51
|
Dahlén AD, Schofield A, Schiöth HB, Brooks SJ. Subliminal Emotional Faces Elicit Predominantly Right-Lateralized Amygdala Activation: A Systematic Meta-Analysis of fMRI Studies. Front Neurosci 2022; 16:868366. [PMID: 35924231 PMCID: PMC9339677 DOI: 10.3389/fnins.2022.868366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/20/2022] [Indexed: 12/03/2022] Open
Abstract
Prior research suggests that conscious face processing occurs preferentially in right hemisphere occipito-parietal regions. However, less is known about brain regions associated with non-conscious processing of faces, and whether a right-hemispheric dominance persists in line with specific affective responses. We aim to review the neural responses systematically, quantitatively, and qualitatively underlying subliminal face processing. PubMed was searched for Functional Magnetic Resonance Imaging (fMRI) publications assessing subliminal emotional face stimuli up to March 2022. Activation Likelihood Estimation (ALE) meta-analyses and narrative reviews were conducted on all studies that met ALE requirements. Risk of bias was assessed using the AXIS tool. In a meta-analysis of all 22 eligible studies (merging clinical and non-clinical populations, whole brain and region of interest analyses), bilateral amygdala activation was reported in the left (x = −19.2, y = 1.5, z = −17.1) in 59% of studies, and in the right (x = 24.4, y = −1.7, z = −17.4) in 68% of studies. In a second meta-analysis of non-clinical participants only (n = 18), bilateral amygdala was again reported in the left (x = −18, y = 3.9, z = −18.4) and right (x = 22.8, y = −0.9, z = −17.4) in 56% of studies for both clusters. In a final meta-analysis of whole-brain studies only (n=14), bilateral amygdala was also reported in the left (x = −20.2, y = 2.9, z = −17.2) in 64% of studies, and right (x = 24.2, y = −0.7, z = −17.8) in 71% of studies. The findings suggest that non-consciously detected emotional faces may influence amygdala activation, especially right-lateralized (a higher percentage of convergence in studies), which are integral for pre-conscious affect and long-term memory processing.
Collapse
Affiliation(s)
- Amelia D. Dahlén
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Aphra Schofield
- Faculty of Health, School of Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Helgi B. Schiöth
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Samantha J. Brooks
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Faculty of Health, School of Psychology, Liverpool John Moores University, Liverpool, United Kingdom
- Department of Psychology, School of Human and Community Development, University of Witwatersrand, Johannesburg, South Africa
- *Correspondence: Samantha J. Brooks
| |
Collapse
|
52
|
Lim L, Khor CC. Examining the common and specific grey matter abnormalities in childhood maltreatment and peer victimisation. BJPsych Open 2022; 8:e132. [PMID: 35817782 PMCID: PMC9301772 DOI: 10.1192/bjo.2022.531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Early-life interpersonal stress, particularly childhood maltreatment, is associated with neurobiological abnormalities. However, few studies have investigated the neural effects of peer victimisation. AIMS This study examines common and specific associations between childhood maltreatment, peer victimisation and brain structural alterations in youths. METHOD Grey matter volume (GMV) and cortical thickness data were collected from 105 age- and gender-matched youths (age range: 17-21 years). Region-of-interest and whole-brain analyses were conducted. RESULTS For the region-of-interest analyses, the childhood maltreatment group had smaller GMV than controls in left inferior frontal gyrus, bilateral anterior insula, postcentral and lingual regions, which were associated with greater emotional abuse, along with smaller insular GMV than the peer victimisation group, who had smaller left lingual and postcentral GMV than controls. At the whole-brain level, both childhood maltreatment and peer victimisation groups had smaller GMV than controls in a cluster comprising left post/precentral, inferior frontal gyrus, insula, superior parietal and supramarginal gyri. The peer victimisation group alone had increased cortical thickness in a cluster comprising left superior frontal, anterior cingulate and medial orbitofrontal gyri, which was related to greater cyberbullying. CONCLUSIONS Early-life interpersonal stress is associated with common structural alterations of the inferior frontal-limbic, sensory and lingual regions involved in cognitive control, emotion and sensory processing. The findings of childhood-maltreatment-related reduced anterior insular GMV and peer-victimisation-related increased cortical thickness in the left medial prefrontal-anterior cingulate cluster underscore the distinctive negative effects of childhood maltreatment and peer victimisation, and suggest that peer victimisation, particularly cyberbullying, could be as detrimental as childhood maltreatment.
Collapse
Affiliation(s)
- Lena Lim
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore; and Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Chiea Chuen Khor
- The Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
53
|
Revers H, Van Deun K, Strijbosch W, Vroomen J, Bastiaansen M. Decoding the neural responses to experiencing disgust and sadness. Brain Res 2022; 1793:148034. [DOI: 10.1016/j.brainres.2022.148034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/20/2022] [Accepted: 07/26/2022] [Indexed: 11/02/2022]
|
54
|
Qiu Z, Lei X, Becker SI, Pegna AJ. Neural activities during the Processing of unattended and unseen emotional faces: a voxel-wise Meta-analysis. Brain Imaging Behav 2022; 16:2426-2443. [PMID: 35739373 PMCID: PMC9581832 DOI: 10.1007/s11682-022-00697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 11/27/2022]
Abstract
Voxel-wise meta-analyses of task-evoked regional activity were conducted for healthy individuals during the unconscious processing of emotional and neutral faces with an aim to examine whether and how different experimental paradigms influenced brain activation patterns. Studies were categorized into sensory and attentional unawareness paradigms. Thirty-four fMRI studies including 883 healthy participants were identified. Across experimental paradigms, unaware emotional faces elicited stronger activation of the limbic system, striatum, inferior frontal gyrus, insula and the temporal lobe, compared to unaware neutral faces. Crucially, in attentional unawareness paradigms, unattended emotional faces elicited a right-lateralized increased activation (i.e., right amygdala, right temporal pole), suggesting a right hemisphere dominance for processing emotional faces during inattention. By contrast, in sensory unawareness paradigms, unseen emotional faces elicited increased activation of the left striatum, the left amygdala and the right middle temporal gyrus. Additionally, across paradigms, unconsciously processed positive emotions were found associated with more activation in temporal and parietal cortices whereas unconsciously processed negative emotions elicited stronger activation in subcortical regions, compared to neutral faces.
Collapse
Affiliation(s)
- Zeguo Qiu
- School of Psychology, The University of Queensland, Brisbane, 4072, Australia.
| | - Xue Lei
- School of Psychology, The University of Queensland, Brisbane, 4072, Australia
| | - Stefanie I Becker
- School of Psychology, The University of Queensland, Brisbane, 4072, Australia
| | - Alan J Pegna
- School of Psychology, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
55
|
Wong JJ, Wong NML, Chang DHF, Qi D, Chen L, Lee TMC. Amygdala-pons connectivity is hyperactive and associated with symptom severity in depression. Commun Biol 2022; 5:574. [PMID: 35688901 PMCID: PMC9187701 DOI: 10.1038/s42003-022-03463-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
Knowledge of the neural underpinnings of processing sad information and how it differs in people with depression could elucidate the neural mechanisms perpetuating sad mood in depression. Here, we conduct a 7 T fMRI study to delineate the neural correlates involved only in processing sad information, including pons, amygdala, and corticolimbic regions. We then conduct a 3 T fMRI study to examine the resting-state connectivity in another sample of people with and without depression. Only clinically depressed people demonstrate hyperactive amygdala–pons connectivity. Furthermore, this connectivity is related to depression symptom severity and is a significant indicator of depression. We speculate that visual sad information reinforces depressed mood and stimulates the pons, strengthening the amygdala–pons connectivity. The relationship between this connectivity and depressive symptom severity suggests that guiding one’s visual attention and processing of sad information may benefit mood regulation. A study on patients with major depressive disorder (MDD) suggests that a specific sadness-processing connection between the amygdala and pons appears to be dysfunctional among people with MDD and associated with severity of depression.
Collapse
Affiliation(s)
- Jing Jun Wong
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.,Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China
| | - Nichol M L Wong
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.,Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Dorita H F Chang
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.,Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Di Qi
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.,Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China
| | - Lin Chen
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China. .,Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China. .,Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Hong Kong, China.
| |
Collapse
|
56
|
Posterior-prefrontal and medial orbitofrontal regions play crucial roles in happiness and sadness recognition. Neuroimage Clin 2022; 35:103072. [PMID: 35689975 PMCID: PMC9192961 DOI: 10.1016/j.nicl.2022.103072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022]
Abstract
Brain areas underlying trade-off relations between emotions were identified. Damage to the PPF area reduces accuracy of happiness recognition. Damage to the PPF increases accuracy of sadness recognition. A similar tendency was observed in orbitofrontal regions for sadness recognition. Only a deficit in sadness, but not happiness, persisted in the chronic phase.
The core brain regions responsible for basic human emotions are not yet fully understood. We investigated the key areas responsible for emotion recognition of facial expressions of happiness and sadness using data obtained from patients who underwent local brain resection. A total of 44 patients with right cerebral hemispheric brain tumors and 33 healthy volunteers were enrolled and subjected to a facial expression recognition test. Voxel-based lesion-symptom mapping was performed to investigate the relationship between the accuracy of emotion recognition and the resected regions. Consequently, trade-off relationships were discovered: the posterior-prefrontal region was related to a low score of happiness recognition and a high score of sadness recognition (disorder-of-happiness group), whereas the medial orbitofrontal region was related to a low score of sadness recognition and a high score of happiness recognition (disorder-of-sadness group). The emotion recognition score in both the happiness and sadness disorder groups was significantly lower than that in the control group (p = 0.0009 and p = 0.021, respectively). Interestingly, the deficit in happiness recognition was temporary, whereas the deficit in sadness recognition persisted during the chronic phase. Using graph theoretical analysis, we identified structural connectivity between the posterior-prefrontal and medial orbitofrontal regions. When either of these regions was damaged, the tract volume connecting them was significantly reduced (p = 0.013). These results indicate that the posterior-prefrontal and medial orbitofrontal regions may be crucial for maintaining a balance between happiness and sadness recognition in humans. Investigating the clinical impact of certain area resections using lesion studies combined with connectivity analysis is a useful neuroimaging method for understanding neural networks.
Collapse
|
57
|
Arjun, Rajpoot AS, Panicker MR. Subject independent emotion recognition using EEG signals employing attention driven neural networks. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
58
|
de Cates AN, Martens MAG, Wright LC, Gould van Praag CD, Capitão LP, Gibson D, Cowen PJ, Harmer CJ, Murphy SE. The Effect of the 5-HT 4 Agonist, Prucalopride, on a Functional Magnetic Resonance Imaging Faces Task in the Healthy Human Brain. Front Psychiatry 2022; 13:859123. [PMID: 35492722 PMCID: PMC9039209 DOI: 10.3389/fpsyt.2022.859123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Depression is a common and often recurrent illness with significant negative impact on a global scale. Current antidepressants are ineffective for up to one third of people with depression, many of whom experience persistent symptomatology. 5-HT4 receptor agonists show promise in both animal models of depression and cognitive deficit. We therefore studied the effect of the 5-HT4 partial agonist prucalopride (1 mg daily for 6 days) on the neural processing of emotional faces in 43 healthy participants using a randomised placebo-controlled design. Participants receiving prucalopride were more accurate at identifying the gender of emotional faces. In whole brain analyses, prucalopride was also associated with reduced activation in a network of regions corresponding to the default mode network. However, there was no evidence that prucalopride treatment produced a positive bias in the neural processing of emotional faces. Our study provides further support for a pro-cognitive effect of 5-HT4 receptor agonism in humans. While our current behavioural and neural investigations do not suggest an antidepressant-like profile of prucalopride in humans, it will be important to study a wider dose range in future studies.
Collapse
Affiliation(s)
- Angharad N. de Cates
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
- Oxford Health National Health Service (NHS) Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Marieke A. G. Martens
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
- Oxford Health National Health Service (NHS) Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Lucy C. Wright
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
- Oxford Health National Health Service (NHS) Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Cassandra D. Gould van Praag
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Liliana P. Capitão
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
- Oxford Health National Health Service (NHS) Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Daisy Gibson
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
- Oxford Health National Health Service (NHS) Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Philip J. Cowen
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
- Oxford Health National Health Service (NHS) Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| | - Catherine J. Harmer
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
- Oxford Health National Health Service (NHS) Foundation Trust, Warneford Hospital, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Susannah E. Murphy
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
- Oxford Health National Health Service (NHS) Foundation Trust, Warneford Hospital, Oxford, United Kingdom
| |
Collapse
|
59
|
Gan X, Zhou X, Li J, Jiao G, Jiang X, Biswal B, Yao S, Klugah-Brown B, Becker B. Common and distinct neurofunctional representations of core and social disgust in the brain: Coordinate-based and network meta-analyses. Neurosci Biobehav Rev 2022; 135:104553. [PMID: 35122784 DOI: 10.1016/j.neubiorev.2022.104553] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/02/2022] [Accepted: 01/30/2022] [Indexed: 01/19/2023]
Abstract
Disgust represents a multifaceted defensive-avoidance response. On the behavioral level, the response includes withdrawal and a disgust-specific facial expression. While both serve the avoidance of pathogens, the latter additionally transmits social-communicative information. Given that common and distinct brain representation of the primary defensive-avoidance response (core disgust) and encoding of the social-communicative signal (social disgust) remain debated, we employed neuroimaging meta-analyses to (1) determine brain systems generally engaged in disgust processing, and (2) segregate common and distinct brain systems for core and social disgust. Disgust processing, in general, engaged a bilateral network encompassing the insula, amygdala, occipital and prefrontal regions. Core disgust evoked stronger reactivity in left-lateralized threat detection and defensive response network including amygdala, occipital and frontal regions, while social disgust engaged a right-lateralized superior temporal-frontal network involved in social cognition. Anterior insula, inferior frontal and fusiform regions were commonly engaged during core and social disgust, suggesting a shared neurofunctional basis. We demonstrate a common and distinct neural basis of primary disgust responses and encoding of associated social-communicative signals.
Collapse
Affiliation(s)
- Xianyang Gan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Xinqi Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Jialin Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China; Max Planck School of Cognition, Leipzig 04103, Germany
| | - Guojuan Jiao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Xi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China; Department of Biomedical Engineering, New Jersey Institute of Technology, NJ 7102, United States
| | - Shuxia Yao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Benjamin Klugah-Brown
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.
| |
Collapse
|
60
|
Lee KM, Lee S, Satpute AB. Sinful pleasures and pious woes? Using fMRI to examine evaluative and hedonic emotion knowledge. Soc Cogn Affect Neurosci 2022; 17:986-994. [PMID: 35348768 PMCID: PMC9629474 DOI: 10.1093/scan/nsac024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 02/24/2022] [Accepted: 03/22/2022] [Indexed: 01/12/2023] Open
Abstract
Traditionally, lust and pride have been considered pleasurable, yet sinful in the West. Conversely, guilt is often considered aversive, yet valuable. These emotions illustrate how evaluations about specific emotions and beliefs about their hedonic properties may often diverge. Evaluations about specific emotions may shape important aspects of emotional life (e.g. in emotion regulation, emotion experience and acquisition of emotion concepts). Yet these evaluations are often understudied in affective neuroscience. Prior work in emotion regulation, affective experience, evaluation/attitudes and decision-making point to anterior prefrontal areas as candidates for supporting evaluative emotion knowledge. Thus, we examined the brain areas associated with evaluative and hedonic emotion knowledge, with a focus on the anterior prefrontal cortex. Participants (N = 25) made evaluative and hedonic ratings about emotion knowledge during functional magnetic resonance imaging (fMRI). We found that greater activity in the medial prefrontal cortex (mPFC), ventromedial PFC (vmPFC) and precuneus was associated with an evaluative (vs hedonic) focus on emotion knowledge. Our results suggest that the mPFC and vmPFC, in particular, may play a role in evaluating discrete emotions.
Collapse
Affiliation(s)
- Kent M Lee
- Correspondence should be addressed to Kent M. Lee, Department of Psychology, Northeastern University, 125 Nightingale Hall, Boston, MA, USA. E-mail:
| | - SuhJin Lee
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ajay B Satpute
- Department of Psychology, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
61
|
Bush KA, Kilts CD. A test of affect processing bias in response to affect regulation. PLoS One 2022; 17:e0264758. [PMID: 35239737 PMCID: PMC8893671 DOI: 10.1371/journal.pone.0264758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/16/2022] [Indexed: 11/18/2022] Open
Abstract
In this study we merged methods from machine learning and human neuroimaging to test the role of self-induced affect processing states in biasing the affect processing of subsequent image stimuli. To test this relationship we developed a novel paradigm in which (n = 40) healthy adult participants observed affective neural decodings of their real-time functional magnetic resonance image (rtfMRI) responses as feedback to guide explicit regulation of their brain (and corollary affect processing) state towards a positive valence goal state. By this method individual differences in affect regulation ability were controlled. Attaining this brain-affect goal state triggered the presentation of pseudo-randomly selected affectively congruent (positive valence) or incongruent (negative valence) image stimuli drawn from the International Affective Picture Set. Separately, subjects passively viewed randomly triggered positively and negatively valent image stimuli during fMRI acquisition. Multivariate neural decodings of the affect processing induced by these stimuli were modeled using the task trial type (state- versus randomly-triggered) as the fixed-effect of a general linear mixed-effects model. Random effects were modeled subject-wise. We found that self-induction of a positive valence brain state significantly positively biased valence processing of subsequent stimuli. As a manipulation check, we validated affect processing state induction achieved by the image stimuli using independent psychophysiological response measures of hedonic valence and autonomic arousal. We also validated the predictive fidelity of the trained neural decoding models using brain states induced by an out-of-sample set of image stimuli. Beyond its contribution to our understanding of the neural mechanisms that bias affect processing, this work demonstrated the viability of novel experimental paradigms triggered by pre-defined cognitive states. This line of individual differences research potentially provides neuroimaging scientists with a valuable tool for exploring the roles and identities of intrinsic cognitive processing mechanisms that shape our perceptual processing of sensory stimuli.
Collapse
Affiliation(s)
- Keith A. Bush
- Brain Imaging Research Center, Department of Psychiatry, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Clinton D. Kilts
- Brain Imaging Research Center, Department of Psychiatry, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| |
Collapse
|
62
|
Palomero-Gallagher N, Amunts K. A short review on emotion processing: a lateralized network of neuronal networks. Brain Struct Funct 2022; 227:673-684. [PMID: 34216271 PMCID: PMC8844151 DOI: 10.1007/s00429-021-02331-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023]
Abstract
Emotions are valenced mental responses and associated physiological reactions that occur spontaneously and automatically in response to internal or external stimuli, and can influence our behavior, and can themselves be modulated to a certain degree voluntarily or by external stimuli. They are subserved by large-scale integrated neuronal networks with epicenters in the amygdala and the hippocampus, and which overlap in the anterior cingulate cortex. Although emotion processing is accepted as being lateralized, the specific role of each hemisphere remains an issue of controversy, and two major hypotheses have been proposed. In the right-hemispheric dominance hypothesis, all emotions are thought to be processed in the right hemisphere, independent of their valence or of the emotional feeling being processed. In the valence lateralization hypothesis, the left is thought to be dominant for the processing of positively valenced stimuli, or of stimuli inducing approach behaviors, whereas negatively valenced stimuli, or stimuli inducing withdrawal behaviors, would be processed in the right hemisphere. More recent research points at the existence of multiple interrelated networks, each associated with the processing of a specific component of emotion generation, i.e., its generation, perception, and regulation. It has thus been proposed to move from hypotheses supporting an overall hemispheric specialization for emotion processing toward dynamic models incorporating multiple interrelated networks which do not necessarily share the same lateralization patterns.
Collapse
Affiliation(s)
- Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany.
- C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany.
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
- C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| |
Collapse
|
63
|
Wang Z, Ji Y, Fu Y, Liu F, Du X, Liu H, Zhu W, Xue K, Qin W, Zhang Q. Gene expression associated with human brain activations in facial expression recognition. Brain Imaging Behav 2022; 16:1657-1670. [PMID: 35212890 DOI: 10.1007/s11682-022-00633-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 11/30/2022]
Abstract
Previous studies identified some genetic loci of emotion, but few focused on human emotion-related gene expression. In this study, the facial expression recognition (FER) task-based high-resolution fMRI data of 203 subjects in the Human Connectome Project (HCP) and expression data of the six healthy human postmortem brain tissues in the Allen Human Brain Atlas (AHBA) were used to conduct a transcriptome-neuroimaging spatial association analysis. Finally, 371 genes were identified to be significantly associated with FER-related brain activations. Enrichment analyses revealed that FER-related genes were mainly expressed in the brain, especially neurons, and might be related to cell junction organization, synaptic functions, and nervous system development regulation, indicating that FER was a complex polygenetic biological process involving multiple pathways. Moreover, these genes exhibited higher enrichment for psychiatric diseases with heavy emotion impairments. This study provided new insight into understanding the FER-related biological mechanisms and might be helpful to explore treatment methods for emotion-related psychiatric disorders.
Collapse
Affiliation(s)
- Zirui Wang
- Department of Medical imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Yuan Ji
- Department of Medical imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Yumeng Fu
- Department of Medical imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Feng Liu
- Department of Medical imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Xin Du
- Department of Medical imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Huaigui Liu
- Department of Medical imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Wenshuang Zhu
- Department of Medical imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Kaizhong Xue
- Department of Medical imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Wen Qin
- Department of Medical imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Quan Zhang
- Department of Medical imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
64
|
Pugh ZH, Choo S, Leshin JC, Lindquist KA, Nam CS. Emotion depends on context, culture and their interaction: evidence from effective connectivity. Soc Cogn Affect Neurosci 2022; 17:206-217. [PMID: 34282842 PMCID: PMC8847905 DOI: 10.1093/scan/nsab092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 06/21/2021] [Accepted: 07/19/2021] [Indexed: 11/12/2022] Open
Abstract
Situated models of emotion hypothesize that emotions are optimized for the context at hand, but most neuroimaging approaches ignore context. For the first time, we applied Granger causality (GC) analysis to determine how an emotion is affected by a person's cultural background and situation. Electroencephalographic recordings were obtained from mainland Chinese (CHN) and US participants as they viewed and rated fearful and neutral images displaying either social or non-social contexts. Independent component analysis and GC analysis were applied to determine the epoch of peak effect for each condition and to identify sources and sinks among brain regions of interest. We found that source-sink couplings differed across culture, situation and culture × situation. Mainland CHN participants alone showed preference for an early-onset source-sink pairing with the supramarginal gyrus as a causal source, suggesting that, relative to US participants, CHN participants more strongly prioritized a scene's social aspects in their response to fearful scenes. Our findings suggest that the neural representation of fear indeed varies according to both culture and situation and their interaction in ways that are consistent with norms instilled by cultural background.
Collapse
Affiliation(s)
- Zachary H Pugh
- Department of Psychology, North Carolina State University, Raleigh, NC 27695, USA
| | - Sanghyun Choo
- Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Joseph C Leshin
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristen A Lindquist
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chang S Nam
- Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
65
|
At the Intersection of Anger, Chronic Pain, and the Brain: A Mini-Review. Neurosci Biobehav Rev 2022; 135:104558. [PMID: 35122780 DOI: 10.1016/j.neubiorev.2022.104558] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 01/30/2023]
Abstract
Chronic pain remains one of the most persistent healthcare challenges in the world. To advance pain treatment, experts have recently introduced research-driven subtypes of chronic pain based on proposed underlying mechanisms. Nociplastic pain (e.g., nonspecific chronic low back or fibromyalgia) is one such subtype which may involve a greater etiologic role for brain plasticity, painful emotions induced by life stress and trauma, and unhealthy emotion regulation. In particular, correlational and behavioral data link anger and the ways anger is regulated with the presence and severity of nociplastic pain. Functional neuroimaging studies also suggest nociplastic pain and healthy anger regulation demonstrate inverse patterns of activity in the medial prefrontal cortex and amygdala; thus, improving anger regulation could normalize activity in these regions. In this Mini-Review, we summarize these findings and propose a unified, biobehavioral model called the Anger, Brain, and Nociplastic Pain (AB-NP) Model, which can be tested in future research and may advance pain care by informing new treatments that address anger, anger regulation, and brain plasticity for nociplastic pain.
Collapse
|
66
|
Wabnegger A, Schlintl C, Schienle A. The association between local brain structure and disgust propensity. Sci Rep 2022; 12:1327. [PMID: 35079079 PMCID: PMC8789785 DOI: 10.1038/s41598-022-05407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/05/2022] [Indexed: 12/01/2022] Open
Abstract
Research has discovered structural differences in the brains of people with different personality types. In the present voxel-based morphometry study we focused on the association between disgust propensity (DP: the temporally stable tendency to experience disgust across different situations) and grey matter volume (GMV) in regions of interest [insula, orbitofrontal cortex (OFC), basal ganglia]. We collected structural brain scans from 498 healthy individuals (352 females, 146 males; mean age = 27 years). Regression analyses were performed to test the association between three domains of DP (core, animal-reminder, contamination) and GMV. We observed negative correlations between animal-reminder DP and the volume of the insula, and contamination DP and OFC volume. Animal-reminder DP correlated positively with GMV in the basal ganglia (putamen). This study identified weak correlations between local brain volume and disgust propensity. The association between DP and insula volume concerned the posterior insula and was in the opposite of the expected direction. The findings of this study are inconsistent with the concept of the anterior insula as a region that specifically mediates DP.
Collapse
Affiliation(s)
- Albert Wabnegger
- Department of Clinical Psychology, University of Graz, Universitätsplatz 2/DG, 8010, Graz, Austria
| | - Carina Schlintl
- Department of Clinical Psychology, University of Graz, Universitätsplatz 2/DG, 8010, Graz, Austria
| | - Anne Schienle
- Department of Clinical Psychology, University of Graz, Universitätsplatz 2/DG, 8010, Graz, Austria. .,BioTechMed, Graz, Austria.
| |
Collapse
|
67
|
Riegel M, Wierzba M, Wypych M, Ritchey M, Jednoróg K, Grabowska A, Vuilleumier P, Marchewka A. Distinct medial-tempora lobe mechanisms of encoding and amygdala-mediated memory reinstatement for disgust and fear. Neuroimage 2022; 251:118889. [PMID: 35065268 DOI: 10.1016/j.neuroimage.2022.118889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022] Open
Abstract
Current models of episodic memory posit that retrieval involves the reenactment of encoding processes. Recent evidence has shown that this reinstatement process - indexed by subsequent encoding-retrieval similarity of brain activity patterns - is related to the activity in the hippocampus during encoding. However, we tend to re-experience emotional events in memory more richly than dull events. The role of amygdala - a critical hub of emotion processing - in reinstatement of emotional events was poorly understood. To investigate it, we leveraged a previously overlooked divergence in the role of amygdala in memory modulation by distinct emotions - disgust and fear. Here we used a novel paradigm in which participants encoded complex events (word pairs) and their memory was tested after 3 weeks, both phases during fMRI scanning. Using representational similarity analysis and univariate analyses, we show that the strength of amygdala activation during encoding was correlated with memory reinstatement of individual event representations in emotion-specific regions. Critically, amygdala modulated reinstatement more for disgust than fear. This was in line with other differences observed at the level of memory performance and neural mechanisms of encoding. Specifically, amygdala and perirhinal cortex were more involved during encoding of disgust-related events, whereas hippocampus and parahippocampal gyrus during encoding of fear-related events. Together, these findings shed a new light on the role of the amygdala and medial temporal lobe regions in encoding and reinstatement of specific emotional memories.
Collapse
Affiliation(s)
- Monika Riegel
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw 02-093, Poland; Department of Psychology, Columbia University, New York 10027, United States of America; Centre interfacultaire de gérontologie et d'études des vulnerabilities, University of Geneva, CH-Geneva 1211, Switzerland.
| | - Małgorzata Wierzba
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Marek Wypych
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Maureen Ritchey
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA 02467, United States of America
| | - Katarzyna Jednoróg
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Anna Grabowska
- SWPS University of Social Sciences and Humanities, Warsaw 03-815, Poland
| | - Patrik Vuilleumier
- Department of Neuroscience, University Medical Center, Geneva CH-1211, Switzerland; Swiss Center for Affective Sciences, University of Geneva, Campus Biotech, CH-Geneva 1211, Switzerland; Geneva Neuroscience Center, University of Geneva, Geneva CH-1211, Switzerland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw 02-093, Poland
| |
Collapse
|
68
|
Jaillard A, Zeffiro TA. Phylogeny of Neurological Disorders/Anatomy and Disorders of Basic Emotion in Stroke: In Clinical Neuroanatomy, Brain Structure and Function. ENCYCLOPEDIA OF BEHAVIORAL NEUROSCIENCE, 2ND EDITION 2022:251-259. [DOI: 10.1016/b978-0-12-819641-0.00070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
69
|
Lateralized deficits in arousal processing after insula lesions: Behavioral and autonomic evidence. Cortex 2022; 148:168-179. [DOI: 10.1016/j.cortex.2021.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
|
70
|
Chaudhary S, Zhornitsky S, Chao HH, van Dyck CH, Li CSR. Emotion Processing Dysfunction in Alzheimer's Disease: An Overview of Behavioral Findings, Systems Neural Correlates, and Underlying Neural Biology. Am J Alzheimers Dis Other Demen 2022; 37:15333175221082834. [PMID: 35357236 PMCID: PMC9212074 DOI: 10.1177/15333175221082834] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We described behavioral studies to highlight emotional processing deficits in Alzheimer's disease (AD). The findings suggest prominent deficit in recognizing negative emotions, pronounced effect of positive emotion on enhancing memory, and a critical role of cognitive deficits in manifesting emotional processing dysfunction in AD. We reviewed imaging studies to highlight morphometric and functional markers of hippocampal circuit dysfunction in emotional processing deficits. Despite amygdala reactivity to emotional stimuli, hippocampal dysfunction conduces to deficits in emotional memory. Finally, the reviewed studies implicating major neurotransmitter systems in anxiety and depression in AD supported altered cholinergic and noradrenergic signaling in AD emotional disorders. Overall, the studies showed altered emotions early in the course of illness and suggest the need of multimodal imaging for further investigations. Particularly, longitudinal studies with multiple behavioral paradigms translatable between preclinical and clinical models would provide data to elucidate the time course and underlying neurobiology of emotion processing dysfunction in AD.
Collapse
Affiliation(s)
- Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Herta H. Chao
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA,VA Connecticut Healthcare System, West Haven, CT, USA
| | - Christopher H. van Dyck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA,Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
71
|
Aryutova K, Paunova R, Kandilarova S, Stoyanova K, Maes MHJ, Stoyanov D. Differential aberrant connectivity of precuneus and anterior insula may underpin the diagnosis of schizophrenia and mood disorders. World J Psychiatry 2021; 11:1274-1287. [PMID: 35070777 PMCID: PMC8717032 DOI: 10.5498/wjp.v11.i12.1274] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/15/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Over the past decade, resting-state functional magnetic resonance imaging (rs-fMRI) has concentrated on brain networks such as the default mode network (DMN), the salience network (SN), and the central executive network (CEN), allowing for a better understanding of cognitive deficits observed in mental disorders, as well as other characteristic psychopathological phenomena such as thought and behavior disorganization. AIM To investigate differential patterns of effective connectivity across distributed brain networks involved in schizophrenia (SCH) and mood disorders. METHODS The sample comprised 58 patients with either paranoid syndrome in the context of SCH (n = 26) or depressive syndrome (Ds) (n = 32), in the context of major depressive disorder or bipolar disorder. The methods used include rs-fMRI and subsequent dynamic causal modeling to determine the direction and strength of connections to and from various nodes in the DMN, SN and CEN. RESULTS A significant excitatory connection from the dorsal anterior cingulate cortex to the anterior insula (aI) was observed in the SCH patient group, whereas inhibitory connections from the precuneus to the ventrolateral prefrontal cortex and from the aI to the precuneus were observed in the Ds group. CONCLUSION The results delineate specific patterns associated with SCH and Ds and offer a better explanation of the underlying mechanisms of these disorders, and inform differential diagnosis and precise treatment targeting.
Collapse
Affiliation(s)
- Katrin Aryutova
- Psychiatry and Medical Psychology, Medical University, Plovdiv 4002, Bulgaria
| | - Rositsa Paunova
- Research Institute, Medical University, Plovdiv 4002, Bulgaria
| | | | | | - Michael HJ Maes
- Research Institute, Medical University, Plovdiv 4002, Bulgaria
| | - Drozdstoy Stoyanov
- Psychiatry and Medical Psychology, Medical University, Plovdiv 4002, Bulgaria
| |
Collapse
|
72
|
The roller coaster of happiness: An investigation of interns' happiness variability, LMX, and job-seeking goals. JOURNAL OF VOCATIONAL BEHAVIOR 2021. [DOI: 10.1016/j.jvb.2021.103654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
73
|
Houf J. Faecal microbiota transplants: towards a healthy disgust scepticism. MEDICAL HUMANITIES 2021; 47:407-416. [PMID: 34509994 DOI: 10.1136/medhum-2020-012135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
This paper engages with the obstacle of disgust surrounding the use of faecal microbiota transplants (FMT). In discourse about the human microbiome and microbiota-based therapies (like FMT), disgust has become an unavoidable emotion for physicians, patients and caregivers interested in these therapies. Additionally, microbiota therapies and microbiomes are challenging our conception of an individual biological self. As these two discourses converge with FMT, it becomes necessary to understand how they are working together. To do this, this paper explores the way disgust functions in the formation of subjects. Scholarship about disgust can be categorised into two approaches: disgust as a deep wisdom or disgust scepticism. The former approach focuses on the physiological, embodied aspects of our disgust reactions as evidence of 'truth' in disgusting encounters, and the latter recognises the way disgust is culturally contingent and adapted for use in moral and social determinations of good and bad. However, both positions accept the use of disgust as a defence against 'toxins and diseases'. Yet, as this paper argues, we should take the sceptical approach further. The disgust sceptical approach, particularly as developed by Sarah Ahmed, does more than just challenge disgust's role in moral deliberations. It also demands sceptical reflection on disgust as a universal defence against 'toxins and diseases'. Much as disgust can be co-opted to support oppression, it too can be co-opted to reconstitute a false vision of human subjectivity-the coherent, contained and exceptional human subject situated above the natural world. The human microbiome, faecal therapeutics and being disgusted give us an opportunity to recognise ourselves as more-than-human subjects.
Collapse
Affiliation(s)
- Jessica Houf
- Communication and Media Studies, Louisiana Tech University, Ruston, LA 71272, USA
| |
Collapse
|
74
|
Khodadadifar T, Soltaninejad Z, Ebneabbasi A, Eickhoff CR, Sorg C, Van Eimeren T, Vogeley K, Zarei M, Eickhoff SB, Tahmasian M. In search of convergent regional brain abnormality in cognitive emotion regulation: A transdiagnostic neuroimaging meta-analysis. Hum Brain Mapp 2021; 43:1309-1325. [PMID: 34826162 PMCID: PMC8837597 DOI: 10.1002/hbm.25722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 01/28/2023] Open
Abstract
Ineffective use of adaptive cognitive strategies (e.g., reappraisal) to regulate emotional states is often reported in a wide variety of psychiatric disorders, suggesting a common characteristic across different diagnostic categories. However, the extent of shared neurobiological impairments is incompletely understood. This study, therefore, aimed to identify the transdiagnostic neural signature of disturbed reappraisal using the coordinate‐based meta‐analysis (CBMA) approach. Following the best‐practice guidelines for conducting neuroimaging meta‐analyses, we systematically searched PubMed, ScienceDirect, and Web of Science databases and tracked the references. Out of 1,608 identified publications, 32 whole‐brain neuroimaging studies were retrieved that compared brain activation in patients with psychiatric disorders and healthy controls during a reappraisal task. Then, the reported peak coordinates of group comparisons were extracted and several activation likelihood estimation (ALE) analyses were performed at three hierarchical levels to identify the potential spatial convergence: the global level (i.e., the pooled analysis and the analyses of increased/decreased activations), the experimental‐contrast level (i.e., the analyses of grouped data based on the regulation goal, stimulus valence, and instruction rule) and the disorder‐group level (i.e., the analyses across the experimental‐contrast level focused on increasing homogeneity of disorders). Surprisingly, none of our analyses provided significant convergent findings. This CBMA indicates a lack of transdiagnostic convergent regional abnormality related to reappraisal task, probably due to the complex nature of cognitive emotion regulation, heterogeneity of clinical populations, and/or experimental and statistical flexibility of individual studies.
Collapse
Affiliation(s)
- Tina Khodadadifar
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran
| | - Zahra Soltaninejad
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran.,Cognitive and Brain Science Institute, Shahid Beheshti University, Tehran, Iran
| | - Amir Ebneabbasi
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine, Structural and functional organization of the brain (INM-1), Research Center Jülich, Jülich, Germany
| | - Christian Sorg
- TUM-Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,Department of Neuroradiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Thilo Van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.,Department of Neurology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Kai Vogeley
- Department of Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany.,Cognitive Neuroscience (INM-3), Institute of Neuroscience and Medicine, Research Center Jülich, Jülich, Germany
| | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany.,Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Masoud Tahmasian
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran.,Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany.,Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
75
|
Leitão J, Burckhardt M, Vuilleumier P. Amygdala in Action: Functional Connectivity during Approach and Avoidance Behaviors. J Cogn Neurosci 2021; 34:729-747. [PMID: 34860249 DOI: 10.1162/jocn_a_01800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Motivation is an important feature of emotion. By driving approach to positive events and promoting avoidance of negative stimuli, motivation drives adaptive actions and goal pursuit. The amygdala has been associated with a variety of affective processes, particularly the appraisal of stimulus valence that is assumed to play a crucial role in the generation of approach and avoidance behaviors. Here, we measured amygdala functional connectivity patterns while participants played a video game manipulating goal conduciveness through the presence of good, neutral, or bad monsters. As expected, good versus bad monsters elicited opposing motivated behaviors, whereby good monsters induced more approach and bad monsters triggered more avoidance. These opposing directional behaviors were paralleled by increased connectivity between the amygdala and medial brain areas, such as the OFC and posterior cingulate, for good relative to bad, and between amygdala and caudate for bad relative to good monsters. Moreover, in both conditions, individual connectivity strength between the amygdala and medial prefrontal regions was positively correlated with brain scores from a latent component representing efficient goal pursuit, which was identified by a partial least square analysis determining the multivariate association between amygdala connectivity and behavioral motivation indices during gameplay. At the brain level, this latent component highlighted a widespread pattern of amygdala connectivity, including a dorsal frontoparietal network and motor areas. These results suggest that amygdala-medial prefrontal interactions captured the overall subjective relevance of ongoing events, which could consecutively drive the engagement of attentional, executive, and motor circuits necessary for implementing successful goal-pursuit, irrespective of approach or avoidance directions.
Collapse
|
76
|
Kamaleddin MA. Degeneracy in the nervous system: from neuronal excitability to neural coding. Bioessays 2021; 44:e2100148. [PMID: 34791666 DOI: 10.1002/bies.202100148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 02/04/2023]
Abstract
Degeneracy is ubiquitous across biological systems where structurally different elements can yield a similar outcome. Degeneracy is of particular interest in neuroscience too. On the one hand, degeneracy confers robustness to the nervous system and facilitates evolvability: Different elements provide a backup plan for the system in response to any perturbation or disturbance. On the other, a difficulty in the treatment of some neurological disorders such as chronic pain is explained in light of different elements all of which contribute to the pathological behavior of the system. Under these circumstances, targeting a specific element is ineffective because other elements can compensate for this modulation. Understanding degeneracy in the physiological context explains its beneficial role in the robustness of neural circuits. Likewise, understanding degeneracy in the pathological context opens new avenues of discovery to find more effective therapies.
Collapse
Affiliation(s)
- Mohammad Amin Kamaleddin
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
77
|
Zhu R, Xu Z, Su S, Feng C, Luo Y, Tang H, Zhang S, Wu X, Mai X, Liu C. From gratitude to injustice: Neurocomputational mechanisms of gratitude-induced injustice. Neuroimage 2021; 245:118730. [PMID: 34788663 DOI: 10.1016/j.neuroimage.2021.118730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/21/2021] [Accepted: 11/13/2021] [Indexed: 10/19/2022] Open
Abstract
Gratitude shapes individuals' behaviours and impacts the harmony of society. Many previous studies focused on its association with prosocial behaviours. A possibility that gratitude can lead to moral violation has been overlooked until recently. Nevertheless, the neurocognitive mechanisms of gratitude-induced moral violation are still unclear. On the other hand, though neural correlates of the gratitude's formation have been examined, the neural underpinnings of gratitude-induced behaviour remain unknown. For addressing these two overlapped research gaps, we developed novel tasks to investigate how participants who had received voluntary (Gratitude group) or involuntary help (Control group) punished their benefactors' unfairness with functional magnetic resonance imaging (fMRI). The Gratitude group punished their benefactors less than the Control group. The self-report and computational modelling results demonstrated a crucial role of the boosted protection tendency on behalf of benefactors in the gratitude-induced injustice. The fMRI results showed that activities in the regions associated with mentalizing (temporoparietal junction) and reward processing (ventral medial prefrontal cortex) differed between the groups and were related to the gratitude-induced injustice. They suggest that grateful individuals concern for benefactors' benefits, value chances to interact with benefactors, and refrain from action that perturbs relationship-building (i.e., exert less punishment on benefactors' unfairness), which reveal a dark side of gratitude and enrich the gratitude theory (i.e., the find-bind-remind theory). Our findings provide psychological, computational, and neural accounts of the gratitude-induced behaviour and further the understanding of the nature of gratitude.
Collapse
Affiliation(s)
- Ruida Zhu
- Business School, Beijing Normal University, 100875, Beijing, China
| | - Zhenhua Xu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, 100875, Beijing, China
| | - Song Su
- Business School, Beijing Normal University, 100875, Beijing, China
| | - Chunliang Feng
- Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, 510631, Guangzhou, China
| | - Yi Luo
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, USA
| | - Honghong Tang
- Business School, Beijing Normal University, 100875, Beijing, China
| | - Shen Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, 100875, Beijing, China
| | - Xiaoyan Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, 100875, Beijing, China
| | - Xiaoqin Mai
- Department of Psychology, Renmin University of China, 100872, Beijing, China
| | - Chao Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, 100875, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, 100875, Beijing, China.
| |
Collapse
|
78
|
Chae WR, Metz S, Pantazidis P, Dziobek I, Hellmann-Regen J, Wingenfeld K, Otte C. Effects of glucocorticoid and noradrenergic activity on implicit and explicit facial emotion recognition in healthy young men. Stress 2021; 24:1050-1056. [PMID: 33860721 DOI: 10.1080/10253890.2021.1908255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The ability to recognize emotions from facial expressions is crucial for social interaction. Only few studies have examined the effect of stress hormones on facial emotion recognition, although stressful events affect social interactions on a daily basis. Those studies that examined facial emotion recognition mostly used explicit prompts to trigger consciously controlled processing. However, facial emotions are processed mainly implicitly in real life. Therefore, we investigated separate and combined effects of noradrenergic and glucocorticoid stimulation on implicit and explicit facial emotion recognition. One hundred and four healthy men (mean age = 24.1 years ±SD 3.5) underwent the Face Puzzle task to test implicit and explicit facial emotion recognition after receiving either 10 mg hydrocortisone or 10 mg yohimbine (an alpha 2-adrenergic receptor antagonist that increases noradrenergic activity) or 10 mg hydrocortisone/10 mg yohimbine combined or placebo. Salivary cortisol and salivary alpha amylase (sAA) were measured during the experiment. Compared to the placebo condition hydrocortisone significantly increased salivary cortisol and yohimbine significantly increased sAA. Participants were better and faster in explicit than in implicit facial emotion recognition. However, there was no effect of separate and combined noradrenergic and glucocorticoid stimulation on implicit and explicit facial emotion recognition performance compared to placebo. Our results do not support an essential role of the glucocorticoid and noradrenergic system in FER in young healthy men.
Collapse
Affiliation(s)
- Woo Ri Chae
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Sophie Metz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Pierre Pantazidis
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Isabel Dziobek
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julian Hellmann-Regen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Katja Wingenfeld
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Christian Otte
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| |
Collapse
|
79
|
Matt S, Dzhelyova M, Maillard L, Lighezzolo-Alnot J, Rossion B, Caharel S. The rapid and automatic categorization of facial expression changes in highly variable natural images. Cortex 2021; 144:168-184. [PMID: 34666300 DOI: 10.1016/j.cortex.2021.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/08/2021] [Accepted: 08/09/2021] [Indexed: 01/23/2023]
Abstract
Emotional expressions are quickly and automatically read from human faces under natural viewing conditions. Yet, categorization of facial expressions is typically measured in experimental contexts with homogenous sets of face stimuli. Here we evaluated how the 6 basic facial emotions (Fear, Disgust, Happiness, Anger, Surprise or Sadness) can be rapidly and automatically categorized with faces varying in head orientation, lighting condition, identity, gender, age, ethnic origin and background context. High-density electroencephalography was recorded in 17 participants viewing 50 s sequences with natural variable images of neutral-expression faces alternating at a 6 Hz rate. Every five stimuli (1.2 Hz), variable natural images of one of the six basic expressions were presented. Despite the wide physical variability across images, a significant F/5 = 1.2 Hz response and its harmonics (e.g., 2F/5 = 2.4 Hz, etc.) was observed for all expression changes at the group-level and in every individual participant. Facial categorization responses were found mainly over occipito-temporal sites, with distinct hemispheric lateralization and cortical topographies according to the different expressions. Specifically, a stronger response was found to Sadness categorization, especially over the left hemisphere, as compared to Fear and Happiness, together with a right hemispheric dominance for categorization of Fearful faces. Importantly, these differences were specific to upright faces, ruling out the contribution of low-level visual cues. Overall, these observations point to robust rapid and automatic facial expression categorization processes in the human brain.
Collapse
Affiliation(s)
- Stéphanie Matt
- Université de Lorraine, 2LPN, Nancy, France; Université de Lorraine, Laboratoire INTERPSY, Nancy, France.
| | - Milena Dzhelyova
- Université Catholique de Louvain, Institute of Research in Psychological Science, Louvain-la-Neuve, Belgium.
| | - Louis Maillard
- Université de Lorraine, CNRS, CRAN, Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, Nancy, France.
| | | | - Bruno Rossion
- Université Catholique de Louvain, Institute of Research in Psychological Science, Louvain-la-Neuve, Belgium; Université de Lorraine, CNRS, CRAN, Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, Nancy, France.
| | - Stéphanie Caharel
- Université de Lorraine, 2LPN, Nancy, France; Institut Universitaire de France, Paris, France.
| |
Collapse
|
80
|
da Silva RCR, de Carvalho RLS, Dourado MCN. Deficits in emotion processing in Alzheimer's disease: a systematic review. Dement Neuropsychol 2021; 15:314-330. [PMID: 34630919 PMCID: PMC8485650 DOI: 10.1590/1980-57642021dn15-030003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/12/2021] [Indexed: 11/26/2022] Open
Abstract
Emotional processing involves the ability of the individual to infer emotional information. There is no consensus about how Alzheimer’s disease (AD) affects emotional processing. Objective: Our aim is to systematically review the impact of AD on emotion processing.
Collapse
|
81
|
Borgomaneri S, Vitale F, Battaglia S, Avenanti A. Early Right Motor Cortex Response to Happy and Fearful Facial Expressions: A TMS Motor-Evoked Potential Study. Brain Sci 2021; 11:brainsci11091203. [PMID: 34573224 PMCID: PMC8471632 DOI: 10.3390/brainsci11091203] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
The ability to rapidly process others' emotional signals is crucial for adaptive social interactions. However, to date it is still unclear how observing emotional facial expressions affects the reactivity of the human motor cortex. To provide insights on this issue, we employed single-pulse transcranial magnetic stimulation (TMS) to investigate corticospinal motor excitability. Healthy participants observed happy, fearful and neutral pictures of facial expressions while receiving TMS over the left or right motor cortex at 150 and 300 ms after picture onset. In the early phase (150 ms), we observed an enhancement of corticospinal excitability for the observation of happy and fearful emotional faces compared to neutral expressions specifically in the right hemisphere. Interindividual differences in the disposition to experience aversive feelings (personal distress) in interpersonal emotional contexts predicted the early increase in corticospinal excitability for emotional faces. No differences in corticospinal excitability were observed at the later time (300 ms) or in the left M1. These findings support the notion that emotion perception primes the body for action and highlights the role of the right hemisphere in implementing a rapid and transient facilitatory response to emotional arousing stimuli, such as emotional facial expressions.
Collapse
Affiliation(s)
- Sara Borgomaneri
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Campus di Cesena, Alma Mater Studiorum-Università di Bologna, 47521 Cesena, Italy;
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Correspondence: (S.B.); (A.A.)
| | - Francesca Vitale
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain;
| | - Simone Battaglia
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Campus di Cesena, Alma Mater Studiorum-Università di Bologna, 47521 Cesena, Italy;
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Campus di Cesena, Alma Mater Studiorum-Università di Bologna, 47521 Cesena, Italy;
- Centro de Investigación en Neuropsicología y Neurosciencias Cognitivas, Universidad Católica Del Maule, Talca 3460000, Chile
- Correspondence: (S.B.); (A.A.)
| |
Collapse
|
82
|
The representational dynamics of perceived voice emotions evolve from categories to dimensions. Nat Hum Behav 2021; 5:1203-1213. [PMID: 33707658 PMCID: PMC7611700 DOI: 10.1038/s41562-021-01073-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 02/08/2021] [Indexed: 01/31/2023]
Abstract
Long-standing affective science theories conceive the perception of emotional stimuli either as discrete categories (for example, an angry voice) or continuous dimensional attributes (for example, an intense and negative vocal emotion). Which position provides a better account is still widely debated. Here we contrast the positions to account for acoustics-independent perceptual and cerebral representational geometry of perceived voice emotions. We combined multimodal imaging of the cerebral response to heard vocal stimuli (using functional magnetic resonance imaging and magneto-encephalography) with post-scanning behavioural assessment of voice emotion perception. By using representational similarity analysis, we find that categories prevail in perceptual and early (less than 200 ms) frontotemporal cerebral representational geometries and that dimensions impinge predominantly on a later limbic-temporal network (at 240 ms and after 500 ms). These results reconcile the two opposing views by reframing the perception of emotions as the interplay of cerebral networks with different representational dynamics that emphasize either categories or dimensions.
Collapse
|
83
|
van den Berg NS, de Haan EHF, Huitema RB, Spikman JM. The neural underpinnings of facial emotion recognition in ischemic stroke patients. J Neuropsychol 2021; 15:516-532. [PMID: 33554463 PMCID: PMC8518120 DOI: 10.1111/jnp.12240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/16/2020] [Indexed: 01/19/2023]
Abstract
Deficits in facial emotion recognition occur frequently after stroke, with adverse social and behavioural consequences. The aim of this study was to investigate the neural underpinnings of the recognition of emotional expressions, in particular of the distinct basic emotions (anger, disgust, fear, happiness, sadness and surprise). A group of 110 ischaemic stroke patients with lesions in (sub)cortical areas of the cerebrum was included. Emotion recognition was assessed with the Ekman 60 Faces Test of the FEEST. Patient data were compared to data of 162 matched healthy controls (HC's). For the patients, whole brain voxel-based lesion-symptom mapping (VLSM) on 3-Tesla MRI images was performed. Results showed that patients performed significantly worse than HC's on both overall recognition of emotions, and specifically of disgust, fear, sadness and surprise. VLSM showed significant lesion-symptom associations for FEEST total in the right fronto-temporal region. Additionally, VLSM for the distinct emotions showed, apart from overlapping brain regions (insula, putamen and Rolandic operculum), also regions related to specific emotions. These were: middle and superior temporal gyrus (anger); caudate nucleus (disgust); superior corona radiate white matter tract, superior longitudinal fasciculus and middle frontal gyrus (happiness) and inferior frontal gyrus (sadness). Our findings help in understanding how lesions in specific brain regions can selectively affect the recognition of the basic emotions.
Collapse
Affiliation(s)
- Nils S. van den Berg
- Department of PsychologyUniversity of AmsterdamThe Netherlands
- Department of NeurologyUniversity Medical Center GroningenUniversity of GroningenThe Netherlands
| | | | - Rients B. Huitema
- Department of NeurologyUniversity Medical Center GroningenUniversity of GroningenThe Netherlands
| | - Jacoba M. Spikman
- Department of NeurologyUniversity Medical Center GroningenUniversity of GroningenThe Netherlands
| |
Collapse
|
84
|
Martens MAG, Kaltenboeck A, Halahakoon DC, Browning M, Cowen PJ, Harmer CJ. An Experimental Medicine Investigation of the Effects of Subacute Pramipexole Treatment on Emotional Information Processing in Healthy Volunteers. Pharmaceuticals (Basel) 2021; 14:ph14080800. [PMID: 34451897 PMCID: PMC8401454 DOI: 10.3390/ph14080800] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022] Open
Abstract
Treatment with the dopamine D2/D3 receptor agonist pramipexole has demonstrated promising clinical effects in patients with depression. However, the mechanisms through which pramipexole might alleviate depressive symptoms are currently not well understood. Conventional antidepressant drugs are thought to work by biasing the processing of emotional information in favour of positive relative to negative appraisal. In this study, we used an established experimental medicine assay to explore whether pramipexole treatment might have a similar effect. Employing a double-blind, parallel-group design, 40 healthy volunteers (aged 18 to 43 years, 50% female) were randomly allocated to 12 to 15 days of treatment with either pramipexole (at a peak daily dose of 1.0 mg pramipexole salt) or placebo. After treatment was established, emotional information processing was assessed on the neural level by measuring amygdala activity in response to positive and negative facial emotional expressions, using functional magnetic resonance imaging (MRI). In addition, behavioural measures of emotional information processing were collected at baseline and on drug, using an established computerized task battery, tapping into different cognitive domains. As predicted, pramipexole-treated participants, compared to those receiving placebo, showed decreased neural activity in response to negative (fearful) vs. positive (happy) facial expressions in bilateral amygdala. Contrary to our predictions, however, pramipexole treatment had no significant antidepressant-like effect on behavioural measures of emotional processing. This study provides the first experimental evidence that subacute pramipexole treatment in healthy volunteers modifies neural responses to emotional information in a manner that resembles the effects of conventional antidepressant drugs.
Collapse
Affiliation(s)
- Marieke Annie Gerdine Martens
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (A.K.); (D.C.H.); (M.B.); (P.J.C.); (C.J.H.)
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 7JX, UK
- Correspondence:
| | - Alexander Kaltenboeck
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (A.K.); (D.C.H.); (M.B.); (P.J.C.); (C.J.H.)
- Clinical Division of Social Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna General Hospital, 1090 Vienna, Austria
| | - Don Chamith Halahakoon
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (A.K.); (D.C.H.); (M.B.); (P.J.C.); (C.J.H.)
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford OX3 7JX, UK
| | - Michael Browning
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (A.K.); (D.C.H.); (M.B.); (P.J.C.); (C.J.H.)
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford OX3 7JX, UK
| | - Philip J. Cowen
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (A.K.); (D.C.H.); (M.B.); (P.J.C.); (C.J.H.)
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford OX3 7JX, UK
| | - Catherine J. Harmer
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (A.K.); (D.C.H.); (M.B.); (P.J.C.); (C.J.H.)
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford OX3 7JX, UK
| |
Collapse
|
85
|
Unveiling the neural underpinnings of optimism: a systematic review. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:895-916. [PMID: 34341967 DOI: 10.3758/s13415-021-00931-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/06/2021] [Indexed: 01/01/2023]
Abstract
Optimism is a personality trait strongly associated with physical and psychological well-being, with correlates in nonhuman species. Optimistic individuals hold positive expectancies for their future, have better physical and psychological health, recover faster after heart disease and other ailments, and cope more effectively with stress and anxiety. We performed a systematic review of neuroimaging studies focusing on neural correlates of optimism. A search identified 14 papers eligible for inclusion. Two key brain areas were linked to optimism: the anterior cingulate cortex (ACC), involved in imagining the future and processing of self-referential information; and the inferior frontal gyrus (IFG), involved in response inhibition and processing relevant cues. ACC activity was positively correlated with trait optimism and with the probability estimations of future positive events. Behavioral measures of optimistic tendencies investigated through the belief update task correlated positively with IFG activity. Elucidating the neural underpinnings of optimism may inform both the development of prevention and treatment strategies for several mental disorders negatively associated with optimism, such as depression, as well as help to foster new resilience promotion interventions targeting healthy, vulnerable, and mentally ill individuals.
Collapse
|
86
|
Wang X, Han S. Processing of facial expressions of same-race and other-race faces: distinct and shared neural underpinnings. Soc Cogn Affect Neurosci 2021; 16:576-592. [PMID: 33624818 PMCID: PMC8138088 DOI: 10.1093/scan/nsab027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/23/2020] [Accepted: 02/24/2021] [Indexed: 11/29/2022] Open
Abstract
People understand others’ emotions quickly from their facial expressions. However, facial expressions of ingroup and outgroup members may signal different social information and thus be mediated by distinct neural activities. We investigated whether there are distinct neuronal responses to fearful and happy expressions of same-race (SR) and other-race (OR) faces. We recorded electroencephalogram from Chinese adults when viewing an adaptor face (with fearful/neutral expressions in Experiment 1 but happy/neutral expressions in Experiment 2) and a target face (with fearful expressions in Experiment 1 but happy expressions in Experiment 2) presented in rapid succession. We found that both fearful and happy (vs neutral) adaptor faces increased the amplitude of a frontocentral positivity (P2). However, a fearful but not happy (vs neutral) adaptor face decreased the P2 amplitudes to target faces, and this repetition suppression (RS) effect occurred when adaptor and target faces were of the same race but not when of different races. RS was observed on two late parietal/central positive activities to fearful/happy target faces, which, however, occurred regardless of whether adaptor and target faces were of the same or different races. Our findings suggest that early affective processing of fearful expressions may engage distinct neural activities for SR and OR faces.
Collapse
Affiliation(s)
- Xuena Wang
- School of Psychological and Cognitive Sciences, PKU-IDG/McGovern Institute for Brain Research, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100080, China
| | - Shihui Han
- School of Psychological and Cognitive Sciences, PKU-IDG/McGovern Institute for Brain Research, Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100080, China
| |
Collapse
|
87
|
Liu X, Hou Z, Yin Y, Xie C, Zhang H, Zhang H, Zhang Z, Yuan Y. Decreased cortical thickness of left premotor cortex as a treatment predictor in major depressive disorder. Brain Imaging Behav 2021; 15:1420-1426. [PMID: 32710337 DOI: 10.1007/s11682-020-00341-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This study aimed to examine the cerebral cortex characteristics (thickness, surface area, and curvature) in patients with major depressive disorder (MDD), and explore whether these cortex characteristics are predictors for the antidepressant therapeutic effect. 105 patients with MDD and 49 healthy controls (HCs) were recruited. Both groups were given magnetic resonance image (MRI) scans at baseline period, and then the cerebral cortex characteristics (thickness, surface area, and curvature) were calculated using the DPABISurf software. The Hamilton Depression Scale-24 (HAMD-24) reductive rate was used to measure antidepressant therapeutic effect and Snaith Hamilton Rating Scale (SHAPS) reduction was performed to assess the change of anhedonia after treatment of 8 weeks. Correlation analysis was performed to identify the relationship between cortex characteristics and antidepressant therapeutic effect in patients with MDD. There were no significant differences in the cortical curvature and surface area between MDD and HC groups, while significant decreases were found in the cortical thickness of inferior frontal cortex (IFC), premotor cortex (PMC), orbital and medial prefrontal cortex (OMPFC) in the left hemisphere of MDD group, comparing with HC group (P < 0.05 for all, corrected by threshold-free cluster enhancement). In MDD group, the cortical thickness of left PMC had significant positive correlations with 8-week HAMD-24 reduction (r = 0.228, P = 0.020) and HAMD-24 reductive rate (r = 0.193, P = 0.048); and a negative correlation with the 8-week SHAPS reduction (r = -0.240, P = 0.018). Decreased cortical thickness in left PMC may be a predictor of therapeutic effect in MDD. Determining the cortical thickness of this region before treatment can provide certain reference value for clinical antidepressant treatment.
Collapse
Affiliation(s)
- Xiaoyun Liu
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Zhenghua Hou
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yingying Yin
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Chunming Xie
- Department of Neurology, School of Medicine, ZhongDa Hospital, Southeast University, Nanjing, China
| | - Haisan Zhang
- Department of Clinical Magnetic Resonance Imaging, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hongxing Zhang
- Department of Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Zhijun Zhang
- Department of Neurology, School of Medicine, ZhongDa Hospital, Southeast University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China.
| |
Collapse
|
88
|
Enquiring into the qualitative nature of anger: Challenges and strengths of the introspective method. CURRENT PSYCHOLOGY 2021. [DOI: 10.1007/s12144-019-00221-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
89
|
Right Hemisphere Dominance for Unconscious Emotionally Salient Stimuli. Brain Sci 2021; 11:brainsci11070823. [PMID: 34206214 PMCID: PMC8301990 DOI: 10.3390/brainsci11070823] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 12/30/2022] Open
Abstract
The present review will focus on evidence demonstrating the prioritization in visual processing of fear-related signals in the absence of awareness. Evidence in hemianopic patients without any form of blindsight or affective blindsight in classical terms will be presented, demonstrating that fearful faces, via a subcortical colliculo-pulvinar-amygdala pathway, have a privileged unconscious visual processing and facilitate responses towards visual stimuli in the intact visual field. Interestingly, this fear-specific implicit visual processing in hemianopics has only been observed after lesions to the visual cortices in the left hemisphere, while no effect was found in patients with damage to the right hemisphere. This suggests that the subcortical route for emotional processing in the right hemisphere might provide a pivotal contribution to the implicit processing of fear, in line with evidence showing enhanced right amygdala activity and increased connectivity in the right colliculo-pulvinar-amygdala pathway for unconscious fear-conditioned stimuli and subliminal fearful faces. These findings will be discussed within a theoretical framework that considers the amygdala as an integral component of a constant and continuous vigilance system, which is preferentially invoked with stimuli signaling ambiguous environmental situations of biological relevance, such as fearful faces.
Collapse
|
90
|
Moeck EK, Matson LA, Takarangi MKT. Mechanisms underlying memory enhancement for disgust over fear. Cogn Emot 2021; 35:1231-1237. [PMID: 34078243 DOI: 10.1080/02699931.2021.1936460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Disgust is remembered better than fear, despite both emotions being highly negative and arousing. But the mechanisms underlying this effect are not well-understood. Therefore, we compared two proposed mechanisms underlying superior memory for disgust. According to the memory consolidation mechanism, it is harder (but crucial) to remember potentially contaminating vs. threatening stimuli. Hence, disgust elicits additional memory consolidation processes to fear. According to the attention mechanism, it takes longer to establish if disgust (relative to fear) stimuli are dangerous. Hence, people pay more attention to disgust during encoding. Both mechanisms could boost memory for disgust. Ninety-eight participants encoded disgust, fear, and neutral images whilst completing a simple task to measure attention. After 10- or 45-min delay, participants freely recalled the images. We found enhanced memory for disgust relative to fear after 10- and 45-min delay, but this effect was larger after 45-min. Participants paid more attention to disgust than fear images during encoding. However, mixed effect models showed increased attention did not contribute to enhanced memory for disgust. Our results therefore support the memory consolidation mechanism.
Collapse
Affiliation(s)
- Ella K Moeck
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Australia.,College of Education, Psychology and Social Work, Flinders University, Adelaide, Australia
| | - Lucy A Matson
- College of Education, Psychology and Social Work, Flinders University, Adelaide, Australia
| | - Melanie K T Takarangi
- College of Education, Psychology and Social Work, Flinders University, Adelaide, Australia
| |
Collapse
|
91
|
Satpute AB, Lindquist KA. At the Neural Intersection Between Language and Emotion. AFFECTIVE SCIENCE 2021; 2:207-220. [PMID: 36043170 PMCID: PMC9382959 DOI: 10.1007/s42761-021-00032-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/25/2021] [Indexed: 10/21/2022]
Abstract
What role does language play in emotion? Behavioral research shows that emotion words such as "anger" and "fear" alter emotion experience, but questions still remain about mechanism. Here, we review the neuroscience literature to examine whether neural processes associated with semantics are also involved in emotion. Our review suggests that brain regions involved in the semantic processing of words: (i) are engaged during experiences of emotion, (ii) coordinate with brain regions involved in affect to create emotions, (iii) hold representational content for emotion, and (iv) may be necessary for constructing emotional experience. We relate these findings with respect to four theoretical relationships between language and emotion, which we refer to as "non-interactive," "interactive," "constitutive," and "deterministic." We conclude that findings are most consistent with the interactive and constitutive views with initial evidence suggestive of a constitutive view, in particular. We close with several future directions that may help test hypotheses of the constitutive view.
Collapse
Affiliation(s)
- Ajay B. Satpute
- Department of Psychology, Northeastern University, 360 Huntington Ave, 125 NI, Boston, MA 02115 USA
| | - Kristen A. Lindquist
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
92
|
Facial expression recognition: A meta-analytic review of theoretical models and neuroimaging evidence. Neurosci Biobehav Rev 2021; 127:820-836. [PMID: 34052280 DOI: 10.1016/j.neubiorev.2021.05.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/03/2021] [Accepted: 05/24/2021] [Indexed: 11/23/2022]
Abstract
Discrimination of facial expressions is an elementary function of the human brain. While the way emotions are represented in the brain has long been debated, common and specific neural representations in recognition of facial expressions are also complicated. To examine brain organizations and asymmetry on discrete and dimensional facial emotions, we conducted an activation likelihood estimation meta-analysis and meta-analytic connectivity modelling on 141 studies with a total of 3138 participants. We found consistent engagement of the amygdala and a common set of brain networks across discrete and dimensional emotions. The left-hemisphere dominance of the amygdala and AI across categories of facial expression, but category-specific lateralization of the vmPFC, suggesting a flexibly asymmetrical neural representations of facial expression recognition. These results converge to characteristic activation and connectivity patterns across discrete and dimensional emotion categories in recognition of facial expressions. Our findings provide the first quantitatively meta-analytic brain network-based evidence supportive of the psychological constructionist hypothesis in facial expression recognition.
Collapse
|
93
|
Structural brain correlates of irritability and aggression in early manifest Huntington's disease. Brain Imaging Behav 2021; 15:107-113. [PMID: 31898092 DOI: 10.1007/s11682-019-00237-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In Huntington's disease (HD), irritability and aggressive behavior represent highly prevalent and disabling neuropsychiatric symptoms. However, their structural brain correlates have not been extensively explored. Here, we rated the severity of irritability and aggression (IAs) using the Problem Behaviors Assessment for HD (PBA-s) in 31 early HD participants. The IAs score was computed as the mean severity score for the irritability plus the mean severity aggression PBA-s items. Seventeen patients were classified as IAs (IAs score > 2) and 14 as non-IAs. All participants had available T1-MRI data. A grey matter volume voxel-based morphometry group comparison was performed, using age, motor status, severity of other PBA-s items and disease burden as covariates. Aside from irritability, aggression and obsessive-compulsive behavior, both groups were comparable in terms of other clinical and sociodemographic variables. In the IAs group, a significant reduction of grey-matter volume (GMV) was found in the bilateral caudate, putamen and globus pallidus, left pulvinar nucleus, right superior temporal pole (BA 38), left mid temporal gyrus (BA 21), right inferior temporal gyrus (BA 20) and left medial OPFC (BA 11). Lower GMV in the left pulvinar nucleus was significantly associated with higher anxiety and lower GMV in the left medial OPFC was significantly associated with higher suicidality. In sum, IAs in HD is associated with structural brain damage in a set of key nodes involved in the expression and down-regulation of negative emotions.
Collapse
|
94
|
Nicholson SL, O'Carroll RÁ. Development of an ethogram/guide for identifying feline emotions: a new approach to feline interactions and welfare assessment in practice. Ir Vet J 2021; 74:8. [PMID: 33766111 PMCID: PMC7995744 DOI: 10.1186/s13620-021-00189-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/16/2021] [Indexed: 02/05/2023] Open
Abstract
Background An accurate assessment of feline behaviour is essential in reducing the risk of handler injury and evaluating/improving feline welfare within veterinary practices. However, inexperience and/or suboptimal education in feline behaviour may cause many veterinary professionals to be ill equipped for this. In addition, busy veterinary professionals may not have time to thoroughly search the literature to remediate this deficiency. Upon searching the literature, terms such as aggression and stress predominate, but these do not completely represent the rich mental lives that cats are now understood to have. Emotions have recently emerged as an alternative approach to animal behaviour/welfare assessment. However, few resources describe how to identify them, and positive emotions are particularly neglected. In addition, no simple, broad, and concise guide to feline emotions currently exists within the research literature. Therefore, this research aimed to develop a straightforward and clear reference guide to feline emotions (ethogram) to aid veterinary professionals in interpreting feline behaviour in practice and for use in veterinary education. Results Five primary emotions were identified and defined for domestic species (fear, anger/rage, joy/play, contentment and interest). A feline emotions guide (feline emotions ethogram) was created. Three hundred and seventy-two images were captured of feline behaviours indicative of emotional states. Of these, ten of the best quality and most representative images were selected to illustrate the guide (two of each emotional state). The feline emotions guide and its associated images were subsequently validated by two feline behaviour experts. Conclusions Following slight modifications, the emotions definitions yielded during the feline ethogram design process may be transferable to other domestic species. The feline emotions ethogram/guide itself may be particularly helpful for distinguishing immediate motivations and customising patient care within short- term veterinary contexts. Hence, its use may improve feline welfare and feline handling/interactions. However, the guide will need to be reliability tested/ tested in the field and may require adaptation as the feline emotions’ knowledge base grows. In addition, novices may benefit from exposure to more images of feline emotional state, particularly those involving mixed emotions. Freely available online images and videos may be sourced and used to supplement the accompanying image bank.
Collapse
|
95
|
Lukow PB, Kiemes A, Kempton MJ, Turkheimer FE, McGuire P, Modinos G. Neural correlates of emotional processing in psychosis risk and onset - A systematic review and meta-analysis of fMRI studies. Neurosci Biobehav Rev 2021; 128:780-788. [PMID: 33722617 PMCID: PMC8345001 DOI: 10.1016/j.neubiorev.2021.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/17/2020] [Accepted: 03/08/2021] [Indexed: 11/16/2022]
Abstract
The neural bases of altered emotion processing in psychosis are still unclear. Systematic review indicated widespread activation decreases to emotion in first-episode psychosis. Evidence in people at clinical high-risk for psychosis lacked convergence. These findings were corroborated by image-based meta-analyses.
Aberrant emotion processing is a well-established component of psychotic disorders and is already present at the first episode of psychosis (FEP). However, the role of emotion processing abnormalities in the emergence of psychosis and the underlying neurobiology remain unclear. Here, we systematically reviewed functional magnetic resonance studies that used emotion processing task paradigms in FEP patients, and in people at clinical high-risk for psychosis (CHRp). Image-based meta-analyses with Seed-based d Mapping on available studies (n = 6) were also performed. Compared to controls, FEP patients showed decreased neural responses to emotion, particularly in the amygdala and anterior cingulate cortex. There were no significant differences between CHRp subjects and controls, but a high degree of heterogeneity was identified across studies. The role of altered emotion processing in the early phase of psychosis may be clarified through more homogenous experimental designs, particularly in the CHRp population.
Collapse
Affiliation(s)
- P B Lukow
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK.
| | - A Kiemes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK.
| | - M J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK.
| | - F E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK.
| | - P McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK.
| | - G Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, SE5 8AF, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, new hunt's House, Guy's Campus, SE1 1UL, London, UK.
| |
Collapse
|
96
|
Bertoux M, Duclos H, Caillaud M, Segobin S, Merck C, de La Sayette V, Belliard S, Desgranges B, Eustache F, Laisney M. When affect overlaps with concept: emotion recognition in semantic variant of primary progressive aphasia. Brain 2021; 143:3850-3864. [PMID: 33221846 PMCID: PMC7805810 DOI: 10.1093/brain/awaa313] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
The most recent theories of emotions have postulated that their expression and recognition depend on acquired conceptual knowledge. In other words, the conceptual knowledge derived from prior experiences guide our ability to make sense of such emotions. However, clear evidence is still lacking to contradict more traditional theories, considering emotions as innate, distinct and universal physiological states. In addition, whether valence processing (i.e. recognition of the pleasant/unpleasant character of emotions) also relies on semantic knowledge is yet to be determined. To investigate the contribution of semantic knowledge to facial emotion recognition and valence processing, we conducted a behavioural and neuroimaging study in 20 controls and 16 patients with the semantic variant of primary progressive aphasia, a neurodegenerative disease that is prototypical of semantic memory impairment, and in which an emotion recognition deficit has already been described. We assessed participants’ knowledge of emotion concepts and recognition of 10 basic (e.g. anger) or self-conscious (e.g. embarrassment) facial emotional expressions presented both statically (images) and dynamically (videos). All participants also underwent a brain MRI. Group comparisons revealed deficits in both emotion concept knowledge and emotion recognition in patients, independently of type of emotion and presentation. These measures were significantly correlated with each other in patients and with semantic fluency in patients and controls. Neuroimaging analyses showed that both emotion recognition and emotion conceptual knowledge were correlated with reduced grey matter density in similar areas within frontal ventral, temporal, insular and striatal regions, together with white fibre degeneration in tracts connecting frontal regions with each other as well as with temporal regions. We then performed a qualitative analysis of responses made during the facial emotion recognition task, by delineating valence errors (when one emotion was mistaken for another of a different valence), from other errors made during the emotion recognition test. We found that patients made more valence errors. The number of valence errors correlated with emotion conceptual knowledge as well as with reduced grey matter volume in brain regions already retrieved to correlate with this score. Specificity analyses allowed us to conclude that this cognitive relationship and anatomical overlap were not mediated by a general effect of disease severity. Our findings suggest that semantic knowledge guides the recognition of emotions and is also involved in valence processing. Our study supports a constructionist view of emotion recognition and valence processing, and could help to refine current theories on the interweaving of semantic knowledge and emotion processing.
Collapse
Affiliation(s)
- Maxime Bertoux
- Neuropsychology and Imaging of Human Memory research unit, Caen-Normandy University-PSL Research University-EPHE-INSERM-Caen University Hospital, UMRS1077, GIP Cyceron, Caen, France.,Univ. Lille, Inserm, CHU Lille, UMRS1172, Lille Neurosciences & Cognition Institute, F-59000 Lille, France
| | - Harmony Duclos
- Neuropsychology and Imaging of Human Memory research unit, Caen-Normandy University-PSL Research University-EPHE-INSERM-Caen University Hospital, UMRS1077, GIP Cyceron, Caen, France.,CRP-CPO, Picardy Jules Verne University, Amiens, France
| | - Marie Caillaud
- Neuropsychology and Imaging of Human Memory research unit, Caen-Normandy University-PSL Research University-EPHE-INSERM-Caen University Hospital, UMRS1077, GIP Cyceron, Caen, France
| | - Shailendra Segobin
- Neuropsychology and Imaging of Human Memory research unit, Caen-Normandy University-PSL Research University-EPHE-INSERM-Caen University Hospital, UMRS1077, GIP Cyceron, Caen, France
| | - Catherine Merck
- Neuropsychology and Imaging of Human Memory research unit, Caen-Normandy University-PSL Research University-EPHE-INSERM-Caen University Hospital, UMRS1077, GIP Cyceron, Caen, France.,Neurology Department, Pontchaillou University Hospital, Rennes, France
| | - Vincent de La Sayette
- Neuropsychology and Imaging of Human Memory research unit, Caen-Normandy University-PSL Research University-EPHE-INSERM-Caen University Hospital, UMRS1077, GIP Cyceron, Caen, France.,Neurology Department, Caen University Hospital, Caen, France
| | - Serge Belliard
- Neuropsychology and Imaging of Human Memory research unit, Caen-Normandy University-PSL Research University-EPHE-INSERM-Caen University Hospital, UMRS1077, GIP Cyceron, Caen, France.,Neurology Department, Pontchaillou University Hospital, Rennes, France
| | - Béatrice Desgranges
- Neuropsychology and Imaging of Human Memory research unit, Caen-Normandy University-PSL Research University-EPHE-INSERM-Caen University Hospital, UMRS1077, GIP Cyceron, Caen, France
| | - Francis Eustache
- Neuropsychology and Imaging of Human Memory research unit, Caen-Normandy University-PSL Research University-EPHE-INSERM-Caen University Hospital, UMRS1077, GIP Cyceron, Caen, France
| | - Mickaël Laisney
- Neuropsychology and Imaging of Human Memory research unit, Caen-Normandy University-PSL Research University-EPHE-INSERM-Caen University Hospital, UMRS1077, GIP Cyceron, Caen, France
| |
Collapse
|
97
|
MacCormack JK, Henry TR, Davis BM, Oosterwijk S, Lindquist KA. Aging bodies, aging emotions: Interoceptive differences in emotion representations and self-reports across adulthood. Emotion 2021; 21:227-246. [PMID: 31750705 PMCID: PMC7239717 DOI: 10.1037/emo0000699] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bodily sensations are closely linked to emotional experiences. However, most research assessing the body-emotion link focuses on young adult samples. Inspired by prior work showing age-related declines in autonomic reactivity and interoception, we present 2 studies investigating age-related differences in the extent to which adults (18-75 years) associate interoceptive or internal bodily sensations with emotions. Study 1 (N = 150) used a property association task to assess age effects on adults' tendencies to associate interoceptive sensations, relative to behaviors or situations, with negative emotion categories (e.g., anger, sadness). Study 2 (N = 200) used the Day Reconstruction experience sampling method to assess the effect of age on adults' tendencies to report interoceptive sensations and emotional experiences in daily life. Consistent with prior literature suggesting that older adults have more muted physiological responses and interoceptive abilities than younger adults, we found that older adults' mental representations (Study 1) and self-reported experiences (Study 2) of emotion are less associated with interoceptive sensations than are those of younger adults. Across both studies, age effects were most prominent for high arousal emotions (e.g., anger, fear) and sensations (e.g., racing heart) that are often associated with peripheral psychophysiological concomitants in young adults. These findings are consistent with psychological constructionist models and a "maturational dualism" account of emotional aging, suggesting additional pathways by which emotions may differ across adulthood. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
|
98
|
Ouerchefani R, Ouerchefani N, Kammoun B, Ben Rejeb MR, Le Gall D. A Voxel-based lesion study on facial emotion recognition after circumscribed prefrontal cortex damage. J Neuropsychol 2021; 15:533-563. [PMID: 33595204 DOI: 10.1111/jnp.12241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 11/28/2020] [Indexed: 12/27/2022]
Abstract
Previous studies have shown inconsistent findings regarding the contribution of the different prefrontal regions in emotion recognition. Moreover, the hemispheric lateralization hypothesis posits that the right hemisphere is dominant for processing all emotions regardless of affective valence, whereas the valence specificity hypothesis posits that the left hemisphere is specialized for processing positive emotions while the right hemisphere is specialized for negative emotions. However, recent findings suggest that the evidence for such lateralization has been less consistent. In this study, we investigated emotion recognition of fear, surprise, happiness, sadness, disgust, and anger in 30 patients with focal prefrontal cortex lesions and 30 control subjects. We also examined the impact of lesion laterality on recognition of the six basic emotions. The results showed that compared to control subjects, the frontal subgroups were impaired in recognition of three negative basic emotions of fear, sadness, and anger - regardless of the lesion laterality. Therefore, our findings did not establish that each hemisphere is specialized for processing specific emotions. Moreover, the voxel-based lesion symptom mapping analysis showed that recognition of fear, sadness, and anger draws on a partially common bilaterally distributed prefrontal network.
Collapse
Affiliation(s)
- Riadh Ouerchefani
- High Institute of Human Sciences, University of Tunis El Manar, Tunisia.,Laboratory of Psychology of Pays de la Loire (EA 4638), University of Angers, France
| | | | - Brahim Kammoun
- Department of Neurosurgery, Habib Bourguiba Hospital, Sfax, Tunisia.,Faculty of Medicine of Sfax, University of Sfax, Tunisia
| | | | - Didier Le Gall
- Laboratory of Psychology of Pays de la Loire (EA 4638), University of Angers, France
| |
Collapse
|
99
|
Nakajima R, Kinoshita M, Okita H, Liu Z, Nakada M. Preserving Right Pre-motor and Posterior Prefrontal Cortices Contribute to Maintaining Overall Basic Emotion. Front Hum Neurosci 2021; 15:612890. [PMID: 33664659 PMCID: PMC7920969 DOI: 10.3389/fnhum.2021.612890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/25/2021] [Indexed: 11/28/2022] Open
Abstract
Basic emotions such as happiness, sadness, and anger are universal, regardless of the human species, and are governed by specific brain regions. A recent report revealed that mentalizing, which is the ability to estimate other individuals’ emotional states via facial expressions, can be preserved with the help of awake surgery. However, it is still questionable whether we can maintain the ability to understand others’ emotions by preserving the positive mapping sites of intraoperative assessment. Here, we demonstrated the cortical regions related to basic emotions via awake surgery for patients with frontal glioma and investigated the usefulness of functional mapping in preserving basic emotion. Of the 56 consecutive patients with right cerebral hemispheric glioma who underwent awake surgery at our hospital, intraoperative assessment of basic emotion could be successfully performed in 22 patients with frontal glioma and were included in our study. During surgery, positive responses were found in 18 points in 12 patients (54.5%). Of these, 15 points from 11 patients were found at the cortical level, mainly the premotor and posterior part of the prefrontal cortices. Then, we focused on cortical 15 positive mappings with 40 stimulations and investigated the types of emotions that showed errors by every stimulation. There was no specific rule for the region-emotional type, which was beyond our expectations. In the postoperative acute phase, the test score of basic emotion declined in nine patients, and of these, it decreased under the cut-off value (Z-score ≤ −1.65) in three patients. Although the total score declined significantly just after surgery (p = 0.022), it recovered within 3 months postoperatively. Our study revealed that through direct electrical stimulation (DES), the premotor and posterior parts of the prefrontal cortices are related to various kinds of basic emotion, but not a single one. When the region with a positive mapping site is preserved during operation, basic emotion function might be maintained although it declines transiently after surgery.
Collapse
Affiliation(s)
- Riho Nakajima
- Department of Occupational Therapy, Faculty of Health Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Masashi Kinoshita
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Hirokazu Okita
- Department of Physical Medicine and Rehabilitation, Kanazawa University Hospital, Kanazawa, Japan
| | - Zhanwen Liu
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
100
|
Mendoza-Medialdea MT, Ruiz-Padial E. Understanding the capture of exogenous attention by disgusting and fearful stimuli: The role of interoceptive accuracy. Int J Psychophysiol 2021; 161:53-63. [PMID: 33453302 DOI: 10.1016/j.ijpsycho.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 11/16/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
The aim of the study was to explore the role of interoceptive accuracy (IA) on exogenous attention to disgusting and fearful distractors of a main concurrent task. Participants were thirty university students previously identified as high (N = 16) or normal IA according their performance in a heartbeat detection task. Event-related potentials and behavioural responses were recorded. The results showed that disgusting stimuli capture exogenous attention in a first stage as reflected by the augmented amplitude of the P100 component of the ERPs in high IA participants. Fearful distractors may capture attention in a later moment in all participants as revealed by a marginally significant effect on the amplitude of N200. At behavioural level, disgusting distractors provoked a higher number of errors than neutral in normal IA participants. The time course of the effect of disgust and fearful eliciting distractors on exogenous attention appeared to depend on the individual characteristic of participants.
Collapse
|