51
|
Abstract
Advances in microfabrication and biomaterials have enabled the development of microfluidic chips for studying tissue and organ models. While these platforms have been developed primarily for modeling human diseases, they are also used to uncover cellular and molecular mechanisms through in vitro studies, especially in the neurovascular system, where physiological mechanisms and three-dimensional (3D) architecture are difficult to reconstruct via conventional assays. An extracellular matrix (ECM) model with a stable structure possessing the ability to mimic the natural extracellular environment of the cell efficiently is useful for tissue engineering applications. Conventionally used techniques for this purpose, for example, Matrigels, have drawbacks of owning complex fabrication procedures, in some cases not efficient enough in terms of functionality and expenses. Here, we proposed a fabrication protocol for a GelMA hydrogel, which has shown structural stability and the ability to imitate the natural environment of the cell accurately, inside a microfluidic chip utilizing co-culturing of two human cell lines. The chemical composition of the synthesized GelMA was identified by Fourier transform infrared spectrophotometry (FTIR), its surface morphology was observed by field emission electron microscopy (FESEM), and the structural properties were analyzed by atomic force microscopy (AFM). The swelling behavior of the hydrogel in the microfluidic chip was imaged, and its porosity was examined for 72 h by tracking cell localization using immunofluorescence. GelMA exhibited the desired biomechanical properties, and the viability of cells in both platforms was more than 80% for seven days. Furthermore, GelMA was a viable platform for 3D cell culture studies and was structurally stable over long periods, even when prepared by photopolymerization in a microfluidic platform. This work demonstrated a viable strategy to conduct co-culturing experiments as well as modeling invasion and migration events. This microfluidic assay may have application in drug delivery and dosage optimization studies.
Collapse
|
52
|
Alhodieb FS, Barkat MA, Barkat HA, Hadi HA, Khan MI, Ashfaq F, Rahman MA, Hassan MZ, Alanezi AA. Chitosan-modified nanocarriers as carriers for anticancer drug delivery: Promises and hurdles. Int J Biol Macromol 2022; 217:457-469. [PMID: 35798082 DOI: 10.1016/j.ijbiomac.2022.06.201] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
With the advent of drug delivery, various polymeric materials are being explored to fabricate numerous nanocarriers. Each polymer is associated with a few characteristics attributes which further facilitate its usage in drug delivery. One such polymer is chitosan (CS), which is extensively employed to deliver a variety of drugs to various targets, especially to cancer cells. The desired properties like biological origin, bio-adhesive, biocompatibility, the scope of chemical modification, biodegradability and controlled drug release make it a highly rough after polymer in pharmaceutical nanotechnology. The present review attempts to compile various chemical modifications on CS and showcase the outcomes of the derived nanocarriers, especially in cancer chemotherapy and drug delivery.
Collapse
Affiliation(s)
- Fahad Saad Alhodieb
- Department of Clinical Nutrition, College of Applied Health Sciences in Arrass, Qassim University, P.O. BOX:6666, Buraidah, 51452, Saudi Arabia.
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia.
| | - Harshita Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia; Dermatopharmaceutics Research Group, Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang 25200, Malaysia.
| | - Hazrina Ab Hadi
- Dermatopharmaceutics Research Group, Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang 25200, Malaysia.
| | - Muhammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Arrass, Qassim University, P.O. BOX:6666, Buraidah, 51452, Saudi Arabia.
| | - Fauzia Ashfaq
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.
| | | | - Mohd Zaheen Hassan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.
| | - Abdulkareem A Alanezi
- Department of Pharmaceuics, College of pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al-Batin 39524, Saudi Arabia.
| |
Collapse
|
53
|
İzbudak B, Bal-Öztürk A. The effect of LDHs nanoparticles on the cellular behavior of stem cell-laden 3D-bioprinted scaffold. J Biomater Appl 2022; 37:48-54. [PMID: 35452304 DOI: 10.1177/08853282221082921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Three-dimensional (3D)-bioprinting as an emerging approach for tissue engineering possesses the promise to create highly mimicked organs or tissues by using computer-aided design. For biomedical applications in tissue engineering in our previous work, we developed an optimized nanocomposite bioink based on methylacrylated gelatin (GelMA), methylacrylated chitosan (ChitMA), and double-layered hydroxide (LDHs) nanoparticles by using 3D-bioprinting technology. Herein, we used the previous formulation to fabricate human bone marrow mesenchymal stem cells (hBMMSCs)-laden nanocomposite bioinks. The effect of LDHs nanoparticles on the cellular behaviors of the encapsulated-hBMMSCs in the scaffolds was evaluated for the first time. Live/Dead, PrestoBlue, and DAPI/Actin analysis were carried out to assess the cell viability, proliferation rate, and cellular morphology of encapsulated hBMMSCs within the scaffolds. In addition, osteogenic differentiation studies were performed culturing the scaffolds for up to 21 days. Results show that LDHs nanoparticles in the GelMA/ChitMA scaffold formulation increased the viability of hBMMSCs, did not cause any adverse effect on the proliferation rate, cell morphology of the hBMMSCs, and increased the Runx2 protein expression of the encapsulated-hBMMSCs in the scaffolds. This study progresses the LDHs containing nanocomposite bioink for cell printing applications in tissue engineering.
Collapse
|
54
|
Barchiesi E, Wareing T, Desmond L, Phan AN, Gentile P, Pontrelli G. Characterization of the Shells in Layer-By-Layer Nanofunctionalized Particles: A Computational Study. Front Bioeng Biotechnol 2022; 10:888944. [PMID: 35845400 PMCID: PMC9280187 DOI: 10.3389/fbioe.2022.888944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022] Open
Abstract
Drug delivery carriers are considered an encouraging approach for the localized treatment of disease with minimum effect on the surrounding tissue. Particularly, layer-by-layer releasing particles have gained increasing interest for their ability to develop multifunctional systems able to control the release of one or more therapeutical drugs and biomolecules. Although experimental methods can offer the opportunity to establish cause and effect relationships, the data collection can be excessively expensive or/and time-consuming. For a better understanding of the impact of different design conditions on the drug-kinetics and release profile, properly designed mathematical models can be greatly beneficial. In this work, we develop a continuum-scale mathematical model to evaluate the transport and release of a drug from a microparticle based on an inner core covered by a polymeric shell. The present mathematical model includes the dissolution and diffusion of the drug and accounts for a mechanism that takes into consideration the drug biomolecules entrapped into the polymeric shell. We test a sensitivity analysis to evaluate the influence of changing the model conditions on the total system behavior. To prove the effectiveness of this proposed model, we consider the specific application of antibacterial treatment and calibrate the model against the data of the release profile for an antibiotic drug, metronidazole. The results of the numerical simulation show that ∼85% of the drug is released in 230 h, and its release is characterized by two regimes where the drug dissolves, diffuses, and travels the external shell layer at a shorter time, while the drug is released from the shell to the surrounding medium at a longer time. Within the sensitivity analysis, the outer layer diffusivity is more significant than the value of diffusivity in the core, and the increase of the dissolution parameters causes an initial burst release of the drug. Finally, changing the shape of the particle to an ellipse produces an increased percentage of drugs released with an unchanged release time.
Collapse
Affiliation(s)
- E. Barchiesi
- Instituto de Investigación Cientifica, Universidad de Lima, Lima, Peru
- École Nationale d’Ingénieurs de Brest, Brest, France
| | - T. Wareing
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - L. Desmond
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - A. N. Phan
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - P. Gentile
- School of Engineering, Newcastle University, Newcastle Upon Tyne, United Kingdom
- *Correspondence: P. Gentile, ; G. Pontrelli,
| | - G. Pontrelli
- Istituto per le Applicazioni del Calcolo-CNR, Rome, Italy
- *Correspondence: P. Gentile, ; G. Pontrelli,
| |
Collapse
|
55
|
Shabani L, Abbasi M, Amini M, Amani AM, Vaez A. The brilliance of nanoscience over cancer therapy: Novel promising nanotechnology-based methods for eradicating glioblastoma. J Neurol Sci 2022; 440:120316. [DOI: 10.1016/j.jns.2022.120316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
|
56
|
Abstract
Carriers are protective transporters of drugs to target cells, facilitating therapy under each points of view, such as fast healing, reducing infective phenomena, and curing illnesses while avoiding side effects. Over the last 60 years, several scientists have studied drug carrier properties, trying to adapt them to the release environment. Drug/Carrier interaction phenomena have been deeply studied, and the release kinetics have been modeled according to the occurring phenomena involved in the system. It is not easy to define models’ advantages and disadvantages, since each of them may fit in a specific situation, considering material interactions, diffusion and erosion phenomena, and, no less important, the behavior of receiving medium. This work represents a critical review on main mathematical models concerning their dependency on physical, chemical, empirical, or semi-empirical variables. A quantitative representation of release profiles has been shown for the most representative models. A final critical comment on the applicability of these models has been presented at the end. A mathematical approach to this topic may help students and researchers approach the wide panorama of models that exist in literature and have been optimized over time. This models list could be of practical inspiration for the development of researchers’ own new models or for the application of proper modifications, with the introduction of new variable dependency.
Collapse
|
57
|
|
58
|
Zhuang Z, Sun S, Chen K, Zhang Y, Han X, Zhang Y, Sun K, Cheng F, Zhang L, Wang H. Gelatin-based Colloidal vs. Monolithic Gels to Regulate Macrophage-mediated Inflammatory Response. Tissue Eng Part C Methods 2022; 28:351-362. [PMID: 35469426 DOI: 10.1089/ten.tec.2022.0044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Unlike conventional monolithic hydrogels with covalent crosslinkage that are typically elastic, colloidal gels assembled by reversibly assembled particles as building blocks have shown fascinating viscoelastic properties. They follow a gel-sol transition upon yielding and recover to the initial state upon the release of the shear force (so-called shear-thinning and self-healing behavior); this makes them an ideal candidate as injectable and moldable biomaterials for tissue regeneration. The immune response provoked by the implantation of the colloidal gels with special viscoelastic and structural features is critical for the successful integration of the implants with the host tissues, which, however, remains little explored. Since macrophages are known as the primary immune cells in determining the inflammatory response against the implants, we herein investigated in vitro macrophage polarization and in vivo inflammatory response induced by gelatin-based colloidal gels as compared to monolithic gels. Specifically, self-healing colloidal gels composed of pure gelatin nanoparticles, or methacrylate gelatin (GelMA) nanoparticles to allow secondary covalent crosslinkage were compared with GelMA bulk hydrogels. We demonstrated that hydrogel's elasticity plays a more dominant role rather than the structural feature in determining in vitro macrophage polarization evidenced by the stiffer gels inducing pro-inflammation M2 macrophage phenotype as compared to soft gels. However, subcutaneous implantation revealed a significantly alleviated immune response characterized by less fibrous capsule formation for the colloidal gels as compared to bulk gels of similar matrix elasticity. We speculated this can be related to the improved permeability of the colloidal gels for cell penetration, thereby leading to less fibrosis. In general, this study provided in-depth insight into the biophysical regulator of hydrogel materials on macrophage behavior and related inflammatory response, which can further direct future implant design and predict biomaterial-host interactions for immunotherapy and regenerative medicine.
Collapse
Affiliation(s)
- Zhumei Zhuang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Shengnan Sun
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Kaiwen Chen
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yue Zhang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiaoman Han
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yang Zhang
- Health Science Center, School of Stomatology, Shenzhen University, Shenzhen, China
| | - Kai Sun
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Fang Cheng
- Key State Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Lijun Zhang
- Optometric Center, Dalian Eye Hospital, Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian, China
| | - Huanan Wang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
59
|
Islam T, Al Ragib A, Ferdosh S, Uddin ABMH, Haque Akanda MJ, Mia MAR, D. M RP, Kamaruzzaman BY, Islam Sarker MZ. Development of nanoparticles for pharmaceutical preparations using supercritical techniques. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2021.1983545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tariqul Islam
- Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Abdullah Al Ragib
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Sahena Ferdosh
- Faculty of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - A. B. M. Helal Uddin
- Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | | | - Md. Abdur Rashid Mia
- Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Reddy Prasad D. M
- Petroleum and Chemical Engineering Programme area, Universiti Technology Brunei, Gadong, Brunei Darussalam
| | - Bin Yunus Kamaruzzaman
- Faculty of Science, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Md. Zaidul Islam Sarker
- Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
- Food Science Program, Cooperative Research, Education and Extension Services, Northern Marianas College, Saipan, MP, USA
| |
Collapse
|
60
|
Preparation of Cotton-Zinc Composites by Magnetron Sputtering Metallization and Evaluation of their Antimicrobial Properties and Cytotoxicity. MATERIALS 2022; 15:ma15082746. [PMID: 35454445 PMCID: PMC9026216 DOI: 10.3390/ma15082746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023]
Abstract
The aim of this investigation was to evaluate the biological properties of cotton-zinc composites. A coating of zinc (Zn) on a cotton fabric was successfully obtained by a DC magnetron sputtering system using a metallic Zn target (99.9%). The new composite was characterized using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS), UV/Vis transmittance, and atomic absorption spectrometry with flame excitation (FAAS). The composite was tested for microbial activity against colonies of Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria and antifungal activity against Aspergillus niger and Chaetomium globosum fungal mold species as model microorganisms. Cytotoxicity screening of the tested modified material was carried out on BALB/3T3 clone mouse fibroblasts. The SEM/EDS and FAAS tests showed good uniformity of zinc content on a large surface of the composite. The conducted research showed the possibility of using the magnetron sputtering technique as a zero-waste method for producing antimicrobial textile composites.
Collapse
|
61
|
Wang M, Zhao J, Jiang H, Wang X. Tumor-targeted nano-delivery system of therapeutic RNA. MATERIALS HORIZONS 2022; 9:1111-1140. [PMID: 35134106 DOI: 10.1039/d1mh01969d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The birth of RNAi technology has pioneered actionability at the molecular level. Compared to DNA, RNA is less stable and therefore requires more demanding delivery vehicles. With their flexible size, shape, structure, and accessible surface modification, non-viral vectors show great promise for application in RNA delivery. Different non-viral vectors have different ways of binding to RNA. Low immunotoxicity gives RNA significant advantages in tumor treatment. However, the delivery of RNA still has many limitations in vivo. This manuscript summarizes the size-targeting dependence of different organs, followed by a summary of nanovesicles currently in or undergoing clinical trials. It also reviews all RNA delivery systems involved in the current study, including natural, bionic, organic, and inorganic systems. It summarizes the advantages and disadvantages of different delivery methods, which will be helpful for future RNA vehicle design. It is hoped that this will be helpful for gene therapy of clinical tumors.
Collapse
Affiliation(s)
- Maonan Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Jingzhou Zhao
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
62
|
Zeng Z, Gao H, Chen C, Xiao L, Zhang K. Bioresponsive Nanomaterials: Recent Advances in Cancer Multimodal Imaging and Imaging-Guided Therapy. Front Chem 2022; 10:881812. [PMID: 35372260 PMCID: PMC8971282 DOI: 10.3389/fchem.2022.881812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 12/18/2022] Open
Abstract
Cancer is a serious health problem which increasingly causes morbidity and mortality worldwide. It causes abnormal and uncontrolled cell division. Traditional cancer treatments include surgery, chemotherapy, radiotherapy and so on. These traditional therapies suffer from high toxicity and arouse safety concern in normal area and have difficulty in accurately targeting tumour. Recently, a variety of nanomaterials could be used for cancer diagnosis and therapy. Nanomaterials have several advantages, e.g., high concentration in tumour via targeting design, reduced toxicity in normal area and controlled drug release after various rational designs. They can combine with many types of biomaterials in order to improve biocompatibility. In this review, we outlined the latest research on the use of bioresponsive nanomaterials for various cancer imaging modalities (magnetic resonance imaging, positron emission tomography and phototacoustic imaging) and imaging-guided therapy means (chemotherapy, radiotherapy, photothermal therapy and photodynamic therapy), followed by discussing the challenges and future perspectives of this bioresponsive nanomaterials in biomedicine.
Collapse
Affiliation(s)
- Zeng Zeng
- Orthopedic Surgery Department, Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Huali Gao
- Orthopedic Surgery Department, Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - CongXian Chen
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Lianbo Xiao
- Orthopedic Surgery Department, Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kun Zhang
- Central Laboratory, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
63
|
Gupta A, Paudwal G, Dolkar R, Lewis S, Gupta PN. Recent advances in the surfactant and controlled release polymer-based solid dispersion. Curr Pharm Des 2022; 28:1643-1659. [PMID: 35209818 DOI: 10.2174/1381612828666220223095417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/24/2021] [Indexed: 11/22/2022]
Abstract
The oral route is the most preferred delivery route for drug administration due to its advantages such as lower cost, improved patient compliance, no need for trained personnel and the drug reactions are generally less severe. The major problem with new molecules in the drug discovery pipeline is poor solubility and dissolution rate that ultimately results in low oral bioavailability. Numerous techniques are available for solubility and bioavailability (BA) enhancement, but out of all, solid dispersion (SD) is proven to be the most feasible due to the least issues in manufacturing, processing, storage, and transportation. In the past few years, SD had been extensively applied to reinforce the common issues of insoluble drugs. Currently, many hydrophobic and hydrophilic polymers are used to prepare either immediate release or controlled release SDs. Therefore, the biological behavior of the SDs is contingent upon the use of appropriate polymeric carriers and methods of preparation. The exploration of novel carriers and methodologies in SD technology leads to improved BA and therapeutic effectiveness. Moreover, the clinical applicability of SD-based formulations has been increased with the discovery of novel polymeric carriers. In this review, emphasis is laid down on the present status of recent generations of SDs (i.e., surfactant and controlled release polymer-based SD) and their application in modifying the physical properties of the drug and modulation of pharmacological response in different ailments.
Collapse
Affiliation(s)
- Aman Gupta
- PK-PD Tox & Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180002, India
- Manipal College of Pharmaceutical Sciences, MAHE, Manipal-576104, India
| | - Gourav Paudwal
- PK-PD Tox & Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Rigzin Dolkar
- PK-PD Tox & Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shaila Lewis
- Manipal College of Pharmaceutical Sciences, MAHE, Manipal-576104, India
| | - Prem N Gupta
- PK-PD Tox & Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu-180002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
64
|
Sabbagh F, Muhamad II, Niazmand R, Dikshit PK, Kim BS. Recent progress in polymeric non-invasive insulin delivery. Int J Biol Macromol 2022; 203:222-243. [PMID: 35101478 DOI: 10.1016/j.ijbiomac.2022.01.134] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022]
Abstract
The design of carriers for insulin delivery has recently attracted major research attentions in the biomedical field. In general, the release of drug from polymers is driven via a variety of polymers. Several mechanisms such as matrix release, leaching of drug, swelling, and diffusion are usually adopted for the release of drug through polymers. Insulin is one of the most predominant therapeutic drugs for the treatment of both diabetes mellitus; type-I (insulin-dependent) and type II (insulin-independent). Currently, insulin is administered subcutaneously, which makes the patient feel discomfort, pain, hyperinsulinemia, allergic responses, lipodystrophy surrounding the injection area, and occurrence of miscarried glycemic control. Therefore, significant research interest has been focused on designing and developing new insulin delivery technologies to control blood glucose levels and time, which can enhance the patient compliance simultaneously through alternative routes as non-invasive insulin delivery. The aim of this review is to emphasize various non-invasive insulin delivery mechanisms including oral, transdermal, rectal, vaginal, ocular, and nasal. In addition, this review highlights different smart stimuli-responsive insulin delivery systems including glucose, pH, enzymes, near-infrared, ultrasound, magnetic and electric fields, and the application of various polymers as insulin carriers. Finally, the advantages, limitations, and the effect of each non-invasive route on insulin delivery are discussed in detail.
Collapse
Affiliation(s)
- Farzaneh Sabbagh
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ida Idayu Muhamad
- Universiti Teknologi Malaysia, Department of Chemical Engineering, 81310, Johor, Malaysia
| | - Razieh Niazmand
- Department of Food Chemistry, Research Institute of Food Science and Technology, Mashhad, Iran
| | - Pritam Kumar Dikshit
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur 522 502, Andhra Pradesh, India
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
65
|
Chen L, Zhou Z, Hu C, Maitz MF, Yang L, Luo R, Wang Y. Platelet Membrane-Coated Nanocarriers Targeting Plaques to Deliver Anti-CD47 Antibody for Atherosclerotic Therapy. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9845459. [PMID: 35118420 PMCID: PMC8791388 DOI: 10.34133/2022/9845459] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022]
Abstract
Atherosclerosis, the principle cause of cardiovascular disease (CVD) worldwide, is mainly characterized by the pathological accumulation of diseased vascular cells and apoptotic cellular debris. Atherogenesis is associated with the upregulation of CD47, a key antiphagocytic molecule that is known to render malignant cells resistant to programmed cell removal, or "efferocytosis." Here, we have developed platelet membrane-coated mesoporous silicon nanoparticles (PMSN) as a drug delivery system to target atherosclerotic plaques with the delivery of an anti-CD47 antibody. Briefly, the cell membrane coat prolonged the circulation of the particles by evading the immune recognition and provided an affinity to plaques and atherosclerotic sites. The anti-CD47 antibody then normalized the clearance of diseased vascular tissue and further ameliorated atherosclerosis by blocking CD47. In an atherosclerosis model established in ApoE-/- mice, PMSN encapsulating anti-CD47 antibody delivery significantly promoted the efferocytosis of necrotic cells in plaques. Clearing the necrotic cells greatly reduced the atherosclerotic plaque area and stabilized the plaques reducing the risk of plaque rupture and advanced thrombosis. Overall, this study demonstrated the therapeutic advantages of PMSN encapsulating anti-CD47 antibodies for atherosclerosis therapy, which holds considerable promise as a new targeted drug delivery platform for efficient therapy of atherosclerosis.
Collapse
Affiliation(s)
- Liang Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Zhongyi Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Manfred F. Maitz
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Dresden 01069, Germany
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
66
|
Cho Y, Park S, Lee J, Yu KJ. Emerging Materials and Technologies with Applications in Flexible Neural Implants: A Comprehensive Review of Current Issues with Neural Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005786. [PMID: 34050691 PMCID: PMC11468537 DOI: 10.1002/adma.202005786] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/29/2020] [Indexed: 05/27/2023]
Abstract
Neuroscience is an essential field of investigation that reveals the identity of human beings, with a comprehensive understanding of advanced mental activities, through the study of neurobiological structures and functions. Fully understanding the neurotransmission system that allows for connectivity among neuronal circuits has paved the way for the development of treatments for neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and depression. The field of flexible implants has attracted increasing interest mainly to overcome the mechanical mismatch between rigid electrode materials and soft neural tissues, enabling precise measurements of neural signals from conformal contact. Here, the current issues of flexible neural implants (chronic device failure, non-bioresorbable electronics, low-density electrode arrays, among others are summarized) by presenting material candidates and designs to address each challenge. Furthermore, the latest investigations associated with the aforementioned issues are also introduced, including suggestions for ideal neural implants. In terms of the future direction of these advances, designing flexible devices would provide new opportunities for the study of brain-machine interfaces or brain-computer interfaces as part of locomotion through brain signals, and for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Younguk Cho
- School of Electrical EngineeringYonsei UniversitySeoul03722Korea
| | - Sanghoon Park
- School of Electrical EngineeringYonsei UniversitySeoul03722Korea
| | - Juyoung Lee
- School of Electrical EngineeringYonsei UniversitySeoul03722Korea
| | - Ki Jun Yu
- School of Electrical EngineeringYU‐KIST InstituteYonsei UniversitySeoul03722Korea
| |
Collapse
|
67
|
Correa S, Grosskopf AK, Lopez Hernandez H, Chan D, Yu AC, Stapleton LM, Appel EA. Translational Applications of Hydrogels. Chem Rev 2021; 121:11385-11457. [PMID: 33938724 PMCID: PMC8461619 DOI: 10.1021/acs.chemrev.0c01177] [Citation(s) in RCA: 449] [Impact Index Per Article: 112.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Advances in hydrogel technology have unlocked unique and valuable capabilities that are being applied to a diverse set of translational applications. Hydrogels perform functions relevant to a range of biomedical purposes-they can deliver drugs or cells, regenerate hard and soft tissues, adhere to wet tissues, prevent bleeding, provide contrast during imaging, protect tissues or organs during radiotherapy, and improve the biocompatibility of medical implants. These capabilities make hydrogels useful for many distinct and pressing diseases and medical conditions and even for less conventional areas such as environmental engineering. In this review, we cover the major capabilities of hydrogels, with a focus on the novel benefits of injectable hydrogels, and how they relate to translational applications in medicine and the environment. We pay close attention to how the development of contemporary hydrogels requires extensive interdisciplinary collaboration to accomplish highly specific and complex biological tasks that range from cancer immunotherapy to tissue engineering to vaccination. We complement our discussion of preclinical and clinical development of hydrogels with mechanical design considerations needed for scaling injectable hydrogel technologies for clinical application. We anticipate that readers will gain a more complete picture of the expansive possibilities for hydrogels to make practical and impactful differences across numerous fields and biomedical applications.
Collapse
Affiliation(s)
- Santiago Correa
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Abigail K. Grosskopf
- Chemical
Engineering, Stanford University, Stanford, California 94305, United States
| | - Hector Lopez Hernandez
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Doreen Chan
- Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anthony C. Yu
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Eric A. Appel
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
- Bioengineering, Stanford University, Stanford, California 94305, United States
- Pediatric
Endocrinology, Stanford University School
of Medicine, Stanford, California 94305, United States
- ChEM-H Institute, Stanford
University, Stanford, California 94305, United States
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
68
|
Izbudak B, Cecen B, Anaya I, Miri AK, Bal-Ozturk A, Karaoz E. Layered double hydroxide-based nanocomposite scaffolds in tissue engineering applications. RSC Adv 2021; 11:30237-30252. [PMID: 35480250 PMCID: PMC9041101 DOI: 10.1039/d1ra03978d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Layered double hydroxides (LDHs), when incorporated into biomaterials, provide a tunable composition, controllable particle size, anion exchange capacity, pH-sensitive solubility, high-drug loading efficiency, efficient gene and drug delivery, controlled release and effective intracellular uptake, natural biodegradability in an acidic medium, and negligible toxicity. In this review, we study potential applications of LDH-based nanocomposite scaffolds for tissue engineering. We address how LDHs provide new solutions for nanostructure stability and enhance in vivo studies' success.
Collapse
Affiliation(s)
- Burcin Izbudak
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University Istanbul Turkey
| | - Berivan Cecen
- Biofabrication Lab, Department of Mechanical Engineering, Rowan University Glassboro NJ 08028 USA.,School of Medical Engineering, Science and Health, Rowan University Camden NJ 08103 USA.,Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istinye University 34010 Zeytinburnu Istanbul Turkey
| | - Ingrid Anaya
- Department of Bioengineering, Tecnológico de Monterrey, Campus Monterrey CP 64849 Monterrey Nuevo León México
| | - Amir K Miri
- Biofabrication Lab, Department of Mechanical Engineering, Rowan University Glassboro NJ 08028 USA.,School of Medical Engineering, Science and Health, Rowan University Camden NJ 08103 USA
| | - Ayca Bal-Ozturk
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University Istanbul Turkey .,Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University Istanbul Turkey
| | - Erdal Karaoz
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University Istanbul Turkey .,Department of Histology and Embryology, Faculty of Medicine, Istinye University Istanbul Turkey.,Center for Regenerative Medicine and Stem Cell Research and Manufacturing (LivMedCell) Istanbul Turkey
| |
Collapse
|
69
|
Cai SS, Li T, Akinade T, Zhu Y, Leong KW. Drug delivery carriers with therapeutic functions. Adv Drug Deliv Rev 2021; 176:113884. [PMID: 34302897 PMCID: PMC8440421 DOI: 10.1016/j.addr.2021.113884] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 01/07/2023]
Abstract
Design of micro- or nanocarriers for drug delivery has primarily been focused on properties such as hydrophobicity, biodegradability, size, shape, surface charge, and toxicity, so that they can achieve optimal delivery with respect to drug loading, release kinetics, biodistribution, cellular uptake, and biocompatibility. Incorporation of stimulus-sensitive moieties into the carriers would lead to "smart" delivery systems. A further evolution would be to endow the carrier with a therapeutic function such that it no longer serves as a mere passive entity to release the drug at the target tissue but can be viewed as a therapeutic agent in itself. In this review, we will discuss recent and ongoing efforts over the past decade to design therapeutic drug carriers that confer a biological benefit, including ROS scavenging or generating, pro- or anti-inflammatory, and immuno-evasive properties, to enhance the overall therapeutic efficacy of the delivery systems.
Collapse
Affiliation(s)
- Shuting S. Cai
- Department of Biomedical Engineering, Columbia University, New York 10027, New York, United States
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York 10027, New York, United States
| | - Tolulope Akinade
- Graduate Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, Columbia University, New York 10027, New York, United States
| | - Yuefei Zhu
- Department of Biomedical Engineering, Columbia University, New York 10027, New York, United States
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York 10027, New York, United States,Department of Systems Biology, Columbia University, New York 10027, New York, United States,Corresponding author , Mailing address: 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue, New York, NY 10027
| |
Collapse
|
70
|
Dash BS, Lu YJ, Chen HA, Chuang CC, Chen JP. Magnetic and GRPR-targeted reduced graphene oxide/doxorubicin nanocomposite for dual-targeted chemo-photothermal cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112311. [PMID: 34474862 DOI: 10.1016/j.msec.2021.112311] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/17/2021] [Accepted: 07/04/2021] [Indexed: 02/06/2023]
Abstract
Herein, we design a rGO-based magnetic nanocomposite by decorating rGO with citrate-coated magnetic nanoparticles (CMNP). The magnetic rGO (mrGO) was modified by phospholipid-polyethylene glycol to prepare PEGylated mrGO, for conjugating with gastrin-releasing peptide receptor (GRPR)-binding peptide (mrGOG). The anticancer drug doxorubicin (DOX) was bound to mrGO (mrGOG) by π-π stacking for drug delivery triggered by the low pH value in the endosome. The mrGOG showed enhanced photothermal effect under NIR irradiation, endorsing its role for dual targeted DOX delivery. With efficient DOX release in the endosomal environment and heat generation from light absorption in the NIR range, mrGOG/DOX could be used for combination chemo-photothermal therapy after intracellular uptake by cancer cells. We characterized the physico-chemical as well as biological properties of the synthesized nanocomposites. The mrGOG is stable in biological buffer solution, showing high biocompatibility and minimum hemolytic properties. Using U87 glioblastoma cells, we confirmed the magnetic drug targeting effect in vitro for selective cancer cell killing. The peptide ligand-mediated targeted delivery increases the efficiency of intracellular uptake of both nanocomposite and DOX up to ~3 times due to the over-expressed GRPR on U87 surface, leading to higher cytotoxicity. The increased cytotoxicity using mrGOG over mrGO was shown from a decreased IC50 value (0.70 to 0.48 μg/mL) and an increased cell apoptosis rate (19.8% to 47.1%). The IC50 and apoptosis rate changed further to 0.19 μg/mL and 76.8% in combination with NIR laser irradiation, with the photothermal effect supported from upregulation of heat shock protein HSP70 expression. Using U87 tumor xenograft model created in nude mice, we demonstrated that magnetic guidance after intravenous delivery of mrGOG/DOX could significantly reduce tumor size and prolong animal survival over free DOX and non-magnetic guided groups. Augmented with NIR laser treatment for 5 min, the anti-cancer efficacy significantly improves with elevated cell apoptosis and reduced cell proliferation. Together with safety profiles from hematological as well as major organ histological analysis of treated animals, the mrGOG nanocomposite is an effective nanomaterial for combination chemo-photothermal cancer therapy.
Collapse
Affiliation(s)
- Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan; College of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Huai-An Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Chi-Cheng Chuang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan; College of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan; Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
71
|
Chopra H, Dey PS, Das D, Bhattacharya T, Shah M, Mubin S, Maishu SP, Akter R, Rahman MH, Karthika C, Murad W, Qusty N, Qusti S, Alshammari EM, Batiha GES, Altalbawy FMA, Albooq MIM, Alamri BM. Curcumin Nanoparticles as Promising Therapeutic Agents for Drug Targets. Molecules 2021; 26:4998. [PMID: 34443593 PMCID: PMC8402133 DOI: 10.3390/molecules26164998] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 01/21/2023] Open
Abstract
Curcuma longa is very well-known medicinal plant not only in the Asian hemisphere but also known across the globe for its therapeutic and medicinal benefits. The active moiety of Curcuma longa is curcumin and has gained importance in various treatments of various disorders such as antibacterial, antiprotozoal, cancer, obesity, diabetics and wound healing applications. Several techniques had been exploited as reported by researchers for increasing the therapeutic potential and its pharmacological activity. Here, the dictum is the new room for the development of physicochemical, as well as biological, studies for the efficacy in target specificity. Here, we discussed nanoformulation techniques, which lend support to upgrade the characters to the curcumin such as enhancing bioavailability, increasing solubility, modifying metabolisms, and target specificity, prolonged circulation, enhanced permeation. Our manuscript tried to seek the attention of the researcher by framing some solutions of some existing troubleshoots of this bioactive component for enhanced applications and making the formulations feasible at an industrial production scale. This manuscript focuses on recent inventions as well, which can further be implemented at the community level.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Protity Shuvra Dey
- Department of Food Science & Nutrition Management, J.D. Birla Institute, Kolkata 700020, India;
| | - Debashrita Das
- School of Community Science & Technology, IIEST Shibpur, Howrah 711103, India;
| | - Tanima Bhattacharya
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China;
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Sidra Mubin
- Department of Botany, Hazara University Mansehra, Mansehra 21310, Pakistan;
| | | | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh;
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Md. Habibur Rahman
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Naeem Qusty
- Biochemistry Department, Faculty of Science, King Abdul Aziz University, Jeddah 80200, Saudi Arabia;
| | - Safaa Qusti
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia;
| | - Eida M. Alshammari
- Department of Medical Laboratories, Faculty of Applied Medical Sciences, Umma Al-Qura University, Mecca P.O. Box 715, Saudi Arabia;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Farag M. A. Altalbawy
- National institute of Laser Enhanced Sciences (NILES), Cairo University, Giza 12613, Egypt;
- Department of Biology, University College of Duba, Tabuk University, Duba 71911, Saudi Arabia;
| | - Mona I. M. Albooq
- Department of Biology, University College of Duba, Tabuk University, Duba 71911, Saudi Arabia;
| | - Badrieah M. Alamri
- Department of Biology, Faculty of Science, Tabuk University, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
72
|
Sharma S, Sudhakara P, Singh J, Ilyas RA, Asyraf MRM, Razman MR. Critical Review of Biodegradable and Bioactive Polymer Composites for Bone Tissue Engineering and Drug Delivery Applications. Polymers (Basel) 2021; 13:2623. [PMID: 34451161 PMCID: PMC8399915 DOI: 10.3390/polym13162623] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/11/2022] Open
Abstract
In the determination of the bioavailability of drugs administered orally, the drugs' solubility and permeability play a crucial role. For absorption of drug molecules and production of a pharmacological response, solubility is an important parameter that defines the concentration of the drug in systemic circulation. It is a challenging task to improve the oral bioavailability of drugs that have poor water solubility. Most drug molecules are either poorly soluble or insoluble in aqueous environments. Polymer nanocomposites are combinations of two or more different materials that possess unique characteristics and are fused together with sufficient energy in such a manner that the resultant material will have the best properties of both materials. These polymeric materials (biodegradable and other naturally bioactive polymers) are comprised of nanosized particles in a composition of other materials. A systematic search was carried out on Web of Science and SCOPUS using different keywords, and 485 records were found. After the screening and eligibility process, 88 journal articles were found to be eligible, and hence selected to be reviewed and analyzed. Biocompatible and biodegradable materials have emerged in the manufacture of therapeutic and pharmacologic devices, such as impermanent implantation and 3D scaffolds for tissue regeneration and biomedical applications. Substantial effort has been made in the usage of bio-based polymers for potential pharmacologic and biomedical purposes, including targeted deliveries and drug carriers for regulated drug release. These implementations necessitate unique physicochemical and pharmacokinetic, microbiological, metabolic, and degradation characteristics of the materials in order to provide prolific therapeutic treatments. As a result, a broadly diverse spectrum of natural or artificially synthesized polymers capable of enzymatic hydrolysis, hydrolyzing, or enzyme decomposition are being explored for biomedical purposes. This summary examines the contemporary status of biodegradable naturally and synthetically derived polymers for biomedical fields, such as tissue engineering, regenerative medicine, bioengineering, targeted drug discovery and delivery, implantation, and wound repair and healing. This review presents an insight into a number of the commonly used tissue engineering applications, including drug delivery carrier systems, demonstrated in the recent findings. Due to the inherent remarkable properties of biodegradable and bioactive polymers, such as their antimicrobial, antitumor, anti-inflammatory, and anticancer activities, certain materials have gained significant interest in recent years. These systems are also actively being researched to improve therapeutic activity and mitigate adverse consequences. In this article, we also present the main drug delivery systems reported in the literature and the main methods available to impregnate the polymeric scaffolds with drugs, their properties, and their respective benefits for tissue engineering.
Collapse
Affiliation(s)
- Shubham Sharma
- Regional Centre for Extension and Development, CSIR-Central Leather Research Institute, Leather Complex, Kapurthala Road, Jalandhar 144021, India
- PhD Research Scholar, IK Gujral Punjab Technical University, Jalandhar-Kapurthala, Highway, VPO, Ibban 144603, India
| | - P. Sudhakara
- Regional Centre for Extension and Development, CSIR-Central Leather Research Institute, Leather Complex, Kapurthala Road, Jalandhar 144021, India
| | - Jujhar Singh
- IK Gujral Punjab Technical University, Jalandhar-Kapurthala, Highway, VPO, Ibban 144603, India;
| | - R. A. Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - M. R. M. Asyraf
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - M. R. Razman
- Research Centre for Sustainability Science and Governance (SGK), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia
| |
Collapse
|
73
|
Vlcek JR, Reynolds MM, Kipper MJ. Enzymatic Degradation of Glycosaminoglycans and Proteoglycan-Mimetic Materials in Solution and on Polyelectrolyte Multilayer Surfaces. Biomacromolecules 2021; 22:3913-3925. [PMID: 34347454 DOI: 10.1021/acs.biomac.1c00720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteoglycans (PGs) play many important roles in biology, contributing to the mechanical properties of tissues, helping to organize extracellular matrix components, and participating in signaling mechanisms related to mechanotransduction, cell differentiation, immune responses, and wound healing. Our lab has designed two different types of PG mimics: polyelectrolyte complex nanoparticles (PCNs) and PG-mimetic graft copolymers (GCs), both of which are prepared using naturally occurring glycosaminoglycans. This work evaluates the enzymatic stability of these PG mimics using hyaluronidases (I-S, IV-S, and II), chondroitinase ABC, and lysozyme, for PG mimics suspended in solution and adsorbed onto surfaces. Hyaluronan (HA)- and chondroitin sulfate (CS)-containing PG mimics are degraded by the hyaluronidases. PCNs prepared with CS and GCs prepared with heparin are the only CS- and HA-containing PG mimics protected from chondroitinase ABC. None of the materials are measurably degraded by lysozyme. Adsorption to polyelectrolyte multilayer surfaces protects PG mimics from degradation, compared to when PG mimics are combined with enzymes in solution; all surfaces are still intact after 21 days of enzyme exposure. This work reveals how the stability of PG mimics is controlled by both the composition and macromolecular assembly of the PG mimic and also by the size and specificity of the enzyme. Understanding and tuning these degradation susceptibilities are essential for advancing their applications in cardiovascular materials, orthopedic materials, and growth factor delivery applications.
Collapse
Affiliation(s)
- Jessi R Vlcek
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Melissa M Reynolds
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States.,School of Advanced Materials Discovery, Colorado State University, Fort Collins, Colorado 80523, United States.,School of Advanced Materials Discovery, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Matt J Kipper
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States.,School of Advanced Materials Discovery, Colorado State University, Fort Collins, Colorado 80523, United States.,Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
74
|
Wang Y, Zhang Z, Zheng C, Zhao X, Zheng Y, Liu Q, Liu Y, Shi L. Multistage Adaptive Nanoparticle Overcomes Biological Barriers for Effective Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100578. [PMID: 34190401 DOI: 10.1002/smll.202100578] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/31/2021] [Indexed: 06/13/2023]
Abstract
Drug delivery systems (DDS) are extensively studied to improve the solubility, stability, pharmacokinetic, and biodistribution of chemotherapeutics. However, the drug delivery efficiency of traditional DDS is often limited by the complicated biological barriers in vivo. Herein, a multistage adaptive nanoparticle (MAN) that simultaneously overcomes multiple biological barriers to achieve tumor-targeted drug delivery with high efficiency is presented. MAN has a core-shell structure, in which both the core and the shell are made of responsive polymers. This structure allows MAN to present different surface properties to adapt to its surrounding biological microenvironment, thereby achieving enhanced stability in blood circulation, improved tumor accumulation and cellular internalization in tumor tissues, and effective release of drug in cells. With these unique characteristics, the MAN loaded with docetaxel achieves effective tumor suppression with reduced systemic toxicity. Furthermore, MAN can load almost any hydrophobic drugs, providing a general strategy for the tumor-targeted delivery of hydrophobic drugs to overcome the multiple biological barriers and improve the efficacy of chemotherapy.
Collapse
Affiliation(s)
- Ying Wang
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Zhanzhan Zhang
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Chunxiong Zheng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Xinzhi Zhao
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yadan Zheng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Qi Liu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yang Liu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Linqi Shi
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| |
Collapse
|
75
|
Chen X, Wang Y, Zhang X, Liu C. Advances in super-resolution fluorescence microscopy for the study of nano-cell interactions. Biomater Sci 2021; 9:5484-5496. [PMID: 34286716 DOI: 10.1039/d1bm00676b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the interactions between nanomaterials and biological systems plays an essential role in enhancing the efficacy of nanomedicines and deepening the understanding of the biological domain. Fluorescence microscopy is a powerful optical imaging technique that allows direct visualization of the behavior of fluorescent-labeled nanomaterials in the intracellular microenvironment. However, conventional fluorescence microscopy, such as confocal microscopy, has limited optical resolution due to the diffraction of light and therefore cannot provide the precise details of nanomaterials with diameters of less than ∼250 nm. Fortunately, the development of super-resolution fluorescence microscopy has overcome the resolution limitation, enabling more comprehensive studies of nano-cell interactions. Herein, we have summarized the recent advances in nano-cell interactions investigated by a variety of super-resolution microscopic techniques, which may benefit researchers in this multi-disciplinary area by providing a guideline to select appropriate platforms for studying materiobiology.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Yu Wang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Xuewei Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
76
|
Adhikari KR, Stanishevskaya I, Caracciolo PC, Abraham GA, Thomas V. Novel Poly(ester urethane urea)/Polydioxanone Blends: Electrospun Fibrous Meshes and Films. Molecules 2021; 26:3847. [PMID: 34202602 PMCID: PMC8270292 DOI: 10.3390/molecules26133847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 11/22/2022] Open
Abstract
In this work, we report the electrospinning and mechano-morphological characterizations of scaffolds based on blends of a novel poly(ester urethane urea) (PHH) and poly(dioxanone) (PDO). At the optimized electrospinning conditions, PHH, PDO and blend PHH/PDO in Hexafluroisopropanol (HFIP) solution yielded bead-free non-woven random nanofibers with high porosity and diameter in the range of hundreds of nanometers. The structural, morphological, and biomechanical properties were investigated using Differential Scanning Calorimetry, Scanning Electron Microscopy, Atomic Force Microscopy, and tensile tests. The blended scaffold showed an elastic modulus (~5 MPa) with a combination of the ultimate tensile strength (2 ± 0.5 MPa), and maximum elongation (150% ± 44%) in hydrated conditions, which are comparable to the materials currently being used for soft tissue applications such as skin, native arteries, and cardiac muscles applications. This demonstrates the feasibility of an electrospun PHH/PDO blend for cardiac patches or vascular graft applications that mimic the nanoscale structure and mechanical properties of native tissue.
Collapse
Affiliation(s)
- Kiran R. Adhikari
- Department of Physics, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Center for Nanoscale Materials and Biointegration (CNMB), University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Pablo C. Caracciolo
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP-CONICET), Av. Juan B. Justo 4302, B7608FDQ Mar del Plata, Argentina; (P.C.C.); (G.A.A.)
| | - Gustavo A. Abraham
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP-CONICET), Av. Juan B. Justo 4302, B7608FDQ Mar del Plata, Argentina; (P.C.C.); (G.A.A.)
| | - Vinoy Thomas
- Center for Nanoscale Materials and Biointegration (CNMB), University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
77
|
Borcherding K, Schmidmaier G, Hofmann GO, Wildemann B. The rationale behind implant coatings to promote osteointegration, bone healing or regeneration. Injury 2021; 52 Suppl 2:S106-S111. [PMID: 33257018 DOI: 10.1016/j.injury.2020.11.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/02/2023]
Abstract
Implant loosening, bone healing failure, implant-associated infections, and large bony defects remain challenges in orthopedic surgery. Implant surface modifications and coatings are being developed to promote osteointegration, prevent colonization by bacteria, and release bioactive factors. The following mini-review briefly discusses the clinical problem, explains the four "osteos", presents examples of coatings used for different orthopedic indications, and finally raises awareness of the coating and translational requirements.
Collapse
Affiliation(s)
- Kai Borcherding
- Department of Adhesive Bonding Technology and Surfaces, Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Bremen, Germany
| | - Gerhard Schmidmaier
- Center for Orthopedics, Trauma Surgery and Spinal Cord Injury, HTRG - Heidelberg Trauma Research Group, Heidelberg University Hospital, Heidelberg, Germany
| | - Gunther O Hofmann
- Department of Trauma, Hand and Reconstructive Surgery, Experimental Trauma Surgery, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Britt Wildemann
- Department of Trauma, Hand and Reconstructive Surgery, Experimental Trauma Surgery, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany; Julius Wolff Institute, BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
78
|
Araujo JTCD, Martin-Pastor M, Pérez L, Pinazo A, Sousa FFOD. Development of anacardic acid-loaded zein nanoparticles: Physical chemical characterization, stability and antimicrobial improvement. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
79
|
Xu X, Wang W, Luo J, Mohamadi A. Theoretical investigation of chemical functionalization BxCyNz (x = z = 1, y = 2) nanotube with pralines amino acid. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
80
|
Della Pelle G, Kostevšek N. Nucleic Acid Delivery with Red-Blood-Cell-Based Carriers. Int J Mol Sci 2021; 22:5264. [PMID: 34067699 PMCID: PMC8156122 DOI: 10.3390/ijms22105264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/27/2022] Open
Abstract
Gene therapy has the potential to become a staple of 21st-century medicine. However, to overcome the limitations of existing gene-delivery therapies, that is, poor stability and inefficient and delivery and accumulation of nucleic acids (NAs), safe drug-delivery systems (DDSs) allowing the prolonged circulation and expression of the administered genes in vivo are needed. In this review article, the development of DDSs over the past 70 years is briefly described. Since synthetic DDSs can be recognized and eliminated as foreign substances by the immune system, new approaches must be found. Using the body's own cells as DDSs is a unique and exciting strategy and can be used in a completely new way to overcome the critical limitations of existing drug-delivery approaches. Among the different circulatory cells, red blood cells (RBCs) are the most abundant and thus can be isolated in sufficiently large quantities to decrease the complexity and cost of the treatment compared to other cell-based carriers. Therefore, in the second part, this article describes 70 years of research on the development of RBCs as DDSs, covering the most important RBC properties and loading methods. In the third part, it focuses on RBCs as the NA delivery system with advantages and drawbacks discussed to decide whether they are suitable for NA delivery in vivo.
Collapse
Affiliation(s)
- Giulia Della Pelle
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Nina Kostevšek
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
| |
Collapse
|
81
|
Shariati M. The cancer therapy materialization by theranostic nanoparticles based on gold doped iron oxide under electromagnetic field amplification. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 35:102406. [PMID: 33932592 DOI: 10.1016/j.nano.2021.102406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/14/2021] [Accepted: 03/31/2021] [Indexed: 01/17/2023]
Abstract
The harnessing of the cancer X-ray radiation therapy by gold-decorated Fe3O4 theranostic nanoparticles (Au-Fe3O4 NPs) under electromagnetic field was articulated. The applied electromagnetic field could assemble the NPs inside cell in oriented field direction and enhance the local irradiation dose inside cell. By materializing NPs, the absorption of the energy exposed by X-ray radiation under electromagnetic field was restricted. The cytotoxic properties of the Au-Fe3O4 NPs were assessed using MTT assay in L929, HeLa and PC3 cell lines under radiation and dark conditions. The efficiency of the Au-Fe3O4 NPs under 2 Gy dose radiations was higher than 6 Gy radiations in untreated cells. The in vitro measurements showed that under electromagnetic field and X-ray radiation therapy with Au-Fe3O4 NPs, around 90% of the cancer cells population was annihilated. The in vivo measurements indicated that the tumor shape and size under X-ray with Au-Fe3O4 NPs after 3 weeks were efficiently deteriorated.
Collapse
Affiliation(s)
- Mohsen Shariati
- Department of Physics, Faculty of Science, Pardis Branch, Islamic Azad University, Pardis, Iran.
| |
Collapse
|
82
|
Karlsson J, Tzeng SY, Hemmati S, Luly KM, Choi O, Rui Y, Wilson DR, Kozielski KL, Quiñones-Hinojosa A, Green JJ. Photocrosslinked Bioreducible Polymeric Nanoparticles for Enhanced Systemic siRNA Delivery as Cancer Therapy. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2009768. [PMID: 34650390 PMCID: PMC8513781 DOI: 10.1002/adfm.202009768] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Indexed: 05/05/2023]
Abstract
Clinical translation of polymer-based nanocarriers for systemic delivery of RNA has been limited due to poor colloidal stability in the blood stream and intracellular delivery of the RNA to the cytosol. To address these limitations, this study reports a new strategy incorporating photocrosslinking of bioreducible nanoparticles for improved stability extracellularly and rapid release of RNA intracellularly. In this design, the polymeric nanocarriers contain ester bonds for hydrolytic degradation and disulfide bonds for environmentally triggered small interfering RNA (siRNA) release in the cytosol. These photocrosslinked bioreducible nanoparticles (XbNPs) have a shielded surface charge, reduced adsorption of serum proteins, and enable superior siRNA-mediated knockdown in both glioma and melanoma cells in high-serum conditions compared to non-crosslinked formulations. Mechanistically, XbNPs promote cellular uptake and the presence of secondary and tertiary amines enables efficient endosomal escape. Following systemic administration, XbNPs facilitate targeting of cancer cells and tissue-mediated siRNA delivery beyond the liver, unlike conventional nanoparticle-based delivery. These attributes of XbNPs facilitate robust siRNA-mediated knockdown in vivo in melanoma tumors colonized in the lungs following systemic administration. Thus, biodegradable polymeric nanoparticles, via photocrosslinking, demonstrate extended colloidal stability and efficient delivery of RNA therapeutics under physiological conditions, and thereby potentially advance systemic delivery technologies for nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- Johan Karlsson
- Department of Biomedical Engineering and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala SE-75121, Sweden
| | - Stephany Y Tzeng
- Department of Biomedical Engineering and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Shayan Hemmati
- Department of Biomedical Engineering and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kathryn M Luly
- Department of Biomedical Engineering and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Olivia Choi
- Department of Biomedical Engineering and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yuan Rui
- Department of Biomedical Engineering and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - David R Wilson
- Department of Biomedical Engineering and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kristen L Kozielski
- Department of Biomedical Engineering and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | | | - Jordan J Green
- Department of Biomedical Engineering and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Materials Science and Engineering, Neurosurgery, Oncology, Ophthalmology, and Chemical and Biomolecular Engineering, Sidney Kimmel Comprehensive Cancer Center, The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
83
|
Anita Lett J, Sagadevan S, Fatimah I, Hoque ME, Lokanathan Y, Léonard E, Alshahateet SF, Schirhagl R, Oh WC. Recent advances in natural polymer-based hydroxyapatite scaffolds: Properties and applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110360] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
84
|
Abstract
Significant advances in enzyme discovery, protein and reaction engineering have transformed biocatalysis into a viable technology for the industrial scale manufacturing of chemicals. Multi-enzyme catalysis has emerged as a new frontier for the synthesis of complex chemicals. However, the in vitro operation of multiple enzymes simultaneously in one vessel poses challenges that require new strategies for increasing the operational performance of enzymatic cascade reactions. Chief among those strategies is enzyme co-immobilization. This review will explore how advances in synthetic biology and protein engineering have led to bioinspired co-localization strategies for the scaffolding and compartmentalization of enzymes. Emphasis will be placed on genetically encoded co-localization mechanisms as platforms for future autonomously self-organizing biocatalytic systems. Such genetically programmable systems could be produced by cell factories or emerging cell-free systems. Challenges and opportunities towards self-assembling, multifunctional biocatalytic materials will be discussed.
Collapse
|
85
|
Balbuena C, Gianetti MM, Soulé ER. Molecular dynamics simulations of the formation of Ag nanoparticles assisted by PVP. Phys Chem Chem Phys 2021; 23:6677-6684. [PMID: 33710201 DOI: 10.1039/d1cp00211b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the formation mechanisms of nanoparticles is essential for the synthesis of nanomaterials with controlled properties. In solution synthesis, capping agents are used to mediate this process and control the final size and shape of the particles. In this work, the synthesis of silver nanoparticles, with polyvinylpyrrolidone (PVP) as the capping agent, is studied through molecular dynamics simulations. Nucleation of clusters of atoms and subsequent growth to form nanoparticles are analyzed, with focus on the role of PVP. No finite critical nucleus is detected, and amorphous particles seem to form by spinodal growth. In this timescale, PVP seems to have no effect on particle growth, which is ascribed to the competition between the protective effect and "bridging" (where a molecule of PVP is adsorbed to two different clusters, bringing them together). As the process evolves, a sequence of ordered structures appears within the particles: icosahedral, BCC, and FCC, the last one being the equilibrium configuration of bulk silver. In addition, for a low PVP content an apparent acceleration is observed in particle growth after these ordered phases appear, indicating that the growth of ordered particles from the solution is faster than the growth of amorphous particles. For a high PVP content, this acceleration is not observed, indicating that the protective effect prevails on particle growth in this regime. In addition, due to the bridging effect, the final overall configuration is strongly dependent on the PVP content. In the absence of PVP, large but dispersed particles are observed. When the PVP content is low, due to strong bridging, particles form agglomerates (with no strong coalescence in the timescale of simulations). When the PVP content is large enough, particles are smaller in size and do not show a strong tendency to agglomerate.
Collapse
Affiliation(s)
- Cristian Balbuena
- Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), J. B. Justo 4302, 7600 Mar del Plata, Argentina.
| | | | | |
Collapse
|
86
|
Boroumand H, Badie F, Mazaheri S, Seyedi ZS, Nahand JS, Nejati M, Baghi HB, Abbasi-Kolli M, Badehnoosh B, Ghandali M, Hamblin MR, Mirzaei H. Chitosan-Based Nanoparticles Against Viral Infections. Front Cell Infect Microbiol 2021; 11:643953. [PMID: 33816349 PMCID: PMC8011499 DOI: 10.3389/fcimb.2021.643953] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/22/2021] [Indexed: 01/23/2023] Open
Abstract
Viral infections, in addition to damaging host cells, can compromise the host immune system, leading to frequent relapse or long-term persistence. Viruses have the capacity to destroy the host cell while liberating their own RNA or DNA in order to replicate within additional host cells. The viral life cycle makes it challenging to develop anti-viral drugs. Nanotechnology-based approaches have been suggested to deal effectively with viral diseases, and overcome some limitations of anti-viral drugs. Nanotechnology has enabled scientists to overcome the challenges of solubility and toxicity of anti-viral drugs, and can enhance their selectivity towards viruses and virally infected cells, while preserving healthy host cells. Chitosan is a naturally occurring polymer that has been used to construct nanoparticles (NPs), which are biocompatible, biodegradable, less toxic, easy to prepare, and can function as effective drug delivery systems (DDSs). Furthermore, chitosan is Generally Recognized as Safe (GRAS) by the US Food and Drug Administration (U.S. FDA). Chitosan NPs have been used in drug delivery by the oral, ocular, pulmonary, nasal, mucosal, buccal, or vaginal routes. They have also been studied for gene delivery, vaccine delivery, and advanced cancer therapy. Multiple lines of evidence suggest that chitosan NPs could be used as new therapeutic tools against viral infections. In this review we summarize reports concerning the therapeutic potential of chitosan NPs against various viral infections.
Collapse
Affiliation(s)
- Homa Boroumand
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fereshteh Badie
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Samaneh Mazaheri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Zeynab Sadat Seyedi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Bannazadeh Baghi
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Badehnoosh
- Department of Gynecology and Obstetrics, Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Ghandali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
87
|
Zhu S, Tang Y, Lin C, Liu XY, Lin Y. Recent Advances in Patterning Natural Polymers: From Nanofabrication Techniques to Applications. SMALL METHODS 2021; 5:e2001060. [PMID: 34927826 DOI: 10.1002/smtd.202001060] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/09/2021] [Indexed: 06/14/2023]
Abstract
The development of a flexible and efficient strategy to precisely fabricate polymer patterns is increasingly significant for many research areas, especially for cell biology, pharmaceutical science, tissue engineering, soft photonics, and bioelectronics. Recent advances of patterning natural polymers using various nanofabrication techniques, including photolithography, electron-beam lithography, dip-pen nanolithography, inkjet printing, soft lithography, and nanoimprint lithography are discussed here. Integrating nanofabrication techniques with naturally derived macromolecules provides a feasible route for transforming these polymer materials into versatile and sophisticated devices while maintaining their intrinsic and excellent properties. Furthermore, the corresponding applications of these natural polymer patterns generated by the above techniques are elaborated. In the end, a summary of this promising research field is offered and an outlook for the future is given. It is expected that advances in precise spatial patterns of natural polymers would provide new avenues for various applications, such as tissue engineering, flexible electronics, biomedical diagnosis, and soft photonics.
Collapse
Affiliation(s)
- Shuihong Zhu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| | - Yonghua Tang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| | - Changxu Lin
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| | - Xiang Yang Liu
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore
| | - Youhui Lin
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
88
|
Green synthesis of Cuminum cyminum silver nanoparticles: Characterizations and cytocompatibility with lapine primary tenocytes. J Biosci 2021. [DOI: 10.1007/s12038-021-00141-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
89
|
Zeng X, Sarkar A. Density functional theory study to functionalization of BC 2N nanotubes with cysteine amino acid. J Mol Model 2021; 27:72. [PMID: 33544257 DOI: 10.1007/s00894-021-04685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/19/2021] [Indexed: 11/24/2022]
Abstract
The density functional theory (DFT) was used to study the interaction of cysteine amino acid with (8, 0) zigzag single-walled BC2N nanotubes (BC2NNTs) both in gas and solvent phases. The interaction between cysteine amino acid and BC2NNTs is found to be energetically favorable in both phases. Based on the calculations of solvation energy, it can be seen that the dissolution of BC2NNT/amino acid complex in water is spontaneous. During the functionalization process, the quantum molecular descriptor and the energy of adsorption changed significantly. Findings suggest that the cysteine amino acid can be considerably adsorbed chemically onto the surface of BC2NNTs. Based on the Eg values obtained, the cysteine molecule caused a reduction in the Eg value, which also increased the reactivity and conductivity of functionalized BC2NNTs. According to the findings of chemical hardness, the kinetic stability of the functionalized nanotubes was better than pure nanotubes. As a result of this approach, Eg values are indicative of high propensity reaction and electron transfer. Our findings have shown that BC2NNTs can function as an appropriate drug delivery system for cysteine amino acid within biological systems for the adsorption of the drug and controlled drug release.
Collapse
Affiliation(s)
- Xiuyun Zeng
- Fuzhou Technology and Business University, Fuzhou, 350715, Fujian, China.
| | - A Sarkar
- Indian Institute of Science, Bangalore, Karnataka, 560012, India
| |
Collapse
|
90
|
Zhang E, Bandera Y, Dickey A, Foulger I, Kolis JW, Foulger SH. Development of dispersible radioluminescent silicate nanoparticles through a sacrificial layer approach. J Colloid Interface Sci 2021; 582:1128-1135. [PMID: 32947096 DOI: 10.1016/j.jcis.2020.07.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/17/2020] [Accepted: 07/25/2020] [Indexed: 01/10/2023]
Abstract
X-rays offer low tissue attenuation with high penetration depth when used in medical applications and when coupled with radioluminescent nanoparticles, offer novel theranostic opportunities. In this role, the ideal scintillator requires a high degree of crystallinity for an application relevant radioluminescence, yet a key challenge is the irreversible aggregation of the particles at most crystallization temperatures. In this communication, a high temperature multi-composite reactor (HTMcR) process was successfully developed to recrystallize monodisperse scintillating particulates by employing a core-multishell architecture. The core-shell morphology of the particles consisted of a silica core over-coated with a rare earth (Re = Y3+, Lu3+, Ce3+) oxide shell. This core-shell assembly was then encapsulated within a poly(divinylbenzene) shell which was converted to glassy carbon during the annealing & crystallization of the silica/rare earth oxide core-shell particle. This glassy carbon acted as a delamination layer and prevented the irreversible aggregation of the particles during the high temperature crystallization step. A subsequent low temperature annealing step in an air environment removed the glassy carbon and resulted in radioluminescent nanoparticles. Two monodisperse nanoparticle systems were synthesized using the HTMcR process including cerium doped Y2Si2O7 and Lu2Si2O7 with radioluminescence peaks at 427 and 399 nm, respectively. These particles may be employed as an in vivo light source for a noninvasive X-ray excited optogenetics.
Collapse
Affiliation(s)
- Eric Zhang
- Center for Optical Materials Science and Engineering Technologies, Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634-0971, USA
| | - Yuriy Bandera
- Center for Optical Materials Science and Engineering Technologies, Department of Chemistry, Clemson University, Clemson, SC 29634-0971, USA
| | - Ashley Dickey
- Center for Optical Materials Science and Engineering Technologies, Department of Chemistry, Clemson University, Clemson, SC 29634-0971, USA
| | - Isabell Foulger
- Center for Optical Materials Science and Engineering Technologies, Department of Bioengineering, Clemson University, Clemson, SC 29634-0971, USA
| | - Joseph W Kolis
- Center for Optical Materials Science and Engineering Technologies, Department of Chemistry, Clemson University, Clemson, SC 29634-0971, USA
| | - Stephen H Foulger
- Center for Optical Materials Science and Engineering Technologies, Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634-0971, USA; Center for Optical Materials Science and Engineering Technologies, Department of Bioengineering, Clemson University, Clemson, SC 29634-0971, USA.
| |
Collapse
|
91
|
Pennarossa G, Arcuri S, De Iorio T, Gandolfi F, Brevini TAL. Current Advances in 3D Tissue and Organ Reconstruction. Int J Mol Sci 2021; 22:E830. [PMID: 33467648 PMCID: PMC7830719 DOI: 10.3390/ijms22020830] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/31/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Bi-dimensional culture systems have represented the most used method to study cell biology outside the body for over a century. Although they convey useful information, such systems may lose tissue-specific architecture, biomechanical effectors, and biochemical cues deriving from the native extracellular matrix, with significant alterations in several cellular functions and processes. Notably, the introduction of three-dimensional (3D) platforms that are able to re-create in vitro the structures of the native tissue, have overcome some of these issues, since they better mimic the in vivo milieu and reduce the gap between the cell culture ambient and the tissue environment. 3D culture systems are currently used in a broad range of studies, from cancer and stem cell biology, to drug testing and discovery. Here, we describe the mechanisms used by cells to perceive and respond to biomechanical cues and the main signaling pathways involved. We provide an overall perspective of the most recent 3D technologies. Given the breadth of the subject, we concentrate on the use of hydrogels, bioreactors, 3D printing and bioprinting, nanofiber-based scaffolds, and preparation of a decellularized bio-matrix. In addition, we report the possibility to combine the use of 3D cultures with functionalized nanoparticles to obtain highly predictive in vitro models for use in the nanomedicine field.
Collapse
Affiliation(s)
- Georgia Pennarossa
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (G.P.); (S.A.); (T.D.I.)
| | - Sharon Arcuri
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (G.P.); (S.A.); (T.D.I.)
| | - Teresina De Iorio
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (G.P.); (S.A.); (T.D.I.)
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy and Center for Stem Cell Research, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy;
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology, Department of Health, Animal Science and Food Safety and Center for Stem Cell Research, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (G.P.); (S.A.); (T.D.I.)
| |
Collapse
|
92
|
Tyrosine amino acid as a sustainable material for chemical functionalization of single-wall BC2N nanotubes: quantum chemical study. Struct Chem 2021. [DOI: 10.1007/s11224-020-01691-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
93
|
Pentlavalli S, Coulter S, Laverty G. Peptide Nanomaterials for Drug Delivery Applications. Curr Protein Pept Sci 2021; 21:401-412. [PMID: 31893991 DOI: 10.2174/1389203721666200101091834] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/04/2019] [Accepted: 10/21/2019] [Indexed: 11/22/2022]
Abstract
Self-assembled peptides have been shown to form well-defined nanostructures which display outstanding characteristics for many biomedical applications and especially in controlled drug delivery. Such biomaterials are becoming increasingly popular due to routine, standardized methods of synthesis, high biocompatibility, biodegradability and ease of upscale. Moreover, one can modify the structure at the molecular level to form various nanostructures with a wide range of applications in the field of medicine. Through environmental modifications such as changes in pH and ionic strength and the introduction of enzymes or light, it is possible to trigger self-assembly and design a host of different self-assembled nanostructures. The resulting nanostructures include nanotubes, nanofibers, hydrogels and nanovesicles which all display a diverse range of physico-chemical and mechanical properties. Depending on their design, peptide self-assembling nanostructures can be manufactured with improved biocompatibility and in vivo stability and the ability to encapsulate drugs with the capacity for sustained drug delivery. These molecules can act as carriers for drug molecules to ferry cargo intracellularly and respond to stimuli changes for both hydrophilic and hydrophobic drugs. This review explores the types of self-assembling nanostructures, the effects of external stimuli on and the mechanisms behind the assembly process, and applications for such technology in drug delivery.
Collapse
Affiliation(s)
- Sreekanth Pentlavalli
- Biofunctional Nanomaterials Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Ireland
| | - Sophie Coulter
- Biofunctional Nanomaterials Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Ireland
| | - Garry Laverty
- Biofunctional Nanomaterials Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Ireland
| |
Collapse
|
94
|
Mustfa SA, Maurizi E, McGrath J, Chiappini C. Nanomedicine Approaches to Negotiate Local Biobarriers for Topical Drug Delivery. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Salman Ahmad Mustfa
- Centre for Craniofacial and Regenerative Biology King's College London London SE1 9RT UK
| | - Eleonora Maurizi
- Dipartimento di Medicina e Chirurgia Università di Parma Parma 43121 Italy
| | - John McGrath
- St John's Institute of Dermatology King's College London London SE1 9RT UK
| | - Ciro Chiappini
- Centre for Craniofacial and Regenerative Biology King's College London London SE1 9RT UK
- London Centre for Nanotechnology King's College London London WC2R 2LS UK
| |
Collapse
|
95
|
Simos YV, Spyrou K, Patila M, Karouta N, Stamatis H, Gournis D, Dounousi E, Peschos D. Trends of nanotechnology in type 2 diabetes mellitus treatment. Asian J Pharm Sci 2021; 16:62-76. [PMID: 33613730 PMCID: PMC7878460 DOI: 10.1016/j.ajps.2020.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/25/2020] [Accepted: 05/10/2020] [Indexed: 12/16/2022] Open
Abstract
There are several therapeutic approaches in type 2 diabetes mellitus (T2DM). When diet and exercise fail to control hyperglycemia, patients are forced to start therapy with antidiabetic agents. However, these drugs present several drawbacks that can affect the course of treatment. The major disadvantages of current oral modalities for the treatment of T2DM are mainly depicted in the low bioavailability and the immediate release of the drug, generating the need for an increase in frequency of dosing. In conjugation with the manifestation of adverse side effects, patient compliance to therapy is reduced. Over the past few years nanotechnology has found fertile ground in the development of novel delivery modalities that can potentially enhance anti-diabetic regimes efficacy. All efforts have been targeted towards two main vital steps: (a) to protect the drug by encapsulating it into a nano-carrier system and (b) efficiently release the drug in a gradual as well as controllable manner. However, only a limited number of studies published in the literature used in vivo techniques in order to support findings. Here we discuss the current disadvantages of modern T2DM marketed drugs, and the nanotechnology advances supported by in vivo in mouse/rat models of glucose homeostasis. The generation of drug nanocarriers may increase bioavailability, prolong release and therefore reduce dosing and thus, improve patient compliance. This novel approach might substantially improve quality of life for diabetics. Application of metal nanoformulations as indirect hypoglycemic agents is also discussed.
Collapse
Affiliation(s)
- Yannis V. Simos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Konstantinos Spyrou
- Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Michaela Patila
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Niki Karouta
- Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Haralambos Stamatis
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Dimitrios Gournis
- Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Evangelia Dounousi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| | - Dimitrios Peschos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, Ioannina 45110, Greece
| |
Collapse
|
96
|
Du Z, Cao G, Li K, Zhang R, Li X. Nanocomposites for the delivery of bioactive molecules in tissue repair: vital structural features, application mechanisms, updated progress and future perspectives. J Mater Chem B 2020; 8:10271-10289. [PMID: 33084730 DOI: 10.1039/d0tb01670e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, nanocomposites have attracted great attention in tissue repair as carriers for bioactive molecule delivery due to their biochemical and nanostructural similarity to that of physiological tissues, and controlled delivery of bioactive molecules. In this review, we aim to comprehensively clarify how the applications of nanocomposites for bioactive molecule delivery in tissue repair are achieved by focusing on the following aspects: (1) vital structural features (size, shape, pore, etc.) of nanocomposites that have crucial effects on the biological properties and function of bioactive molecule-delivery systems, (2) delivery performance of bioactive molecules possessing high entrapment efficiency of bioactive molecules and good controlled- and sustained-release of bioactive molecules, (3) application mechanisms of nanocomposites to deliver and release bioactive molecules in tissue repair, (4) updated research progress of nanocomposites for bioactive molecule delivery in hard and soft tissue repair, and (5) future perspectives in the development of bioactive molecule-delivery systems based on nanocomposites.
Collapse
Affiliation(s)
- Zhipo Du
- Department of Orthopedics, the Fourth Central Hospital of Baoding City, Baoding 072350, China
| | - Guangxiu Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| | - Kun Li
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Ruihong Zhang
- Department of Research and Teaching, the Fourth Central Hospital of Baoding City, Baoding 072350, China.
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
97
|
Ma Q, Gao Y, Sun W, Cao J, Liang Y, Han S, Wang X, Sun Y. Self-Assembled chitosan/phospholipid nanoparticles: from fundamentals to preparation for advanced drug delivery. Drug Deliv 2020; 27:200-215. [PMID: 31983258 PMCID: PMC7034086 DOI: 10.1080/10717544.2020.1716878] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/04/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
With the development of nanotechnology, self-assembled chitosan/phospholipid nanoparticles (SACPNs) show great promise in a broad range of applications, including therapy, diagnosis, in suit imaging and on-demand drug delivery. Here, a brief review of the SACPNs is presented, and its critical underlying formation mechanisms are interpreted with an emphasis on the intrinsic physicochemical properties. The state-of-art preparation methods of SACPNs are summarized, with particular descriptions about the classic solvent injection method. Then SACPNs microstructures are characterized, revealing the unique spherical core-shell structure and the drug release mechanisms. Afterwards, a comprehensive and in-depth depiction of their emerging applications, with special attention to drug delivery areas, are categorized and reviewed. Finally, conclusions and outlooks on further advancing the SACPNs toward a more powerful and versatile platform for investigations covering from fundamental understanding to developing multi-functional drug delivery systems are discussed.
Collapse
Affiliation(s)
- Qingming Ma
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yang Gao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Wentao Sun
- Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Shangcong Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Xinyu Wang
- Institute of Thermal Science and Technology, Shandong University, Jinan, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
98
|
Finbloom JA, Sousa F, Stevens MM, Desai TA. Engineering the drug carrier biointerface to overcome biological barriers to drug delivery. Adv Drug Deliv Rev 2020; 167:89-108. [PMID: 32535139 PMCID: PMC10822675 DOI: 10.1016/j.addr.2020.06.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
Micro and nanoscale drug carriers must navigate through a plethora of dynamic biological systems prior to reaching their tissue or disease targets. The biological obstacles to drug delivery come in many forms and include tissue barriers, mucus and bacterial biofilm hydrogels, the immune system, and cellular uptake and intracellular trafficking. The biointerface of drug carriers influences how these carriers navigate and overcome biological barriers for successful drug delivery. In this review, we examine how key material design parameters lead to dynamic biointerfaces and improved drug delivery across biological barriers. We provide a brief overview of approaches used to engineer key physicochemical properties of drug carriers, such as morphology, surface chemistry, and topography, as well as the development of dynamic responsive materials for barrier navigation. We then discuss essential biological barriers and how biointerface engineering can enable drug carriers to better navigate and overcome these barriers to drug delivery.
Collapse
Affiliation(s)
- Joel A Finbloom
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Flávia Sousa
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
| |
Collapse
|
99
|
Sun M, Lee J, Chen Y, Hoshino K. Studies of nanoparticle delivery with in vitro bio-engineered microtissues. Bioact Mater 2020; 5:924-937. [PMID: 32637755 PMCID: PMC7330434 DOI: 10.1016/j.bioactmat.2020.06.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 01/04/2023] Open
Abstract
A variety of engineered nanoparticles, including lipid nanoparticles, polymer nanoparticles, gold nanoparticles, and biomimetic nanoparticles, have been studied as delivery vehicles for biomedical applications. When assessing the efficacy of a nanoparticle-based delivery system, in vitro testing with a model delivery system is crucial because it allows for real-time, in situ quantitative transport analysis, which is often difficult with in vivo animal models. The advent of tissue engineering has offered methods to create experimental models that can closely mimic the 3D microenvironment in the human body. This review paper overviews the types of nanoparticle vehicles, their application areas, and the design strategies to improve delivery efficiency, followed by the uses of engineered microtissues and methods of analysis. In particular, this review highlights studies on multicellular spheroids and other 3D tissue engineering approaches for cancer drug development. The use of bio-engineered tissues can potentially provide low-cost, high-throughput, and quantitative experimental platforms for the development of nanoparticle-based delivery systems.
Collapse
Affiliation(s)
- Mingze Sun
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Rd, Storrs, CT, 06269, USA
| | - Jinhyung Lee
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Rd, Storrs, CT, 06269, USA
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Rd, Storrs, CT, 06269, USA
| | - Kazunori Hoshino
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Rd, Storrs, CT, 06269, USA
| |
Collapse
|
100
|
Stability of oxygen-rich plasma-polymerized coatings in aqueous environment. Biointerphases 2020; 15:061001. [PMID: 33126798 DOI: 10.1116/6.0000582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this work, we report on the stability of oxygen-rich plasma-polymerized (pp) films in an aqueous environment. The pp films were deposited via atmospheric-pressure plasma jet treatment of polymerizable organic liquids. The monomers used for the plasma-assisted polymerization were tetrahydrofurfuryl methacrylate, 1,2,4-trivinylcyclohexane, and mixtures thereof. The pp films were deposited at different plasma input powers ranging from 3 to 7 W. The stability of the obtained pp films was studied upon long-time storage in pure water and in buffer solutions of pHs 4, 7, and 10. After 24 h of storage of the pp films in de-ionized water, all of the studied pp films experienced thickness losses along with the formation of various ringlike structures at their surface, whereas Fourier transformed infrared (FT-IR) analysis showed no changes in their chemical composition. The pp films stored in pH 10 were completely delaminated from the substrate surface, while the pp films stored for 24 h in pH 4 showed swelling behavior, partial delamination, and the formation of wrinkles at the coatings' surface. The pp films stored for 24 h in pH 7 experienced minor thickness losses and formation of wrinkles at their surface. FT-IR analysis of the pp films stored in buffer solutions of pH 4 and pH 7 showed a decrease of C=O and an increase of O-H stretching signals in all of the cases. The observed chemical changes corresponded to the hydrolysis of esters presented in the pp films' structure.
Collapse
|