51
|
Blutt SE, Coarfa C, Neu J, Pammi M. Multiomic Investigations into Lung Health and Disease. Microorganisms 2023; 11:2116. [PMID: 37630676 PMCID: PMC10459661 DOI: 10.3390/microorganisms11082116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Diseases of the lung account for more than 5 million deaths worldwide and are a healthcare burden. Improving clinical outcomes, including mortality and quality of life, involves a holistic understanding of the disease, which can be provided by the integration of lung multi-omics data. An enhanced understanding of comprehensive multiomic datasets provides opportunities to leverage those datasets to inform the treatment and prevention of lung diseases by classifying severity, prognostication, and discovery of biomarkers. The main objective of this review is to summarize the use of multiomics investigations in lung disease, including multiomics integration and the use of machine learning computational methods. This review also discusses lung disease models, including animal models, organoids, and single-cell lines, to study multiomics in lung health and disease. We provide examples of lung diseases where multi-omics investigations have provided deeper insight into etiopathogenesis and have resulted in improved preventative and therapeutic interventions.
Collapse
Affiliation(s)
- Sarah E. Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Josef Neu
- Department of Pediatrics, Section of Neonatology, University of Florida, Gainesville, FL 32611, USA;
| | - Mohan Pammi
- Department of Pediatrics, Section of Neonatology, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| |
Collapse
|
52
|
Martinez FJ, Criner GJ, Gessner C, Jandl M, Scherbovsky F, Shinkai M, Siler TM, Vogelmeier CF, Voves R, Wedzicha JA, Bartels C, Bottoli I, Byiers S, Cardenas P, Eckert JH, Gutzwiller FS, Knorr B, Kothari M, Parlikar R, Tanase AM, Franssen FM. Icenticaftor, a CFTR Potentiator, in COPD: A Multicenter, Parallel-Group, Double-Blind Clinical Trial. Am J Respir Crit Care Med 2023; 208:417-427. [PMID: 37411039 PMCID: PMC10449083 DOI: 10.1164/rccm.202303-0458oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/06/2023] [Indexed: 07/08/2023] Open
Abstract
Rationale: CFTR (cystic fibrosis transmembrane conductance regulator) dysfunction is associated with mucus accumulation and worsening chronic obstructive pulmonary disease (COPD) symptoms. Objectives: The aim of this phase IIb dose-finding study was to compare a CFTR potentiator, icenticaftor (QBW251), with placebo in patients with COPD and chronic bronchitis. Methods: Patients with COPD on triple therapy for at least three months were randomized to six treatment arms (icenticaftor 450, 300, 150, 75, or 25 mg or placebo twice daily [b.i.d.]) in a 24-week, multicenter, parallel-group, double-blind study. The primary endpoint was change from baseline in trough FEV1 after 12 weeks. Secondary endpoints included change from baseline in trough FEV1 and Evaluating Respiratory Symptoms in COPD (E-RS) total and cough and sputum scores after 24 weeks. Multiple comparison procedure-modeling was conducted to characterize dose-response relationship. Rescue medication use, exacerbations, and change in serum fibrinogen concentration after 24 weeks were assessed in exploratory and post hoc analyses, respectively. Measurements and Main Results: Nine hundred seventy-four patients were randomized. After 12 weeks of icenticaftor treatment, no dose-response relationship for change from baseline in trough FEV1 was observed; however, it was observed for E-RS cough and sputum score. A dose-response relationship was observed after 24 weeks for trough FEV1, E-RS cough and sputum and total scores, rescue medication use, and fibrinogen. A dose of 300 mg b.i.d. was consistently the most effective. Improvements for 300 mg b.i.d. versus placebo were also seen in pairwise comparisons of these endpoints. All treatments were well tolerated. Conclusions: The primary endpoint was negative, as icenticaftor did not improve trough FEV1 over 12 weeks. Although the findings must be interpreted with caution, icenticaftor improved trough FEV1; reduced cough, sputum, and rescue medication use; and lowered fibrinogen concentrations at 24 weeks. Clinical trial registered with www.clinicaltrials.gov (NCT04072887).
Collapse
Affiliation(s)
- Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine/NewYork-Presbyterian Hospital, New York, New York
| | - Gerard J. Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Christian Gessner
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Margret Jandl
- Hamburger Institut für Therapieforschung GmbH, Hamburg, Germany
| | | | - Masaharu Shinkai
- Department of Respiratory Medicine, Tokyo Shinagawa Hospital, Tokyo, Japan
| | | | - Claus F. Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University of Marburg, German Center for Lung Research, Marburg, Germany
| | - Robert Voves
- Private Practice, Bismarckstraße, Feldbach, Austria
| | - Jadwiga A. Wedzicha
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | | | | | - Pamela Cardenas
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | | | | | - Barbara Knorr
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | | | | | | | - Frits M.E. Franssen
- Department of Respiratory Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
53
|
Schaupp L, Addante A, Völler M, Fentker K, Kuppe A, Bardua M, Duerr J, Piehler L, Röhmel J, Thee S, Kirchner M, Ziehm M, Lauster D, Haag R, Gradzielski M, Stahl M, Mertins P, Boutin S, Graeber SY, Mall MA. Longitudinal effects of elexacaftor/tezacaftor/ivacaftor on sputum viscoelastic properties, airway infection and inflammation in patients with cystic fibrosis. Eur Respir J 2023; 62:2202153. [PMID: 37414422 DOI: 10.1183/13993003.02153-2022] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/21/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Recent studies demonstrated that the triple combination cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy elexacaftor/tezacaftor/ivacaftor (ETI) improves lung function and reduces pulmonary exacerbations in cystic fibrosis (CF) patients with at least one F508del allele. However, effects of ETI on downstream consequences of CFTR dysfunction, i.e. abnormal viscoelastic properties of airway mucus, chronic airway infection and inflammation have not been studied. The aim of this study was to determine the longitudinal effects of ETI on airway mucus rheology, microbiome and inflammation in CF patients with one or two F508del alleles aged ≥12 years throughout the first 12 months of therapy. METHODS In this prospective observational study, we assessed sputum rheology, the microbiome, inflammation markers and proteome before and 1, 3 and 12 months after initiation of ETI. RESULTS In total, 79 patients with CF and at least one F508del allele and 10 healthy controls were enrolled in this study. ETI improved the elastic modulus and viscous modulus of CF sputum at 3 and 12 months after initiation (all p<0.01). Furthermore, ETI decreased the relative abundance of Pseudomonas aeruginosa in CF sputum at 3 months and increased the microbiome α-diversity at all time points. In addition, ETI reduced interleukin-8 at 3 months (p<0.05) and free neutrophil elastase activity at all time points (all p<0.001), and shifted the CF sputum proteome towards healthy. CONCLUSIONS Our data demonstrate that restoration of CFTR function by ETI improves sputum viscoelastic properties, chronic airway infection and inflammation in CF patients with at least one F508del allele over the first 12 months of therapy; however, levels close to healthy were not reached.
Collapse
Affiliation(s)
- Laura Schaupp
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- L. Schaupp, A. Addante, M. Völler and K. Fentker contributed equally as first authors
| | - Annalisa Addante
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- L. Schaupp, A. Addante, M. Völler and K. Fentker contributed equally as first authors
| | - Mirjam Völler
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- L. Schaupp, A. Addante, M. Völler and K. Fentker contributed equally as first authors
| | - Kerstin Fentker
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- L. Schaupp, A. Addante, M. Völler and K. Fentker contributed equally as first authors
| | - Aditi Kuppe
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Markus Bardua
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Julia Duerr
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Linus Piehler
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stephanie Thee
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marieluise Kirchner
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Ziehm
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Lauster
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Institute of Pharmacy, Biopharmaceuticals, Freie Universität Berlin, Berlin, Germany Berlin, Germany
| | - Rainer Haag
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Michael Gradzielski
- Institute of Pharmacy, Biopharmaceuticals, Freie Universität Berlin, Berlin, Germany Berlin, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Mertins
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- P. Mertins, S. Boutin, S.Y. Graeber and M.A. Mall contributed equally as senior authors
| | - Sébastien Boutin
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Berlin, Germany
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein/Campus, Lübeck, Germany
- P. Mertins, S. Boutin, S.Y. Graeber and M.A. Mall contributed equally as senior authors
| | - Simon Y Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- P. Mertins, S. Boutin, S.Y. Graeber and M.A. Mall contributed equally as senior authors
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- P. Mertins, S. Boutin, S.Y. Graeber and M.A. Mall contributed equally as senior authors
| |
Collapse
|
54
|
Vanherle L, Matthes F, Uhl FE, Meissner A. Ivacaftor therapy post myocardial infarction augments systemic inflammation and evokes contrasting effects with respect to tissue inflammation in brain and lung. Biomed Pharmacother 2023; 162:114628. [PMID: 37018991 DOI: 10.1016/j.biopha.2023.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Acquired cystic fibrosis transmembrane regulator (CFTR) dysfunctions have been associated with several conditions, including myocardial infarction (MI). Here, CFTR is downregulated in brain, heart, and lung tissue and associates with inflammation and degenerative processes. Therapeutically increasing CFTR expression attenuates these effects. Whether potentiating CFTR function yields similar beneficial effects post-MI is unknown. The CFTR potentiator ivacaftor is currently in clinical trials for treatment of acquired CFTR dysfunction associated with chronic obstructive pulmonary disease and chronic bronchitis. Thus, we tested ivacaftor as therapeutic strategy for MI-associated target tissue inflammation that is characterized by CFTR alterations. MI was induced in male C57Bl/6 mice by ligation of the left anterior descending coronary artery. Mice were treated with ivacaftor starting ten weeks post-MI for two consecutive weeks. Systemic ivacaftor treatment ameliorates hippocampal neuron dendritic atrophy and spine loss and attenuates hippocampus-dependent memory deficits occurring post-MI. Similarly, ivacaftor therapy mitigates MI-associated neuroinflammation (i.e., reduces higher proportions of activated microglia). Systemically, ivacaftor leads to higher frequencies of circulating Ly6C+ and Ly6Chi cells compared to vehicle-treated MI mice. Likewise, an ivacaftor-mediated augmentation of MI-associated pro-inflammatory macrophage phenotype characterized by higher CD80-positivity is observed in the MI lung. In vitro, ivacaftor does not alter LPS-induced CD80 and tumor necrosis factor alpha mRNA increases in BV2 microglial cells, while augmenting mRNA levels of these markers in mouse macrophages and differentiated human THP-1-derived macrophages. Our results suggest that ivacaftor promotes contrasting effects depending on target tissue post-MI, which may be largely dependent on its effects on different myeloid cell types.
Collapse
Affiliation(s)
- Lotte Vanherle
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| | - Frank Matthes
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden; Department of Physiology, Institute for Theoretical Medicine, University of Augsburg, Augsburg, Germany.
| | - Franziska E Uhl
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| | - Anja Meissner
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden; Department of Physiology, Institute for Theoretical Medicine, University of Augsburg, Augsburg, Germany.
| |
Collapse
|
55
|
Putman MS, Norris AW, Hull RL, Rickels MR, Sussel L, Blackman SM, Chan CL, Ode KL, Daley T, Stecenko AA, Moran A, Helmick MJ, Cray S, Alvarez JA, Stallings VA, Tuggle KL, Clancy JP, Eggerman TL, Engelhardt JF, Kelly A. Cystic Fibrosis-Related Diabetes Workshop: Research Priorities Spanning Disease Pathophysiology, Diagnosis, and Outcomes. Diabetes Care 2023; 46:1112-1123. [PMID: 37125948 PMCID: PMC10234745 DOI: 10.2337/dc23-0380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/27/2023] [Indexed: 05/02/2023]
Abstract
Cystic fibrosis (CF) is a recessive disorder arising from mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein. CFTR is expressed in numerous tissues, with high expression in the airways, small and large intestine, pancreatic and hepatobiliary ducts, and male reproductive tract. CFTR loss in these tissues disrupts regulation of salt, bicarbonate, and water balance across their epithelia, resulting in a systemic disorder with progressive organ dysfunction and damage. Pancreatic exocrine damage ultimately manifests as pancreatic exocrine insufficiency that begins as early as infancy. Pancreatic remodeling accompanies this early damage, during which abnormal glucose tolerance can be observed in toddlers. With increasing age, however, insulin secretion defects progress such that CF-related diabetes (CFRD) occurs in 20% of teens and up to half of adults with CF. The relevance of CFRD is highlighted by its association with increased morbidity, mortality, and patient burden. While clinical research on CFRD has greatly assisted in the care of individuals with CFRD, key knowledge gaps on CFRD pathogenesis remain. Furthermore, the wide use of CFTR modulators to restore CFTR activity is changing the CFRD clinical landscape and the field's understanding of CFRD pathogenesis. For these reasons, the National Institute of Diabetes and Digestive and Kidney Diseases and the Cystic Fibrosis Foundation sponsored a CFRD Scientific Workshop, 23-25 June 2021, to define knowledge gaps and needed research areas. This article describes the findings from this workshop and plots a path for CFRD research that is needed over the next decade.
Collapse
Affiliation(s)
- Melissa S. Putman
- Division of Pediatric Endocrinology, Boston Children’s Hospital, Boston, MA
- Diabetes Research Center, Massachusetts General Hospital, Boston, MA
| | - Andrew W. Norris
- Department of Pediatrics, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| | - Rebecca L. Hull
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA
- Research Service, VA Puget Sound Health Care System, Seattle
| | - Michael R. Rickels
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Lori Sussel
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Scott M. Blackman
- Division of Pediatric Endocrinology and Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christine L. Chan
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Katie Larson Ode
- Department of Pediatrics, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| | - Tanicia Daley
- Division of Endocrinology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Children’s Healthcare of Atlanta, Atlanta, GA
| | - Arlene A. Stecenko
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University, Atlanta, GA
| | - Antoinette Moran
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | | | | | - Jessica A. Alvarez
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory School of Medicine, Atlanta, GA
| | - Virginia A. Stallings
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, The University of Pennsylvania, Philadelphia, PA
| | | | | | - Thomas L. Eggerman
- Division of Diabetes, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - John F. Engelhardt
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Andrea Kelly
- Department of Pediatrics, The University of Pennsylvania, Philadelphia, PA
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
56
|
Putman MS, Norris AW, Hull RL, Rickels MR, Sussel L, Blackman SM, Chan CL, Ode KL, Daley T, Stecenko AA, Moran A, Helmick MJ, Cray S, Alvarez JA, Stallings VA, Tuggle KL, Clancy JP, Eggerman TL, Engelhardt JF, Kelly A. Cystic Fibrosis-Related Diabetes Workshop: Research Priorities Spanning Disease Pathophysiology, Diagnosis, and Outcomes. Diabetes 2023; 72:677-689. [PMID: 37125945 PMCID: PMC10202770 DOI: 10.2337/db22-0949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/27/2023] [Indexed: 05/02/2023]
Abstract
Cystic fibrosis (CF) is a recessive disorder arising from mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein. CFTR is expressed in numerous tissues, with high expression in the airways, small and large intestine, pancreatic and hepatobiliary ducts, and male reproductive tract. CFTR loss in these tissues disrupts regulation of salt, bicarbonate, and water balance across their epithelia, resulting in a systemic disorder with progressive organ dysfunction and damage. Pancreatic exocrine damage ultimately manifests as pancreatic exocrine insufficiency that begins as early as infancy. Pancreatic remodeling accompanies this early damage, during which abnormal glucose tolerance can be observed in toddlers. With increasing age, however, insulin secretion defects progress such that CF-related diabetes (CFRD) occurs in 20% of teens and up to half of adults with CF. The relevance of CFRD is highlighted by its association with increased morbidity, mortality, and patient burden. While clinical research on CFRD has greatly assisted in the care of individuals with CFRD, key knowledge gaps on CFRD pathogenesis remain. Furthermore, the wide use of CFTR modulators to restore CFTR activity is changing the CFRD clinical landscape and the field's understanding of CFRD pathogenesis. For these reasons, the National Institute of Diabetes and Digestive and Kidney Diseases and the Cystic Fibrosis Foundation sponsored a CFRD Scientific Workshop, 23-25 June 2021, to define knowledge gaps and needed research areas. This article describes the findings from this workshop and plots a path for CFRD research that is needed over the next decade.
Collapse
Affiliation(s)
- Melissa S. Putman
- Division of Pediatric Endocrinology, Boston Children’s Hospital, Boston, MA
- Diabetes Research Center, Massachusetts General Hospital, Boston, MA
| | - Andrew W. Norris
- Department of Pediatrics, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| | - Rebecca L. Hull
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington, Seattle, WA
- Research Service, VA Puget Sound Health Care System, Seattle, WA
| | - Michael R. Rickels
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Lori Sussel
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Scott M. Blackman
- Division of Pediatric Endocrinology and Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christine L. Chan
- Department of Pediatrics, Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Katie Larson Ode
- Department of Pediatrics, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| | - Tanicia Daley
- Division of Endocrinology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Children’s Healthcare of Atlanta, Atlanta, GA
| | - Arlene A. Stecenko
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University, Atlanta, GA
| | - Antoinette Moran
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | | | | | - Jessica A. Alvarez
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory School of Medicine, Atlanta, GA
| | - Virginia A. Stallings
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, The University of Pennsylvania, Philadelphia, PA
| | | | | | - Thomas L. Eggerman
- Division of Diabetes, Endocrinology, and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - John F. Engelhardt
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Andrea Kelly
- Department of Pediatrics, The University of Pennsylvania, Philadelphia, PA
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
57
|
Berges J, Graeber SY, Hämmerling S, Yu Y, Krümpelmann A, Stahl M, Hirtz S, Scheuermann H, Mall MA, Sommerburg O. Effects of lumacaftor-ivacaftor therapy on cystic fibrosis transmembrane conductance regulator function in F508del homozygous patients with cystic fibrosis aged 2-11 years. Front Pharmacol 2023; 14:1188051. [PMID: 37324488 PMCID: PMC10266342 DOI: 10.3389/fphar.2023.1188051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Rationale: Lumacaftor/ivacaftor was approved for the treatment of patients with cystic fibrosis who are homozygous for F508del aged 2 years and older following positive results from phase three trials. However, the improvement in CFTR function associated with lumacaftor/ivacaftor has only been studied in patients over 12 years of age, while the rescue potential in younger children is unknown. Methods: In a prospective study, we aimed to evaluate the effect of lumacaftor/ivacaftor on the CFTR biomarkers sweat chloride concentration and intestinal current measurement as well as clinical outcome parameters in F508del homozygous CF patients 2-11 years before and 8-16 weeks after treatment initiation. Results: A total of 13 children with CF homozygous for F508del aged 2-11 years were enrolled and 12 patients were analyzed. Lumacaftor/ivacaftor treatment reduced sweat chloride concentration by 26.8 mmol/L (p = 0.0006) and showed a mean improvement in CFTR activity, as assessed by intestinal current measurement in the rectal epithelium, of 30.5% compared to normal (p = 0.0015), exceeding previous findings of 17.7% of normal in CF patients homozygous for F508del aged 12 years and older. Conclusion: Lumacaftor/ivacaftor partially restores F508del CFTR function in children with CF who are homozygous for F508del, aged 2-11 years, to a level of CFTR activity seen in patients with CFTR variants with residual function. These results are consistent with the partial short-term improvement in clinical parameters.
Collapse
Affiliation(s)
- Julian Berges
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Simon Y. Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Susanne Hämmerling
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Yin Yu
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Arne Krümpelmann
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Stephanie Hirtz
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Heike Scheuermann
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine and Cystic Fibrosis Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Berlin, Germany
| | - Olaf Sommerburg
- Division of Pediatric Pulmonology and Allergology and Cystic Fibrosis Center, Department of Pediatrics, University of Heidelberg, Heidelberg, Germany
- Department of Translational Pulmonology, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
58
|
Barillaro M, Gonska T. Assessing accuracy of testing and diagnosis in cystic fibrosis. Expert Rev Respir Med 2023:1-13. [PMID: 37190981 DOI: 10.1080/17476348.2023.2213438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Malina Barillaro
- Department of Physiology, University of Toronto, Toronto ON, Canada
- Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Tanja Gonska
- Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Toronto, Toronto ON, Canada
| |
Collapse
|
59
|
Nichols DP, Morgan SJ, Skalland M, Vo AT, Van Dalfsen JM, Singh SB, Ni W, Hoffman LR, McGeer K, Heltshe SL, Clancy JP, Rowe SM, Jorth P, Singh PK, the PROMISE-Micro Study Group. Pharmacologic improvement of CFTR function rapidly decreases sputum pathogen density, but lung infections generally persist. J Clin Invest 2023; 133:e167957. [PMID: 36976651 PMCID: PMC10178839 DOI: 10.1172/jci167957] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
BackgroundLung infections are among the most consequential manifestations of cystic fibrosis (CF) and are associated with reduced lung function and shortened survival. Drugs called CF transmembrane conductance regulator (CFTR) modulators improve activity of dysfunctional CFTR channels, which is the physiological defect causing CF. However, it is unclear how improved CFTR activity affects CF lung infections.MethodsWe performed a prospective, multicenter, observational study to measure the effect of the newest and most effective CFTR modulator, elexacaftor/tezacaftor/ivacaftor (ETI), on CF lung infections. We studied sputum from 236 people with CF during their first 6 months of ETI using bacterial cultures, PCR, and sequencing.ResultsMean sputum densities of Staphylococcus aureus, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Achromobacter spp., and Burkholderia spp. decreased by 2-3 log10 CFU/mL after 1 month of ETI. However, most participants remained culture positive for the pathogens cultured from their sputum before starting ETI. In those becoming culture negative after ETI, the pathogens present before treatment were often still detectable by PCR months after sputum converted to culture negative. Sequence-based analyses confirmed large reductions in CF pathogen genera, but other bacteria detected in sputum were largely unchanged. ETI treatment increased average sputum bacterial diversity and produced consistent shifts in sputum bacterial composition. However, these changes were caused by ETI-mediated decreases in CF pathogen abundance rather than changes in other bacteria.ConclusionsTreatment with the most effective CFTR modulator currently available produced large and rapid reductions in traditional CF pathogens in sputum, but most participants remain infected with the pathogens present before modulator treatment.Trial RegistrationClinicalTrials.gov NCT04038047.FundingThe Cystic Fibrosis Foundation and the NIH.
Collapse
Affiliation(s)
| | - Sarah J. Morgan
- Departments of Microbiology and Medicine, University of Washington, Seattle, Washington, USA
| | - Michelle Skalland
- Therapeutics Development Network Coordinating Center, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Anh T. Vo
- Departments of Microbiology and Medicine, University of Washington, Seattle, Washington, USA
| | - Jill M. Van Dalfsen
- Therapeutics Development Network Coordinating Center, Seattle Children’s Research Institute, Seattle, Washington, USA
| | | | - Wendy Ni
- Departments of Microbiology and Medicine, University of Washington, Seattle, Washington, USA
| | | | - Kailee McGeer
- Departments of Microbiology and Medicine, University of Washington, Seattle, Washington, USA
| | - Sonya L. Heltshe
- Department of Pediatrics and
- Therapeutics Development Network Coordinating Center, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - John P. Clancy
- Department of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Steven M. Rowe
- Department of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Peter Jorth
- Departments of Pathology and Laboratory Medicine, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Pradeep K. Singh
- Departments of Microbiology and Medicine, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
60
|
Han X, Li D, Reyes-Ortega F, Schneider-Futschik EK. Dry Powder Inhalation for Lung Delivery in Cystic Fibrosis. Pharmaceutics 2023; 15:1488. [PMID: 37242730 PMCID: PMC10223735 DOI: 10.3390/pharmaceutics15051488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/30/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Pulmonary drug delivery has long been used for local and systemic administration of different medications used in acute and chronic respiratory diseases. Certain lung diseases, such as cystic fibrosis, rely heavily on chronic treatments, including targeted lung delivery. Pulmonary drug delivery possesses various physiological advantages compared to other delivery methods and is also convenient for the patient to use. However, the formulation of dry powder for pulmonary delivery proves challenging due to aerodynamic restrictions and the lower tolerance of the lung. The aim of this review is to provide an overview of the respiratory tract structure in patients with cystic fibrosis, including during acute and chronic lung infections and exacerbations. Furthermore, this review discusses the advantages of targeted lung delivery, including the physicochemical properties of dry powder and factors affecting clinical efficacy. Current inhalable drug treatments and drugs currently under development will also be discussed.
Collapse
Affiliation(s)
| | | | | | - Elena K. Schneider-Futschik
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
61
|
De Vuyst RC, Bennard E, Kam CW, McKinzie CJ, Esther CR. Elexacaftor/tezacaftor/ivacaftor treatment reduces airway inflammation in cystic fibrosis. Pediatr Pulmonol 2023; 58:1592-1594. [PMID: 36718851 DOI: 10.1002/ppul.26334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Affiliation(s)
- Richard C De Vuyst
- Department of Pediatrics, Division of Pediatric Pulmonology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Erin Bennard
- Department of Pediatrics, Division of Pediatric Pulmonology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Charissa W Kam
- Department of Pharmacy, University of North Carolina Medical Center, Chapel Hill, North Carolina, USA
| | - Cameron J McKinzie
- Department of Pharmacy, University of North Carolina Medical Center, Chapel Hill, North Carolina, USA
| | - Charles R Esther
- Department of Pediatrics, Division of Pediatric Pulmonology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
62
|
Arooj P, Morrissy DV, McCarthy Y, Vagg T, McCarthy M, Fleming C, Daly M, Eustace JA, Murphy DM, Plant BJ. ROCK STUDY in CF: sustained anti-inflammatory effects of lumacaftor-ivacaftor in sputum and peripheral blood samples of adult patients with cystic fibrosis-an observational study. BMJ Open Respir Res 2023; 10:10/1/e001590. [PMID: 37130650 PMCID: PMC10163494 DOI: 10.1136/bmjresp-2022-001590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/14/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Previous studies showed that the combination of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) corrector and potentiator, lumacaftor-ivacaftor (LUMA-IVA) provides meaningful clinical benefits in patients with cystic fibrosis who are homozygous for the Phe508del CFTR mutation. However, little is known about the effect of LUMA-IVA on Proinflammatory Cytokines (PICs). OBJECTIVES To investigate the impact of LUMA-IVA CFTR modulation on circulatory and airway cytokines before and after 12 months of LUMA-IVA treatment in a real-world setting. METHODS We assessed both plasma and sputum PICs, as well as standard clinical outcomes including Forced Expiratory Volume in one second (FEV1) %predicted, Body Mass Index (BMI), sweat chloride and pulmonary exacerbations at baseline and prospectively for one year post commencement of LUMA-IVA in 44 patients with cystic fibrosis aged 16 years and older homozygous for the Phe508del CFTR mutation. RESULTS Significant reduction in plasma cytokines including interleukin (IL)-8 (p<0.05), tumour necrosis factor (TNF)-α (p<0.001), IL-1ß (p<0.001) levels were observed while plasma IL-6 showed no significant change (p=0.599) post-LUMA-IVA therapy. Significant reduction in sputum IL-6 (p<0.05), IL-8 (p<0.01), IL-1ß (p<0.001) and TNF-α (p<0.001) levels were observed after LUMA-IVA therapy. No significant change was noted in anti-inflammatory cytokine IL-10 levels in both plasma and sputum (p=0.305) and (p=0.585) respectively. Clinically significant improvements in FEV1 %predicted (mean+3.38%, p=0.002), BMI (mean+0.8 kg/m2, p<0.001), sweat chloride (mean -19 mmol/L, p<0.001), as well as reduction in intravenous antibiotics usage (mean -0.73, p<0.001) and hospitalisation (mean -0.38, p=0.002) were observed after initiation of LUMA-IVA therapy. CONCLUSION This real-world study demonstrates that LUMA-IVA has significant and sustained beneficial effects on both circulatory and airway inflammation. Our findings suggest that LUMA-IVA may improve inflammatory responses, which could potentially contribute to improved standard clinical outcomes.
Collapse
Affiliation(s)
- Parniya Arooj
- Cork Adult Cystic Fibrosis Centre (3CF), Cork University Hospital, Cork, Ireland
- HRB Clinical Research Facility, University College Cork, Cork, Ireland
- Department of Respiratory Medicine, Cork University Hospital, Cork, Ireland
| | - David V Morrissy
- Cork Adult Cystic Fibrosis Centre (3CF), Cork University Hospital, Cork, Ireland
- HRB Clinical Research Facility, University College Cork, Cork, Ireland
- Department of Respiratory Medicine, Cork University Hospital, Cork, Ireland
| | - Yvonne McCarthy
- Cork Adult Cystic Fibrosis Centre (3CF), Cork University Hospital, Cork, Ireland
- HRB Clinical Research Facility, University College Cork, Cork, Ireland
| | - Tamara Vagg
- Cork Adult Cystic Fibrosis Centre (3CF), Cork University Hospital, Cork, Ireland
- HRB Clinical Research Facility, University College Cork, Cork, Ireland
| | - Mairead McCarthy
- Cork Adult Cystic Fibrosis Centre (3CF), Cork University Hospital, Cork, Ireland
| | - Claire Fleming
- Cork Adult Cystic Fibrosis Centre (3CF), Cork University Hospital, Cork, Ireland
| | - Mary Daly
- HRB Clinical Research Facility, University College Cork, Cork, Ireland
| | - Joseph A Eustace
- HRB Clinical Research Facility, University College Cork, Cork, Ireland
| | - Desmond M Murphy
- HRB Clinical Research Facility, University College Cork, Cork, Ireland
- Department of Respiratory Medicine, Cork University Hospital, Cork, Ireland
| | - B J Plant
- Cork Adult Cystic Fibrosis Centre (3CF), Cork University Hospital, Cork, Ireland
- HRB Clinical Research Facility, University College Cork, Cork, Ireland
- Department of Respiratory Medicine, Cork University Hospital, Cork, Ireland
| |
Collapse
|
63
|
Schnell A, Hober H, Kaiser N, Ruppel R, Geppert A, Tremel C, Sobel J, Plattner E, Woelfle J, Hoerning A. Elexacaftor - Tezacaftor - Ivacaftor treatment improves systemic infection parameters and Pseudomonas aeruginosa colonization rate in patients with cystic fibrosis a monocentric observational study. Heliyon 2023; 9:e15756. [PMID: 37153441 PMCID: PMC10160512 DOI: 10.1016/j.heliyon.2023.e15756] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/30/2023] [Accepted: 04/20/2023] [Indexed: 05/09/2023] Open
Abstract
Background & aims The CFTR-modulating therapy Elexaftor - Tezacaftor - Ivacaftor (ETI) has been widely prescribed since its approval in 2020 in the European Union. The aim of this study was to methodically evaluate the effects of an ETI treatment on clinical, biochemical data and Pseudomonas colonization in order to demonstrate its efficacy. Methods This prospective monocentric study comprised 69 patients diagnosed with cystic fibrosis aged at least 12 years and treated with ETI between September 2020 and November 2021. Clinical and laboratory data of each patient and study visit were collected before and after 24 weeks of ETI treatment. Follow-up status of Pseudomonas aeruginosa (PsA) colonization was assessed after one year of therapy by regularly determined sputum or throat swab samples. Results Marked improvements biochemical markers of systemic inflammation as white blood cell count, levels of immunoglobulins A, G and M and albumin within 24 weeks of therapy were observed. ETI treatment proved to be effective as seen by amelioration of lung function and sweat chloride concentration. Assessment of PsA colonization status revealed a conversion from a positive to negative detection in 36% of the cases after one year of therapy. Conclusions ETI treatment effectively improves systemic inflammation parameters and shows promising results in PsA status conversion.
Collapse
Affiliation(s)
- Alexander Schnell
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
- Corresponding author.
| | - Hannah Hober
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Natalie Kaiser
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Renate Ruppel
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Annika Geppert
- First Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Christina Tremel
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Julia Sobel
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Erika Plattner
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - André Hoerning
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| |
Collapse
|
64
|
Thornton CS, Parkins MD. Microbial Epidemiology of the Cystic Fibrosis Airways: Past, Present, and Future. Semin Respir Crit Care Med 2023; 44:269-286. [PMID: 36623820 DOI: 10.1055/s-0042-1758732] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Progressive obstructive lung disease secondary to chronic airway infection, coupled with impaired host immunity, is the leading cause of morbidity and mortality in cystic fibrosis (CF). Classical pathogens found in the airways of persons with CF (pwCF) include Pseudomonas aeruginosa, Staphylococcus aureus, the Burkholderia cepacia complex, Achromobacter species, and Haemophilus influenzae. While traditional respiratory-tract surveillance culturing has focused on this limited range of pathogens, the use of both comprehensive culture and culture-independent molecular approaches have demonstrated complex highly personalized microbial communities. Loss of bacterial community diversity and richness, counteracted with relative increases in dominant taxa by traditional CF pathogens such as Burkholderia or Pseudomonas, have long been considered the hallmark of disease progression. Acquisition of these classic pathogens is viewed as a harbinger of advanced disease and postulated to be driven in part by recurrent and frequent antibiotic exposure driven by frequent acute pulmonary exacerbations. Recently, CF transmembrane conductance regulator (CFTR) modulators, small molecules designed to potentiate or restore diminished protein levels/function, have been successfully developed and have profoundly influenced disease course. Despite the multitude of clinical benefits, structural lung damage and consequent chronic airway infection persist in pwCF. In this article, we review the microbial epidemiology of pwCF, focus on our evolving understanding of these infections in the era of modulators, and identify future challenges in infection surveillance and clinical management.
Collapse
Affiliation(s)
- Christina S Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Michael D Parkins
- Department of Medicine, Cumming School of Medicine, University of Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Alberta, Canada
| |
Collapse
|
65
|
Regard L, Martin C, Da Silva J, Burgel PR. CFTR Modulators: Current Status and Evolving Knowledge. Semin Respir Crit Care Med 2023; 44:186-195. [PMID: 36535667 DOI: 10.1055/s-0042-1758851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the past decade, the medical management of people with cystic fibrosis (pwCF) has changed with the development of small molecules that partially restore the function of the defective CF transmembrane conductance regulator (CFTR) protein and are called CFTR modulators. Ivacaftor (IVA), a CFTR potentiator with a large effect on epithelial ion transport, was the first modulator approved in pwCF carrying gating mutations. Because IVA was unable to restore sufficient CFTR function in pwCF with other mutations, two CFTR correctors (lumacaftor and tezacaftor) were developed and used in combination with IVA in pwCF homozygous for F508del, the most common CFTR variant. However, LUM/IVA and TEZ/IVA were only moderately effective in F508del homozygous pwCF and had no efficacy in those with F508del and minimal function mutations. Elexacaftor, a second-generation corrector, was thus developed and combined to tezacaftor and ivacaftor (ELX/TEZ/IVA) to target pwCF with at least one F508del variant, corresponding to approximately 85% of pwCF. Both IVA and ELX/TEZ/IVA are considered highly effective modulator therapies (HEMTs) in eligible pwCF and are now approved for nearly 90% of the CF population over 6 years of age. HEMTs are responsible for rapid improvement in respiratory manifestations, including improvement in symptoms and lung function, and reduction in the rate of pulmonary exacerbations. The impact of HEMT on extrapulmonary manifestations of CF is less well established, although significant weight gain and improvement in quality of life have been demonstrated. Recent clinical trials and real-world studies suggest that benefits of HEMT could even prove greater when used earlier in life (i.e., in younger children and infants). This article shortly reviews the past 10 years of development and use of CFTR modulators. Effects of HEMT on extrapulmonary manifestations and on CF demographics are also discussed.
Collapse
Affiliation(s)
- Lucile Regard
- Department of Respiratory Medicine and French Cystic Fibrosis National Reference Center, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut Cochin and Université de Paris, INSERM U1016, Paris, France.,ERN Lung Cystic Fibrosis Network, Frankfurt, Germany
| | - Clémence Martin
- Department of Respiratory Medicine and French Cystic Fibrosis National Reference Center, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut Cochin and Université de Paris, INSERM U1016, Paris, France.,ERN Lung Cystic Fibrosis Network, Frankfurt, Germany
| | - Jennifer Da Silva
- Department of Respiratory Medicine and French Cystic Fibrosis National Reference Center, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France.,ERN Lung Cystic Fibrosis Network, Frankfurt, Germany
| | - Pierre-Régis Burgel
- Department of Respiratory Medicine and French Cystic Fibrosis National Reference Center, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, France.,Institut Cochin and Université de Paris, INSERM U1016, Paris, France.,ERN Lung Cystic Fibrosis Network, Frankfurt, Germany
| |
Collapse
|
66
|
Enaud R, Lussac-Sorton F, Charpentier E, Velo-Suárez L, Guiraud J, Bui S, Fayon M, Schaeverbeke T, Nikolski M, Burgel PR, Héry-Arnaud G, Delhaes L, the LumIvaBiota Study Group. Effects of Lumacaftor-Ivacaftor on Airway Microbiota-Mycobiota and Inflammation in Patients with Cystic Fibrosis Appear To Be Linked to Pseudomonas aeruginosa Chronic Colonization. Microbiol Spectr 2023:e0225122. [PMID: 36971560 PMCID: PMC10100832 DOI: 10.1128/spectrum.02251-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
The management of cystic fibrosis has been transformed recently by the advent of CFTR modulators, including lumacaftor-ivacaftor. However, the effects of such therapies on the airway ecosystem, particularly on the microbiota-mycobiota and local inflammation, which are involved in the evolution of pulmonary damage, are unclear.
Collapse
|
67
|
Lepissier A, Bonnel AS, Wizla N, Weiss L, Mittaine M, Bessaci K, Kerem E, Houdouin V, Reix P, Marguet C, Sermet-Gaudelus I. Moving the Dial on Airway Inflammation in Response to Trikafta in Adolescents with Cystic Fibrosis. Am J Respir Crit Care Med 2023; 207:792-795. [PMID: 36599047 PMCID: PMC10037474 DOI: 10.1164/rccm.202210-1938le] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
| | - Anne Sophie Bonnel
- Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- Hôpital André Mignot, Le Chesnay, France
| | | | | | | | | | - Eitan Kerem
- Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | | - Philippe Reix
- Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- UMR 5558 CNRS Equipe EMET Université Claude Bernard Lyon 1, Lyon, France
| | - Christophe Marguet
- CHU de Rouen, Rouen, France
- UMR 1311, Université de Normandie, Rouen, France
| | - Isabelle Sermet-Gaudelus
- INSERM U1151, Institut Necker Enfants Malades, Paris, France
- Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
- Université Paris Cité, Paris, France
- European Respiratory Network-Lung, Frankfurt, Germany
| | | |
Collapse
|
68
|
Sheikh S, Britt RD, Ryan-Wenger NA, Khan AQ, Lewis BW, Gushue C, Ozuna H, Jaganathan D, McCoy K, Kopp BT. Impact of elexacaftor-tezacaftor-ivacaftor on bacterial colonization and inflammatory responses in cystic fibrosis. Pediatr Pulmonol 2023; 58:825-833. [PMID: 36444736 PMCID: PMC9957929 DOI: 10.1002/ppul.26261] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/13/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cystic fibrosis (CF) is a multisystem disease with progressive deterioration. Recently, CF transmembrane conductance regulator (CFTR) modulator therapies were introduced that repair underlying protein defects. Objective of this study was to determine the impact of elexacaftor-tezacaftor-ivacaftor (ETI) on clinical parameters and inflammatory responses in people with CF (pwCF). METHODS Lung function (FEV1 ), body mass index (BMI) and microbiologic data were collected at initiation and 3-month intervals for 1 year. Blood was analyzed at baseline and 6 months for cytokines and immune cell populations via flow cytometry and compared to non-CF controls. RESULTS Sample size was 48 pwCF, 28 (58.3%) males with a mean age of 28.8 ± 10.7 years. Significant increases in %predicted FEV1 and BMI were observed through 6 months of ETI therapy with no change thereafter. Changes in FEV1 and BMI at 3 months were significantly correlated (r = 57.2, p < 0.01). There were significant reductions in Pseudomonas and Staphylococcus positivity (percent of total samples) in pwCF through 12 months of ETI treatment. Healthy controls (n = 20) had significantly lower levels of circulating neutrophils, interleukin (IL)-6, IL-8, and IL-17A and higher levels of IL-13 compared to pwCF at baseline (n = 48). After 6 months of ETI, pwCF had significant decreases in IL-8, IL-6, and IL-17A levels and normalization of peripheral blood immune cell composition. CONCLUSIONS In pwCF, ETI significantly improved clinical outcomes, reduced systemic pro-inflammatory cytokines, and restored circulating immune cell composition after 6 months of therapy.
Collapse
Affiliation(s)
- Shahid Sheikh
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio USA
- Division of Pulmonary Medicine, Nationwide Children’s Hospital, Columbus, Ohio USA
| | - Rodney D. Britt
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio USA
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio USA
| | - Nancy A. Ryan-Wenger
- Division of Pulmonary Medicine, Nationwide Children’s Hospital, Columbus, Ohio USA
| | - Aiman Q. Khan
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio USA
| | - Brandon W. Lewis
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio USA
| | - Courtney Gushue
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio USA
- Division of Pulmonary Medicine, Nationwide Children’s Hospital, Columbus, Ohio USA
| | - Hazel Ozuna
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio USA
| | - Devi Jaganathan
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio USA
| | - Karen McCoy
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio USA
- Division of Pulmonary Medicine, Nationwide Children’s Hospital, Columbus, Ohio USA
| | - Benjamin T. Kopp
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio USA
- Division of Pulmonary Medicine, Nationwide Children’s Hospital, Columbus, Ohio USA
- Center for Microbial Pathogenesis, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio USA
| |
Collapse
|
69
|
Ehre C, Hansson GC, Thornton DJ, Ostedgaard LS. Mucus aberrant properties in CF: Insights from cells and animal models. J Cyst Fibros 2023; 22 Suppl 1:S23-S26. [PMID: 36117114 PMCID: PMC10018425 DOI: 10.1016/j.jcf.2022.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Cystic fibrosis (CF), an autosomal genetic disorder caused by the dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, is characterized by mucus accumulation in the lungs, the intestinal tract, and the pancreatic ducts. Mucins are high-molecular-weight glycoproteins that govern the biochemical and biophysical properties of mucus. In the CF lung, increased mucus viscoelasticity is associated with decreased mucociliary clearance and defects in host defense mechanisms. The link between defective ion channel and abnormal mucus properties has been investigated in studies involving cell and animal models. In this review article, we discuss recent progress toward understanding the different regions and cells that express CFTR in the airways and how mucus is produced and cleared from the lungs. In addition, we reflect on animal models that provided insights into the organization and the role of the mucin network and how mucus and antimicrobial activities act in concert to protect the lungs from invading pathogens.
Collapse
Affiliation(s)
- Camille Ehre
- University of North Carolina at Chapel Hill, Department of Pediatrics, Marsico Lung Institute, Chapel Hill, NC, USA
| | - Gunnar C Hansson
- Department Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - David J Thornton
- The Wellcome Trust Centre for Cell-Matrix Research, and The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Lynda S Ostedgaard
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
70
|
Vijaykumar K, Rowe SM. Lessons from other fields of medicine, Part 2: Cystic fibrosis. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:119-130. [PMID: 36796937 DOI: 10.1016/b978-0-323-85538-9.00006-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Cystic fibrosis (CF), first described in 1938, is a common, life-limiting monogenetic disease. The discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in 1989 was crucial in advancing our understanding of disease pathogenesis and paving the road for treatment aimed at the fundamental molecular defect. With the delineation of over 2000 variations in the CFTR gene, a sound understanding of the individual variations in cell biology, and electrophysiological abnormalities conferred by the most common defects propelled the advent of targeted disease-modifying therapeutics beginning in 2012. Since then, CF care has transformed beyond just symptomatic treatment to include a variety of small-molecule therapies that address the basic electrophysiologic defect and cause profound improvements in physiology, clinical manifestations, and long-term outcomes, designed to differentially address six genetic/molecular subtypes. This chapter illustrates the progress made toward how fundamental science and translational initiatives enabled personalized, mutation specific treatment. We highlight the importance of preclinical assays and mechanistically-driven development strategies that were coupled with sensitive biomarkers and a clinical trial cooperative to provide a platform for successful drug development. This convergence of academic and private partnerships, and formation of multidisciplinary care teams directed by evidence-based initiatives provide a seminal example of addressing the needs of individuals with a rare, but fatal genetic disease.
Collapse
Affiliation(s)
- Kadambari Vijaykumar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States; The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States; The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
71
|
Beck MR, Hornick DB, Pena TA, Singh SB, Wright BA. Impact of elexacaftor/tezacaftor/ivacaftor on bacterial cultures from people with cystic fibrosis. Pediatr Pulmonol 2023; 58:1569-1573. [PMID: 36807558 DOI: 10.1002/ppul.26362] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Cystic fibrosis transmembrane conductance regulator (CFTR) modulators have shown beneficial effects on both forced expiratory volume in 1 s (FEV1 ) and frequency of pulmonary exacerbations in people with cystic fibrosis (CF). These positive outcomes may be related to changes in bacterial colonization within the lungs. Elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) is the first triple therapy CFTR modulator approved for use in people with CF 6 years and older. This study aimed to determine the impact of ELX/TEZ/IVA on the isolation of Pseudomonas aeruginosa (Pa), methicillin-resistant and methicillin-susceptible Staphylococcus aureus (MRSA and MSSA, respectively) in respiratory cultures. METHODS A retrospective chart review of the electronic medical record at the University of Iowa was completed for individuals 12 years and older taking ELX/TEZ/IVA for at least 12 months. The primary outcome was determined by assessing bacterial cultures pre- and postinitiation of ELX/TEZ/IVA. Baseline demographic and clinical characteristics were summarized using mean and standard deviation for continuous outcomes and count and percentage for categorical outcomes. Culture positivity for Pa, MSSA, and MRSA was compared among enrolled subjects between pre- and posttriple combination therapy periods using an exact McNemar's test. RESULTS One hundred and twenty-four subjects prescribed ELX/TEZ/IVA for at least 12 months met the requirements for inclusion within our analysis. Culture positivity for Pa, MSSA, and MRSA was approximately 54%, 33%, and 31%, respectively, for the pre-ELX/TEZ/IVA period. Prevalence decreased to approximately 30%, 32%, and 24% (-24.2% [p < 0.0001], -0.7% [p = 1.00], and -6.5% [p = 0.0963], respectively) post-ELX/TEZ/IVA. The source of bacterial culture was predominantly sputum (70.2%) in the pre-ELX/TEZ/IVA group, whereas a throat source (66.1%) was more common post-ELX/TEZ/IVA. CONCLUSIONS ELX/TEZ/IVA treatment has an appreciable impact on the detection of common bacterial pathogens in CF respiratory cultures. While previous studies have found a similar effect with single and double CFTR modulator therapies, this is the first single-center study to show the impact of triple therapy, ELX/TEZ/IVA, on bacterial isolation from airway secretions.
Collapse
Affiliation(s)
- Michael R Beck
- University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | | | - Tahuanty A Pena
- University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | | | | |
Collapse
|
72
|
Yu C, Kotsimbos T. Respiratory Infection and Inflammation in Cystic Fibrosis: A Dynamic Interplay among the Host, Microbes, and Environment for the Ages. Int J Mol Sci 2023; 24:ijms24044052. [PMID: 36835487 PMCID: PMC9966804 DOI: 10.3390/ijms24044052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The interplay between airway inflammation and infection is now recognized as a major factor in the pathobiology in cystic fibrosis (CF). A proinflammatory environment is seen throughout the CF airway resulting in classic marked and enduring neutrophilic infiltrations, irreversibly damaging the lung. Although this is seen to occur early, independent of infection, respiratory microbes arising at different timepoints in life and the world environment perpetuate this hyperinflammatory state. Several selective pressures have allowed for the CF gene to persist until today despite an early mortality. Comprehensive care systems, which have been a cornerstone of therapy for the past few decades, are now revolutionized by CF transmembrane conductance regulator (CTFR) modulators. The effects of these small-molecule agents cannot be overstated and can be seen as early as in utero. For an understanding of the future, this review looks into CF studies spanning the historical and present period.
Collapse
Affiliation(s)
- Christiaan Yu
- Department of Respiratory Medicine, Alfred Health, Melbourne, VIC 3004, Australia
- Correspondence: ; Tel.: +61-3-9076-20000
| | - Tom Kotsimbos
- Department of Respiratory Medicine, Alfred Health, Melbourne, VIC 3004, Australia
- Department of Medicine, Monash University, Alfred Campus, Melbourne, VIC 3004, Australia
| |
Collapse
|
73
|
Mariotti Zani E, Grandinetti R, Cunico D, Torelli L, Fainardi V, Pisi G, Esposito S. Nutritional Care in Children with Cystic Fibrosis. Nutrients 2023; 15:nu15030479. [PMID: 36771186 PMCID: PMC9921127 DOI: 10.3390/nu15030479] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
Patients with cystic fibrosis (CF) are prone to malnutrition and growth failure, mostly due to malabsorption caused by the derangement in the chloride transport across epithelial surfaces. Thus, optimal nutritional care and support should be an integral part of the management of the disease, with the aim of ameliorating clinical outcomes and life expectancy. In this report, we analyzed the nutrition support across the different ages, in patients with CF, with a focus on the relationships with growth, nutritional status, disease outcomes and the use of the CF transmembrane conductance regulator (CFTR) modulators. The nutrition support goal in CF care should begin as early as possible after diagnosis and include the achievement of an optimal nutritional status to support the growth stages and puberty development in children, that will further support the maintenance of an optimal nutritional status in adult life. The cornerstone of nutrition in patients with CF is a high calorie, high-fat diet, in conjunction with a better control of malabsorption due to pancreatic enzyme replacement therapy, and attention to the adequate supplementation of fat-soluble vitamins. When the oral caloric intake is not enough for reaching the anthropometric nutritional goals, supplemental enteral feeding should be initiated to improve growth and the nutritional status. In the last decade, the therapeutic possibilities towards CF have grown in a consistent way. The positive effects of CFTR modulators on nutritional status mainly consist in the improvement in weight gain and BMI, both in children and adults, and in an amelioration in terms of the pulmonary function and reduction of exacerbations. Several challenges need to be overcome with the development of new drugs, to transform CF from a fatal disease to a treatable chronic disease with specialized multidisciplinary care.
Collapse
Affiliation(s)
- Elena Mariotti Zani
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Roberto Grandinetti
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Daniela Cunico
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Lisa Torelli
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Valentina Fainardi
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Giovanna Pisi
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Correspondence: ; Tel.: +39-0521-903524
| |
Collapse
|
74
|
Athanazio RA, Tanni SE, Ferreira J, Dalcin PDTR, Fuccio MBD, Esposito C, Canan MGM, Coelho LS, Firmida MDC, Almeida MBD, Marostica PJC, Monte LDFV, Souza EL, Pinto LA, Rached SZ, Oliveira VSBD, Riedi CA, Silva Filho LVRFD. Brazilian guidelines for the pharmacological treatment of the pulmonary symptoms of cystic fibrosis. Official document of the Sociedade Brasileira de Pneumologia e Tisiologia (SBPT, Brazilian Thoracic Association). J Bras Pneumol 2023; 49:e20230040. [PMID: 37194817 DOI: 10.36416/1806-3756/e20230040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 05/18/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease that results in dysfunction of the CF transmembrane conductance regulator (CFTR) protein, which is a chloride and bicarbonate channel expressed in the apical portion of epithelial cells of various organs. Dysfunction of that protein results in diverse clinical manifestations, primarily involving the respiratory and gastrointestinal systems, impairing quality of life and reducing life expectancy. Although CF is still an incurable pathology, the therapeutic and prognostic perspectives are now totally different and much more favorable. The purpose of these guidelines is to define evidence-based recommendations regarding the use of pharmacological agents in the treatment of the pulmonary symptoms of CF in Brazil. Questions in the Patients of interest, Intervention to be studied, Comparison of interventions, and Outcome of interest (PICO) format were employed to address aspects related to the use of modulators of this protein (ivacaftor, lumacaftor+ivacaftor, and tezacaftor+ivacaftor), use of dornase alfa, eradication therapy and chronic suppression of Pseudomonas aeruginosa, and eradication of methicillin-resistant Staphylococcus aureus and Burkholderia cepacia complex. To formulate the PICO questions, a group of Brazilian specialists was assembled and a systematic review was carried out on the themes, with meta-analysis when applicable. The results obtained were analyzed in terms of the strength of the evidence compiled, the recommendations being devised by employing the GRADE approach. We believe that these guidelines represent a major advance to be incorporated into the approach to patients with CF, mainly aiming to favor the management of the disease, and could become an auxiliary tool in the definition of public policies related to CF.
Collapse
Affiliation(s)
- Rodrigo Abensur Athanazio
- . Divisão de Pneumologia, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Suzana Erico Tanni
- . Faculdade de Medicina de Botucatu, Universidade Estadual Paulista Julio de Mesquita Filho - UNESP - Botucatu (SP) Brasil
| | - Juliana Ferreira
- . Divisão de Pneumologia, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Paulo de Tarso Roth Dalcin
- . Programa de Pós-Graduação em Ciências Pneumológicas, Universidade Federal do Rio Grande do Sul - UFRGS - Porto Alegre (RS) Brasil
- . Serviço de Pneumologia, Hospital de Clínicas de Porto Alegre - HCPA - Universidade Federal do Rio Grande do Sul - UFRGS - Porto Alegre (RS) Brasil
| | - Marcelo B de Fuccio
- . Hospital Júlia Kubitschek, Fundação Hospitalar do Estado de Minas Gerais - FHEMIG - Belo Horizonte (MG) Brasil
| | | | | | - Liana Sousa Coelho
- . Faculdade de Medicina de Botucatu, Universidade Estadual Paulista Julio de Mesquita Filho - UNESP - Botucatu (SP) Brasil
| | | | - Marina Buarque de Almeida
- . Unidade de Pneumologia, Instituto da Criança, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Paulo José Cauduro Marostica
- . Unidade de Pneumologia Infantil, Hospital de Clínicas de Porto Alegre - HCPA - Universidade Federal do Rio Grande do Sul - UFRGS - Porto Alegre (RS) Brasil
| | | | - Edna Lúcia Souza
- . Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador (BA) Brasil
| | | | - Samia Zahi Rached
- . Divisão de Pneumologia, Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo (SP) Brasil
| | - Verônica Stasiak Bednarczuk de Oliveira
- . Hospital de Clínicas, Universidade Federal do Paraná, Curitiba (PR) Brasil
- . Unidos Pela Vida - Instituto Brasileiro de Atenção à Fibrose Cística, Curitiba (PR) Brasil
| | | | | |
Collapse
|
75
|
Mayer-Hamblett N, Zemanick ET, Odem-Davis K, VanDevanter D, Warden M, Rowe SM, Young J, Konstan MW, For-The-Chec-Sc-Study-Group. Characterizing CFTR modulated sweat chloride response across the cf population: Initial results from the CHEC-SC study. J Cyst Fibros 2023; 22:79-88. [PMID: 35871974 PMCID: PMC10103635 DOI: 10.1016/j.jcf.2022.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND CHEC-SC is an ongoing epidemiologic study characterizing modulator-induced sweat chloride (SC) responses across the CF population, with interim results available prior to the availability of triple combination modulator therapy. METHODS Eligible participants had been prescribed a modulator for ≥90 days with re-enrollment allowed upon establishment of a new modulator. Pre-modulator SC values were obtained from chart review; post-modulator sweat was collected and analyzed locally. SC changes were descriptively summarized with biologic sex effects adjusted for age, weight, and CFTR genotype. Heterogeneity in ivacaftor SC response was characterized in relation to published CFTR functional responses. RESULTS 1848 participants provided 2004 SC measurements, 26.2% on ivacaftor, 39.1% on lumacaftor/ivacaftor, and 34.7% on tezacaftor/ivacaftor. Average SC changes for all modulators were consistent with those reported in previous clinical studies, with greater variation in SC response observed among rarer mutations and notable shifts in the proportion with SC <60mmol/L independent of the magnitude of SC change. Ivacaftor induced in vitro CFTR functional change was significantly correlated with ivacaftor-modulated SC response (Pearson correlation= ‒0.52, 95% CI: ‒0.773, ‒0.129). Average SC change from ivacaftor to tezacaftor/ivacaftor was ‒4.9 mmol/L (n=17,95% CI:‒9.3, ‒0.5) and differed from those switching from lumacaftor/ivacaftor (10.0 mmol/L, n=139, 95% CI:7.8,12.3). Sex at birth was not associated with SC response. CONCLUSIONS CHEC-SC is the largest study characterizing modulator-induced SC changes across the CF population. There was a strong association between ivacaftor induced in vitro CFTR function and SC response across a genotypically heterogenous cohort. Biological sex was not associated with SC response.
Collapse
Affiliation(s)
- N Mayer-Hamblett
- University of Washington, Seattle, WA, United States; Seattle Children's Hospital, Seattle, WA, United States.
| | - E T Zemanick
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - K Odem-Davis
- Seattle Children's Hospital, Seattle, WA, United States
| | - D VanDevanter
- Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - M Warden
- Seattle Children's Hospital, Seattle, WA, United States
| | - S M Rowe
- University of Alabama at Birmingham, Birmingham, AL, England
| | - J Young
- Seattle Children's Hospital, Seattle, WA, United States
| | - M W Konstan
- Case Western Reserve University School of Medicine, Cleveland, OH, United States; Rainbow Babies and Children's Hospital, Cleveland, OH, United States
| | | |
Collapse
|
76
|
A phase I study assessing the safety and tolerability of allogeneic mesenchymal stem cell infusion in adults with cystic fibrosis. J Cyst Fibros 2022:S1569-1993(22)01421-7. [PMID: 36549988 DOI: 10.1016/j.jcf.2022.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Mesenchymal stem cells are of particular interest in cystic fibrosis (CF) as a potential therapeutic. Data from pre-clinical studies suggest that allogeneic bone marrow-derived human mesenchymal stem cells (hMSCs) may provide a new therapeutic treatment for CF lung disease by attenuating pulmonary inflammation while decreasing bacterial growth and enhancing antibiotic efficacy. METHODS Fifteen adults with CF were enrolled in a phase 1 dose-escalation trial of a single intravenous infusion of hMSCs derived from bone marrow aspirates obtained from a single pre-clinically validated healthy volunteer donor. The study employed a 3+3 dose escalation design with subjects receiving a single, intravenous dose of either 1×106, 3×106, or 5×106 hMSCs/kg. Subjects were monitored inpatient for 24 hours and by outpatient visits and telephone calls for 12 months after the infusion. Safety and tolerability were evaluated by monitoring symptoms, patient reported outcome questionnaires, adverse events (AEs), physical exam findings, spirometry, and analyses of safety laboratories. Preliminary evidence for potential efficacy using inflammatory markers in the blood and sputum were also evaluated. RESULTS No dose-limiting toxicities, deaths or life-threatening adverse events were observed. Most AEs and serious adverse events (SAEs) were consistent with underlying CF. Vital signs, physical exam findings, spirometry and safety laboratory results showed no significant change from baseline. No trends over time were seen in serum or sputum inflammatory markers nor with clinical spirometry. CONCLUSION Allogeneic hMSC intravenous infusions were safe and well-tolerated in this phase 1 study and warrant additional clinical testing as a potential therapeutic for CF lung disease.
Collapse
|
77
|
Öz HH, Cheng EC, Di Pietro C, Tebaldi T, Biancon G, Zeiss C, Zhang PX, Huang PH, Esquibies SS, Britto CJ, Schupp JC, Murray TS, Halene S, Krause DS, Egan ME, Bruscia EM. Recruited monocytes/macrophages drive pulmonary neutrophilic inflammation and irreversible lung tissue remodeling in cystic fibrosis. Cell Rep 2022; 41:111797. [PMID: 36516754 PMCID: PMC9833830 DOI: 10.1016/j.celrep.2022.111797] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/30/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
Persistent neutrophil-dominated lung inflammation contributes to lung damage in cystic fibrosis (CF). However, the mechanisms that drive persistent lung neutrophilia and tissue deterioration in CF are not well characterized. Starting from the observation that, in patients with CF, c-c motif chemokine receptor 2 (CCR2)+ monocytes/macrophages are abundant in the lungs, we investigate the interplay between monocytes/macrophages and neutrophils in perpetuating lung tissue damage in CF. Here we show that CCR2+ monocytes in murine CF lungs drive pathogenic transforming growth factor β (TGF-β) signaling and sustain a pro-inflammatory environment by facilitating neutrophil recruitment. Targeting CCR2 to lower the numbers of monocytes in CF lungs ameliorates neutrophil inflammation and pathogenic TGF-β signaling and prevents lung tissue damage. This study identifies CCR2+ monocytes as a neglected contributor to the pathogenesis of CF lung disease and as a therapeutic target for patients with CF, for whom lung hyperinflammation and tissue damage remain an issue despite recent advances in CF transmembrane conductance regulator (CFTR)-specific therapeutic agents.
Collapse
Affiliation(s)
- Hasan H Öz
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Ee-Chun Cheng
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | | | - Toma Tebaldi
- Department of Hematology, Yale School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA; Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Giulia Biancon
- Department of Hematology, Yale School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Caroline Zeiss
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ping-Xia Zhang
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA; Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Pamela H Huang
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Sofia S Esquibies
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Clemente J Britto
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jonas C Schupp
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease Hannover, German Lung Research Center (DZL), Hannover, Germany
| | - Thomas S Murray
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Stephanie Halene
- Department of Hematology, Yale School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Diane S Krause
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA; Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Marie E Egan
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Emanuela M Bruscia
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
78
|
Inflammation and Infection in Cystic Fibrosis: Update for the Clinician. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9121898. [PMID: 36553341 PMCID: PMC9777099 DOI: 10.3390/children9121898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/09/2022]
Abstract
Inflammation and infection play an important role in the pathophysiology of cystic fibrosis, and they are significant causes of morbidity and mortality in CF. The presence of thick mucus in the CF airways predisposes to local hypoxia and promotes infection and inflammation. A vicious cycle of airway obstruction, inflammation, and infection is of critical importance for the progression of the disease, and new data elucidate the different factors that influence it. Recent research has been focused on improving infection and inflammation in addition to correcting the basic gene defect. This review aims to summarize important advances in infection and inflammation as well as the effect of new treatments modulating the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. New approaches to target infection and inflammation are being studied, including gallium, nitric oxide, and phage therapy for infection, along with retinoids and neutrophil elastase inhibitors for inflammation.
Collapse
|
79
|
Britto CJ, Ratjen F, Clancy JP. Emerging Approaches to Monitor and Modify Care in the Era of Cystic Fibrosis Transmembrane Conductance Regulators. Clin Chest Med 2022; 43:631-646. [PMID: 36344071 DOI: 10.1016/j.ccm.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As we characterize the clinical benefits of highly effective modulator therapy (HEMT) in the cystic fibrosis (CF) population, our paradigm for treating and monitoring disease continues to evolve. More sensitive approaches are necessary to detect early disease and clinical progression. This article reviews evolving strategies to assess disease control and progression in the HEMT era. This article also explores developments in pulmonary function monitoring, advanced respiratory imaging, tools for the collection of patient-reported outcomes, and their application to profile individual responses, guide therapeutic decisions, and improve the quality of life of people with CF.
Collapse
Affiliation(s)
- Clemente J Britto
- Yale Adult Cystic Fibrosis Program, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine.
| | - Felix Ratjen
- Division of Respiratory Medicine, Translational Medicine, University of Toronto Hospital for Sick Children, 555 University Avenue, Toronto Ontario M5G 1X8, Canada
| | | |
Collapse
|
80
|
Guimbellot JS, Nichols DP, Brewington JJ. Novel Applications of Biomarkers and Personalized Medicine in Cystic Fibrosis. Clin Chest Med 2022; 43:617-630. [PMID: 36344070 DOI: 10.1016/j.ccm.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As routine care in cystic fibrosis (CF) becomes increasingly personalized, new opportunities to further focus care on the individual have emerged. These opportunities are increasingly filled through research in tools aiding drug selection, drug monitoring and titration, disease-relevant biomarkers, and evaluation of therapeutic benefits. Herein, we will discuss such research tools presently being translated into the clinic to improve the personalization of care in CF.
Collapse
Affiliation(s)
- Jennifer S Guimbellot
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham; 1600 7th Avenue South, ACC 620, Birmingham, AL 35233, USA
| | - David P Nichols
- Department of Pediatrics, Division of Pulmonary Medicine, Seattle Children's Hospital, University of Washington School of Medicine, Building Cure, 1920 Terry Avenue, Office 4-209, Seattle, WA 98109, USA
| | - John J Brewington
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH 45267, USA; Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 2021, Cincinnati, OH 45229, USA.
| |
Collapse
|
81
|
Gifford AH, Taylor-Cousar JL, Davies JC, McNally P. Update on Clinical Outcomes of Highly Effective Modulator Therapy. Clin Chest Med 2022; 43:677-695. [PMID: 36344074 DOI: 10.1016/j.ccm.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Based on the cystic fibrosis transmembrane conductance regulator (CFTR) genotype, approximately 90% of people with cystic fibrosis (CF) are candidates for highly effective modulator therapy (HEMT). Clinical trials conducted over the last 11 years have shown that these oral therapies substantially restore CFTR function, leading to improvements in lung function, nutritional status, and health-related quality of life. Here, we review safety and efficacy data from phase 3 clinical trials and observational studies which support the use of HEMT in most adults and children with CF. We also discuss opportunities for additional investigation in groups underrepresented or excluded from phase 3 clinical trials, and challenges in the evaluation of the safety and efficacy of HEMT at increasingly earlier stages of CFTR-mediated pathophysiology.
Collapse
Affiliation(s)
- Alex H Gifford
- Division of Pulmonary, Critical Care, and Sleep Medicine, University Hospitals Cleveland Medical Center, 11100 Euclid Avenue, Bolwell Building 6174, Cleveland, OH 44106, USA; Rainbow Babies and Children's Hospital, Cleveland, OH, USA.
| | - Jennifer L Taylor-Cousar
- Department of Internal Medicine, National Jewish Medical Center, Denver, CO, USA; Department of Pediatrics, National Jewish Medical Center, Denver, CO, USA
| | - Jane C Davies
- National Heart and Lung Institute, Imperial College London, England, United Kingdom; Royal Brompton & Harefield Hospital, Guys & St Thomas' Trust, London, United Kingdom
| | - Paul McNally
- Department of Paediatrics, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Cystic Fibrosis Center, Children's Health Ireland, Dublin, Ireland
| |
Collapse
|
82
|
Abstract
Nontuberculous mycobacteria (NTM) are important pathogens, with a longitudinal prevalence of up to 20% within the cystic fibrosis (CF) population. Diagnosis of NTM pulmonary disease in people with CF (pwCF) is challenging, as a majority have NTM infection that is transient or indolent, without evidence of clinical consequence. In addition, the radiographic and clinical manifestations of chronic coinfections with typical CF pathogens can overlap those of NTM, making diagnosis difficult. Comprehensive care of pwCF must be optimized to assess the true clinical impact of NTM and to improve response to treatment. Treatment requires prolonged, multidrug therapy that varies depending on NTM species, resistance pattern, and extent of disease. With a widespread use of highly effective modulator therapy (HEMT), clinical signs and symptoms of NTM disease may be less apparent, and sensitivity of sputum cultures further reduced. The development of a disease-specific approach to the diagnosis and treatment of NTM infection in pwCF is a research priority, as a lifelong strategy is needed for this high-risk population.
Collapse
|
83
|
Caverly LJ, Riquelme SA, Hisert KB. The Impact of Highly Effective Modulator Therapy on Cystic Fibrosis Microbiology and Inflammation. Clin Chest Med 2022; 43:647-665. [PMID: 36344072 PMCID: PMC10224747 DOI: 10.1016/j.ccm.2022.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Highly effective cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulator therapy (HEMT) corrects the underlying molecular defect causing CF disease. HEMT decreases symptom burden and improves clinical metrics and quality of life for most people with CF (PwCF) and eligible cftr mutations. Improvements in measures of pulmonary health suggest that restoration of function of defective CFTR anion channels by HEMT not only enhances airway mucociliary clearance, but also reduces chronic pulmonary infection and inflammation. This article reviews the evidence for how HEMT influences the dynamic and interdependent processes of infection and inflammation in the CF airway, and what questions remain unanswered.
Collapse
Affiliation(s)
- Lindsay J Caverly
- Department of Pediatrics, University of Michigan Medical School, L2221 UH South, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5212, USA
| | - Sebastián A Riquelme
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, Columbia University Medical Center, 650West 168th Street, New York, NY 10032, USA
| | - Katherine B Hisert
- Department of Medicine, National Jewish Health, Smith A550, 1400 Jackson Street, Denver, CO 80205, USA.
| |
Collapse
|
84
|
Vincken S, Verbanck S, Braun S, Buyck N, Knoop C, Vanderhelst E. Real-world data on the efficacy and safety of tezacaftor-ivacaftor in adults living with cystic fibrosis homozygous for F508del and heterozygous for F508del and a residual function mutation. Acta Clin Belg 2022:1-5. [DOI: 10.1080/17843286.2022.2145684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Stefanie Vincken
- Department of Pulmonology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Sylvia Verbanck
- Department of Pulmonology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Sue Braun
- Department of Psychology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101 1090, Brussels, Belgium
| | - Nathalie Buyck
- Department of Pulmonology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Christiane Knoop
- CHU Erasme Université Libre de Bruxelles, Department of Pulmonology, Brussels, Belgium
| | - Eef Vanderhelst
- Department of Pulmonology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| |
Collapse
|
85
|
Hoppe JE, Wagner BD, Kirk Harris J, Rowe SM, Heltshe SL, DeBoer EM, Sagel SD. Effects of ivacaftor on systemic inflammation and the plasma proteome in people with CF and G551D. J Cyst Fibros 2022; 21:950-958. [PMID: 35440409 PMCID: PMC9569394 DOI: 10.1016/j.jcf.2022.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Ivacaftor is a cystic fibrosis transmembrane conductance regulator (CFTR) potentiator for people with CF and the G551D mutation. We aimed to investigate the biology of CFTR modulation and systemic effects of CFTR restoration by examining changes in circulating measurements of inflammation and growth and novel proteins with ivacaftor treatment. METHODS Blood samples from 64 CF subjects with G551D-CFTR were analyzed for inflammatory and growth-related proteins at baseline, 1 and 6 months after ivacaftor initiation. In 30 subjects, plasma was assayed for 1,322 proteins using the SomaScan proteomic platform at baseline and 6 months post-ivacaftor. Correlations with clinical outcomes were assessed. MEASUREMENTS AND MAIN RESULTS Significant reductions in high mobility group box-1 protein (HMGB-1), calprotectin, serum amyloid A, and granulocyte colony-stimulating factor (G-CSF), and an increase in insulin-like growth factor (IGF-1) occurred 1 month after ivacaftor. This treatment effect was sustained at 6 months for HMGB-1 and calprotectin. Correcting for multiple comparisons in the proteomic analysis, 9 proteins (albumin, afamin, leptin, trypsin, pancreatic stone protein [PSP], pituitary adenylate cyclase-activating polypeptide-38, repulsive guidance molecule A [RGMA], calreticulin, GTPase KRas) changed significantly with ivacaftor. Proteins changing with treatment are involved in lipid digestion and transport and extracellular matrix organization biological processes. Reductions in calprotectin and G-CSF and increases in calreticulin, and RGMA correlated with improved lung function, while increasing IGF-1, leptin and afamin and decreasing PSP correlated with increased weight. CONCLUSIONS Ivacaftor led to changes in inflammatory, lipid digestion, and extracellular matrix proteins, lending insights into the extrapulmonary effects of CFTR modulation.
Collapse
Affiliation(s)
- Jordana E Hoppe
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| | - Brandie D Wagner
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - J Kirk Harris
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Steven M Rowe
- Department of Medicine, Pediatrics and Cell Developmental and Integrative Biology, University of Alabama Birmingham, Birmingham, AL, England
| | - Sonya L Heltshe
- Department of Pediatrics, University of Washington, Cystic Fibrosis Foundation Therapeutics Development Network Coordinating Center, Seattle, WA, United States
| | - Emily M DeBoer
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Scott D Sagel
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
86
|
Åstrand A, Libby EF, Shei RJ, Lever JEP, Kaza N, Adewale AT, Boitet E, Edwards L, Hemmerling M, Root J, Lindberg B, Wingren C, Malmgren A, Sabater J, Rowe SM. Preclinical evaluation of the epithelial sodium channel inhibitor AZD5634 and implications on human translation. Am J Physiol Lung Cell Mol Physiol 2022; 323:L536-L547. [PMID: 36098422 PMCID: PMC9602792 DOI: 10.1152/ajplung.00454.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Airway dehydration causes mucus stasis and bacterial overgrowth in cystic fibrosis (CF), resulting in recurrent respiratory infections and exacerbations. Strategies to rehydrate airway mucus including inhibition of the epithelial sodium channel (ENaC) have the potential to improve mucosal defense by enhancing mucociliary clearance (MCC) and reducing the risk of progressive decline in lung function. In the current work, we evaluated the effects of AZD5634, an ENaC inhibitor that shows extended lung retention and safety profile as compared with previously evaluated candidate drugs, in healthy and CF preclinical model systems. We found that AZD5634 elicited a potent inhibition of amiloride-sensitive current in non-CF airway cells and airway cells derived from F508del-homozygous individuals with CF that effectively increased airway surface liquid volume and improved mucociliary transport (MCT) rate. AZD5634 also demonstrated efficacious inhibition of ENaC in sheep bronchial epithelial cells, translating to dose-dependent improvement of mucus clearance in healthy sheep in vivo. Conversely, nebulization of AZD5634 did not notably improve airway hydration or MCT in CF rats that exhibit an MCC defect, consistent with findings from a first single-dose evaluation of AZD5634 on MCC in people with CF. Overall, these findings suggest that CF animal models demonstrating impaired mucus clearance translatable to the human situation may help to successfully predict and promote the successful translation of ENaC-directed therapies to the clinic.
Collapse
Affiliation(s)
- Annika Åstrand
- 1Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Emily Falk Libby
- 2Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ren-Jay Shei
- 2Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama,3Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jacelyn E. Peabody Lever
- 2Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama,3Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Niroop Kaza
- 3Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Evan Boitet
- 2Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lloyd Edwards
- 4Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Martin Hemmerling
- 1Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - James Root
- 1Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Botilda Lindberg
- 1Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Cecilia Wingren
- 1Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Malmgren
- 1Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Steven M. Rowe
- 2Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama,3Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama,5Department of Cellular, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama,6Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
87
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
88
|
Waters VJ, LiPuma JJ. Airway Infection in Cystic Fibrosis: Microbiology and Management. J Pediatric Infect Dis Soc 2022; 11:S1-S2. [PMID: 36069897 DOI: 10.1093/jpids/piac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/07/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Valerie J Waters
- Division of Infectious Diseases, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - John J LiPuma
- Division of Infectious Diseases, Department of Pediatrics, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
89
|
Shakir S, Echevarria C, Doe S, Brodlie M, Ward C, Bourke SJ. Elexacaftor-Tezacaftor-Ivacaftor improve Gastro-Oesophageal reflux and Sinonasal symptoms in advanced cystic fibrosis. J Cyst Fibros 2022; 21:807-810. [PMID: 35718668 DOI: 10.1016/j.jcf.2022.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Upper gastrointestinal and upper airway disease are common in cystic fibrosis (CF) and may contribute to lower airway infection and inflammation. In a longitudinal cohort study of 32 patients (23 men; median age 32.5 years) with advanced CF lung disease (median FEV1 24.8% predicted) starting elexacaftor-tezacaftor-ivacaftor, the reflux symptom index score fell from a pre-treatment median (IQR) of 15 (11-23) to 5 (2.8-7.3) (p<0.001), the Hull airway reflux score fell from a median of 26.5 (16.3-39) to 7.5 (4-12) (p<0.001), and the sinonasal outcome score from a median of 36.5 (22-24) to 20 (10-32) (p<0.001) at 6 months on treatment. Mean FEV1% predicted rose by 9.2 points, the median respiratory domain score of the CF Questionnaire-Revised rose by 27.8 points and mean body mass index rose by 2.6 kg/m2. In addition to improving lung function and weight, CFTR modulators improve upper airway and gastro-oesophageal reflux symptoms in advanced CF.
Collapse
Affiliation(s)
- Sufyan Shakir
- Cystic Fibrosis Centre, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom
| | - Carlos Echevarria
- Cystic Fibrosis Centre, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Simon Doe
- Cystic Fibrosis Centre, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom
| | - Malcolm Brodlie
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom; Paediatric Respiratory Medicine, Great North Children's Hospital, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, United Kingdom
| | - Christopher Ward
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Stephen J Bourke
- Cystic Fibrosis Centre, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom.
| |
Collapse
|
90
|
Bengtson CD, Kim MD, Salathe M. Is CF airway inflammation still relevant in the era of highly effective modulators? J Cyst Fibros 2022; 21:901-903. [PMID: 36028422 DOI: 10.1016/j.jcf.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Charles D Bengtson
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael D Kim
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Matthias Salathe
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
91
|
Birket SE. A step forward for an intermediate cystic fibrosis population. Eur Respir J 2022; 60:60/2/2201040. [PMID: 35926867 DOI: 10.1183/13993003.01040-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Susan E Birket
- Department of Medicine and Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
92
|
Current state of CFTR modulators for treatment of Cystic Fibrosis. Curr Opin Pharmacol 2022; 65:102239. [DOI: 10.1016/j.coph.2022.102239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 12/23/2022]
|
93
|
Kaza N, Lin VY, Stanford D, Hussain SS, Falk Libby E, Kim H, Borgonovi M, Conrath K, Mutyam V, Byzek SA, Tang LP, Trombley JE, Rasmussen L, Schoeb T, Leung HM, Tearney GJ, Raju SV, Rowe SM. Evaluation of a novel CFTR potentiator in COPD ferrets with acquired CFTR dysfunction. Eur Respir J 2022; 60:13993003.01581-2021. [PMID: 34916262 PMCID: PMC10079430 DOI: 10.1183/13993003.01581-2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/21/2021] [Indexed: 11/05/2022]
Abstract
RATIONALE The majority of chronic obstructive pulmonary disease (COPD) patients have chronic bronchitis, for which specific therapies are unavailable. Acquired cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction is observed in chronic bronchitis, but has not been proven in a controlled animal model with airway disease. Furthermore, the potential of CFTR as a therapeutic target has not been tested in vivo, given limitations to rodent models of COPD. Ferrets exhibit cystic fibrosis-related lung pathology when CFTR is absent and COPD with bronchitis following cigarette smoke exposure. OBJECTIVES To evaluate CFTR dysfunction induced by smoking and test its pharmacological reversal by a novel CFTR potentiator, GLPG2196, in a ferret model of COPD with chronic bronchitis. METHODS Ferrets were exposed for 6 months to cigarette smoke to induce COPD and chronic bronchitis and then treated with enteral GLPG2196 once daily for 1 month. Electrophysiological measurements of ion transport and CFTR function, assessment of mucociliary function by one-micron optical coherence tomography imaging and particle-tracking microrheology, microcomputed tomography imaging, histopathological analysis and quantification of CFTR protein and mRNA expression were used to evaluate mechanistic and pathophysiological changes. MEASUREMENTS AND MAIN RESULTS Following cigarette smoke exposure, ferrets exhibited CFTR dysfunction, increased mucus viscosity, delayed mucociliary clearance, airway wall thickening and airway epithelial hypertrophy. In COPD ferrets, GLPG2196 treatment reversed CFTR dysfunction, increased mucus transport by decreasing mucus viscosity, and reduced bronchial wall thickening and airway epithelial hypertrophy. CONCLUSIONS The pharmacologic reversal of acquired CFTR dysfunction is beneficial against pathological features of chronic bronchitis in a COPD ferret model.
Collapse
Affiliation(s)
- Niroop Kaza
- Dept of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.,Equal contributions
| | - Vivian Y Lin
- Dept of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.,Equal contributions
| | - Denise Stanford
- Dept of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.,Equal contributions
| | - Shah S Hussain
- Dept of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Emily Falk Libby
- The Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Harrison Kim
- Dept of Radiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Venkateshwar Mutyam
- Dept of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephen A Byzek
- Dept of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Li Ping Tang
- Dept of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - John E Trombley
- Dept of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lawrence Rasmussen
- Dept of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Trenton Schoeb
- Dept of Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA.,Animal Resources Program, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hui Min Leung
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Dept of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - S Vamsee Raju
- Dept of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.,The Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, USA.,Dept of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.,Co-senior authors
| | - Steven M Rowe
- Dept of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA .,The Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL, USA.,Dept of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.,Co-senior authors
| |
Collapse
|
94
|
Abstract
Over the past decade there have been significant developments in the field of Cystic Fibrosis Transmembrane Regulator modulator drugs. Following treatment in patients with cystic fibrosis with common gating mutations using the potentiator drug ivacaftor, successive development of corrector drugs used in combination has led to highly effective modulator therapy being available to more than 85% of the cystic fibrosis population over 12 years of age in the form of elexacaftor/tezacaftor/ivacaftor. In this article, we review the evidence from clinical trials and mounting real-world observational and registry data that demonstrates the impact highly effective modulators have on both pulmonary and extra-pulmonary manifestations of cystic fibrosis. As clinical trials progress to younger patient groups, we discuss the challenges to demonstrating drug efficacy in early life, and also consider practicalities of drug development in an ever-shrinking modulator-naïve population. Drug-drug interactions are an important consideration in people with cystic fibrosis, where polypharmacy is commonplace, but also as the modulated population look to remain healthier for longer, we identify trials that aim to address treatment burden too. Inequity of care, through drug cost or ineligibility for modulators by genotype, is widening without apparent strategies to address this; however, we present evidence of hopeful early-stage drug development for non-modulatable genes and summarise the current state of gene-therapy development.
Collapse
|
95
|
Changes in Glucose Breath Test in Cystic Fibrosis Patients Treated With 1 Month of Lumacaftor/Ivacaftor. J Pediatr Gastroenterol Nutr 2022; 75:42-47. [PMID: 35442228 DOI: 10.1097/mpg.0000000000003459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Alteration of the airway microbiota is a hallmark of cystic fibrosis (CF) pulmonary disease. Dysfunction of cystic fibrosis transmembrane regulator (CFTR) in the intestine also promotes changes in local microbiota such as small intestinal bacterial overgrowth (SIBO), which is common in CF. We evaluated whether therapy with the CFTR modulator combination lumacaftor/ivacaftor (luma/iva) has a beneficial impact on SIBO as measured by breath testing (BT). METHODS A multicenter longitudinal study of CFTR-dependent disease profiling (NCT02477319) included a prospective evaluation for SIBO by BT. Tidal breath samples were collected after fasting and 15, 30, 45, 60, 90, and 120 minutes after ingestion of glucose, before and 1 month after subjects initiated luma + iva. RESULTS Forty-two subjects enrolled in the sub-study (mean age = 23.3 years; 51% female; 9.5% Latinx); 38 completed a hydrogen BT at both time points, of which 73.7% had a positive BT before luma/iva (baseline) and 65.8% had a positive test after luma/iva ( P = 0.44); shifts from negative to positive were also seen. Use of azithromycin (63.1%) and inhaled antibiotics (60.5%) were not associated with positive BT. Acid-blocking medications were taken by 73% of those with a negative BT at baseline and by 35% with a positive baseline BT ( P = 0.04). CONCLUSION We found a high rate of positive hydrogen breath tests in individuals with CF, confirming that SIBO is common. One month of luma/iva did not significantly change the proportion of those with positive breath hydrogen measurements.
Collapse
|
96
|
Lepissier A, Addy C, Hayes K, Noel S, Bui S, Burgel PR, Dupont L, Eickmeier O, Fayon M, Leal T, Lopes C, Downey DG, Sermet-Gaudelus I. Inflammation biomarkers in sputum for clinical trials in cystic fibrosis: current understanding and gaps in knowledge. J Cyst Fibros 2022; 21:691-706. [PMID: 34772643 DOI: 10.1016/j.jcf.2021.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022]
Abstract
RATIONALE Sputum biomarkers hold promise as a direct measure of inflammation within the cystic fibrosis (CF) lung, but variability in study design and sampling methodology have limited their use. A full evaluation of the reliability, validity and clinical relevance of individual biomarkers is required to optimise their use within CF clinical research. OBJECTIVES A biomarker Special Interest Working Group was established within the European Cystic Fibrosis Society-Clinical Trials Network Standardisation Committee, to perform a review of the evidence regarding sputum biomarkers in CF. METHODS From the 139 included articles, we identified 71 sputum biomarkers to undergo evaluation of their clinimetric properties, responsiveness, discriminant, concurrent and convergent validity. RESULTS Current evidence confirms the potential of sputum biomarkers as outcome measures in clinical trials. Inconsistency in responsiveness, concurrent and convergent validity require further research into these markers and processing standardisation before translation into wider use. Of the 71 biomarkers identified, Neutrophil Elastase (NE), IL-8, TNF-α and IL-1β, demonstrated validity and responsiveness to be currently considered for use in clinical trials. Other biomarkers show future promise, including IL-6, calprotectin, HMGB-1 and YKL-40. CONCLUSION A concerted international effort across the cystic fibrosis community is needed to promote high quality biomarker trial design, establish large population-based biomarker studies, and work together to create standards for collection, storage and analysis of sputum biomarkers.
Collapse
Affiliation(s)
- Agathe Lepissier
- Paediatric Center for Cystic Fibrosis, Centre de Référence Maladies Rares, Mucoviscidose et Maladies Apparentées, Hôpital Necker Enfants Malades 149 rue de Sévres, Paris 75743, France; INSERM U1151, Institut Necker Enfants Malades, 160 rue de Vaugirard, Paris 75743, France; European Reference Network (ERN Lung)
| | - Charlotte Addy
- Northern Ireland Clinical Research Facility, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL; All Wales Adult Cystic Fibrosis Centre, University Hopsital Llandough, Penlan Road, CF64 2XX
| | - Kate Hayes
- Northern Ireland Clinical Research Facility, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Sabrina Noel
- INSERM U1151, Institut Necker Enfants Malades, 160 rue de Vaugirard, Paris 75743, France
| | - Stéphanie Bui
- Université de Bordeaux (INSERM U1045), CHU de Bordeaux, (CIC1401), F-33000 Bordeaux, France
| | - Pierre-Régis Burgel
- European Reference Network (ERN Lung); National Reference Cystic Fibrosis Center and Department of Respiratory Medicine, Cochin Hospital, Assistance Publique Hôpitaux de Paris, Paris, 75014, France; Institut Cochin, INSERM U1016 and Université de Paris; Paris 75014, France
| | - Lieven Dupont
- University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - Olaf Eickmeier
- Facharzt für Kinder- und Jugendmedizin, Universitätsklinikum Frankfurt a.M., Johann Wolfgang-Goethe-Universität, Allergologie, Pneumologie & Mukoviszidose, Theodor-Stern-Kai 7, 60590 Frankfurt/Main
| | - Michael Fayon
- Université de Bordeaux (INSERM U1045), CHU de Bordeaux, (CIC1401), F-33000 Bordeaux, France
| | - Teresinha Leal
- Louvain Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Carlos Lopes
- Departamento do Tórax, Hospital de Santa Maria, Lisbon
| | - Damian G Downey
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - Isabelle Sermet-Gaudelus
- Paediatric Center for Cystic Fibrosis, Centre de Référence Maladies Rares, Mucoviscidose et Maladies Apparentées, Hôpital Necker Enfants Malades 149 rue de Sévres, Paris 75743, France; INSERM U1151, Institut Necker Enfants Malades, 160 rue de Vaugirard, Paris 75743, France; European Reference Network (ERN Lung); Service de Pneumologie et Allergologie Pédiatriques, Centre de Ressources et de Compétence de la Mucoviscidose, Hôpital Necker Enfants Malades 149 rue de Sévres, INSERM U1151, Institut Necker Enfants Malades, Université Paris Sorbonne, Paris 75743, France.
| |
Collapse
|
97
|
Ronan NJ, Einarsson GG, Deane J, Fouhy F, Rea M, Hill C, Shanahan F, Elborn JS, Ross RP, McCarthy M, Murphy DM, Eustace JA, Mm T, Stanton C, Plant BJ. Modulation, microbiota and inflammation in the adult CF gut: A prospective study. J Cyst Fibros 2022; 21:837-843. [PMID: 35764510 DOI: 10.1016/j.jcf.2022.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cystic Fibrosis (CF) has prominent gastrointestinal and pancreatic manifestations. The aim of this study was to determine the effect of Cystic fibrosis transmembrane conductance regulator (CFTR) modulation on, gastrointestinal inflammation, pancreatic function and gut microbiota composition in people with cystic fibrosis (CF) and the G551D-CFTR mutation. METHODS Fourteen adult patients with the G551D-CFTR mutation were assessed clinically at baseline and for up to 1 year after treatment with ivacaftor. The change in gut inflammatory markers (calprotectin and lactoferrin), exocrine pancreatic status and gut microbiota composition and structure were assessed in stool samples. RESULTS There was no significant change in faecal calprotectin nor lactoferrin in patients with treatment while all patients remained severely pancreatic insufficient. There was no significant change in gut microbiota diversity and richness following treatment. CONCLUSION There was no significant change in gut inflammation after partial restoration of CFTR function with ivacaftor, suggesting that excess gut inflammation in CF is multi-factorial in aetiology. In this adult cohort, exocrine pancreatic function was irreversibly lost. Longer term follow-up may reveal more dynamic changes in the gut microbiota and possible restoration of CFTR function.
Collapse
Affiliation(s)
- N J Ronan
- Cork Adult CF Centre, Cork University Hospital, Wilton, Cork; HRB Clinical research facility, University College Cork
| | - G G Einarsson
- Halo Research Group, Queen's University Belfast, Belfast, UK; Wellcome-Wolfson Institute for Experimental Medicine. School of Medicine, Dentistry and Biomedical Sciences Queen's University Belfast, Belfast, UK
| | - J Deane
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland; APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland
| | - F Fouhy
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland; APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland
| | - M Rea
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland; APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland
| | - C Hill
- APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland
| | - F Shanahan
- APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland
| | - J S Elborn
- Halo Research Group, Queen's University Belfast, Belfast, UK; Wellcome-Wolfson Institute for Experimental Medicine. School of Medicine, Dentistry and Biomedical Sciences Queen's University Belfast, Belfast, UK
| | - R P Ross
- APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland
| | - M McCarthy
- Cork Adult CF Centre, Cork University Hospital, Wilton, Cork
| | - D M Murphy
- Cork Adult CF Centre, Cork University Hospital, Wilton, Cork
| | - J A Eustace
- HRB Clinical research facility, University College Cork
| | - Tunney Mm
- Halo Research Group, Queen's University Belfast, Belfast, UK; School of Pharmacy, Queen's University Belfast, Belfast, UK; HRB Clinical research facility, University College Cork
| | - C Stanton
- Wellcome-Wolfson Institute for Experimental Medicine. School of Medicine, Dentistry and Biomedical Sciences Queen's University Belfast, Belfast, UK; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - B J Plant
- Cork Adult CF Centre, Cork University Hospital, Wilton, Cork; HRB Clinical research facility, University College Cork; APC Microbiome Ireland, University College Cork, NUI, Cork, Ireland.
| |
Collapse
|
98
|
Harwood KH, McQuade RM, Jarnicki A, Schneider-Futschik EK. Ivacaftor Alters Macrophage and Lymphocyte Infiltration in the Lungs Following Lipopolysaccharide Exposure. ACS Pharmacol Transl Sci 2022; 5:419-428. [PMID: 35711814 DOI: 10.1021/acsptsci.2c00007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 12/20/2022]
Abstract
Background and purpose: Cystic fibrosis (CF) is associated with a myriad of respiratory complications including increased susceptibility to lung infections and inflammation. Progressive inflammatory insults lead to airway damage and remodeling, resulting in compromised lung function. Treatment with ivacaftor significantly improves respiratory function and reduces the incidence of pulmonary exacerbations; however, its effect on lung inflammation is yet to be fully elucidated. Experimental approach: This study investigates the effects of ivacaftor on lung inflammation in a lipopolysaccharide (LPS) exposure mouse model (C57BL/6). All groups received intratracheal (IT) administration of LPS (10 μg). Prophylactic treatment involved intraperitoneal injections of ivacaftor (40 mg/kg) once a day beginning 4 days prior to LPS challenge. The therapeutic group received a single intraperitoneal ivacaftor injection (40 mg/kg) directly after LPS. Mice were culled either 24 or 72 h after LPS challenge, and serum, bronchoalveolar lavage fluid (BALF), and lung tissue samples were collected. The degree of inflammation was assessed through cell infiltration, cytokine expression, and histological analysis. Key results: Ivacaftor did not decrease the total number of immune cells within the BALF; however, prophylactic treatment did significantly reduce macrophage and lymphocyte infiltration. Prophylactic treatment exhibited a significant negative correlation between the immune cell number and ivacaftor concentrations in BALF; however, no significant changes in the cytokine expression or histological parameters were determined. Conclusions and implications: Ivacaftor possesses some inherent immunomodulatory effects within the lungs following LPS inoculation; however, further analysis of larger sample sizes is required to confirm the results.
Collapse
Affiliation(s)
- Kiera H Harwood
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Rachel M McQuade
- Gut-Axis Injury and Repair Laboratory, Department of Medicine Western Health, Melbourne University, Melbourne, VIC 3021, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Melbourne University, Melbourne, VIC 3021, Australia
| | - Andrew Jarnicki
- Lung Disease Research Laboratory, Department of Pharmacology & Therapeutics, Melbourne University, Melbourne, VIC 3021, Australia
| | - Elena K Schneider-Futschik
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
99
|
Balfour-Lynn IM, King JA. CFTR modulator therapies - Effect on life expectancy in people with cystic fibrosis. Paediatr Respir Rev 2022; 42:3-8. [PMID: 32565113 PMCID: PMC7255286 DOI: 10.1016/j.prrv.2020.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022]
Abstract
CFTR modulators have dramatically changed the clinical course of CF in those fortunate enough to receive them. Inevitably, randomised controlled trials during the development of these drugs are too short to use mortality as an outcome. Evidence for their effect on life expectancy are best gained from real world registry studies specifically looking at mortality, but these are only available for ivacaftor to date. Therefore, indirect evidence must be obtained by looking at outcomes known to affect mortality and seeing the effect of these drugs on those outcomes.
Collapse
Affiliation(s)
- I M Balfour-Lynn
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK.
| | - J A King
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK
| |
Collapse
|
100
|
Regard L, Martin C, Burnet E, Da Silva J, Burgel PR. CFTR Modulators in People with Cystic Fibrosis: Real-World Evidence in France. Cells 2022; 11:cells11111769. [PMID: 35681464 PMCID: PMC9179538 DOI: 10.3390/cells11111769] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/15/2022] [Accepted: 05/23/2022] [Indexed: 01/18/2023] Open
Abstract
Cystic fibrosis (CF) is a rare genetic multisystemic disease, the manifestations of which are due to mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein and can lead to respiratory insufficiency and premature death. CFTR modulators, which were developed in the past decade, partially restore CFTR protein function. Their clinical efficacy has been demonstrated in phase 3 clinical trials, particularly in terms of lung function and pulmonary exacerbations, nutritional status, and quality of life in people with gating mutations (ivacaftor), homozygous for the F508del mutation (lumacaftor/ivacaftor and tezacaftor/ivacaftor), and in those with at least one F508del mutation (elexacaftor/tezacaftor/ivacaftor). However, many questions remain regarding their long-term safety and effectiveness, particularly in patients with advanced lung disease, liver disease, renal insufficiency, or problematic bacterial colonization. The impact of CFTR modulators on other important outcomes such as concurrent treatments, lung transplantation, chest imaging, or pregnancies also warrants further investigation. The French CF Reference Network includes 47 CF centers that contribute patient data to the comprehensive French CF Registry and have conducted nationwide real-world studies on CFTR modulators. This review seeks to summarize the results of these real-world studies and examine their findings against those of randomized control trials.
Collapse
Affiliation(s)
- Lucile Regard
- French Cystic Fibrosis National Reference Center, Department of Respiratory Medicine, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; (L.R.); (C.M.); (E.B.); (J.D.S.)
- Institut Cochin, Université de Paris Cité, INSERM U1016, 75014 Paris, France
- ERN Lung Cystic Fibrosis Network, Frankfurt, Germany
| | - Clémence Martin
- French Cystic Fibrosis National Reference Center, Department of Respiratory Medicine, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; (L.R.); (C.M.); (E.B.); (J.D.S.)
- Institut Cochin, Université de Paris Cité, INSERM U1016, 75014 Paris, France
- ERN Lung Cystic Fibrosis Network, Frankfurt, Germany
| | - Espérie Burnet
- French Cystic Fibrosis National Reference Center, Department of Respiratory Medicine, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; (L.R.); (C.M.); (E.B.); (J.D.S.)
- Institut Cochin, Université de Paris Cité, INSERM U1016, 75014 Paris, France
- ERN Lung Cystic Fibrosis Network, Frankfurt, Germany
| | - Jennifer Da Silva
- French Cystic Fibrosis National Reference Center, Department of Respiratory Medicine, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; (L.R.); (C.M.); (E.B.); (J.D.S.)
- ERN Lung Cystic Fibrosis Network, Frankfurt, Germany
| | - Pierre-Régis Burgel
- French Cystic Fibrosis National Reference Center, Department of Respiratory Medicine, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; (L.R.); (C.M.); (E.B.); (J.D.S.)
- Institut Cochin, Université de Paris Cité, INSERM U1016, 75014 Paris, France
- ERN Lung Cystic Fibrosis Network, Frankfurt, Germany
- Correspondence: ; Tel.: +33-1-58-41-23-67; Fax: +33-1-46-33-82-53
| |
Collapse
|