51
|
Bianco A, Tiribelli C, Bellarosa C. Translational Approach to the Protective Effect of Bilirubin in Diabetic Kidney Disease. Biomedicines 2022; 10:696. [PMID: 35327498 PMCID: PMC8945513 DOI: 10.3390/biomedicines10030696] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Bilirubin has been regarded as a powerful endogenous antioxidant and anti-inflammatory molecule, able to act on cellular pathways as a hormone. Diabetic kidney disease (DKD) is a common chronic complication of diabetes, and it is the leading cause of end-stage renal disease. Here, we will review the clinical and molecular features of mild hyperbilirubinemia in DKD. The pathogenesis of DKD involves oxidative stress, inflammation, fibrosis, and apoptosis. Serum bilirubin levels are positively correlated with the levels of the antioxidative enzymes as superoxide dismutase, catalase, and glutathione peroxidase, while it is inversely correlated with C-reactive protein, TNF-α, interleukin (IL)-2, IL-6, and IL-10 release in diabetic kidney disease. Bilirubin downregulates NADPH oxidase, reduces the induction of pro-fibrotic factor HIF-1α expression, cleaved caspase-3, and cleaved PARP induction showing lower DNA fragmentation. Recent experimental and clinical studies have demonstrated its effects in the development and progression of renal diseases, pointing out that only very mild elevations of bilirubin concentrations result in real clinical benefits. Future controlled studies are needed to explore the precise role of bilirubin in the pathogenesis of DKD and to understand if the use of serum bilirubin levels as a marker of progression or therapeutic target in DKD is feasible and realistic.
Collapse
Affiliation(s)
- Annalisa Bianco
- Italian Liver Foundation (FIF), 34149 Trieste, Italy; (A.B.); (C.T.)
- National Research Council, Institute of Biomedical Technologies, Bari Unit, 70126 Bari, Italy
| | - Claudio Tiribelli
- Italian Liver Foundation (FIF), 34149 Trieste, Italy; (A.B.); (C.T.)
| | | |
Collapse
|
52
|
Reactive Oxygen Species (ROS) and Antioxidants as Immunomodulators in Exercise: Implications for Heme Oxygenase and Bilirubin. Antioxidants (Basel) 2022; 11:antiox11020179. [PMID: 35204062 PMCID: PMC8868548 DOI: 10.3390/antiox11020179] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Exercise is commonly prescribed as a lifestyle treatment for chronic metabolic diseases as it functions as an insulin sensitizer, cardio-protectant, and essential lifestyle tool for effective weight maintenance. Exercise boosts the production of reactive oxygen species (ROS) and subsequent transient oxidative damage, which also upregulates counterbalancing endogenous antioxidants to protect from ROS-induced damage and inflammation. Exercise elevates heme oxygenase-1 (HO-1) and biliverdin reductase A (BVRA) expression as built-in protective mechanisms, which produce the most potent antioxidant, bilirubin. Together, these mitigate inflammation and adiposity. Moderately raising plasma bilirubin protects in two ways: (1) via its antioxidant capacity to reduce ROS and inflammation, and (2) its newly defined function as a hormone that activates the nuclear receptor transcription factor PPARα. It is now understood that increasing plasma bilirubin can also drive metabolic adaptions, which improve deleterious outcomes of weight gain and obesity, such as inflammation, type II diabetes, and cardiovascular diseases. The main objective of this review is to describe the function of bilirubin as an antioxidant and metabolic hormone and how the HO-1-BVRA-bilirubin-PPARα axis influences inflammation, metabolic function and interacts with exercise to improve outcomes of weight management.
Collapse
|
53
|
Hinds TD, Kipp ZA, Xu M, Yiannikouris FB, Morris AJ, Stec DF, Wahli W, Stec DE. Adipose-Specific PPARα Knockout Mice Have Increased Lipogenesis by PASK-SREBP1 Signaling and a Polarity Shift to Inflammatory Macrophages in White Adipose Tissue. Cells 2021; 11:4. [PMID: 35011564 PMCID: PMC8750478 DOI: 10.3390/cells11010004] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
The nuclear receptor PPARα is associated with reducing adiposity, especially in the liver, where it transactivates genes for β-oxidation. Contrarily, the function of PPARα in extrahepatic tissues is less known. Therefore, we established the first adipose-specific PPARα knockout (PparaFatKO) mice to determine the signaling position of PPARα in adipose tissue expansion that occurs during the development of obesity. To assess the function of PPARα in adiposity, female and male mice were placed on a high-fat diet (HFD) or normal chow for 30 weeks. Only the male PparaFatKO animals had significantly more adiposity in the inguinal white adipose tissue (iWAT) and brown adipose tissue (BAT) with HFD, compared to control littermates. No changes in adiposity were observed in female mice compared to control littermates. In the males, the loss of PPARα signaling in adipocytes caused significantly higher cholesterol esters, activation of the transcription factor sterol regulatory element-binding protein-1 (SREBP-1), and a shift in macrophage polarity from M2 to M1 macrophages. We found that the loss of adipocyte PPARα caused significantly higher expression of the Per-Arnt-Sim kinase (PASK), a kinase that activates SREBP-1. The hyperactivity of the PASK-SREBP-1 axis significantly increased the lipogenesis proteins fatty acid synthase (FAS) and stearoyl-Coenzyme A desaturase 1 (SCD1) and raised the expression of genes for cholesterol metabolism (Scarb1, Abcg1, and Abca1). The loss of adipocyte PPARα increased Nos2 in the males, an M1 macrophage marker indicating that the population of macrophages had changed to proinflammatory. Our results demonstrate the first adipose-specific actions for PPARα in protecting against lipogenesis, inflammation, and cholesterol ester accumulation that leads to adipocyte tissue expansion in obesity.
Collapse
Affiliation(s)
- Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA; (Z.A.K.); (M.X.); (F.B.Y.)
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40508, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
| | - Zachary A. Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA; (Z.A.K.); (M.X.); (F.B.Y.)
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA; (Z.A.K.); (M.X.); (F.B.Y.)
| | - Frederique B. Yiannikouris
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA; (Z.A.K.); (M.X.); (F.B.Y.)
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40508, USA
| | - Andrew J. Morris
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY 40508, USA;
- Lexington Veterans Affairs Medical Center, Lexington, KY 40508, USA
| | - Donald F. Stec
- Small Molecule NMR Facility Core, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA;
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, Singapore 308232, Singapore;
- Toxalim Research Center in Food Toxicology (UMR 1331), INRAE, ENVT, INP—PURPAN, UPS, Université de Toulouse, F-31300 Toulouse, France
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| | - David E. Stec
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
54
|
Stec DE, Wegiel B, Hinds TD. Editorial: Oxidative Stress, Antioxidants, Transcription Factors, and Assimilation of Signal Transduction Pathways in Obesity-Related Disorders. Front Pharmacol 2021; 12:759468. [PMID: 34557106 PMCID: PMC8452909 DOI: 10.3389/fphar.2021.759468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- David E Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, United States
| | - Barbara Wegiel
- Department of Surgery, Division of Surgical Oncology, Cancer Research Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, Barnstable Brown Diabetes Center, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
55
|
McClung JA, Levy L, Garcia V, Stec DE, Peterson SJ, Abraham NG. Heme-oxygenase and lipid mediators in obesity and associated cardiometabolic diseases: Therapeutic implications. Pharmacol Ther 2021; 231:107975. [PMID: 34499923 DOI: 10.1016/j.pharmthera.2021.107975] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity-mediated metabolic syndrome remains the leading cause of death worldwide. Among many potential targets for pharmacological intervention, a promising strategy involves the heme oxygenase (HO) system, specifically its inducible form, HO-1. This review collects and updates much of the current knowledge relevant to pharmacology and clinical medicine concerning HO-1 in metabolic diseases and its effect on lipid metabolism. HO-1 has pleotropic effects that collectively reduce inflammation, while increasing vasodilation and insulin and leptin sensitivity. Recent reports indicate that HO-1 with its antioxidants via the effect of bilirubin increases formation of biologically active lipid metabolites such as epoxyeicosatrienoic acid (EET), omega-3 and other polyunsaturated fatty acids (PUFAs). Similarly, HO-1and bilirubin are potential therapeutic targets in the treatment of fat-induced liver diseases. HO-1-mediated upregulation of EET is capable not only of reversing endothelial dysfunction and hypertension, but also of reversing cardiac remodeling, a hallmark of the metabolic syndrome. This process involves browning of white fat tissue (i.e. formation of healthy adipocytes) and reduced lipotoxicity, which otherwise will be toxic to the heart. More importantly, this review examines the activity of EET in biological systems and a series of pathways that explain its mechanism of action and discusses how these might be exploited for potential therapeutic use. We also discuss the link between cardiac ectopic fat deposition and cardiac function in humans, which is similar to that described in obese mice and is regulated by HO-1-EET-PGC1α signaling, a potent negative regulator of the inflammatory adipokine NOV.
Collapse
Affiliation(s)
- John A McClung
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Lior Levy
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | - Stephen J Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, United States of America; New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, United States of America
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America; Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America.
| |
Collapse
|
56
|
Stec DE, Abraham NG. Pharmacological and Clinical Significance of Heme Oxygenase-1. Antioxidants (Basel) 2021; 10:antiox10060854. [PMID: 34071751 PMCID: PMC8227735 DOI: 10.3390/antiox10060854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- David E. Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Correspondence: (D.E.S.); (N.G.A.); Tel.: +1-914-594-3121 (N.G.A.)
| | - Nader G. Abraham
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
- Correspondence: (D.E.S.); (N.G.A.); Tel.: +1-914-594-3121 (N.G.A.)
| |
Collapse
|
57
|
Gordon DM, Hong SH, Kipp ZA, Hinds TD. Identification of Binding Regions of Bilirubin in the Ligand-Binding Pocket of the Peroxisome Proliferator-Activated Receptor-A (PPARalpha). Molecules 2021; 26:molecules26102975. [PMID: 34067839 PMCID: PMC8157031 DOI: 10.3390/molecules26102975] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
Recent work has shown that bilirubin has a hormonal function by binding to the peroxisome proliferator-activated receptor-α (PPARα), a nuclear receptor that drives the transcription of genes to control adiposity. Our previous in silico work predicted three potential amino acids that bilirubin may interact with by hydrogen bonding in the PPARα ligand-binding domain (LBD), which could be responsible for the ligand-induced function. To further reveal the amino acids that bilirubin interacts with in the PPARα LBD, we harnessed bilirubin’s known fluorescent properties when bound to proteins such as albumin. Our work here revealed that bilirubin interacts with threonine 283 (T283) and alanine 333 (A333) for ligand binding. Mutational analysis of T283 and A333 showed significantly reduced bilirubin binding, reductions of 11.4% and 17.0%, respectively. Fenofibrate competitive binding studies for the PPARα LBD showed that bilirubin and fenofibrate possibly interact with different amino acid residues. Furthermore, bilirubin showed no interaction with PPARγ. This is the first study to reveal the amino acids responsible for bilirubin binding in the ligand-binding pocket of PPARα. Our work offers new insight into the mechanistic actions of a well-known molecule, bilirubin, and new fronts into its mechanisms.
Collapse
Affiliation(s)
- Darren M. Gordon
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (D.M.G.); (S.H.H.)
| | - Stephen H. Hong
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (D.M.G.); (S.H.H.)
| | - Zachary A. Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA;
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA;
- Correspondence:
| |
Collapse
|
58
|
Bianco A, Pinci S, Tiribelli C, Bellarosa C. Life-Long Hyperbilirubinemia Exposure and Bilirubin Priming Prevent In Vitro Metabolic Damage. Front Pharmacol 2021; 12:646953. [PMID: 33776779 PMCID: PMC7994257 DOI: 10.3389/fphar.2021.646953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Unconjugated bilirubin (UCB) is more than the final product of heme catabolism. Mildly elevated systemic bilirubin concentrations, such as in Gilbert syndrome (GS), protect against various oxidative stress-mediated and metabolic diseases, including cardiovascular disease, type 2 diabetes mellitus, metabolic syndrome, cancer, and age-related disease. The Gunn rat is an animal model of hereditary hyperbilirubinemia widely used in assessing the effect of high serum bilirubin concentration in various organs. The present work aims to understand if life-long hyperbilirubinemia and bilirubin-priming might contribute to protection against atherosclerosis and diabetic nephropathy (DN) at the cellular level. Methods: Primary aortic endothelial cells and podocytes obtained from hyperbilirubinemic homozygous jj and normobilirubinemic heterozygous Nj Gunn rats were exposed to Palmitic Acid (PA) and Angiotensin II (Ang II), respectively, and the effects on cell viability and the activation of damage-related metabolic pathways evaluated. Results were validated on immortalized H5V and HK2 cells exposed to damage after UCB pretreatment. Results: In both primary cell models, cells obtained from jj Gunn rats showed as significantly higher than Nj Gunn rats at any dose of the toxic agent. Reduction in CHOP expression and IL-6 release was observed in jj primary aortic endothelial cells exposed to PA compared to Nj cells. The same occurred on H5V pretreated with Unconjugated bilirubin. Upon Ang II treatment, primary podocytes from jj Gunn rats showed lower DNA fragmentation, cleaved caspase-3, and cleaved PARP induction than primary podocytes from Nj Gunn rats. In HK2 cells, the induction by Ang II of HIF-1α and LOXl2 was significantly reduced by UCB pretreatment. Conclusion: Our data suggest that in models of atherosclerosis and DN life–long hyperbilirubinemia exposure or bilirubin-priming significantly contribute to decrease the injury by enhancing thecellular defensive response,
Collapse
Affiliation(s)
- Annalisa Bianco
- Italian Liver Foundation (FIF), Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Serena Pinci
- Italian Liver Foundation (FIF), Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | | |
Collapse
|
59
|
Dvořák A, Pospíšilová K, Žížalová K, Capková N, Muchová L, Vecka M, Vrzáčková N, Křížová J, Zelenka J, Vítek L. The Effects of Bilirubin and Lumirubin on Metabolic and Oxidative Stress Markers. Front Pharmacol 2021; 12:567001. [PMID: 33746746 PMCID: PMC7969661 DOI: 10.3389/fphar.2021.567001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
For severe unconjugated hyperbilirubinemia the gold standard treatment is phototherapy with blue-green light, producing more polar photo-oxidation products, believed to be non-toxic. The aim of the present study was to compare the effects of bilirubin (BR) and lumirubin (LR), the major BR photo-oxidation product, on metabolic and oxidative stress markers. The biological activities of these pigments were investigated on several human and murine cell lines, with the focus on mitochondrial respiration, substrate metabolism, reactive oxygen species production, and the overall effects on cell viability. Compared to BR, LR was found to be much less toxic, while still maintaining a similar antioxidant capacity in the serum as well as suppressing activity leading to mitochondrial superoxide production. Nevertheless, due to its lower lipophilicity, LR was less efficient in preventing lipoperoxidation. The cytotoxicity of BR was affected by the cellular glycolytic reserve, most compromised in human hepatoblastoma HepG2 cells. The observed effects were correlated with changes in the production of tricarboxylic acid cycle metabolites. Both BR and LR modulated expression of PPARα downstream effectors involved in lipid and glucose metabolism. Proinflammatory effects of BR, evidenced by increased expression of TNFα upon exposure to bacterial lipopolysaccharide, were observed in murine macrophage-like RAW 264.7 cells. Collectively, these data point to the biological effects of BR and its photo-oxidation products, which might have clinical relevance in phototherapy-treated hyperbilirubinemic neonates and adult patients.
Collapse
Affiliation(s)
- Aleš Dvořák
- Institute of Medical Biochemistry and Laboratory Diagnostics, Faculty General Hospital and 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Kateřina Pospíšilová
- Institute of Medical Biochemistry and Laboratory Diagnostics, Faculty General Hospital and 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Kateřina Žížalová
- Institute of Medical Biochemistry and Laboratory Diagnostics, Faculty General Hospital and 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Nikola Capková
- Institute of Medical Biochemistry and Laboratory Diagnostics, Faculty General Hospital and 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Lucie Muchová
- Institute of Medical Biochemistry and Laboratory Diagnostics, Faculty General Hospital and 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Marek Vecka
- Institute of Medical Biochemistry and Laboratory Diagnostics, Faculty General Hospital and 1 Faculty of Medicine, Charles University, Prague, Czechia
- 4 Department of Internal Medicine, Faculty General Hospital and 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Nikola Vrzáčková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Jana Křížová
- Department of Paediatrics and Inherited Metabolic Disorders, 1 Faculty of Medicine, Charles University, Prague, Czechia
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia
| | - Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics, Faculty General Hospital and 1 Faculty of Medicine, Charles University, Prague, Czechia
- 4 Department of Internal Medicine, Faculty General Hospital and 1 Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
60
|
Al-Kuraishy HM, Al-Gareeb AI, Abdullah SM, Cruz-Martins N, Batiha GES. Case Report: Hyperbilirubinemia in Gilbert Syndrome Attenuates Covid-19-Induced Metabolic Disturbances. Front Cardiovasc Med 2021; 8:642181. [PMID: 33681310 PMCID: PMC7925614 DOI: 10.3389/fcvm.2021.642181] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/20/2021] [Indexed: 12/29/2022] Open
Abstract
Gilbert syndrome (GS) is a liver disorder characterized by non-hemolytic unconjugated hyperbilirubinemia. On the other hand, Coronavirus disease 2019 (Covid-19) is a recent viral infectious disease presented as clusters of pneumonia, triggered by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). Little is known on the association between SARS-CoV-2 and GS, despite different studies have recently stated a link between hyperbilirubinemia and SARS-CoV-2 severity. In this case-report study we described a 47-year-old man, a known case of GS since the age of 4, presented to the emergency department with fever (39.8°C), dry cough, dyspnea, headache, myalgia, sweating and jaundice diagnosed with Covid-19-induced pneumonia. Interestingly, GS patient exhibited a rapid clinical recovery and short hospital stay compared to other SARS-CoV-2 positive patient, seeming that hyperbilirubinemia may exert a protective effect of against Covid-19 induced-cardiometabolic disturbances. Data obtained here underlines that the higher resistance against Covid-19 evidenced by the GS patient seems to be due to the antioxidant, anti-inflammatory, and antiviral effects of unconjugated bilirubin.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Saleh M Abdullah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Metabolism, Nutrition and Endocrinology, Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
61
|
Creeden JF, Gordon DM, Stec DE, Hinds TD. Bilirubin as a metabolic hormone: the physiological relevance of low levels. Am J Physiol Endocrinol Metab 2021; 320:E191-E207. [PMID: 33284088 PMCID: PMC8260361 DOI: 10.1152/ajpendo.00405.2020] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent research on bilirubin, a historically well-known waste product of heme catabolism, suggests an entirely new function as a metabolic hormone that drives gene transcription by nuclear receptors. Studies are now revealing that low plasma bilirubin levels, defined as "hypobilirubinemia," are a possible new pathology analogous to the other end of the spectrum of extreme hyperbilirubinemia seen in patients with jaundice and liver dysfunction. Hypobilirubinemia is most commonly seen in patients with metabolic dysfunction, which may lead to cardiovascular complications and possibly stroke. We address the clinical significance of low bilirubin levels. A better understanding of bilirubin's hormonal function may explain why hypobilirubinemia might be deleterious. We present mechanisms by which bilirubin may be protective at mildly elevated levels and research directions that could generate treatment possibilities for patients with hypobilirubinemia, such as targeting of pathways that regulate its production or turnover or the newly designed bilirubin nanoparticles. Our review here calls for a shift in the perspective of an old molecule that could benefit millions of patients with hypobilirubinemia.
Collapse
Affiliation(s)
- Justin F Creeden
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Darren M Gordon
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - David E Stec
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
62
|
Fu J, Wang Q, Zhang L, Liu J, Wang G. Serum Bilirubin Level Is Increased in Metabolically Healthy Obesity. Front Endocrinol (Lausanne) 2021; 12:792795. [PMID: 35432184 PMCID: PMC9005889 DOI: 10.3389/fendo.2021.792795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Bilirubin is a biochemical substance with metabolic benefits. The objective of this research was to elucidate the association between serum bilirubin levels and metabolic alterations in different obesity phenotypes. METHODS In total, 1,042 drug-naive participants were included in the study. Of them, 541 were obese patients and 501 were age-matched and sex-matched healthy control subjects. The obese patients were divided into metabolically healthy obesity (MHO) group and metabolically unhealthy obesity (MUHO) group according to the levels of fasting plasma glucose (FBG), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C) and blood pressure (BP). Clinical and biochemical parameters including total bilirubin (TBil), indirect bilirubin (IBil) and direct bilirubin (DBil) were measured. ANOVA or Kruskal-Wallis H test was used to test differences among the three groups. Pearson and Spearman correlations were used to analyze the relationships between two parameters. The relationships between bilirubin and other variables were analyzed using Multivariate regression analysis. RESULTS MHO group had favorable blood pressure, glucose and lipids profiles, along with increased TBil and DBil, and decreased high-sensitivity C-reactive protein (hsCRP) and homeostasis model assessment of insulin resistance (HOMA-IR) levels when compared to MUHO group (P < 0.05 for all). TBil and DBil were negatively correlated with total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), fasting insulin (FINS), hsCRP and HOMA-IR, even after adjusted for age, gender and BMI (all P <0.01). Multivariate regression analysis demonstrated that HOMA-IR was independently correlated with TBil and DBIi levels (β = -0.400, P < 0.01). CONCLUSION MHO group harbors increased bilirubin level compared with MUHO group. HOMA-IR was independently correlated with TBil and DBIi levels.
Collapse
|
63
|
Hinds TD, Creeden JF, Gordon DM, Stec DF, Donald MC, Stec DE. Bilirubin Nanoparticles Reduce Diet-Induced Hepatic Steatosis, Improve Fat Utilization, and Increase Plasma β-Hydroxybutyrate. Front Pharmacol 2020; 11:594574. [PMID: 33390979 PMCID: PMC7775678 DOI: 10.3389/fphar.2020.594574] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022] Open
Abstract
The inverse relationship of plasma bilirubin levels with liver fat accumulation has prompted the possibility of bilirubin as a therapeutic for non-alcoholic fatty liver disease. Here, we used diet-induced obese mice with non-alcoholic fatty liver disease treated with pegylated bilirubin (bilirubin nanoparticles) or vehicle control to determine the impact on hepatic lipid accumulation. The bilirubin nanoparticles significantly reduced hepatic fat, triglyceride accumulation, de novo lipogenesis, and serum levels of liver dysfunction marker aspartate transaminase and ApoB100 containing very-low-density lipoprotein. The bilirubin nanoparticles improved liver function and activated the hepatic β-oxidation pathway by increasing PPARα and acyl-coenzyme A oxidase 1. The bilirubin nanoparticles also significantly elevated plasma levels of the ketone β-hydroxybutyrate and lowered liver fat accumulation. This study demonstrates that bilirubin nanoparticles induce hepatic fat utilization, raise plasma ketones, and reduce hepatic steatosis, opening new therapeutic avenues for NAFLD.
Collapse
Affiliation(s)
- Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Justin F Creeden
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, United States
| | - Darren M Gordon
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH, United States
| | - Donald F Stec
- Small Molecule NMR Facility Core, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States
| | - Matthew C Donald
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, United States
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
64
|
Stec DE, Hinds TD. Natural Product Heme Oxygenase Inducers as Treatment for Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:E9493. [PMID: 33327438 PMCID: PMC7764878 DOI: 10.3390/ijms21249493] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase (HO) is a critical component of the defense mechanism to a wide variety of cellular stressors. HO induction affords cellular protection through the breakdown of toxic heme into metabolites, helping preserve cellular integrity. Nonalcoholic fatty liver disease (NAFLD) is a pathological condition by which the liver accumulates fat. The incidence of NAFLD has reached all-time high levels driven primarily by the obesity epidemic. NALFD can progress to nonalcoholic steatohepatitis (NASH), advancing further to liver cirrhosis or cancer. NAFLD is also a contributing factor to cardiovascular and metabolic diseases. There are currently no drugs to specifically treat NAFLD, with most treatments focused on lifestyle modifications. One emerging area for NAFLD treatment is the use of dietary supplements such as curcumin, pomegranate seed oil, milk thistle oil, cold-pressed Nigella Satvia oil, and resveratrol, among others. Recent studies have demonstrated that several of these natural dietary supplements attenuate hepatic lipid accumulation and fibrosis in NAFLD animal models. The beneficial actions of several of these compounds are associated with the induction of heme oxygenase-1 (HO-1). Thus, targeting HO-1 through dietary-supplements may be a useful therapeutic for NAFLD either alone or with lifestyle modifications.
Collapse
Affiliation(s)
- David E. Stec
- Department of Physiology & Biophysics, Center for Cardiovascular and Metabolic Diseases Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 760 Press Avenue, Healthy Kentucky Research Building, Lexington, KY 40508, USA
| |
Collapse
|
65
|
Hinds TD, Creeden JF, Gordon DM, Spegele AC, Britton SL, Koch LG, Stec DE. Rats Genetically Selected for High Aerobic Exercise Capacity Have Elevated Plasma Bilirubin by Upregulation of Hepatic Biliverdin Reductase-A (BVRA) and Suppression of UGT1A1. Antioxidants (Basel) 2020; 9:antiox9090889. [PMID: 32961782 PMCID: PMC7554716 DOI: 10.3390/antiox9090889] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Exercise in humans and animals increases plasma bilirubin levels, but the mechanism by which this occurs is unknown. In the present study, we utilized rats genetically selected for high capacity running (HCR) and low capacity running (LCR) to determine pathways in the liver that aerobic exercise modifies to control plasma bilirubin. The HCR rats, compared to the LCR, exhibited significantly higher levels of plasma bilirubin and the hepatic enzyme that produces it, biliverdin reductase-A (BVRA). The HCR also had reduced expression of the glucuronyl hepatic enzyme UGT1A1, which lowers plasma bilirubin. Recently, bilirubin has been shown to activate the peroxisome proliferator-activated receptor-α (PPARα), a ligand-induced transcription factor, and the higher bilirubin HCR rats had significantly increased PPARα-target genes Fgf21, Abcd3, and Gys2. These are known to promote liver function and glycogen storage, which we found by Periodic acid–Schiff (PAS) staining that hepatic glycogen content was higher in the HCR versus the LCR. Our results demonstrate that exercise stimulates pathways that raise plasma bilirubin through alterations in hepatic enzymes involved in bilirubin synthesis and metabolism, improving liver function, and glycogen content. These mechanisms may explain the beneficial effects of exercise on plasma bilirubin levels and health in humans.
Collapse
Affiliation(s)
- Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40508, USA
- Correspondence: (T.D.H.J.); (D.E.S.)
| | - Justin F. Creeden
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH 43614, USA; (J.F.C.); (D.M.G.)
| | - Darren M. Gordon
- Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH 43614, USA; (J.F.C.); (D.M.G.)
| | - Adam C. Spegele
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA; (A.C.S.); (L.G.K.)
| | - Steven L. Britton
- Department of Anesthesiology, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Lauren G. Koch
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA; (A.C.S.); (L.G.K.)
| | - David E. Stec
- Center for Excellence in Cardiovascular-Renal Research, Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 North State St, Jackson, MS 392161, USA
- Correspondence: (T.D.H.J.); (D.E.S.)
| |
Collapse
|
66
|
Gordon DM, Neifer KL, Hamoud ARA, Hawk CF, Nestor-Kalinoski AL, Miruzzi SA, Morran MP, Adeosun SO, Sarver JG, Erhardt PW, McCullumsmith RE, Stec DE, Hinds TD. Bilirubin remodels murine white adipose tissue by reshaping mitochondrial activity and the coregulator profile of peroxisome proliferator-activated receptor α. J Biol Chem 2020; 295:9804-9822. [PMID: 32404366 DOI: 10.1074/jbc.ra120.013700] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
Activation of lipid-burning pathways in the fat-storing white adipose tissue (WAT) is a promising strategy to improve metabolic health and reduce obesity, insulin resistance, and type II diabetes. For unknown reasons, bilirubin levels are negatively associated with obesity and diabetes. Here, using mice and an array of approaches, including MRI to assess body composition, biochemical assays to measure bilirubin and fatty acids, MitoTracker-based mitochondrial analysis, immunofluorescence, and high-throughput coregulator analysis, we show that bilirubin functions as a molecular switch for the nuclear receptor transcription factor peroxisome proliferator-activated receptor α (PPARα). Bilirubin exerted its effects by recruiting and dissociating specific coregulators in WAT, driving the expression of PPARα target genes such as uncoupling protein 1 (Ucp1) and adrenoreceptor β 3 (Adrb3). We also found that bilirubin is a selective ligand for PPARα and does not affect the activities of the related proteins PPARγ and PPARδ. We further found that diet-induced obese mice with mild hyperbilirubinemia have reduced WAT size and an increased number of mitochondria, associated with a restructuring of PPARα-binding coregulators. We conclude that bilirubin strongly affects organismal body weight by reshaping the PPARα coregulator profile, remodeling WAT to improve metabolic function, and reducing fat accumulation.
Collapse
Affiliation(s)
- Darren M Gordon
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA.,Center for Diabetes and Endocrine Research (CeDER), University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Kari L Neifer
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Abdul-Rizaq Ali Hamoud
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Charles F Hawk
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Andrea L Nestor-Kalinoski
- Advanced Microscopy and Imaging Center, Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Scott A Miruzzi
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Michael P Morran
- Advanced Microscopy and Imaging Center, Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Samuel O Adeosun
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jeffrey G Sarver
- Center for Drug Design and Development (CD3), Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio, USA
| | - Paul W Erhardt
- Center for Drug Design and Development (CD3), Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio, USA
| | - Robert E McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA.,ProMedica, Toledo, Ohio, USA
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Terry D Hinds
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA .,Center for Diabetes and Endocrine Research (CeDER), University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
67
|
Biliverdin Reductase A (BVRA) Knockout in Adipocytes Induces Hypertrophy and Reduces Mitochondria in White Fat of Obese Mice. Biomolecules 2020; 10:biom10030387. [PMID: 32131495 PMCID: PMC7175174 DOI: 10.3390/biom10030387] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Biliverdin reductase (BVR) is an enzymatic and signaling protein that has multifaceted roles in physiological systems. Despite the wealth of knowledge about BVR, no data exist regarding its actions in adipocytes. Here, we generated an adipose-specific deletion of biliverdin reductase-A (BVRA) (BlvraFatKO) in mice to determine the function of BVRA in adipocytes and how it may impact adipose tissue expansion. The BlvraFatKO and littermate control (BlvraFlox) mice were placed on a high-fat diet (HFD) for 12 weeks. Body weights were measured weekly and body composition, fasting blood glucose and insulin levels were quantitated at the end of the 12 weeks. The data showed that the percent body fat and body weights did not differ between the groups; however, BlvraFatKO mice had significantly higher visceral fat as compared to the BlvraFlox. The loss of adipocyte BVRA decreased the mitochondrial number in white adipose tissue (WAT), and increased inflammation and adipocyte size, but this was not observed in brown adipose tissue (BAT). There were genes significantly reduced in WAT that induce the browning effect such as Ppara and Adrb3, indicating that BVRA improves mitochondria function and beige-type white adipocytes. The BlvraFatKO mice also had significantly higher fasting blood glucose levels and no changes in plasma insulin levels, which is indicative of decreased insulin signaling in WAT, as evidenced by reduced levels of phosphorylated AKT (pAKT) and Glut4 mRNA. These results demonstrate the essential role of BVRA in WAT in insulin signaling and adipocyte hypertrophy.
Collapse
|
68
|
Petelin A, Jurdana M, Jenko Pražnikar Z, Žiberna L. SERUM BILIRUBIN CORRELATES WITH SERUM ADIPOKINES IN NORMAL WEIGHT AND OVERWEIGHT ASYMPTOMATIC ADULTS. Acta Clin Croat 2020; 59:19-29. [PMID: 32724271 PMCID: PMC7382891 DOI: 10.20471/acc.2020.59.01.03] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Overweight and obesity are considered as chronic low-grade inflammation accompanied by imbalanced production of adipokines. The aim of this study was to elucidate the relationship between serum bilirubin, which is an endogenous antioxidant with anti-inflammatory activity, and pro- and anti-inflammatory serum adipokines in asymptomatic normal weight and overweight individuals. Healthy men and women aged 25-49 participated in this cross-sectional study. All participants underwent fasting serological measurements of adipokines, interleukin-6, tumor necrosis factor alpha (TNF-α), C-reactive protein (CRP), total and direct serum bilirubin, and other biochemical parameters. Participants were divided into normal weight and overweight groups. We found a significant negative association between total bilirubin and CRP, TNF-α, visfatin and resistin values, and a significant positive association between total bilirubin and adiponectin values in both normal-weight and overweight groups. Importantly, after adjusting for body mass index, we also found a significant negative association between total serum bilirubin levels and both visfatin and CRP serum levels. Moreover, visfatin, resistin and CRP were predictors of the total serum bilirubin levels.
Collapse
Affiliation(s)
| | - Mihaela Jurdana
- 1Faculty of Health Sciences, University of Primorska, Izola, Slovenia; 2Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Zala Jenko Pražnikar
- 1Faculty of Health Sciences, University of Primorska, Izola, Slovenia; 2Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Lovro Žiberna
- 1Faculty of Health Sciences, University of Primorska, Izola, Slovenia; 2Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
69
|
Ge X, Liu Z, Hou Q, Huang L, Zhou Y, Li D, Huang S, Luo X, Lv Y, Li L, Cheng H, Chen X, Zan G, Tan Y, Liu C, Zou Y, Yang X. Plasma metals and serum bilirubin levels in workers from manganese-exposed workers healthy cohort (MEWHC). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113683. [PMID: 31838386 DOI: 10.1016/j.envpol.2019.113683] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/18/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Few studies specifically address the possible associations between multiple-metal exposures and liver damage among the occupational population. This study aimed to explore the cross-sectional relationships of plasma metals with liver function parameters. For 571 on-the-spot workers in the manganese-exposed workers healthy cohort (MEWHC), we determined liver function parameters: total bilirubin (TBILI), direct bilirubin (DBILI), indirect bilirubin (IBILI), alanine transaminase (ALT) and aspartate transaminase (AST). Total concentrations of 22 plasma metals were measured by ICP-MS. The LASSO (least absolute shrinkage and selection operator) penalized regression model was applied for selecting plasma metals independently associated with liver function parameters. Multiple linear regression analyses and restricted cubic spline (RCS) were utilized for identifying the exposure-response relationship of plasma metals with liver function parameters. After adjusting for covariates and selected metals, a 1-SD increase in log-10 transformed levels of iron was associated with increases in the levels of TBILI, DBILI and IBILI by 20.3%, 12.1% and 23.7%, respectively; similar increases in molybdenum for decreases in levels of TBILI, DBILI and IBILI by 6.1%, 2.6% and 8.3%, respectively. The effect of a 1-SD increase in plasma copper corresponded decreases of 3.2%, 3.4% and 5.0% in TBILI, AST and ALT levels, respectively. The spline analyses further clarified the non-linear relationships between plasma iron and bilirubin whilst negative linear relationships for plasma molybdenum and bilirubin. Plasma iron was positively whilst plasma molybdenum was negatively associated with increased serum bilirubin levels. Further studies are needed to validate these associations and uncover the underlying mechanisms.
Collapse
Affiliation(s)
- Xiaoting Ge
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Zhenfang Liu
- Hematology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qingzhi Hou
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Lulu Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yanting Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Defu Li
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Sifang Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiaoyu Luo
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yingnan Lv
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Longman Li
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiang Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Gaohui Zan
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yanli Tan
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Chaoqun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China; Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
70
|
Vítek L. Bilirubin as a signaling molecule. Med Res Rev 2020; 40:1335-1351. [PMID: 32017160 DOI: 10.1002/med.21660] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/12/2019] [Accepted: 01/24/2020] [Indexed: 12/24/2022]
Abstract
For long time bilirubin was only considered as a potentially dangerous sign of liver diseases, but it now appears clear that it is also a powerful signaling molecule. Together with potent antioxidant activities that were only reported in the last few decades, many other biological effects have now been clearly described. These include especially profound inhibitory effects on almost all effectors of the immune system, with their clinical consequences in the bilirubin-mediated protection against autoimmune and inflammatory diseases. Separate from these, bilirubin activates various nuclear and cytoplasmic receptors, resembling the endocrine activities of actual hormonal substances. This is true for the "classical" hepatic nuclear receptors, including the aryl hydrocarbon receptor, or the constitutive androstane receptor; and also for some lesser-explored receptors such as peroxisome proliferator-activated receptors α and γ; Mas-related G protein-coupled receptor; or other signaling molecules including fatty acid binding protein 1, apolipoprotein D, or reactive oxygen species. All of these targets have broad metabolic effects, which in turn may offer protection against obesity, diabetes mellitus, and other metabolic diseases. The (mostly experimental) data are also supported by clinical evidence. In fact, data from the last three decades have convincingly demonstrated the protective effects of mildly elevated serum bilirubin concentrations against various "diseases of civilization." Additionally, even tiny, micromolar changes of serum bilirubin concentrations have been associated with substantial alteration in the risks of these diseases. It is highly likely that all of the biological activities of bilirubin have yet to be exhaustively explored, and thus we can expect further clinical discoveries about this evolutionarily old molecule into the future.
Collapse
Affiliation(s)
- Libor Vítek
- 4th Department of Internal Medicine and Institute of Medical Biochemistry and Laboratory Diagnostics, General Faculty Hospital and 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
71
|
Nitti M, Furfaro AL, Mann GE. Heme Oxygenase Dependent Bilirubin Generation in Vascular Cells: A Role in Preventing Endothelial Dysfunction in Local Tissue Microenvironment? Front Physiol 2020; 11:23. [PMID: 32082188 PMCID: PMC7000760 DOI: 10.3389/fphys.2020.00023] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
Among antioxidants in the human body, bilirubin has been recognized over the past 20 years to afford protection against different chronic conditions, including inflammation and cardiovascular disease. Moderate increases in plasma concentration and cellular bilirubin generation from metabolism of heme via heme oxygenase (HMOX) in virtually all tissues can modulate endothelial and vascular function and exert antioxidant and anti-inflammatory roles. This review aims to provide an up-to-date and critical overview of the molecular mechanisms by which bilirubin derived from plasma or from HMOX1 activation in vascular cells affects endothelial function. Understanding the molecular actions of bilirubin may critically improve the management not only of key cardiovascular diseases, but also provide insights into a broad spectrum of pathologies driven by endothelial dysfunction. In this context, therapeutic interventions aimed at mildly increasing serum bilirubin as well as bilirubin generated endogenously by endothelial HMOX1 should be considered.
Collapse
Affiliation(s)
- Mariapaola Nitti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Anna Lisa Furfaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
72
|
Wan H, Zhu H, Wang Y, Zhang K, Chen Y, Fang S, Xia F, Wang N, Zhang W, Lu Y. Associations between different bilirubin subtypes and diabetic microvascular complications in middle-aged and elderly individuals. Ther Adv Endocrinol Metab 2020; 11:2042018820937897. [PMID: 32699586 PMCID: PMC7357000 DOI: 10.1177/2042018820937897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
AIMS Some studies have reported associations between bilirubin and diabetic microvascular complications. However, these studies focused only on total bilirubin (TBIL) without distinguishing different bilirubin subtypes. In this study, we aimed to investigate the associations of TBIL, direct bilirubin (DBIL) and indirect bilirubin (IBIL) levels with albuminuria/creatinine ratio (ACR) and the prevalence of diabetic retinopathy (DR) among diabetic adults. METHODS We analyzed 4368 individuals out of 4813 diabetic participants enrolled from seven communities in 2018 in a cross-sectional study. Participants underwent several checkups, including the measurement of anthropometric parameters, blood pressure, glucose, lipid profile, TBIL, DBIL, IBIL and ACR. DR was detected by high-quality fundus photographs and was remotely read by ophthalmologists. RESULTS Compared with the first quartile of DBIL, participants in the fourth quartile had a lower prevalence of high ACR (odds ratio (OR) 0.76; 95% confidence interval (CI) 0.59, 0.99) (p for trend < 0.05). Neither TBIL nor IBIL was associated with the prevalence of high ACR. In DR, higher DBIL and TBIL by one standard deviation was associated with a 19% (OR 0.81; 95% CI 0.69, 0.94) and a 12% (OR 0.88; 95% CI 0.78, 0.99) lower frequency of DR, respectively (both p for trend < 0.05). However, IBIL was not associated with the prevalence of DR. These associations were adjusted for potential confounding factors. CONCLUSION DBIL had a stronger association with high ACR and DR than TBIL or IBIL did in diabetic adults. The effect of DBIL on diabetic complications should be noted and investigated in further studies.
Collapse
Affiliation(s)
| | | | | | - Kun Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | | |
Collapse
|
73
|
Li X, Yu D, Jie H, Zhou H, Ye H, Ma G, Wan L, Li C, Shi H, Yin S. Cytochrome P450 1A2 Is Incapable of Oxidizing Bilirubin Under Physiological Conditions. Front Pharmacol 2019; 10:1220. [PMID: 31680983 PMCID: PMC6813656 DOI: 10.3389/fphar.2019.01220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/23/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Bilirubin (BR) is metabolized mainly by uridine diphosphate (UDP)-glucuronosyltransferase 1A1 (UGT1A1) through glucuronidation in the liver. Some studies have shown that several subtypes of cytochrome P450 (CYP) enzymes, including CYP1A2, are upregulated by inducers and proposed to be alternative BR degradation enzymes. However, no information is available on the BR degradation ability of CYP in normal rats without manipulation by CYP inducers. Methods: Quantitative real-time polymerase chain reaction (QRT-PCR), western blot, immunofluorescence, and confocal microscopy were used to find expression of CYP1A2 in the brain and the liver. BR metabolites in microsomal fractions during development were examined by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (LC-MS/MS). Results: In the present study, we observed that CYP1A2 mRNA levels increased at postnatal days (P)14 and P30 with respect to the level at P7 both in liver and brain, this increment was especially pronounced in the brain at P14. The expression of CYP1A2 in the brainstem (BS) was higher than that in the cerebellum (CLL) and cortex (COR). Meanwhile, the CYP1A2 protein level was significantly higher in the COR than in the brainstem and CLL at P14. The levels of BR and its metabolites (m/z values 301, 315, 333 and biliverdin) were statistically unaltered by incubation with liver and brain microsomal fractions. Conclusion: Our results indicated that the region-specific expression of CYP1A2 increased during development, but CYP family enzymes were physiologically incapable of metabolizing BR. The ability of CYPs to oxidize BR may be triggered by CYP inducers.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Dongzhen Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Huiqun Jie
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Huiqun Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Haibo Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Guo Ma
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, China
| | - Lili Wan
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chunyan Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Haibo Shi
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shankai Yin
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
74
|
Hinds TD, Stec DE. Bilirubin Safeguards Cardiorenal and Metabolic Diseases: a Protective Role in Health. Curr Hypertens Rep 2019; 21:87. [PMID: 31599366 DOI: 10.1007/s11906-019-0994-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW To discuss recent advances indicating that bilirubin safeguards against cardiorenal and metabolic diseases. RECENT FINDINGS Several investigations from human patient populations and experimental animal models have shown that bilirubin improves cardiorenal and metabolic dysfunction. The latest studies found an entirely new function of bilirubin suggesting that it acts as a hormone signaling molecule capable of activating nuclear receptors for burning fat, which may explain several of its protective actions. This review highlights the current findings (within the last 3 years) regarding cardiorenal and metabolic protective effects of bilirubin and the latest mechanism(s) that may be mediating these effects.
Collapse
Affiliation(s)
- Terry D Hinds
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, 43614, USA
| | - David E Stec
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216, USA.
| |
Collapse
|
75
|
Takei R, Inoue T, Sonoda N, Kohjima M, Okamoto M, Sakamoto R, Inoguchi T, Ogawa Y. Bilirubin reduces visceral obesity and insulin resistance by suppression of inflammatory cytokines. PLoS One 2019; 14:e0223302. [PMID: 31577826 PMCID: PMC6774504 DOI: 10.1371/journal.pone.0223302] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/18/2019] [Indexed: 02/08/2023] Open
Abstract
Objective Although previous studies have reported a negative relationship between serum bilirubin concentration and the development of diabetes mellitus (DM), the relationship between bilirubin and insulin resistance has not been thoroughly assessed. This study was designed to determine the relationships between bilirubin, body fat distribution, and adipose tissue inflammation in patients with type 2 DM and the effect of bilirubin in an obese animal model. Method Body fat distribution was measured using an abdominal dual bioelectrical impedance analyzer in patients with type 2 DM. We also measured glycemic control, lipid profile, serum bilirubin concentration and other clinical characteristics, and determined their relationships with body fat distribution. In the animal study, biliverdin (20 mg/kg daily) was orally administered to high-fat diet (HFD)-induced obese (DIO) mice for 2 weeks, after which intraperitoneal insulin tolerance testing was performed. Then, adipocyte area, adipocytokine expression, and macrophage polarization were evaluated in epididymal adipose tissues. Results In the clinical study, univariate analysis showed that a lower bilirubin concentration was significantly correlated with higher body mass index, waist circumference, triglyceride, uric acid, creatinine, visceral fat area and lower HDL-C. In multivariate analyses, bilirubin concentration significantly correlated with diastolic blood pressure, creatinine, and visceral fat area. However, there was no association between bilirubin concentration and subcutaneous fat area. In the animal study, DIO mice treated with biliverdin had smaller adipocytes than untreated DIO mice and biliverdin improved HFD-induced insulin resistance. Biliverdin treatment reversed the higher gene expression of Cd11c, encoding an M1 macrophage marker, and Tnfa, encoding the proinflammatory cytokine tumor necrosis factor-α, in the adipose tissues of DIO mice. These data suggest biliverdin administration alleviates insulin resistance by ameliorating inflammation and the dysregulation of adipocytokine expression in adipose tissues of DIO mice. Conclusions Bilirubin may protect against insulin resistance by ameliorating visceral obesity and adipose tissue inflammation.
Collapse
Affiliation(s)
- Ryoko Takei
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Fukuoka City Health Promotion Support Center, Fukuoka, Japan
| | - Tomoaki Inoue
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriyuki Sonoda
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Motoyuki Kohjima
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Misato Okamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryuichi Sakamoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toyoshi Inoguchi
- Fukuoka City Health Promotion Support Center, Fukuoka, Japan
- * E-mail:
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Molecular and Cellular Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
76
|
Gordon DM, Adeosun SO, Ngwudike SI, Anderson CD, Hall JE, Hinds TD, Stec DE. CRISPR Cas9-mediated deletion of biliverdin reductase A (BVRA) in mouse liver cells induces oxidative stress and lipid accumulation. Arch Biochem Biophys 2019; 672:108072. [PMID: 31422074 PMCID: PMC6718297 DOI: 10.1016/j.abb.2019.108072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/29/2019] [Accepted: 08/10/2019] [Indexed: 12/30/2022]
Abstract
Obesity is the predominant cause of non-alcoholic fatty liver disease (NAFLD), which is associated with insulin resistance and diabetes. NAFLD includes a spectrum of pathologies that starts with simple steatosis, which can progress to non-alcoholic steatohepatitis (NASH) with the commission of other factors such as the enhancement of reactive oxygen species (ROS). Biliverdin reductase A (BVRA) reduces biliverdin to the antioxidant bilirubin, which may serve to prevent NAFLD, and possibly the progression to NASH. To further understand the role of BVRA in hepatic function, we used CRISPR-Cas9 technology to target the Blvra gene in the murine hepa1c1c7 hepatocyte cell line (BVRA KO). BVRA activity and protein levels were significantly lower in BVRA KO vs. wild-type (WT) hepatocytes. Lipid accumulation under basal and serum-starved conditions was significantly (p < 0.05) higher in BVRA KO vs. WT cells. The loss of BVRA resulted in the reduction of mitochondria number, decreased expression of markers of mitochondrial biogenesis, uncoupling, oxidation, and fusion, which paralleled reduced mitochondrial oxygen consumption. BVRA KO cells exhibited increased levels of ROS generation and decreased levels of superoxide dismutase mRNA expression. In conclusion, our data demonstrate a critical role for BVRA in protecting against lipid accumulation and oxidative stress in hepatocytes, which may serve as a future therapeutic target for NAFLD and its progression to NASH.
Collapse
Affiliation(s)
- Darren M Gordon
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, 43614, USA
| | - Samuel O Adeosun
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, USA
| | | | - Christopher D Anderson
- Departments of Surgery and Medicine, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216, USA
| | - John E Hall
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, USA
| | - Terry D Hinds
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, 43614, USA
| | - David E Stec
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, USA.
| |
Collapse
|
77
|
Stec DE, Gordon DM, Hipp JA, Hong S, Mitchell ZL, Franco NR, Robison JW, Anderson CD, Stec DF, Hinds TD. Loss of hepatic PPARα promotes inflammation and serum hyperlipidemia in diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 2019; 317:R733-R745. [PMID: 31483154 DOI: 10.1152/ajpregu.00153.2019] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Agonists for PPARα are used clinically to reduce triglycerides and improve high-density lipoprotein (HDL) cholesterol levels in patients with hyperlipidemia. Whether the mechanism of PPARα activation to lower serum lipids occurs in the liver or other tissues is unknown. To determine the function of hepatic PPARα on lipid profiles in diet-induced obese mice, we placed hepatocyte-specific peroxisome proliferator-activated receptor-α (PPARα) knockout (PparaHepKO) and wild-type (Pparafl/fl) mice on high-fat diet (HFD) or normal fat diet (NFD) for 12 wk. There was no significant difference in weight gain, percent body fat mass, or percent body lean mass between the groups of mice in response to HFD or NFD. Interestingly, the PparaHepKO mice on HFD had worsened hepatic inflammation and a significant shift in the proinflammatory M1 macrophage population. These changes were associated with higher hepatic fat mass and decreased hepatic lean mass in the PparαHepKO on HFD but not in NFD as measured by Oil Red O and noninvasive EchoMRI analysis (31.1 ± 2.8 vs. 20.2 ± 1.5, 66.6 ± 2.5 vs. 76.4 ± 1.5%, P < 0.05). We did find that this was related to significantly reduced peroxisomal gene function and lower plasma β-hydroxybutyrate in the PparaHepKO on HFD, indicative of reduced metabolism of fats in the liver. Together, these provoked higher plasma triglyceride and apolipoprotein B100 levels in the PparaHepKO mice compared with Pparafl/fl on HFD. These data indicate that hepatic PPARα functions to control inflammation and liver triglyceride accumulation that prevent hyperlipidemia.
Collapse
Affiliation(s)
- David E Stec
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Darren M Gordon
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Jennifer A Hipp
- Department of Pathology, University of Toledo College of Medicine, Toledo, Ohio
| | - Stephen Hong
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Zachary L Mitchell
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Natalia R Franco
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - J Walker Robison
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi
| | - Christopher D Anderson
- Department of Surgery and Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Donald F Stec
- Small Molecule NMR Facility Core, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee
| | - Terry D Hinds
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| |
Collapse
|
78
|
Katsiki N, Athyros VG. Non-alcoholic steatohepatitis and type 2 diabetes mellitus: the effects of weight loss versus drug treatment. Curr Med Res Opin 2019; 35:1305-1306. [PMID: 30819009 DOI: 10.1080/03007995.2019.1589152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Niki Katsiki
- a First Department of Internal Medicine, Centre for Diabetes, Endocrinology and Metabolism , AHEPA University Hospital , Thessaloniki , Greece
| | - Vasilios G Athyros
- b Second Propedeutic Department of Internal Medicine, Medical School , Aristotle University of Thessaloniki, Hippocration Hospital , Thessaloniki , Greece
| |
Collapse
|
79
|
Drummond HA, Mitchell ZL, Abraham NG, Stec DE. Targeting Heme Oxygenase-1 in Cardiovascular and Kidney Disease. Antioxidants (Basel) 2019; 8:antiox8060181. [PMID: 31216709 PMCID: PMC6617021 DOI: 10.3390/antiox8060181] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 12/13/2022] Open
Abstract
Heme oxygenase (HO) plays an important role in the cardiovascular system. It is involved in many physiological and pathophysiological processes in all organs of the cardiovascular system. From the regulation of blood pressure and blood flow to the adaptive response to end-organ injury, HO plays a critical role in the ability of the cardiovascular system to respond and adapt to changes in homeostasis. There have been great advances in our understanding of the role of HO in the regulation of blood pressure and target organ injury in the last decade. Results from these studies demonstrate that targeting of the HO system could provide novel therapeutic opportunities for the treatment of several cardiovascular and renal diseases. The goal of this review is to highlight the important role of HO in the regulation of cardiovascular and renal function and protection from disease and to highlight areas in which targeting of the HO system needs to be translated to help benefit patient populations.
Collapse
Affiliation(s)
- Heather A Drummond
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MI 39216, USA.
| | - Zachary L Mitchell
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MI 39216, USA.
| | - Nader G Abraham
- Departments of Medicine and Pharmacology, New York Medical College, Vahalla, NY 10595, USA.
- Joan C. Edwards School of Medicine, Marshall University, Huntington, VA 25701, USA.
| | - David E Stec
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MI 39216, USA.
| |
Collapse
|
80
|
Gordon DM, Blomquist TM, Miruzzi SA, McCullumsmith R, Stec DE, Hinds TD. RNA sequencing in human HepG2 hepatocytes reveals PPAR-α mediates transcriptome responsiveness of bilirubin. Physiol Genomics 2019; 51:234-240. [PMID: 31074682 DOI: 10.1152/physiolgenomics.00028.2019] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bilirubin is a potent antioxidant that reduces inflammation and the accumulation of fat. There have been reports of gene responses to bilirubin, which was mostly attributed to its antioxidant function. Using RNA sequencing, we found that biliverdin, which is rapidly reduced to bilirubin, induced transcriptome responses in human HepG2 hepatocytes in a peroxisome proliferator-activated receptor (PPAR)-α-dependent fashion (398 genes with >2-fold change; false discovery rate P < 0.05). For comparison, a much narrower set of genes demonstrated differential expression when PPAR-α was suppressed via lentiviral shRNA knockdown (23 genes). Gene set enrichment analysis revealed the bilirubin-PPAR-α transcriptome mediates pathways for oxidation-reduction processes, mitochondrial function, response to nutrients, fatty acid oxidation, and lipid homeostasis. Together, these findings suggest that transcriptome responses from the generation of bilirubin are mostly PPAR-α dependent, and its antioxidant function regulates a smaller set of genes.
Collapse
Affiliation(s)
- Darren M Gordon
- Center for Hypertension and Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine , Toledo, Ohio
| | - Thomas M Blomquist
- Department of Pathology, University of Toledo College of Medicine , Toledo, Ohio
| | - Scott A Miruzzi
- Department of Neuroscience, University of Toledo College of Medicine , Toledo, Ohio
| | - Robert McCullumsmith
- Department of Neuroscience, University of Toledo College of Medicine , Toledo, Ohio
| | - David E Stec
- Department of Physiology & Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center , Jackson, Mississippi
| | - Terry D Hinds
- Center for Hypertension and Personalized Medicine, Department of Physiology & Pharmacology, University of Toledo College of Medicine , Toledo, Ohio
| |
Collapse
|
81
|
Xu C, Dong M, Deng Y, Zhang L, Deng F, Zhou J, Yuan Z. Relation of Direct, Indirect, and Total bilirubin to Adverse Long-term Outcomes Among Patients With Acute Coronary Syndrome. Am J Cardiol 2019; 123:1244-1248. [PMID: 30711248 DOI: 10.1016/j.amjcard.2019.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 02/06/2023]
Abstract
Bilirubin is known as an antioxidant. However, there have been controversies over whether bilirubin is protective against cardiovascular disease or not. In addition, no study has examined the association between subtypes of total bilirubin (direct bilirubin [DB] and indirect bilirubin [IDB]) and long-term outcomes of acute coronary syndrome (ACS) patients. We included 533 consecutive patients with ACS. All the patients were followed up for the composite end point of cardiac death, revascularization, and acute heart failure. At a median follow-up of 2.4 years, Kaplan-Meier curve demonstrated that higher serum DB levels were significantly associated with major adverse cardiac events (MACE) (p <0.05). However, total bilirubin (TB) and IDB were not associated with MACE by Kaplan-Meier analysis. Cox analysis showed that high TB and DB were associated with increased risk of MACE in ACS even after adjustment of cardiovascular risk factors. The receiver operating characteristic curve illustrated that DB had a predictive value of MACE in ACS. In conclusion, we firstly reported that high TB and DB but not IDB were associated with increased risk of MACE in Chinese ACS, and the prognostic value of DB was superior to that of TB or IDB.
Collapse
|
82
|
Cimini FA, Arena A, Barchetta I, Tramutola A, Ceccarelli V, Lanzillotta C, Fontana M, Bertoccini L, Leonetti F, Capoccia D, Silecchia G, Di Cristofano C, Chiappetta C, Di Domenico F, Baroni MG, Perluigi M, Cavallo MG, Barone E. Reduced biliverdin reductase-A levels are associated with early alterations of insulin signaling in obesity. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1490-1501. [PMID: 30826467 DOI: 10.1016/j.bbadis.2019.02.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/11/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022]
Abstract
Biliverdin reductase-A (BVR-A) is a serine/threonine/tyrosine kinase involved in the regulation of insulin signaling. In vitro studies have demonstrated that BVR-A is a substrate of the insulin receptor and regulates IRS1 by avoiding its aberrant activation, and in animal model of obesity the loss of hepatic BVR-A has been associated with glucose/insulin alterations and fatty liver disease. However, no studies exist in humans. Here, we evaluated BVR-A expression levels and activation in peripheral blood mononuclear cells (PBMC) from obese subjects and matched lean controls and we investigated the related molecular alterations of the insulin along with clinical correlates. We showed that BVR-A levels are significantly reduced in obese subjects and associated with a hyper-activation of the IR/IRS1/Akt/GSK-3β/AS160/GLUT4 pathway. Low BVR-A levels also associate with the presence of obesity, metabolic syndrome, NASH and visceral adipose tissue inflammation. These data suggest that the reduction of BVR-A may be responsible for early alterations of the insulin signaling pathway in obesity and in this context may represent a novel molecular target to be investigated for the comprehension of the process of insulin resistance development in obesity.
Collapse
Affiliation(s)
- Flavia Agata Cimini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Arena
- Department of Biochemical Sciences "A. Rossi-Fanelli" Sapienza University of Rome, Rome, Italy
| | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi-Fanelli" Sapienza University of Rome, Rome, Italy
| | | | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli" Sapienza University of Rome, Rome, Italy
| | - Mario Fontana
- Department of Biochemical Sciences "A. Rossi-Fanelli" Sapienza University of Rome, Rome, Italy
| | - Laura Bertoccini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Frida Leonetti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Danila Capoccia
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Gianfranco Silecchia
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Rome, Italy
| | - Claudio Di Cristofano
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Rome, Italy
| | - Caterina Chiappetta
- Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli" Sapienza University of Rome, Rome, Italy
| | | | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli" Sapienza University of Rome, Rome, Italy
| | | | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli" Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
83
|
Coltell O, Asensio EM, Sorlí JV, Barragán R, Fernández-Carrión R, Portolés O, Ortega-Azorín C, Martínez-LaCruz R, González JI, Zanón-Moreno V, Gimenez-Alba I, Fitó M, Ros E, Ordovas JM, Corella D. Genome-Wide Association Study (GWAS) on Bilirubin Concentrations in Subjects with Metabolic Syndrome: Sex-Specific GWAS Analysis and Gene-Diet Interactions in a Mediterranean Population. Nutrients 2019; 11:nu11010090. [PMID: 30621171 PMCID: PMC6356696 DOI: 10.3390/nu11010090] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/27/2018] [Accepted: 12/27/2018] [Indexed: 01/30/2023] Open
Abstract
Although, for decades, increased serum bilirubin concentrations were considered a threatening sign of underlying liver disease and had been associated with neonatal jaundice, data from recent years show that bilirubin is a powerful antioxidant and suggest that slightly increased serum bilirubin concentrations are protective against oxidative stress-related diseases, such as cardiovascular diseases. Therefore, a better understanding of the gene-diet interactions in determining serum bilirubin concentrations is needed. None of the previous genome-wide association studies (GWAS) on bilirubin concentrations has been stratified by sex. Therefore, considering the increasing interest in incorporating the gender perspective into nutritional genomics, our main aim was to carry out a GWAS on total serum bilirubin concentrations in a Mediterranean population with metabolic syndrome, stratified by sex. Our secondary aim was to explore, as a pilot study, the presence of gene-diet interactions at the GWAS level. We included 430 participants (188 men and 242 women, aged 55–75 years, and with metabolic syndrome) in the PREDIMED Plus-Valencia study. Global and sex-specific GWAS were undertaken to analyze associations and gene-diet interaction on total serum bilirubin. Adherence (low and high) to the Mediterranean diet (MedDiet) was analyzed as the dietary modulator. In the GWAS, we detected more than 55 SNPs associated with serum bilirubin at p < 5 × 10−8 (GWAS level). The top-ranked were four SNPs (rs4148325 (p = 9.25 × 10−24), rs4148324 (p = 9.48 × 10−24), rs6742078 (p = 1.29 × 10−23), rs887829 (p = 1.39 × 10−23), and the rs4148324 (p = 9.48 × 10−24)) in the UGT1A1 (UDP glucuronosyltransferase family 1 member A1) gene, which replicated previous findings revealing the UGT1A1 as the major locus. In the sex-specific GWAS, the top-ranked SNPs at the GWAS level were similar in men and women (the lead SNP was the rs4148324-UGT1A1 in both men (p = 4.77 × 10−11) and women (p = 2.15 × 10−14), which shows homogeneous genetic results for the major locus. There was more sex-specific heterogeneity for other minor genes associated at the suggestive level of GWAS significance (p < 1 × 10−5). We did not detect any gene-MedDiet interaction at p < 1 × 10−5 for the major genetic locus, but we detected some gene-MedDiet interactions with other genes at p < 1 × 10−5, and even at the GWAS level for the IL17B gene (p = 3.14 × 10−8). These interaction results, however, should be interpreted with caution due to our small sample size. In conclusion, our study provides new data, with a gender perspective, on genes associated with total serum bilirubin concentrations in men and women, and suggests possible additional modulations by adherence to MedDiet.
Collapse
Affiliation(s)
- Oscar Coltell
- Department of Computer Languages and Systems, Universitat Jaume I, 12071 Castellón, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Eva M Asensio
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain.
| | - José V Sorlí
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain.
| | - Rocio Barragán
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain.
| | - Rebeca Fernández-Carrión
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain.
| | - Olga Portolés
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain.
| | - Carolina Ortega-Azorín
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain.
| | - Raul Martínez-LaCruz
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain.
| | - José I González
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain.
| | - Vicente Zanón-Moreno
- Area of Health Sciences, Valencian International University, 46002 Valencia, Spain.
- Red Temática de Investigación Cooperativa OftaRed, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Ophthalmology Research Unit "Santiago Grisolia", Dr. Peset University Hospital, 46017 Valencia, Spain.
| | - Ignacio Gimenez-Alba
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain.
| | - Montserrat Fitó
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Instituto Hospital del Mar de Investigaciones Médicas, 08003 Barcelona, Spain.
| | - Emilio Ros
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Lipid Clinic, Endocrinology and Nutrition Service, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain.
| | - Jose M Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA.
- Department of Cardiovascular Epidemiology and Population Genetics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
- IMDEA Alimentación, 28049 Madrid, Spain.
| | - Dolores Corella
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain.
| |
Collapse
|
84
|
Tsai MT, Tarng DC. Beyond a Measure of Liver Function-Bilirubin Acts as a Potential Cardiovascular Protector in Chronic Kidney Disease Patients. Int J Mol Sci 2018; 20:ijms20010117. [PMID: 30597982 PMCID: PMC6337523 DOI: 10.3390/ijms20010117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023] Open
Abstract
Bilirubin is a well-known neurotoxin in newborn infants; however, current evidence has shown that a higher serum bilirubin concentration in physiological ranges is associated with a lower risk for the development and progression of both chronic kidney disease (CKD) and cardiovascular disease (CVD) in adults. The protective mechanisms of bilirubin in CVD, CKD, and associated mortality may be ascribed to its antioxidant and anti-inflammatory properties. Bilirubin further improves insulin sensitivity, reduces low-density lipoprotein cholesterol levels and inhibits platelet activation in at-risk individuals. These effects are expected to maintain normal vascular homeostasis and thus reduce the incidence of CKD and the risks of cardiovascular complications and death. In this review, we highlight the recent advances in the biological actions of bilirubin in the pathogenesis of CVD and CKD progression, and further propose that targeting bilirubin metabolism could be a potential approach to ameliorate morbidity and mortality in CKD patients.
Collapse
Affiliation(s)
- Ming-Tsun Tsai
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11217, Taiwan.
| | - Der-Cherng Tarng
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11217, Taiwan.
- Department and Institute of Physiology, National Yang-Ming University, Taipei 11217, Taiwan.
| |
Collapse
|
85
|
Dominiczak AF, Kuo D, Bhalla V, Granger JP, Griffin KA. Celebrating 40 Years of Accomplishments. Hypertension 2018; 73:3-6. [PMID: 30571572 DOI: 10.1161/hypertensionaha.118.12252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Anna F Dominiczak
- From the Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom (A.F.D.)
| | - Denise Kuo
- American Heart Association, Dallas, TX (D.K.)
| | - Vivek Bhalla
- Department of Medicine, Division of Nephrology, Stanford University, Palo Alto, CA (V.B.)
| | - Joey P Granger
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS (J.P.G.)
| | - Karen A Griffin
- Loyola University Medical Center, Maywood, IL (K.A.G.).,Edward Hines, Jr. VA, Hines, IL (K.A.G.)
| |
Collapse
|