Methods A total of 168 consecutive patients who underwent CMR imaging with either ICM or NICM were included in our study. LGE extent, location and pattern were examined for association to the primary endpoint of ventricular tachycardia (VT) and secondary endpoint of major adverse cardiac events (MACE). Results Of 68 (41%) patients with ICM and 97 (59%) patients with NICM, median LGE mass was 15% (IQR 9–28) for the ICM group and 10% (IQR 6–15) for the NICM group. On multivariate analysis for both groups, LGE characteristics were prognostic while LVEF was not. In patients with ICM, septal and apical segment LGE, and involvement of multiple walls predicted both endpoints on multivariate analysis. LGE extent (≥median) and inferior wall LGE independently predicted the primary endpoint. In patients with NICM, anterior, inferior and apical segment LGE, and involvement of multiple walls predicted both endpoints on multivariate analysis. LGE extent (≥median, number of LGE segments, LGE stratified per 5% increase) and midwall LGE were independent predictors of the primary endpoint. Conclusions Although LGE was an independent predictor of prognosis in both groups, LGE extent, location, and pattern characteristics were more powerful correlates to worse outcomes in patients with NICM than ICM.
Collapse
Affiliation(s)
- Emily Tat
- Department of Internal Medicine, Columbia University Medical Center, New York, NY, United States
| | - Caroline Ball
- Division of Cardiology, Loyola University Medical Center, Maywood, IL, United States
| | - Gerald P. Camren
- Department of Radiology, Loyola University Medical Center, Maywood, IL, United States
| | - Igor Wroblewski
- Division of Cardiology, Loyola University Medical Center, Maywood, IL, United States
| | - Khaled A. Dajani
- Division of Cardiology, Loyola University Medical Center, Maywood, IL, United States
| | - Ari Goldberg
- Department of Radiology, Loyola University Medical Center, Maywood, IL, United States
| | - Menhel Kinno
- Division of Cardiology, Loyola University Medical Center, Maywood, IL, United States
| | - Thriveni Sanagala
- Division of Cardiology, Loyola University Medical Center, Maywood, IL, United States
| | - Mushabbar A. Syed
- Division of Cardiology, Loyola University Medical Center, Maywood, IL, United States
| | - David J. Wilber
- Division of Cardiology, Loyola University Medical Center, Maywood, IL, United States
| | - Mark Rabbat
- Division of Cardiology, Loyola University Medical Center, Maywood, IL, United States
- *Correspondence: Mark Rabbat
| |
Collapse
|
83
|
Huang W, Sun R, Liu W, Xu R, Zhou Z, Bai W, Hou R, Xu H, Guo Y, Yu L, Ye L. Prognostic Value of Late Gadolinium Enhancement in Left Ventricular Noncompaction: A Multicenter Study. Diagnostics (Basel) 2022; 12:diagnostics12102457. [PMID: 36292149 PMCID: PMC9600954 DOI: 10.3390/diagnostics12102457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Current diagnostic criteria for left ventricular noncompaction (LVNC) may be poorly related to adverse prognosis. Late gadolinium enhancement (LGE) is a predictor of major adverse cardiovascular events (MACE), but risk stratification of LGE in patients with LVNC remains unclear. We retrospectively analyzed the clinical and cardiovascular magnetic resonance (CMR) data of 75 patients from three institutes and examined the correlation between different LGE types and MACE based on the extent, pattern (including a specific ring-like pattern), and locations of LGE in LVNC. A total of 51 patients (68%) presented LGE. A specific ring-like pattern was observed in 9 (12%). MACE occurred in 29 (38.7%) at 4.3 years of follow-up (interquartile range: 2.1−5.7 years). The adjusted hazard ratio (HR) for patients with ring-like LGE were 6.10 (95% CI, 1.39−26.75, p < 0.05). Free-wall or mid-wall LGE was associated with an increased risk of MACE after adjustment (HR 2.85, 95% CI, 1.31−6.21; HR 4.35, 95% CI, 1.23−15.37, respectively, p < 0.05). The risk of MACE in LVNC significantly increased when the LGE extent was greater than 7.5% and ring-like, multiple segments, and free-wall LGE were associated with MACE. These results suggest the value of LGE risk stratification in patients with LVNC.
Collapse
Affiliation(s)
- Wei Huang
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610017, China
| | - Ran Sun
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610017, China
| | - Wenbin Liu
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Rong Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610017, China
| | - Ziqi Zhou
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610017, China
| | - Wei Bai
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610017, China
| | - Ruilai Hou
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610017, China
| | - Huayan Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610017, China
| | - Yingkun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610017, China
| | - Li Yu
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu 610017, China
- Correspondence: (L.Y.); (L.Y.)
| | - Lu Ye
- Department of Ultrasound, West China Second University Hospital, Sichuan University, Chengdu 610017, China
- Correspondence: (L.Y.); (L.Y.)
| |
Collapse
|
84
|
Amin RJ, Morris-Rosendahl D, Edwards M, Tayal U, Buchan R, Hammersley DJ, Jones RE, Gati S, Khalique Z, Almogheer B, Pennell DJ, Baksi AJ, Pantazis A, Ware JS, Prasad SK, Halliday BP. The addition of genetic testing and cardiovascular magnetic resonance to routine clinical data for stratification of etiology in dilated cardiomyopathy. Front Cardiovasc Med 2022; 9:1017119. [PMID: 36277766 PMCID: PMC9582287 DOI: 10.3389/fcvm.2022.1017119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Guidelines recommend genetic testing and cardiovascular magnetic resonance (CMR) for the investigation of dilated cardiomyopathy (DCM). However, the incremental value is unclear. We assessed the impact of these investigations in determining etiology. Methods Sixty consecutive patients referred with DCM and recruited to our hospital biobank were selected. Six independent experts determined the etiology of each phenotype in a step-wise manner based on (1) routine clinical data, (2) clinical and genetic data and (3) clinical, genetic and CMR data. They indicated their confidence (1-3) in the classification and any changes to management at each step. Results Six physicians adjudicated 60 cases. The addition of genetics and CMR resulted in 57 (15.8%) and 26 (7.2%) changes in the classification of etiology, including an increased number of genetic diagnoses and a reduction in idiopathic diagnoses. Diagnostic confidence improved at each step (p < 0.0005). The number of diagnoses made with low confidence reduced from 105 (29.2%) with routine clinical data to 71 (19.7%) following the addition of genetics and 37 (10.3%) with the addition of CMR. The addition of genetics and CMR led to 101 (28.1%) and 112 (31.1%) proposed changes to management, respectively. Interobserver variability showed moderate agreement with clinical data (κ = 0.44) which improved following the addition of genetics (κ = 0.65) and CMR (κ = 0.68). Conclusion We demonstrate that genetics and CMR, frequently changed the classification of etiology in DCM, improved confidence and interobserver variability in determining the diagnosis and had an impact on proposed management.
Collapse
Affiliation(s)
- Ravi J. Amin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- National Heart Lung Institute, Imperial College, London, United Kingdom
| | - Deborah Morris-Rosendahl
- National Heart Lung Institute, Imperial College, London, United Kingdom
- Clinical Genetics and Genomics Laboratory, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Mat Edwards
- Clinical Genetics and Genomics Laboratory, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Upasana Tayal
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- National Heart Lung Institute, Imperial College, London, United Kingdom
- Department of Inherited Cardiovascular Conditions, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Rachel Buchan
- National Heart Lung Institute, Imperial College, London, United Kingdom
| | - Daniel J. Hammersley
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- National Heart Lung Institute, Imperial College, London, United Kingdom
| | - Richard E. Jones
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- National Heart Lung Institute, Imperial College, London, United Kingdom
| | - Sabiha Gati
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- National Heart Lung Institute, Imperial College, London, United Kingdom
- Department of Inherited Cardiovascular Conditions, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Zohya Khalique
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- National Heart Lung Institute, Imperial College, London, United Kingdom
- Department of Inherited Cardiovascular Conditions, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Batool Almogheer
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- Department of Inherited Cardiovascular Conditions, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Dudley J. Pennell
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- National Heart Lung Institute, Imperial College, London, United Kingdom
| | - Arun John Baksi
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- National Heart Lung Institute, Imperial College, London, United Kingdom
- Department of Inherited Cardiovascular Conditions, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Antonis Pantazis
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- Department of Inherited Cardiovascular Conditions, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - James S. Ware
- National Heart Lung Institute, Imperial College, London, United Kingdom
- Department of Inherited Cardiovascular Conditions, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| | - Sanjay K. Prasad
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- National Heart Lung Institute, Imperial College, London, United Kingdom
- Department of Inherited Cardiovascular Conditions, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Brian P. Halliday
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- National Heart Lung Institute, Imperial College, London, United Kingdom
- Department of Inherited Cardiovascular Conditions, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
85
|
Velcea AE, Mihaila Baldea S, Nicula AI, Vinereanu D. The role of multimodality imaging in the selection for implantable cardioverter-defibrillators in heart failure: A narrative review. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:1066-1072. [PMID: 35899916 DOI: 10.1002/jcu.23281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/19/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Advanced pharmacologic and interventional therapies have improved survival in heart failure. Implantable cardioverter-defibrillators (ICD) have been shown to reduce mortality in patients with heart failure, but the benefit appears to be uneven in this population. We reviewed the evidence showing the benefit of ICD therapy in heart failure patients, the main issues arising from these studies, and the possible answers for a better risk stratification. In addition, we showed that multimodality imaging could improve patient selection for the implantation of ICDs, in both primary and secondary prevention, beyond the selection using only the left ventricular ejection fraction, by concentrating on arrhythmic substrate.
Collapse
Affiliation(s)
- Andreea Elena Velcea
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
- Cardiology and Cardiovascular Surgery Department, Emergency and University Hospital, Bucharest, Romania
| | - Sorina Mihaila Baldea
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
- Cardiology and Cardiovascular Surgery Department, Emergency and University Hospital, Bucharest, Romania
| | - Alina Ioana Nicula
- Radiology Department, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Dragos Vinereanu
- Cardiology Department, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
- Cardiology and Cardiovascular Surgery Department, Emergency and University Hospital, Bucharest, Romania
| |
Collapse
|
86
|
Stolfo D, Fabris E, Lund LH, Savarese G, Sinagra G. From mid-range to mildly reduced ejection fraction heart failure: A call to treat. Eur J Intern Med 2022; 103:29-35. [PMID: 35710614 DOI: 10.1016/j.ejim.2022.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022]
Abstract
The historical classification of heart failure (HF) has considered two distinct subgroups, HF with reduced ejection fraction (HFrEF), generally classified as EF below 40%, and HF with preserved ejection fraction (HFpEF) variably classified as EF above 40%, 45% or 50%. One of the principal reasons behind this distinction was related to presence of effective therapy in HFrEF, but not in HFpEF. Recently the expanding knowledge in the specific subgroup of patient with a LVEF between 41% and 49% and the potential benefit of new therapies and of those used in patients with LVEF below 40%, has led to rename this group as HF with mildly reduced EF (HFmrEF). In this review we discuss the reasons behind this modification, we summarize the main characteristics of HFmrEF the similarities and differences with the two other EF categories, and finally we provide a comprehensive overview of the current available evidence supporting the treatment of patients with HFmrEF.
Collapse
Affiliation(s)
- Davide Stolfo
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Univeristy Hospital of Trieste, Trieste, Italy; Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Enrico Fabris
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Univeristy Hospital of Trieste, Trieste, Italy
| | - Lars H Lund
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Gianluigi Savarese
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Univeristy Hospital of Trieste, Trieste, Italy.
| |
Collapse
|
87
|
Rajinthan P, Gardey K, Boccalini S, Si-Mohammed S, Dulac A, Berger C, Placide L, Delinière A, Mewton N, Chevalier P, Bessière F. CMR - Late gadolinium enhancement characteristics associated with monomorphic ventricular arrhythmia in patients with non-ischemic cardiomyopathy. Indian Pacing Electrophysiol J 2022; 22:225-230. [PMID: 35931352 PMCID: PMC9463474 DOI: 10.1016/j.ipej.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/27/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Priyanka Rajinthan
- Cardiac Electrophysiology Department, Hôpital Cardiologique Louis Pradel, 28 Avenue du Doyen Lépine, 69394, Lyon Cedex 03, Hospices Civils de Lyon, France
| | - Kevin Gardey
- Cardiac Electrophysiology Department, Hôpital Cardiologique Louis Pradel, 28 Avenue du Doyen Lépine, 69394, Lyon Cedex 03, Hospices Civils de Lyon, France
| | - Sara Boccalini
- Radiology Department, Hôpital Cardiologique Louis Pradel, 28 Avenue Du Doyen Lépine, 69394 LYON Cedex 03, Hospices Civils de Lyon, France
| | - Salim Si-Mohammed
- Radiology Department, Hôpital Cardiologique Louis Pradel, 28 Avenue Du Doyen Lépine, 69394 LYON Cedex 03, Hospices Civils de Lyon, France; Creatis, UMR CNRS 5220, INSERM U 1044, Université Claude Bernard Lyon 1, France
| | - Arnaud Dulac
- Cardiac Electrophysiology Department, Hôpital Cardiologique Louis Pradel, 28 Avenue du Doyen Lépine, 69394, Lyon Cedex 03, Hospices Civils de Lyon, France
| | - Clothilde Berger
- Cardiac Electrophysiology Department, Hôpital Cardiologique Louis Pradel, 28 Avenue du Doyen Lépine, 69394, Lyon Cedex 03, Hospices Civils de Lyon, France
| | - Leslie Placide
- Cardiac Electrophysiology Department, Hôpital Cardiologique Louis Pradel, 28 Avenue du Doyen Lépine, 69394, Lyon Cedex 03, Hospices Civils de Lyon, France
| | - Antoine Delinière
- Cardiac Electrophysiology Department, Hôpital Cardiologique Louis Pradel, 28 Avenue du Doyen Lépine, 69394, Lyon Cedex 03, Hospices Civils de Lyon, France
| | - Nathan Mewton
- Centre d'investigation Clinique, Hôpital Cardiologique Louis Pradel, 28 Avenue Du Doyen Lépine, 69394, Lyon Cedex 03, Hospices Civils de Lyon, France
| | - Philippe Chevalier
- Cardiac Electrophysiology Department, Hôpital Cardiologique Louis Pradel, 28 Avenue du Doyen Lépine, 69394, Lyon Cedex 03, Hospices Civils de Lyon, France
| | - Francis Bessière
- Cardiac Electrophysiology Department, Hôpital Cardiologique Louis Pradel, 28 Avenue du Doyen Lépine, 69394, Lyon Cedex 03, Hospices Civils de Lyon, France; LabTau, INSERM U 1032, Université Claude Bernard Lyon 1, France.
| |
Collapse
|
88
|
Xie E, Sung E, Saad E, Trayanova N, Wu KC, Chrispin J. Advanced imaging for risk stratification for ventricular arrhythmias and sudden cardiac death. Front Cardiovasc Med 2022; 9:884767. [PMID: 36072882 PMCID: PMC9441865 DOI: 10.3389/fcvm.2022.884767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Sudden cardiac death (SCD) is a leading cause of mortality, comprising approximately half of all deaths from cardiovascular disease. In the US, the majority of SCD (85%) occurs in patients with ischemic cardiomyopathy (ICM) and a subset in patients with non-ischemic cardiomyopathy (NICM), who tend to be younger and whose risk of mortality is less clearly delineated than in ischemic cardiomyopathies. The conventional means of SCD risk stratification has been the determination of the ejection fraction (EF), typically via echocardiography, which is currently a means of determining candidacy for primary prevention in the form of implantable cardiac defibrillators (ICDs). Advanced cardiac imaging methods such as cardiac magnetic resonance imaging (CMR), single-photon emission computerized tomography (SPECT) and positron emission tomography (PET), and computed tomography (CT) have emerged as promising and non-invasive means of risk stratification for sudden death through their characterization of the underlying myocardial substrate that predisposes to SCD. Late gadolinium enhancement (LGE) on CMR detects myocardial scar, which can inform ICD decision-making. Overall scar burden, region-specific scar burden, and scar heterogeneity have all been studied in risk stratification. PET and SPECT are nuclear methods that determine myocardial viability and innervation, as well as inflammation. CT can be used for assessment of myocardial fat and its association with reentrant circuits. Emerging methodologies include the development of "virtual hearts" using complex electrophysiologic modeling derived from CMR to attempt to predict arrhythmic susceptibility. Recent developments have paired novel machine learning (ML) algorithms with established imaging techniques to improve predictive performance. The use of advanced imaging to augment risk stratification for sudden death is increasingly well-established and may soon have an expanded role in clinical decision-making. ML could help shift this paradigm further by advancing variable discovery and data analysis.
Collapse
Affiliation(s)
- Eric Xie
- Division of Cardiology, Department of Medicine, Section of Cardiac Electrophysiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Eric Sung
- Division of Cardiology, Department of Medicine, Section of Cardiac Electrophysiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Elie Saad
- Division of Cardiology, Department of Medicine, Section of Cardiac Electrophysiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Natalia Trayanova
- Division of Cardiology, Department of Medicine, Section of Cardiac Electrophysiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Katherine C. Wu
- Division of Cardiology, Department of Medicine, Section of Cardiac Electrophysiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jonathan Chrispin
- Division of Cardiology, Department of Medicine, Section of Cardiac Electrophysiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
89
|
Gassanov N, Mutallimov M, Caglayan E, Erdmann E, Er F. ECG as a risk stratification tool in patients with wearable cardioverter-defibrillator. J Cardiol 2022; 80:573-577. [PMID: 35985868 DOI: 10.1016/j.jjcc.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The wearable cardioverter defibrillator (WCD) is increasingly used in patients at elevated risk for ventricular arrhythmias but not fulfilling the indications for an implantable cardioverter defibrillator (ICD). Currently, there is an insufficient risk prediction of fatal arrhythmias in patients at risk. In this study, we assessed the prognostic role of baseline electrocardiogram (ECG) in WCD patients. METHODS WCD patients from diverse clinical institutions in Germany (n = 227) were retrospectively enrolled and investigated for the incidences of death or ventricular arrhythmias during WCD wearing. In addition, the widely accepted ECG predictors of adverse outcome were analyzed in patients with arrhythmic events. RESULTS Life-threatening arrhythmias occurred in 22 (9.7 %) patients, mostly in subjects with ischemic heart disease (15 of 22). There was no difference in baseline left ventricular ejection fraction (LVEF) in subjects with and without arrhythmic events (31.3 ± 7.9 % vs. 32.6 ± 8.3 %; p = 0,24). Patients with arrhythmia exhibited significantly longer QRS duration (109.5 ± 23.1 ms vs. 100.6 ± 22.3 ms, p = 0,04), Tpeak-Tend (Tp-e) (103.1 ± 15.6 ms vs. 93.2 ± 19.2 ms, p = 0,01) and QTc (475.0 ± 60.0 ms vs. 429.6 ± 59.4 ms, p < 0,001) intervals. In contrast, no significant differences were found for incidences of fragmented QRS (27.3 % vs. 24 %, p = 0.79) and inverted/biphasic T-waves (16.6 % vs. 22.7 %, p = 0,55). In multivariate regression analysis both Tp-e (HR 1.03; 95 % CI 1.001-1.057; p = 0.02) and QTc (HR 1.02; 95 % CI 1.006-1.026; p < 0.001) were identified as independent predictors of ventricular arrhythmias. After WCD use, the prophylactic ICD was indicated in 76 patients (33 %) with uneventful clinical course but persistent LVEF ≤35 %. The ECG analysis in these subjects did not reveal any relevant changes in arrhythmogenesis markers. CONCLUSIONS ECG repolarization markers Tp-e and QTc are associated with malignant arrhythmias in WCD patients and may be used - in addition to other established risk markers - to identify appropriate patients for ICD implantation.
Collapse
Affiliation(s)
- Natig Gassanov
- Department of Internal Medicine II, Klinikum Idar-Oberstein, Idar-Oberstein, Germany.
| | - Mirza Mutallimov
- Department of Internal Medicine II, Klinikum Idar-Oberstein, Idar-Oberstein, Germany
| | - Evren Caglayan
- Department of Cardiology, University Hospital Rostock, Rostock, Germany
| | - Erland Erdmann
- Department of Internal Medicine III, University of Cologne, Cologne, Germany
| | - Fikret Er
- Department of Internal Medicine I, Klinikum Gütersloh, Gütersloh, Germany
| |
Collapse
|
90
|
Fenski M, Grandy TH, Viezzer D, Kertusha S, Schmidt M, Forman C, Schulz-Menger J. Isotropic 3D compressed sensing (CS) based sequence is comparable to 2D-LGE in left ventricular scar quantification in different disease entities. Int J Cardiovasc Imaging 2022; 38:1837-1850. [PMID: 35243574 PMCID: PMC10509092 DOI: 10.1007/s10554-022-02571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/14/2022] [Indexed: 11/27/2022]
Abstract
The goal of this study was to evaluate a three-dimensional compressed sensing (3D-CS) LGE prototype sequence for the detection and quantification of myocardial fibrosis in patients with chronic myocardial infarction (CMI) and myocarditis (MYC) compared with a 2D-LGE standard. Patients with left-ventricular LGE due to CMI (n = 33) or MYC (n = 20) were prospectively recruited. 2D-LGE and 3D-CS images were acquired in random order at 1.5 Tesla. 3D-CS short axis (SAX) images were reconstructed corresponding to 2D SAX images. LGE was quantitatively assessed on patient and segment level using semi-automated threshold methods. Image quality (4-point scoring system), Contrast-ratio (CR) and acquisition times were compared. There was no significant difference between 2D and 3D sequences regarding global LGE (%) (CMI [2D-LGE: 11.4 ± 7.5; 3D-LGE: 11.5 ± 8.5; p = 0.99]; MYC [2D-LGE: 27.0 ± 15.7; 3D-LGE: 26.2 ± 13.1; p = 0.70]) and segmental LGE-extent (p = 0.63). 3D-CS identified papillary infarction in 5 cases which was not present in 2D images. 2D-LGE acquisition time was shorter (2D: median: 06:59 min [IQR: 05:51-08:18]; 3D: 14:48 min [12:45-16:57]). 3D-CS obtained better quality scores (2D: 2.06 ± 0.56 vs. 3D: 2.29 ± 0.61). CR did not differ (p = 0.63) between basal and apical regions in 3D-CS images but decreased significantly in 2D apical images (CR basal: 2D: 0.77 ± 0.11, 3D: 0.59 ± 0.10; CR apical: 2D: 0.64 ± 0.17, 3D: 0.53 ± 0.11). 3D-LGE shows high congruency with standard LGE and allows better identification of small lesions. However, the current 3D-CS LGE sequence did not provide PSIR reconstruction and acquisition time was longer.
Collapse
Affiliation(s)
- Maximilian Fenski
- Working Group Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Charité Medical Faculty, Max-Delbrück Center for Molecular Medicine, Helios Klinikum Berlin Buch, Department of Cardiology and Nephrology, Charité - Universitätsmedizin Berlin, Kardiologie - ECRC, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Thomas Hiroshi Grandy
- Working Group Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Charité Medical Faculty, Max-Delbrück Center for Molecular Medicine, Helios Klinikum Berlin Buch, Department of Cardiology and Nephrology, Charité - Universitätsmedizin Berlin, Kardiologie - ECRC, Lindenberger Weg 80, 13125, Berlin, Germany
| | - Darian Viezzer
- Working Group Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Charité Medical Faculty, Max-Delbrück Center for Molecular Medicine, Helios Klinikum Berlin Buch, Department of Cardiology and Nephrology, Charité - Universitätsmedizin Berlin, Kardiologie - ECRC, Lindenberger Weg 80, 13125, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Stela Kertusha
- Working Group Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Charité Medical Faculty, Max-Delbrück Center for Molecular Medicine, Helios Klinikum Berlin Buch, Department of Cardiology and Nephrology, Charité - Universitätsmedizin Berlin, Kardiologie - ECRC, Lindenberger Weg 80, 13125, Berlin, Germany
| | | | | | - Jeanette Schulz-Menger
- Working Group Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, Charité Medical Faculty, Max-Delbrück Center for Molecular Medicine, Helios Klinikum Berlin Buch, Department of Cardiology and Nephrology, Charité - Universitätsmedizin Berlin, Kardiologie - ECRC, Lindenberger Weg 80, 13125, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
91
|
McGurk KA, Halliday BP. Dilated cardiomyopathy - details make the difference. Eur J Heart Fail 2022; 24:1197-1199. [PMID: 35717623 DOI: 10.1002/ejhf.2586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/16/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Kathryn A McGurk
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Brian P Halliday
- National Heart and Lung Institute, Imperial College London, London, UK.,Cardiovascular Research Centre at Royal Brompton and Harefield Hospitals, part of Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
92
|
Cornhill AK, Dykstra S, Satriano A, Labib D, Mikami Y, Flewitt J, Prosio E, Rivest S, Sandonato R, Howarth AG, Lydell C, Eastwood CA, Quan H, Fine N, Lee J, White JA. Machine Learning Patient-Specific Prediction of Heart Failure Hospitalization Using Cardiac MRI-Based Phenotype and Electronic Health Information. Front Cardiovasc Med 2022; 9:890904. [PMID: 35783851 PMCID: PMC9245012 DOI: 10.3389/fcvm.2022.890904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundHeart failure (HF) hospitalization is a dominant contributor of morbidity and healthcare expenditures in patients with systolic HF. Cardiovascular magnetic resonance (CMR) imaging is increasingly employed for the evaluation of HF given capacity to provide highly reproducible phenotypic markers of disease. The combined value of CMR phenotypic markers and patient health information to deliver predictions of future HF events has not been explored. We sought to develop and validate a novel risk model for the patient-specific prediction of time to HF hospitalization using routinely reported CMR variables, patient-reported health status, and electronic health information.MethodsStandardized data capture was performed for 1,775 consecutive patients with chronic systolic HF referred for CMR imaging. Patient demographics, symptoms, Health-related Quality of Life, pharmacy, and routinely reported CMR features were provided to both machine learning (ML) and competing risk Fine-Gray-based models (FGM) for the prediction of time to HF hospitalization.ResultsThe mean age was 59 years with a mean LVEF of 36 ± 11%. The population was evenly distributed between ischemic (52%) and idiopathic non-ischemic cardiomyopathy (48%). Over a median follow-up of 2.79 years (IQR: 1.59–4.04) 333 patients (19%) experienced HF related hospitalization. Both ML and competing risk FGM based models achieved robust performance for the prediction of time to HF hospitalization. Respective 90-day, 1 and 2-year AUC values were 0.87, 0.83, and 0.80 for the ML model, and 0.89, 0.84, and 0.80 for the competing risk FGM-based model in a holdout validation cohort. Patients classified as high-risk by the ML model experienced a 34-fold higher occurrence of HF hospitalization at 90 days vs. the low-risk group.ConclusionIn this study we demonstrated capacity for routinely reported CMR phenotypic markers and patient health information to be combined for the delivery of patient-specific predictions of time to HF hospitalization. This work supports an evolving migration toward multi-domain data collection for the delivery of personalized risk prediction at time of diagnostic imaging.
Collapse
Affiliation(s)
- Aidan K. Cornhill
- Stephenson Cardiac Imaging Centre, University of Calgary, Calgary, AB, Canada
| | - Steven Dykstra
- Stephenson Cardiac Imaging Centre, University of Calgary, Calgary, AB, Canada
| | - Alessandro Satriano
- Stephenson Cardiac Imaging Centre, University of Calgary, Calgary, AB, Canada
- Division of Cardiology, Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
| | - Dina Labib
- Stephenson Cardiac Imaging Centre, University of Calgary, Calgary, AB, Canada
- Division of Cardiology, Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
| | - Yoko Mikami
- Stephenson Cardiac Imaging Centre, University of Calgary, Calgary, AB, Canada
- Division of Cardiology, Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
| | - Jacqueline Flewitt
- Stephenson Cardiac Imaging Centre, University of Calgary, Calgary, AB, Canada
| | - Easter Prosio
- Stephenson Cardiac Imaging Centre, University of Calgary, Calgary, AB, Canada
| | - Sandra Rivest
- Stephenson Cardiac Imaging Centre, University of Calgary, Calgary, AB, Canada
| | - Rosa Sandonato
- Stephenson Cardiac Imaging Centre, University of Calgary, Calgary, AB, Canada
| | - Andrew G. Howarth
- Stephenson Cardiac Imaging Centre, University of Calgary, Calgary, AB, Canada
- Division of Cardiology, Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
| | - Carmen Lydell
- Stephenson Cardiac Imaging Centre, University of Calgary, Calgary, AB, Canada
- Division of Cardiology, Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
- Department of Diagnostic Imaging, University of Calgary, Calgary, AB, Canada
| | - Cathy A. Eastwood
- Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Hude Quan
- Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nowell Fine
- Division of Cardiology, Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
| | - Joon Lee
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Data Intelligence for Health Lab, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Cardiac Science, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - James A. White
- Stephenson Cardiac Imaging Centre, University of Calgary, Calgary, AB, Canada
- Division of Cardiology, Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
- *Correspondence: James A. White,
| |
Collapse
|
93
|
Huang W, Xu R, Zhou B, Lin C, Guo Y, Xu H, Guo X. Clinical Manifestations, Monitoring, and Prognosis: A Review of Cardiotoxicity After Antitumor Strategy. Front Cardiovasc Med 2022; 9:912329. [PMID: 35757327 PMCID: PMC9226336 DOI: 10.3389/fcvm.2022.912329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
The development of various antitumor drugs has significantly improved the survival of patients with cancer. Many first-line chemotherapy drugs are cytotoxic and the cardiotoxicity is one of the most significant effects that could leads to poor prognosis and decreased survival rate. Cancer treatment include traditional anthracycline drugs, as well as some new targeted drugs such as trastuzumab and ICIs. These drugs may directly or indirectly cause cardiovascular injury through different mechanisms, and lead to increasing the risk of cardiovascular disease or accelerating the development of cardiovascular disease. Cardiotoxicity is clinically manifested by arrhythmia, decreased cardiac function, or even sudden death. The cardiotoxicity caused by traditional chemotherapy drugs such as anthracyclines are significantly known. The cardiotoxicity of some new antitumor drugs such like immune checkpoint inhibitors (ICIs) is also relatively clear and requiring further observation and verification. This review is focused on major three drugs with relatively high incidence of cardiotoxicity and poor prognosis and intended to provide an update on the clinical complications and outcomes of these drugs, and we innovatively summarize the monitoring status of survivors using these drugs and discuss the biomarkers and non-invasive imaging features to identify early cardiotoxicity. Finally, we summarize the prevention that decreasing antitumor drugs-induced cardiotoxicity.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rong Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Bin Zhou
- Laboratory of Molecular Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Center for Translational Medicine, Ministry of Education, Clinical Research Center for Birth Defects of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chao Lin
- Department of Hematology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yingkun Guo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Huayan Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xia Guo
- Department of Hematology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
94
|
Ishidoya Y, Ranjan R. Using MRI to predict ventricular tachycardia recurrence and provide guidance for ablation? Heart Rhythm 2022; 19:1611-1612. [PMID: 35690251 DOI: 10.1016/j.hrthm.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Yuki Ishidoya
- Division of Cardiovascular Medicine, University of Utah, Salt Lake City, Utah; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Ravi Ranjan
- Division of Cardiovascular Medicine, University of Utah, Salt Lake City, Utah; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah; Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah.
| |
Collapse
|
95
|
Mirelis JG, Escobar-Lopez L, Ochoa JP, Espinosa MÁ, Villacorta E, Navarro M, Masnou GC, Mora-Ayestarán N, Barriales-Villa R, Mogollón-Jiménez MV, García-Pinilla JM, García-Granja PE, Climent V, Palomino-Doza J, García-Álvarez A, Álvarez-Barredo M, Borrego EC, Ripoll-Vera T, Peña-Peña ML, Rodríguez-González E, Gallego-Delgado M, Carrillo JG, Fernández-Ávila A, Rodríguez-Palomares JF, Brugada R, Bayes-Genis A, Dominguez F, García-Pavía P. Combination of late gadolinium enhancement and genotype improves prediction of prognosis in non-ischemic dilated cardiomyopathy. Eur J Heart Fail 2022; 24:1183-1196. [PMID: 35485241 PMCID: PMC9546008 DOI: 10.1002/ejhf.2514] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/15/2022] [Accepted: 04/14/2022] [Indexed: 12/03/2022] Open
Abstract
Aims Genotype and left ventricular scar on cardiac magnetic resonance (CMR) are increasingly recognized as risk markers for adverse outcomes in non‐ischaemic dilated cardiomyopathy (DCM). We investigated the combined influence of genotype and late gadolinium enhancement (LGE) in assessing prognosis in a large cohort of patients with DCM. Methods and results Outcomes of 600 patients with DCM (53.3 ± 14.1 years, 66% male) who underwent clinical CMR and genetic testing were retrospectively analysed. The primary endpoints were end‐stage heart failure (ESHF) and malignant ventricular arrhythmias (MVA). During a median follow‐up of 2.7 years (interquartile range 1.3–4.9), 24 (4.00%) and 48 (8.00%) patients had ESHF and MVA, respectively. In total, 242 (40.3%) patients had pathogenic/likely pathogenic variants (positive genotype) and 151 (25.2%) had LGE. In survival analysis, positive LGE was associated with MVA and ESHF (both, p < 0.001) while positive genotype was associated with ESHF (p = 0.034) but not with MVA (p = 0.102). Classification of patients according to genotype (G+/G−) and LGE presence (L+/L−) revealed progressively increasing events across L−/G−, L−/G+, L+/G− and L+/G+ groups and resulted in optimized MVA and ESHF prediction (p < 0.001 and p = 0.001, respectively). Hazard ratios for MVA and ESHF in patients with either L+ or G+ compared with those with L−/G− were 4.71 (95% confidence interval: 2.11–10.50, p < 0.001) and 7.92 (95% confidence interval: 1.86–33.78, p < 0.001), respectively. Conclusion Classification of patients with DCM according to genotype and LGE improves MVA and ESHF prediction. Scar assessment with CMR and genotyping should be considered to select patients for primary prevention implantable cardioverter‐defibrillator placement.
Collapse
Affiliation(s)
- Jesús G Mirelis
- Department of Cardiology, Hospital Universitario Puerta de Hierro, IDIPHISA, Madrid, Spain.,CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART)
| | - Luis Escobar-Lopez
- Department of Cardiology, Hospital Universitario Puerta de Hierro, IDIPHISA, Madrid, Spain.,CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART)
| | - Juan Pablo Ochoa
- Department of Cardiology, Hospital Universitario Puerta de Hierro, IDIPHISA, Madrid, Spain.,CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART)
| | - María Ángeles Espinosa
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Eduardo Villacorta
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Inherited Cardiac Diseases Unit. Department of Cardiology, Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Gerencia Regional de Salud de Castilla y León (SACYL), Salamanca, Spain.,Departament of Medicine, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Marina Navarro
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART).,Inherited Cardiac Disease Unit, University Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Guillem Casas Masnou
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Inherited Cardiovascular Diseases Unit. Department of Cardiology. Hospital Universitari Vall d´Hebron, Vall d'Hebron Institut de Recerca (VHIR). Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nerea Mora-Ayestarán
- Department of Cardiology, Área del Corazón, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Roberto Barriales-Villa
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Inherited Cardiac Diseases Unit. Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña, Servizo Galego de Saúde (SERGAS), Universidade da Coruña, A Coruña, Spain
| | | | - José M García-Pinilla
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Heart Failure and Familial Heart Diseases Unit, Cardiology Department, Hospital Universitario Virgen de la Victoria, IBIMA, Malaga, Spain
| | - Pablo Elpidio García-Granja
- Department of Cardiology, Instituto de Ciencias del Corazón (ICICOR), Hospital Clínico Universitario Valladolid, Valladolid, Spain
| | - Vicente Climent
- Inherited Cardiovascular Diseases Unit. Department of Cardiology. Hospital General Universitario de Alicante, Institute of Health and Biomedical Research, Alicante, Spain
| | - Julian Palomino-Doza
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Inherited Cardiac Diseases Unit, Cardiology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación i+12, Madrid, Spain
| | - Ana García-Álvarez
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Cardiology Departament, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - María Álvarez-Barredo
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Xenética Cardiovascular, Instituto de investigación Sanitaria de Santiago, Unidad de Cardiopatías Familiares, Department of Cardiology, Complexo Hospitalario Universitario de Santiago de Compostela, Spain
| | - Eva Cabrera Borrego
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Department of Cardiology, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Tomás Ripoll-Vera
- Inherited Cardiac Diseases Unit, Cardiology Department, Hospital Universitario Son Llatzer & IdISBa, Palma de Mallorca, Spain
| | - María Luisa Peña-Peña
- Inherited Cardiac Diseases Unit, Hospital Universitario Virgen del Rocío, Seville, Spain
| | | | - María Gallego-Delgado
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Inherited Cardiac Diseases Unit. Department of Cardiology, Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Gerencia Regional de Salud de Castilla y León (SACYL), Salamanca, Spain
| | - Josefa González Carrillo
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART).,Inherited Cardiac Disease Unit, University Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Ana Fernández-Ávila
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - José F Rodríguez-Palomares
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Inherited Cardiovascular Diseases Unit. Department of Cardiology. Hospital Universitari Vall d´Hebron, Vall d'Hebron Institut de Recerca (VHIR). Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ramón Brugada
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Department of Cardiology, Hospital Univesitari Dr. Josep Trueta, Girona, Spain
| | - Antoni Bayes-Genis
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Heart Institute. Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Fernando Dominguez
- Department of Cardiology, Hospital Universitario Puerta de Hierro, IDIPHISA, Madrid, Spain.,CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART)
| | - Pablo García-Pavía
- Department of Cardiology, Hospital Universitario Puerta de Hierro, IDIPHISA, Madrid, Spain.,CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART).,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Spain
| |
Collapse
|
96
|
2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Translation of the document prepared by the Czech Society of Cardiology. COR ET VASA 2022. [DOI: 10.33678/cor.2022.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
97
|
De Angelis G, De Luca A, Merlo M, Nucifora G, Rossi M, Stolfo D, Barbati G, De Bellis A, Masè M, Santangeli P, Pagnan L, Muser D, Sinagra G. Prevalence and prognostic significance of ischemic late gadolinium enhancement pattern in non-ischemic dilated cardiomyopathy. Am Heart J 2022; 246:117-124. [PMID: 35045326 DOI: 10.1016/j.ahj.2022.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Typical late gadolinium enhancement (LGE) patterns in dilated cardiomyopathy (DCM) include intramyocardial and subepicardial distribution. However, the ischemic pattern of LGE (subendocardial and transmural) has also been reported in DCM without coronary artery disease (CAD), but its correlates and prognostic significance are still not known. On these bases, this study sought to describe the prevalence and prognostic significance of the ischemic LGE pattern in DCM. METHODS A total of 611 DCM patients with available cardiac magnetic resonance were retrospectively analyzed. A composite of all-cause-death, major ventricular arrhythmias (MVAs), heart transplantation (HTx) or ventricular assist device (VAD) implantation was the primary outcome of the study. Secondary outcomes were a composite of sudden cardiac death or MVAs and a composite of death for refractory heart failure, HTx or VAD implantation. RESULTS Ischemic LGE was found in 7% of DCM patients without significant CAD or history of myocardial infarction, most commonly inferior/inferolateral/anterolateral. Compared to patients with non-ischemic LGE, those with ischemic LGE had higher prevalence of hypertension and atrial fibrillation or flutter. Ischemic LGE was associated with worse long-term outcomes compared to non-ischemic LGE (36% vs 23% risk of primary outcome events at 5 years respectively, P = .006), and remained an independent predictor of primary outcome after adjustment for clinically and statistically significant variables (adjusted hazard ratio 2.059 [1.055-4.015], P = .034 with respect to non-ischemic LGE). CONCLUSIONS The ischemic pattern of LGE is not uncommon among DCM patients without CAD and is independently associated with worse long-term outcomes.
Collapse
Affiliation(s)
- Giulia De Angelis
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina and University of Trieste, Trieste, Italy
| | - Antonio De Luca
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina and University of Trieste, Trieste, Italy.
| | - Marco Merlo
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina and University of Trieste, Trieste, Italy
| | - Gaetano Nucifora
- Cardiac Imaging Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Maddalena Rossi
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina and University of Trieste, Trieste, Italy
| | - Davide Stolfo
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina and University of Trieste, Trieste, Italy
| | - Giulia Barbati
- Biostatistics Unit, Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Annamaria De Bellis
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina and University of Trieste, Trieste, Italy
| | - Marco Masè
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina and University of Trieste, Trieste, Italy
| | - Pasquale Santangeli
- Cardiac Electrophysiology, Cardiovascular Medicine Division, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Lorenzo Pagnan
- Radiology Department, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Daniele Muser
- Cardiac Electrophysiology, Cardiovascular Medicine Division, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Cardiology Department, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Gianfranco Sinagra
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina and University of Trieste, Trieste, Italy
| |
Collapse
|
98
|
Arsenos P, Gatzoulis KA, Tsiachris D, Dilaveris P, Sideris S, Sotiropoulos I, Archontakis S, Antoniou CK, Kordalis A, Skiadas I, Toutouzas K, Vlachopoulos C, Tousoulis D, Tsioufis K. Arrhythmic risk stratification in ischemic, non-ischemic and hypertrophic cardiomyopathy: A two-step multifactorial, electrophysiology study inclusive approach. World J Cardiol 2022; 14:139-151. [PMID: 35432775 PMCID: PMC8968455 DOI: 10.4330/wjc.v14.i3.139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/28/2021] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Annual arrhythmic sudden cardiac death ranges from 0.6% to 4% in ischemic cardiomyopathy (ICM), 1% to 2% in non-ischemic cardiomyopathy (NICM), and 1% in hypertrophic cardiomyopathy (HCM). Towards a more effective arrhythmic risk stratification (ARS) we hereby present a two-step ARS with the usage of seven non-invasive risk factors: Late potentials presence (≥ 2/3 positive criteria), premature ventricular contractions (≥ 30/h), non-sustained ventricular tachycardia (≥ 1episode/24 h), abnormal heart rate turbulence (onset ≥ 0% and slope ≤ 2.5 ms) and reduced deceleration capacity (≤ 4.5 ms), abnormal T wave alternans (≥ 65μV), decreased heart rate variability (SDNN < 70ms), and prolonged QTc interval (> 440 ms in males and > 450 ms in females) which reflect the arrhythmogenic mechanisms for the selection of the intermediate arrhythmic risk patients in the first step. In the second step, these intermediate-risk patients undergo a programmed ventricular stimulation (PVS) for the detection of inducible, truly high-risk ICM and NICM patients, who will benefit from an implantable cardioverter defibrillator. For HCM patients, we also suggest the incorporation of the PVS either for the low HCM Risk-score patients or for the patients with one traditional risk factor in order to improve the inadequate sensitivity of the former and the low specificity of the latter.
Collapse
Affiliation(s)
- Petros Arsenos
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippokration Hospital, Athens 11527, Attika, Greece
| | - Konstantinos A Gatzoulis
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippokration Hospital, Athens 11527, Attika, Greece.
| | | | - Polychronis Dilaveris
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippokration Hospital, Athens 11527, Attika, Greece
| | - Skevos Sideris
- Department of Cardiology, Hippokration Hospital, Athens 11527, Attika, Greece
| | - Ilias Sotiropoulos
- Department of Cardiology, Hippokration Hospital, Athens 11527, Attika, Greece
| | | | | | - Athanasios Kordalis
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippokration Hospital, Athens 11527, Attika, Greece
| | - Ioannis Skiadas
- Fifth Department of Cardiology, Hygeia Hospital, Marousi 15123, Attika, Greece
| | - Konstantinos Toutouzas
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippokration Hospital, Athens 11527, Attika, Greece
| | - Charalambos Vlachopoulos
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippokration Hospital, Athens 11527, Attika, Greece
| | - Dimitrios Tousoulis
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippokration Hospital, Athens 11527, Attika, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippokration Hospital, Athens 11527, Attika, Greece
| |
Collapse
|
99
|
Corbo MD, Vitale E, Pesolo M, Casavecchia G, Gravina M, Pellegrino P, Brunetti ND, Iacoviello M. Recent Non-Invasive Parameters to Identify Subjects at High Risk of Sudden Cardiac Death. J Clin Med 2022; 11:1519. [PMID: 35329848 PMCID: PMC8955301 DOI: 10.3390/jcm11061519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases remain among the leading causes of death worldwide and sudden cardiac death (SCD) accounts for ~25% of these deaths. Despite its epidemiologic relevance, there are very few diagnostic strategies available useful to prevent SCD mainly focused on patients already affected by specific cardiovascular diseases. Unfortunately, most of these parameters exhibit poor positive predictive accuracy. Moreover, there is also a need to identify parameters to stratify the risk of SCD among otherwise healthy subjects. This review aims to provide an update on the most relevant non-invasive diagnostic features to identify patients at higher risk of developing malignant ventricular arrhythmias and SCD.
Collapse
Affiliation(s)
- Maria Delia Corbo
- Cardiology Unit, Department of Medical and Surgical Sciences, University Polyclinic Hospital of Foggia, University of Foggia, 71100 Foggia, Italy; (M.D.C.); (E.V.); (M.P.); (G.C.); (P.P.); (N.D.B.)
| | - Enrica Vitale
- Cardiology Unit, Department of Medical and Surgical Sciences, University Polyclinic Hospital of Foggia, University of Foggia, 71100 Foggia, Italy; (M.D.C.); (E.V.); (M.P.); (G.C.); (P.P.); (N.D.B.)
| | - Maurizio Pesolo
- Cardiology Unit, Department of Medical and Surgical Sciences, University Polyclinic Hospital of Foggia, University of Foggia, 71100 Foggia, Italy; (M.D.C.); (E.V.); (M.P.); (G.C.); (P.P.); (N.D.B.)
| | - Grazia Casavecchia
- Cardiology Unit, Department of Medical and Surgical Sciences, University Polyclinic Hospital of Foggia, University of Foggia, 71100 Foggia, Italy; (M.D.C.); (E.V.); (M.P.); (G.C.); (P.P.); (N.D.B.)
| | - Matteo Gravina
- University Radiology Unit, University Polyclinic Hospital of Foggia, 71100 Foggia, Italy;
| | - Pierluigi Pellegrino
- Cardiology Unit, Department of Medical and Surgical Sciences, University Polyclinic Hospital of Foggia, University of Foggia, 71100 Foggia, Italy; (M.D.C.); (E.V.); (M.P.); (G.C.); (P.P.); (N.D.B.)
| | - Natale Daniele Brunetti
- Cardiology Unit, Department of Medical and Surgical Sciences, University Polyclinic Hospital of Foggia, University of Foggia, 71100 Foggia, Italy; (M.D.C.); (E.V.); (M.P.); (G.C.); (P.P.); (N.D.B.)
| | - Massimo Iacoviello
- Cardiology Unit, Department of Medical and Surgical Sciences, University Polyclinic Hospital of Foggia, University of Foggia, 71100 Foggia, Italy; (M.D.C.); (E.V.); (M.P.); (G.C.); (P.P.); (N.D.B.)
| |
Collapse
|
100
|
Ismail TF, Strugnell W, Coletti C, Božić-Iven M, Weingärtner S, Hammernik K, Correia T, Küstner T. Cardiac MR: From Theory to Practice. Front Cardiovasc Med 2022; 9:826283. [PMID: 35310962 PMCID: PMC8927633 DOI: 10.3389/fcvm.2022.826283] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/17/2022] [Indexed: 01/10/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading single cause of morbidity and mortality, causing over 17. 9 million deaths worldwide per year with associated costs of over $800 billion. Improving prevention, diagnosis, and treatment of CVD is therefore a global priority. Cardiovascular magnetic resonance (CMR) has emerged as a clinically important technique for the assessment of cardiovascular anatomy, function, perfusion, and viability. However, diversity and complexity of imaging, reconstruction and analysis methods pose some limitations to the widespread use of CMR. Especially in view of recent developments in the field of machine learning that provide novel solutions to address existing problems, it is necessary to bridge the gap between the clinical and scientific communities. This review covers five essential aspects of CMR to provide a comprehensive overview ranging from CVDs to CMR pulse sequence design, acquisition protocols, motion handling, image reconstruction and quantitative analysis of the obtained data. (1) The basic MR physics of CMR is introduced. Basic pulse sequence building blocks that are commonly used in CMR imaging are presented. Sequences containing these building blocks are formed for parametric mapping and functional imaging techniques. Commonly perceived artifacts and potential countermeasures are discussed for these methods. (2) CMR methods for identifying CVDs are illustrated. Basic anatomy and functional processes are described to understand the cardiac pathologies and how they can be captured by CMR imaging. (3) The planning and conduct of a complete CMR exam which is targeted for the respective pathology is shown. Building blocks are illustrated to create an efficient and patient-centered workflow. Further strategies to cope with challenging patients are discussed. (4) Imaging acceleration and reconstruction techniques are presented that enable acquisition of spatial, temporal, and parametric dynamics of the cardiac cycle. The handling of respiratory and cardiac motion strategies as well as their integration into the reconstruction processes is showcased. (5) Recent advances on deep learning-based reconstructions for this purpose are summarized. Furthermore, an overview of novel deep learning image segmentation and analysis methods is provided with a focus on automatic, fast and reliable extraction of biomarkers and parameters of clinical relevance.
Collapse
Affiliation(s)
- Tevfik F. Ismail
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Cardiology Department, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Wendy Strugnell
- Queensland X-Ray, Mater Hospital Brisbane, Brisbane, QLD, Australia
| | - Chiara Coletti
- Magnetic Resonance Systems Lab, Delft University of Technology, Delft, Netherlands
| | - Maša Božić-Iven
- Magnetic Resonance Systems Lab, Delft University of Technology, Delft, Netherlands
- Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
| | | | - Kerstin Hammernik
- Lab for AI in Medicine, Technical University of Munich, Munich, Germany
- Department of Computing, Imperial College London, London, United Kingdom
| | - Teresa Correia
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Centre of Marine Sciences, Faro, Portugal
| | - Thomas Küstner
- Medical Image and Data Analysis (MIDAS.lab), Department of Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|