51
|
Mahida RY, Scott A, Parekh D, Lugg ST, Hardy RS, Lavery GG, Matthay MA, Naidu B, Perkins GD, Thickett DR. Acute respiratory distress syndrome is associated with impaired alveolar macrophage efferocytosis. Eur Respir J 2021; 58:13993003.00829-2021. [PMID: 34112730 PMCID: PMC8754102 DOI: 10.1183/13993003.00829-2021] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/06/2021] [Indexed: 11/05/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is an inflammatory disorder of the lungs, with sepsis as the predominant aetiology. Despite advances in ventilation strategies, mortality for moderate to severe ARDS remains at 40–46% [1]. ARDS is associated with neutrophil influx into alveoli. Persistently high neutrophil and low alveolar macrophage (AM) numbers in bronchoalveolar lavage (BAL) fluid are associated with greater mortality [2]. While the inflammatory alveolar environment of early ARDS initially delays apoptosis, these neutrophils ultimately undergo apoptosis within alveoli [3]. Efficient efferocytosis of apoptotic neutrophils by AMs is critical for resolution of inflammation [3]. Apoptotic neutrophils may accumulate in ARDS due to defective AM efferocytosis and/or overwhelmed efferocytosis capacity, then undergo secondary necrosis, releasing inflammatory mediators into the alveolar space [4]. This may contribute to the prolonged inflammation observed in ARDS. No study has previously assessed AM efferocytosis in ARDS; however, monocyte-derived macrophages (MDMs) from ARDS patients do have impaired efferocytosis [5]. We investigated whether ARDS patients have impaired AM efferocytosis and increased alveolar neutrophil apoptosis. ARDS patients have decreased alveolar macrophage efferocytosis, which is associated with increased alveolar inflammation, and may contribute to worse clinical outcomes, including mortality. Upregulation of efferocytosis may offer a therapeutic strategy.https://bit.ly/2Q7REdM
Collapse
Affiliation(s)
- Rahul Y Mahida
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Joint first authors
| | - Aaron Scott
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Joint first authors
| | - Dhruv Parekh
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Sebastian T Lugg
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Rowan S Hardy
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Michael A Matthay
- Dept of Medicine, and Dept of Anaesthesia, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Babu Naidu
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Gavin D Perkins
- Emergency, Pre-hospital, Perioperative and Critical Care Group, Warwick Medical School, University of Warwick, Warwick, UK
- Joint senior authors
| | - David R Thickett
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Joint senior authors
| |
Collapse
|
52
|
Abstract
Acute respiratory distress syndrome (ARDS) is an acute respiratory illness characterised by bilateral chest radiographical opacities with severe hypoxaemia due to non-cardiogenic pulmonary oedema. The COVID-19 pandemic has caused an increase in ARDS and highlighted challenges associated with this syndrome, including its unacceptably high mortality and the lack of effective pharmacotherapy. In this Seminar, we summarise current knowledge regarding ARDS epidemiology and risk factors, differential diagnosis, and evidence-based clinical management of both mechanical ventilation and supportive care, and discuss areas of controversy and ongoing research. Although the Seminar focuses on ARDS due to any cause, we also consider commonalities and distinctions of COVID-19-associated ARDS compared with ARDS from other causes.
Collapse
Affiliation(s)
- Nuala J Meyer
- Pulmonary, Allergy and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | - Luciano Gattinoni
- Department of Anesthesiology, Intensive Care and Emergency Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Carolyn S Calfee
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Departments of Medicine and Anesthesia, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
53
|
Wilk AJ, Lee MJ, Wei B, Parks B, Pi R, Martínez-Colón GJ, Ranganath T, Zhao NQ, Taylor S, Becker W, Stanford COVID-19 Biobank, Jimenez-Morales D, Blomkalns AL, O’Hara R, Ashley EA, Nadeau KC, Yang S, Holmes S, Rabinovitch M, Rogers AJ, Greenleaf WJ, Blish CA. Multi-omic profiling reveals widespread dysregulation of innate immunity and hematopoiesis in COVID-19. J Exp Med 2021; 218:e20210582. [PMID: 34128959 PMCID: PMC8210586 DOI: 10.1084/jem.20210582] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022] Open
Abstract
Our understanding of protective versus pathological immune responses to SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is limited by inadequate profiling of patients at the extremes of the disease severity spectrum. Here, we performed multi-omic single-cell immune profiling of 64 COVID-19 patients across the full range of disease severity, from outpatients with mild disease to fatal cases. Our transcriptomic, epigenomic, and proteomic analyses revealed widespread dysfunction of peripheral innate immunity in severe and fatal COVID-19, including prominent hyperactivation signatures in neutrophils and NK cells. We also identified chromatin accessibility changes at NF-κB binding sites within cytokine gene loci as a potential mechanism for the striking lack of pro-inflammatory cytokine production observed in monocytes in severe and fatal COVID-19. We further demonstrated that emergency myelopoiesis is a prominent feature of fatal COVID-19. Collectively, our results reveal disease severity-associated immune phenotypes in COVID-19 and identify pathogenesis-associated pathways that are potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Aaron J. Wilk
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Madeline J. Lee
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Bei Wei
- Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | - Benjamin Parks
- Department of Genetics, Stanford University School of Medicine, Stanford, CA
- Graduate Program in Computer Science, Stanford University School of Medicine, Stanford, CA
| | - Ruoxi Pi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | | | - Thanmayi Ranganath
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Nancy Q. Zhao
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Shalina Taylor
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA
| | - Winston Becker
- Department of Genetics, Stanford University School of Medicine, Stanford, CA
| | | | | | - Andra L. Blomkalns
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA
| | - Ruth O’Hara
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Euan A. Ashley
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Kari C. Nadeau
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA
| | - Samuel Yang
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA
| | - Marlene Rabinovitch
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University School of Medicine, Stanford, CA
| | - Angela J. Rogers
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - William J. Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA
- Department of Applied Physics, Stanford University, Stanford, CA
| | - Catherine A. Blish
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
54
|
Lévy Y, Wiedemann A, Hejblum BP, Durand M, Lefebvre C, Surénaud M, Lacabaratz C, Perreau M, Foucat E, Déchenaud M, Tisserand P, Blengio F, Hivert B, Gauthier M, Cervantes-Gonzalez M, Bachelet D, Laouénan C, Bouadma L, Timsit JF, Yazdanpanah Y, Pantaleo G, Hocini H, Thiébaut R, the French COVID cohort study group. CD177, a specific marker of neutrophil activation, is associated with coronavirus disease 2019 severity and death. iScience 2021; 24:102711. [PMID: 34127958 PMCID: PMC8189740 DOI: 10.1016/j.isci.2021.102711] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/26/2021] [Accepted: 06/08/2021] [Indexed: 01/03/2023] Open
Abstract
The identification of patients with coronavirus disease 2019 and high risk of severe disease is a challenge in routine care. We performed cell phenotypic, serum, and RNA sequencing gene expression analyses in severe hospitalized patients (n = 61). Relative to healthy donors, results showed abnormalities of 27 cell populations and an elevation of 42 cytokines, neutrophil chemo-attractants, and inflammatory components in patients. Supervised and unsupervised analyses revealed a high abundance of CD177, a specific neutrophil activation marker, contributing to the clustering of severe patients. Gene abundance correlated with high serum levels of CD177 in severe patients. Higher levels were confirmed in a second cohort and in intensive care unit (ICU) than non-ICU patients (P < 0.001). Longitudinal measurements discriminated between patients with the worst prognosis, leading to death, and those who recovered (P = 0.01). These results highlight neutrophil activation as a hallmark of severe disease and CD177 assessment as a reliable prognostic marker for routine care.
Collapse
Affiliation(s)
- Yves Lévy
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Hopital Henri Mondor, 51 Av Marechal de Lattre de Tassigny, 94010 Créteil, France,Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service Immunologie Clinique, Créteil, France,Corresponding author
| | - Aurélie Wiedemann
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Hopital Henri Mondor, 51 Av Marechal de Lattre de Tassigny, 94010 Créteil, France
| | - Boris P. Hejblum
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Hopital Henri Mondor, 51 Av Marechal de Lattre de Tassigny, 94010 Créteil, France,Univ. Bordeaux, Department of Public Health, INSERM U1219 Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, 146 Rue Leo Saignat, 33076 Bordeaux, France
| | - Mélany Durand
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Hopital Henri Mondor, 51 Av Marechal de Lattre de Tassigny, 94010 Créteil, France,Univ. Bordeaux, Department of Public Health, INSERM U1219 Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, 146 Rue Leo Saignat, 33076 Bordeaux, France
| | - Cécile Lefebvre
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Hopital Henri Mondor, 51 Av Marechal de Lattre de Tassigny, 94010 Créteil, France
| | - Mathieu Surénaud
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Hopital Henri Mondor, 51 Av Marechal de Lattre de Tassigny, 94010 Créteil, France
| | - Christine Lacabaratz
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Hopital Henri Mondor, 51 Av Marechal de Lattre de Tassigny, 94010 Créteil, France
| | - Matthieu Perreau
- Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Emile Foucat
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Hopital Henri Mondor, 51 Av Marechal de Lattre de Tassigny, 94010 Créteil, France
| | - Marie Déchenaud
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Hopital Henri Mondor, 51 Av Marechal de Lattre de Tassigny, 94010 Créteil, France
| | - Pascaline Tisserand
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Hopital Henri Mondor, 51 Av Marechal de Lattre de Tassigny, 94010 Créteil, France
| | - Fabiola Blengio
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Hopital Henri Mondor, 51 Av Marechal de Lattre de Tassigny, 94010 Créteil, France
| | - Benjamin Hivert
- Univ. Bordeaux, Department of Public Health, INSERM U1219 Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, 146 Rue Leo Saignat, 33076 Bordeaux, France
| | - Marine Gauthier
- Univ. Bordeaux, Department of Public Health, INSERM U1219 Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, 146 Rue Leo Saignat, 33076 Bordeaux, France
| | - Minerva Cervantes-Gonzalez
- AP-HP, Hôpital Bichat, Département Épidémiologie Biostatistiques et Recherche Clinique, INSERM, Centre d’Investigation clinique-Epidémiologie Clinique 1425, F-75018 Paris, France,AP-HP, Hôpital Bichat, Service de Maladies Infectieuses et Tropicales, F-75018 Paris, France,Université de Paris, INSERM, IAME UMR 1137, F-75018 Paris, France
| | - Delphine Bachelet
- AP-HP, Hôpital Bichat, Département Épidémiologie Biostatistiques et Recherche Clinique, INSERM, Centre d’Investigation clinique-Epidémiologie Clinique 1425, F-75018 Paris, France,Université de Paris, INSERM, IAME UMR 1137, F-75018 Paris, France
| | - Cédric Laouénan
- AP-HP, Hôpital Bichat, Département Épidémiologie Biostatistiques et Recherche Clinique, INSERM, Centre d’Investigation clinique-Epidémiologie Clinique 1425, F-75018 Paris, France,Université de Paris, INSERM, IAME UMR 1137, F-75018 Paris, France
| | - Lila Bouadma
- APHP- Hôpital Bichat – Médecine Intensive et Réanimation des Maladies Infectieuses, Paris, France
| | - Jean-François Timsit
- APHP- Hôpital Bichat – Médecine Intensive et Réanimation des Maladies Infectieuses, Paris, France
| | - Yazdan Yazdanpanah
- AP-HP, Hôpital Bichat, Service de Maladies Infectieuses et Tropicales, F-75018 Paris, France,Université de Paris, INSERM, IAME UMR 1137, F-75018 Paris, France
| | - Giuseppe Pantaleo
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Hopital Henri Mondor, 51 Av Marechal de Lattre de Tassigny, 94010 Créteil, France,Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland,Immunology and Allergy Service, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Hakim Hocini
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Hopital Henri Mondor, 51 Av Marechal de Lattre de Tassigny, 94010 Créteil, France
| | - Rodolphe Thiébaut
- Vaccine Research Institute, Université Paris-Est Créteil, Faculté de Médecine, INSERM U955, Team 16, Hopital Henri Mondor, 51 Av Marechal de Lattre de Tassigny, 94010 Créteil, France,Univ. Bordeaux, Department of Public Health, INSERM U1219 Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, 146 Rue Leo Saignat, 33076 Bordeaux, France,CHU de Bordeaux, Pôle de Santé Publique, Service d’Information Médicale, Bordeaux, France,Corresponding author
| | | |
Collapse
|
55
|
The Antimicrobial Activity of Peripheral Blood Neutrophils Is Altered in Patients with Primary Ciliary Dyskinesia. Int J Mol Sci 2021; 22:ijms22126172. [PMID: 34201048 PMCID: PMC8230338 DOI: 10.3390/ijms22126172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 01/13/2023] Open
Abstract
The airways of patients with primary ciliary dyskinesia (PCD) contain persistently elevated neutrophil numbers and CXCL8 levels. Despite their abundance, neutrophils fail to clear the airways from bacterial infections. We investigated whether neutrophil functions are altered in patients with PCD. Neutrophils from patients and healthy controls (HC) were isolated from peripheral blood and exposed to various bacterial stimuli or cytokines. Neutrophils from patients with PCD were less responsive to low levels of fMLF in three different chemotaxis assays (p < 0.05), but expression of the fMLF receptors was unaltered. PCD neutrophils showed normal phagocytic function and expression of adhesion molecules. However, PCD neutrophils produced less reactive oxygen species upon stimulation with bacterial products or cytokines compared to HC neutrophils (p < 0.05). Finally, the capacity to release DNA, as observed during neutrophil extracellular trap formation, seemed to be reduced in patients with PCD compared to HC (p = 0.066). These results suggest that peripheral blood neutrophils from patients with PCD, in contrast to those of patients with cystic fibrosis or COPD, do not show features of over-activation, neither on baseline nor after stimulation. If these findings extend to lung-resident neutrophils, the reduced neutrophil activity could possibly contribute to the recurrent respiratory infections in patients with PCD.
Collapse
|
56
|
Begg M, Hamblin JN, Jarvis E, Bradley G, Mark S, Michalovich D, Lennon M, Wajdner HE, Amour A, Wilson R, Saunders K, Tanaka R, Arai S, Tang T, Van Holsbeke C, De Backer J, Vos W, Titlestad IL, FitzGerald JM, Killian K, Bourbeau J, Poirier C, Maltais F, Cahn A, Hessel EM. Exploring PI3Kδ Molecular Pathways in Stable COPD and Following an Acute Exacerbation, Two Randomized Controlled Trials. Int J Chron Obstruct Pulmon Dis 2021; 16:1621-1636. [PMID: 34113094 PMCID: PMC8184158 DOI: 10.2147/copd.s309303] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/04/2021] [Indexed: 11/23/2022] Open
Abstract
Background Inhibition of phosphoinositide 3-kinase δ (PI3Kδ) exerts corrective effects on the dysregulated migration characteristics of neutrophils isolated from patients with chronic obstructive pulmonary disease (COPD). Objective To develop novel, induced sputum endpoints to demonstrate changes in neutrophil phenotype in the lung by administering nemiralisib, a potent and selective inhaled PI3Kδ inhibitor, to patients with stable COPD or patients with acute exacerbation (AE) of COPD. Methods In two randomized, double-blind, placebo-controlled clinical trials patients with A) stable COPD (N=28, randomized 3:1) or B) AECOPD (N=44, randomized 1:1) received treatment with inhaled nemiralisib (1mg). Endpoints included induced sputum at various time points before and during treatment for the measurement of transcriptomics (primary endpoint), inflammatory mediators, functional respiratory imaging (FRI), and spirometry. Results In stable COPD patients, the use of nemiralisib was associated with alterations in sputum neutrophil transcriptomics suggestive of an improvement in migration phenotype; however, the same nemiralisib-evoked effects were not observed in AECOPD. Inhibition of sputum inflammatory mediators was also observed in stable but not AECOPD patients. In contrast, a placebo-corrected improvement in forced expiratory volume in 1 sec of 136 mL (95% Credible Intervals -46, 315mL) with a probability that the true treatment ratio was >0% (Pr(θ>0)) of 93% was observed in AECOPD. However, FRI endpoints remained unchanged. Conclusion We provide evidence for nemiralisib-evoked changes in neutrophil migration phenotype in stable COPD but not AECOPD, despite improving lung function in the latter group. We conclude that induced sputum can be used for measuring evidence of alteration of neutrophil phenotype in stable patients, and our study provides a data set of the sputum transcriptomic changes during recovery from AECOPD.
Collapse
Affiliation(s)
- Malcolm Begg
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, UK
| | - J Nicole Hamblin
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, UK
| | - Emily Jarvis
- Biostatistics, GlaxoSmithKline R&D, Stevenage, UK
| | - Glyn Bradley
- Computational Biology, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, UK
| | - Stephen Mark
- Study Management, Clinical Development, GlaxoSmithKline, Mississauga, ON, Canada
| | | | - Mark Lennon
- Nonclinical and Translational Statistics, GlaxoSmithKline, Stevenage, UK
| | | | - Augustin Amour
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, UK
| | - Robert Wilson
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, UK
| | - Ken Saunders
- Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, UK
| | - Rikako Tanaka
- Data Management & Strategy, Clinical Development, GlaxoSmithKline, Tokyo, Japan
| | - Saki Arai
- Data Management & Strategy, Clinical Development, GlaxoSmithKline, Tokyo, Japan
| | - Teresa Tang
- Pharma Safety, Clinical Development, GlaxoSmithKline, Brentford, Middlesex, UK
| | | | | | - Wim Vos
- FLUIDDA nv, Kontich, 2550, Belgium
| | - Ingrid L Titlestad
- Department of Respiratory Medicine, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | - J Mark FitzGerald
- Centre for Heart and Lung Health, University of British Columbia, Vancouver, BC, Canada
| | - Kieran Killian
- Cardiorespiratory Research Laboratory, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Jean Bourbeau
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Claude Poirier
- Department of Medicine, Respiratory Medicine Division, University of Montreal, Montreal, QC, Canada
| | - François Maltais
- Institut Universitaire de Cardiologie et de Pneumologie de Québe, Université Laval, Quebec City, QC, Canada
| | - Anthony Cahn
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, UK
| | - Edith M Hessel
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, UK
| |
Collapse
|
57
|
Mather MW, Jardine L, Talks B, Gardner L, Haniffa M. Complexity of immune responses in COVID-19. Semin Immunol 2021; 55:101545. [PMID: 34865933 PMCID: PMC8626289 DOI: 10.1016/j.smim.2021.101545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022]
Abstract
The global COVID-19 pandemic has caused substantial morbidity and mortality to humanity. Remarkable progress has been made in understanding both the innate and adaptive mechanisms involved in the host response to the causative SARS-CoV-2 virus, but much remains to be discovered. Robust upper airway defenses are critical in restricting SARS-CoV-2 replication and propagation. Further, the nasal abundance of viral uptake receptor, ACE2, and the host epithelial transcriptional landscape, are associated with differential disease outcomes across different patient cohorts. The adaptive host response to systemic COVID-19 is heterogeneous and complex. Blunted responses to interferon and robust cytokine generation are hallmarks of the disease, particularly at the advanced stages. Excessive immune cell influx into tissues can lead to substantial collateral damage to the host akin to sepsis. This review offers a contemporary summary of these mechanisms of disease and highlights potential avenues for diagnostic and therapeutic development. These include improved disease stratification, targeting effectors of immune-mediated tissue damage, and blunting of immune cell-mediated tissue damage.
Collapse
Affiliation(s)
- Michael William Mather
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; Department of Otolaryngology, Freeman Hospital, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, NE7 7DN, UK
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; Haematology Department, Freeman Hospital, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, NE7 7DN, UK
| | - Ben Talks
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; Department of Otolaryngology, Freeman Hospital, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, NE7 7DN, UK
| | - Louis Gardner
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4LP, UK
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE2 4LP, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| |
Collapse
|
58
|
Zhao C, Mo J, Zheng X, Wu Z, Li Q, Feng J, Luo J, Lu J, Zhang J. Identification of an Alveolar Macrophage-Related Core Gene Set in Acute Respiratory Distress Syndrome. J Inflamm Res 2021; 14:2353-2361. [PMID: 34103966 PMCID: PMC8179830 DOI: 10.2147/jir.s306136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Acute respiratory distress syndrome (ARDS) is a rapidly progressive diffuse lung injury that is characterized by high mortality and acute onset. The pathological mechanisms of ARDS are still unclear. But alveolar macrophages have been shown to play an important role in inflammatory responses during ARDS. We aimed to find the biomarkers for ARDS for early diagnosis, to give ARDS patients timely treatment. Methods Gene expression profiles were downloaded from Gene Expression Omnibus (GEO) and screened for differentially expressed genes (DEGs). The common upregulated genes in all the datasets were defined as circulating ARDS alveolar macrophage-related genes (cARDSAMGs). We performed a functional enrichment analysis to explore potential biological functions of cARDSAMGs, and we built protein–protein interaction networks. Gene set variation analysis (GSVA) was used to calculate the core gene set variation analysis (CGSVA) score for individual samples. Receiver operating characteristic (ROC) curve analysis was applied on the CGSVA score to evaluate its ability for diagnosis of ARDS. Results A total of 60 genes were upregulated in all ARDS datasets and were therefore denominated as cARDSAMGs. The cARDSAMGs were significantly involved in multiple inflammation-, immunity- and phagocytosis-related biological processes and pathways. In the protein–protein interaction network associated with host responses to ADRS, eight genes were identified as a core gene set: PTCRA, JAG1, C1QB, ADAM17, C1QA, MMP9, VSIG4 and TNFAIP3. ROC curve analysis showed that the CGSVA score may be considered as a biomarker for ARDS: it was significantly higher in patients with ARDS than those in healthy in both alveolar lavage fluid and whole blood. Conclusion The ARDS alveolar macrophage-related CGSVA score may be useful as a biomarker for ARDS.
Collapse
Affiliation(s)
- Chunling Zhao
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Jingjia Mo
- Department of General Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Xiaowen Zheng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Zimeng Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Qian Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Jihua Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Jiefeng Luo
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Junyu Lu
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| | - Jianfeng Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, People's Republic of China
| |
Collapse
|
59
|
Su R, Wang H, Xiao C, Tao Y, Li M, Chen Z. Venetoclax nanomedicine alleviates acute lung injury via increasing neutrophil apoptosis. Biomater Sci 2021; 9:4746-4754. [PMID: 34036969 DOI: 10.1039/d1bm00481f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Delayed neutrophil apoptosis has been proved to be closely associated with acute lung injury. A Bcl-2 inhibitor, venetoclax, can improve the clinical outcome of acute lung injury based on its pro-apoptotic effect. However, pulmonary delivery of free venetoclax is hindered by its water insolubility, which results in limited bioavailability and pharmacological effects. An amphipathic polymer-based nanodelivery system has been extensively used to improve the delivery of this insoluble drug and enhance its bioavailability. In this study, an amphiphilic poly(ethylene glycol) modified poly(α-lipoic acid) nanoparticle with an extended lung tissue-resident time was utilized to deliver venetoclax. Compared to free venetoclax, the nanoformulated venetoclax (Nf-venetoclax) presented better efficacy for acute lung injury through increasing neutrophil apoptosis in vivo. In addition, a stronger pro-apoptotic effect of Nf-venetoclax was also demonstrated in vitro. Our study provides encouraging evidence that Nf-venetoclax exhibits effective therapy for acute lung injury.
Collapse
Affiliation(s)
- Ruonan Su
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Haixia Wang
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yu Tao
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. and Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingqiang Li
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. and Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China and Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| | - Zhuanggui Chen
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
60
|
From sepsis to acute respiratory distress syndrome (ARDS): emerging preventive strategies based on molecular and genetic researches. Biosci Rep 2021; 40:222737. [PMID: 32319516 PMCID: PMC7199454 DOI: 10.1042/bsr20200830] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
A healthy body activates the immune response to target invading pathogens (i.e. viruses, bacteria, fungi, and parasites) and avoid further systemic infection. The activation of immunological mechanisms includes several components of the immune system, such as innate and acquired immunity. Once any component of the immune response to infections is aberrantly altered or dysregulated, resulting in a failure to clear infection, sepsis will develop through a pro-inflammatory immunological mechanism. Furthermore, the severe inflammatory responses induced by sepsis also increase vascular permeability, leading to acute pulmonary edema and resulting in acute respiratory distress syndrome (ARDS). Apparently, potential for improvement exists in the management of the transition from sepsis to ARDS; thus, this article presents an exhaustive review that highlights the previously unrecognized relationship between sepsis and ARDS and suggests a direction for future therapeutic developments, including plasma and genetic pre-diagnostic strategies and interference with proinflammatory signaling.
Collapse
|
61
|
Canini V, Bono F, Calzavacca P, Capitoli G, Foti G, Fraggetta F, Galimberti S, Gianatti A, Giani M, Nasr A, Paciocco G, Pagni F, Rona R, L'Imperio V. Cytopathology of bronchoalveolar lavages in COVID___19 pneumonia: A pilot study. Cancer Cytopathol 2021; 129:632-641. [PMID: 33690991 PMCID: PMC8239788 DOI: 10.1002/cncy.22422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Bronchoalveolar lavage (BAL) in patients with severe coronavirus disease 2019 (COVID‐19) may provide additional and complementary findings for the management of these patients admitted to intensive care units (ICUs). This study addresses the cytological features of the infection and highlights the more influential inflammatory components. The correlation between pathological variables and clinical data is also analyzed. METHODS The authors performed a retrospective analysis of the cytopathological features of BAL in 20 COVID‐19 patients and 20 members of a matched cohort from a critical ICU who had acute respiratory distress syndrome caused by other pulmonary conditions. RESULTS A comparison of the controls (n = 20) and the COVID‐19 patients (n = 20) revealed that the latter had a higher neutrophil count (median, 63.8% of the cell count) with lower percentages of macrophages and lymphocytes. An increase in the expression of CD68‐positive, monocytic multinucleated giant cells (MGCs) was reported; megakaryocytes were not detected on CD61 staining. Perls staining showed isolated elements. In situ RNA analysis demonstrated scattered chromogenic signals in type II pneumocytes. An ultrastructural analysis confirmed the presence of intracytoplasmic vacuoles containing rounded structures measuring 140 nm in diameter (putative viral particles). In COVID‐19 patients, the clinicopathological correlation revealed a positive correlation between lactate dehydrogenase values and MGCs (r = 0.54). CONCLUSIONS The analysis of BAL samples might be implemented as a routine practice for the evaluation of COVID‐19 patients in ICUs in the appropriate clinical scenario. Additional studies using a larger sample size of patients who developed COVID‐19 during the second wave of the epidemic in the autumn of 2020 are needed to further support our findings. An analysis of the cytological features of bronchoalveolar lavage samples can provide useful information for the management of coronavirus disease 2019 patients in the intensive care unit.
Collapse
Affiliation(s)
- Valentina Canini
- Pathology, Department of Medicine and Surgery, Azienda Socio Sanitaria Territoriale di Monza, University of Milano-Bicocca, Monza, Italy
| | - Francesca Bono
- Pathology, Department of Medicine and Surgery, Azienda Socio Sanitaria Territoriale di Monza, University of Milano-Bicocca, Monza, Italy
| | - Paolo Calzavacca
- Emergency and Intensive Care, Department of Medicine and Surgery, Azienda Socio Sanitaria Territoriale di Monza, University of Milano-Bicocca, Monza, Italy
| | - Giulia Capitoli
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giuseppe Foti
- Emergency and Intensive Care, Department of Medicine and Surgery, Azienda Socio Sanitaria Territoriale di Monza, University of Milano-Bicocca, Monza, Italy
| | | | - Stefania Galimberti
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Andrea Gianatti
- Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Marco Giani
- Emergency and Intensive Care, Department of Medicine and Surgery, Azienda Socio Sanitaria Territoriale di Monza, University of Milano-Bicocca, Monza, Italy
| | - Ahmed Nasr
- Pathology, Department of Medicine and Surgery, Azienda Socio Sanitaria Territoriale di Monza, University of Milano-Bicocca, Monza, Italy
| | - Giuseppe Paciocco
- Pneumology, Department of Medicine and Surgery, Azienda Socio Sanitaria Territoriale di Monza, University of Milano-Bicocca, Monza, Italy
| | - Fabio Pagni
- Pathology, Department of Medicine and Surgery, Azienda Socio Sanitaria Territoriale di Monza, University of Milano-Bicocca, Monza, Italy
| | - Roberto Rona
- Emergency and Intensive Care, Department of Medicine and Surgery, Azienda Socio Sanitaria Territoriale di Monza, University of Milano-Bicocca, Monza, Italy
| | - Vincenzo L'Imperio
- Pathology, Department of Medicine and Surgery, Azienda Socio Sanitaria Territoriale di Monza, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
62
|
Donkel SJ, Portilla Fernández E, Ahmad S, Rivadeneira F, van Rooij FJA, Ikram MA, Leebeek FWG, de Maat MPM, Ghanbari M. Common and Rare Variants Genetic Association Analysis of Circulating Neutrophil Extracellular Traps. Front Immunol 2021; 12:615527. [PMID: 33717105 PMCID: PMC7944992 DOI: 10.3389/fimmu.2021.615527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/04/2021] [Indexed: 12/27/2022] Open
Abstract
Introduction Neutrophils contribute to host defense through different mechanisms, including the formation of neutrophil extracellular traps (NETs). The genetic background and underlying mechanisms contributing to NET formation remain unclear. Materials and Methods We performed a genome-wide association study (GWAS) and exome-sequencing analysis to identify common and rare genetic variants associated with plasma myeloperoxidase (MPO)-DNA complex levels, a biomarker for NETs, in the population-based Rotterdam Study cohort. GWAS was performed using haplotype reference consortium(HRC)-imputed genotypes of common variants in 3,514 individuals from the first and 2,076 individuals from the second cohort of the Rotterdam Study. We additionally performed exome-sequencing analysis in 960 individuals to investigate rare variants in candidate genes. Results The GWAS yielded suggestive associations (p-value < 5.0 × 10-6) of SNPs annotated to four genes. In the exome-sequencing analysis, a variant in TMPRSS13 gene was significantly associated with MPO-DNA complex levels (p-value < 3.06×10-8). Moreover, gene-based analysis showed ten genes (OR10H1, RP11-461L13.5, RP11-24B19.4, RP11-461L13.3, KHDRBS1, ZNF200, RP11-395I6.1, RP11-696P8.2, RGPD1, AC007036.5) to be associated with MPO-DNA complex levels (p-value between 4.48 × 10-9 and 1.05 × 10-6). Pathway analysis of the identified genes showed their involvement in cellular development, molecular transport, RNA trafficking, cell-to-cell signaling and interaction, cellular growth and proliferation. Cancer was the top disease linked to the NET-associated genes. Conclusion In this first GWAS and exome-sequencing analysis of NETs levels, we found several genes that were associated with NETs. The precise mechanism of how these genes may contribute to neutrophil function or the formation of NETs remains unclear and should be further investigated in experimental studies.
Collapse
Affiliation(s)
- Samantha J Donkel
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Shahzad Ahmad
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands.,Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Frank J A van Rooij
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Frank W G Leebeek
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Moniek P M de Maat
- Department of Hematology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
63
|
Feng J, Pang J, He D, Wu Z, Li Q, Ji P, He C, Zhong Z, Li H, Zhang J. Identification of Genes with Altered Methylation and Its Role in Early Diagnosis of Sepsis-Induced Acute Respiratory Distress Syndrome. Int J Gen Med 2021; 14:243-253. [PMID: 33536775 PMCID: PMC7847772 DOI: 10.2147/ijgm.s287960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/06/2021] [Indexed: 01/10/2023] Open
Abstract
Purpose Early diagnosis of sepsis-induced acute respiratory distress syndrome (ARDS) is critical for effective treatment. We aimed to identify early stage biomarkers. Materials and Methods Differentially expressed genes were identified in whole blood samples from patients with sepsis or ARDS based on the Gene Expression Omnibus (GEO) datasets GSE32707, GSE54514 and GSE10361. Functional enrichment analysis explored the biological characteristics of differentially expressed genes. Genes with high functional connectivity based on a protein-protein interaction network were marked as hub genes, which were validated using the GEO dataset GSE76293, and a gene set variation analysis index (GSVA) was assigned. Diagnostic and predictive ability of the hub genes were assessed by receiver operating characteristic (ROC) curve analysis. DNA methylation levels of hub genes were quantified using the GEO dataset GSE67530. Results Forty-one differentially expressed genes were shared between sepsis-specific and ARDS-specific datasets. MAP2K2 and IRF7 functional activity was highly connected in sepsis-induced ARDS. Hub genes included RETN, MVP, DEFA4, CTSG, AZU1, FMNL1, RBBP7, POLD4, RIN3, IRF7. ROC curve analysis of the hub gene GSVA index showed good diagnostic ability in sepsis or ARDS. Among genes related to sepsis-induced ARDS, 17 were differentially methylated. Principal component analysis and heatmaps indicated that gene methylation patterns differed significantly between ARDS patients and controls. Conclusion We identified a genetic profile specific to early-stage sepsis-induced ARDS. The abnormal expression of these genes may be caused by hypomethylation, which may serve as a biomarker for early diagnosis of ARDS.
Collapse
Affiliation(s)
- Jihua Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Jielong Pang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Dan He
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Zimeng Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Qian Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Pan Ji
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Cuiying He
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Zhimei Zhong
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Hongyuan Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Jianfeng Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| |
Collapse
|
64
|
Zhou H, Chanda B, Chen YF, Wang XJ, You MY, Zhang YH, Cheng R, Yang Y, Chen XQ. Microarray and Bioinformatics Analysis of Circular RNA Differential Expression in Newborns With Acute Respiratory Distress Syndrome. Front Pediatr 2021; 9:728462. [PMID: 34796151 PMCID: PMC8592891 DOI: 10.3389/fped.2021.728462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/05/2021] [Indexed: 12/02/2022] Open
Abstract
Previous studies pointed out that a variety of microRNAs (miRNAs) are involved in the pathogenesis of neonatal acute respiratory distress syndrome (NARDS) and play different roles in the pathological process. However, there have been few studies reporting the connection between circular RNA (circRNA) and NARDS, so the expression profile of circRNAs in newborns with acute respiratory distress syndrome remains largely unknown. In the present study, 10 samples obtained from remaining clinical blood samples of newborns hospitalized in a neonatal ward of the First Affiliated Hospital of Nanjing Medical University from January 2020 to October 2020 were divided into the "NARDS" group and "non-NARDS" group according to the Montelux standard and then were analyzed in microarray, and 10 other samples collected from the same place and from January 1, 2021 to August 31, 2021, were used to do RT-qPCR experiment. circRNA expression profiles, in which 741 circRNAs were downregulated and 588 were upregulated, were screened with circRNA high-throughput sequencing. Subsequently, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of parent genes of the differentially expressed circRNAs revealed that these circRNAs may be related to the process of protein synthesis and metabolism in NARDS. Moreover, five circRNAs-hsa_circ_0058495, hsa_circ_0000367, hsa_circ_0005389, hsa_circ_0059571, and hsa_circ_0006608-were selected randomly among the top 10 circRNAs of the downregulated or upregulated expression profiles. Then, bioinformatics tools were used to predict correlative miRNA and its target genes, which were also subjected to the same bioinformatics analysis for further study. The top 30 enriched KEGG pathway analyses of the 125 target genes suggested that these target genes are widely involved in the synthesis and secretion of endocrine hormones, and the top 30 enriched GO terms based on the 125 target genes are also focused on the protein and DNA processing. Thus, the present results show that circRNAs could promote the inflammation of NARDS which may provide a new therapeutic direction and it can be used as molecular markers for early diagnosis of NARDS, but further molecular biology verification is needed to define the specific role of differentially expressed circRNAs in NARDS.
Collapse
Affiliation(s)
- Huan Zhou
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bwalya Chanda
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Fei Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xue-Juan Wang
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming-Yu You
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi-Han Zhang
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Cheng
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Qing Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
65
|
Mishra A, Chanchal S, Ashraf MZ. Host-Viral Interactions Revealed among Shared Transcriptomics Signatures of ARDS and Thrombosis: A Clue into COVID-19 Pathogenesis. TH OPEN 2020; 4:e403-e412. [PMID: 33354650 PMCID: PMC7746517 DOI: 10.1055/s-0040-1721706] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/02/2020] [Indexed: 01/07/2023] Open
Abstract
Severe novel corona virus disease 2019 (COVID-19) infection is associated with a considerable activation of coagulation pathways, endothelial damage, and subsequent thrombotic microvascular injuries. These consistent observations may have serious implications for the treatment and management of this highly pathogenic disease. As a consequence, the anticoagulant therapeutic strategies, such as low molecular weight heparin, have shown some encouraging results. Cytokine burst leading to sepsis which is one of the primary reasons for acute respiratory distress syndrome (ARDS) drive that could be worsened with the accumulation of coagulation factors in the lungs of COVID-19 patients. However, the obscurity of this syndrome remains a hurdle in making decisive treatment choices. Therefore, an attempt to characterize shared biological mechanisms between ARDS and thrombosis using comprehensive transcriptomics meta-analysis is made. We conducted an integrated gene expression meta-analysis of two independently publicly available datasets of ARDS and venous thromboembolism (VTE). Datasets GSE76293 and GSE19151 derived from National Centre for Biotechnology Information–Gene Expression Omnibus (NCBI-GEO) database were used for ARDS and VTE, respectively. Integrative meta-analysis of expression data (INMEX) tool preprocessed the datasets and effect size combination with random effect modeling was used for obtaining differentially expressed genes (DEGs). Network construction was done for hub genes and pathway enrichment analysis. Our meta-analysis identified a total of 1,878 significant DEGs among the datasets, which when subjected to enrichment analysis suggested inflammation–coagulation–hypoxemia convolutions in COVID-19 pathogenesis. The top hub genes of our study such as tumor protein 53 (TP53), lysine acetyltransferase 2B (KAT2B), DExH-box helicase 9 (DHX9), REL-associated protein (RELA), RING-box protein 1 (RBX1), and proteasome 20S subunit beta 2 (PSMB2) gave insights into the genes known to be participating in the host–virus interactions that could pave the way to understand the various strategies deployed by the virus to improve its replication and spreading.
Collapse
Affiliation(s)
- Aastha Mishra
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Shankar Chanchal
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Z Ashraf
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
66
|
Hypoxia, HIF-1α, and COVID-19: from pathogenic factors to potential therapeutic targets. Acta Pharmacol Sin 2020; 41:1539-1546. [PMID: 33110240 PMCID: PMC7588589 DOI: 10.1038/s41401-020-00554-8] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) and its pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have become the greatest current threat to global public health. The highly infectious SARS-CoV-2 virus primarily attacks pulmonary tissues and impairs gas exchange leading to acute respiratory distress syndrome (ARDS) and systemic hypoxia. The current pharmacotherapies for COVID-19 largely rely on supportive and anti-thrombi treatment and the repurposing of antimalarial and antiviral drugs such as hydroxychloroquine and remdesivir. For a better mechanistic understanding of COVID-19, our present review focuses on its primary pathophysiologic features: hypoxia and cytokine storm, which are a prelude to multiple organ failure and lethality. We discussed a possible link between the activation of hypoxia inducible factor 1α (HIF-1α) and cell entry of SARS-CoV-2, since HIF-1α is shown to suppress the angiotensin-converting enzyme 2 (ACE2) receptor and transmembrane protease serine 2 (TMPRSS2) and upregulate disintegrin and metalloproteinase domain-containing protein 17 (ADAM17). In addition, the protein targets of HIF-1α are involved with the activation of pro-inflammatory cytokine expression and the subsequent inflammatory process. Furthermore, we hypothesized a potential utility of so-called "hypoxic conditioning" to activate HIF-1α-induced cytoprotective signaling for reduction of illness severity and improvement of vital organ function in patients with COVID-19. Taken together, we would propose further investigations into the hypoxia-related molecular mechanisms, from which novel targeted therapies can be developed for the improved management of COVID-19.
Collapse
|
67
|
Artigas L, Coma M, Matos-Filipe P, Aguirre-Plans J, Farrés J, Valls R, Fernandez-Fuentes N, de la Haba-Rodriguez J, Olvera A, Barbera J, Morales R, Oliva B, Mas JM. In-silico drug repurposing study predicts the combination of pirfenidone and melatonin as a promising candidate therapy to reduce SARS-CoV-2 infection progression and respiratory distress caused by cytokine storm. PLoS One 2020; 15:e0240149. [PMID: 33006999 PMCID: PMC7531795 DOI: 10.1371/journal.pone.0240149] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
From January 2020, COVID-19 is spreading around the world producing serious respiratory symptoms in infected patients that in some cases can be complicated by the severe acute respiratory syndrome, sepsis and septic shock, multiorgan failure, including acute kidney injury and cardiac injury. Cost and time efficient approaches to reduce the burthen of the disease are needed. To find potential COVID-19 treatments among the whole arsenal of existing drugs, we combined system biology and artificial intelligence-based approaches. The drug combination of pirfenidone and melatonin has been identified as a candidate treatment that may contribute to reduce the virus infection. Starting from different drug targets the effect of the drugs converges on human proteins with a known role in SARS-CoV-2 infection cycle. Simultaneously, GUILDify v2.0 web server has been used as an alternative method to corroborate the effect of pirfenidone and melatonin against the infection of SARS-CoV-2. We have also predicted a potential therapeutic effect of the drug combination over the respiratory associated pathology, thus tackling at the same time two important issues in COVID-19. These evidences, together with the fact that from a medical point of view both drugs are considered safe and can be combined with the current standard of care treatments for COVID-19 makes this combination very attractive for treating patients at stage II, non-severe symptomatic patients with the presence of virus and those patients who are at risk of developing severe pulmonary complications.
Collapse
Affiliation(s)
| | | | - Pedro Matos-Filipe
- Anaxomics Biotech, Barcelona, Spain
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Experimental and Health Science, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Joaquim Aguirre-Plans
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Experimental and Health Science, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | | | | | - Narcis Fernandez-Fuentes
- Department of Biosciences, U Science Tech, Universitat de Vic—Universitat Central de Catalunya, Vic, Catalonia, Spain
| | - Juan de la Haba-Rodriguez
- Maimonides Biomedical Research Institute, Reina Sofia Hospital, University of Cordoba, Cordoba, Spain
| | - Alex Olvera
- Institut de Recerca de la Sida—IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona (Barcelona), Spain
| | - Jose Barbera
- Servicio de Medicina interna—Unidad de Infecciosas, La Mancha—Centro Hospital, Alcázar de San Juan, Spain
| | - Rafael Morales
- Servicio de Medicina interna—Unidad de Infecciosas, La Mancha—Centro Hospital, Alcázar de San Juan, Spain
| | - Baldo Oliva
- Structural Bioinformatics Group, Research Programme on Biomedical Informatics, Department of Experimental and Health Science, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | | |
Collapse
|
68
|
Morris G, Bortolasci CC, Puri BK, Olive L, Marx W, O'Neil A, Athan E, Carvalho AF, Maes M, Walder K, Berk M. The pathophysiology of SARS-CoV-2: A suggested model and therapeutic approach. Life Sci 2020; 258:118166. [PMID: 32739471 PMCID: PMC7392886 DOI: 10.1016/j.lfs.2020.118166] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 01/10/2023]
Abstract
In this paper, a model is proposed of the pathophysiological processes of COVID-19 starting from the infection of human type II alveolar epithelial cells (pneumocytes) by SARS-CoV-2 and culminating in the development of ARDS. The innate immune response to infection of type II alveolar epithelial cells leads both to their death by apoptosis and pyroptosis and to alveolar macrophage activation. Activated macrophages secrete proinflammatory cytokines and chemokines and tend to polarise into the inflammatory M1 phenotype. These changes are associated with activation of vascular endothelial cells and thence the recruitment of highly toxic neutrophils and inflammatory activated platelets into the alveolar space. Activated vascular endothelial cells become a source of proinflammatory cytokines and reactive oxygen species (ROS) and contribute to the development of coagulopathy, systemic sepsis, a cytokine storm and ARDS. Pulmonary activated platelets are also an important source of proinflammatory cytokines and ROS, as well as exacerbating pulmonary neutrophil-mediated inflammatory responses and contributing to systemic sepsis by binding to neutrophils to form platelet-neutrophil complexes (PNCs). PNC formation increases neutrophil recruitment, activation priming and extraversion of these immune cells into inflamed pulmonary tissue, thereby contributing to ARDS. Sequestered PNCs cause the development of a procoagulant and proinflammatory environment. The contribution to ARDS of increased extracellular histone levels, circulating mitochondrial DNA, the chromatin protein HMGB1, decreased neutrophil apoptosis, impaired macrophage efferocytosis, the cytokine storm, the toll-like receptor radical cycle, pyroptosis, necroinflammation, lymphopenia and a high Th17 to regulatory T lymphocyte ratio are detailed.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Chiara C. Bortolasci
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia,Corresponding author at: IMPACT – the Institute for Mental and Physical Health and Clinical Translation, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3218, Australia
| | | | - Lisa Olive
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,School of Psychology, Deakin University, Geelong, Australia
| | - Wolfgang Marx
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Eugene Athan
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Barwon Health, Geelong, Australia
| | - Andre F. Carvalho
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Department of Psychiatry, University of Toronto, Toronto, Canada,Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Michael Maes
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand,Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Ken Walder
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
69
|
McElvaney OJ, McEvoy NL, McElvaney OF, Carroll TP, Murphy MP, Dunlea DM, Ní Choileáin O, Clarke J, O'Connor E, Hogan G, Ryan D, Sulaiman I, Gunaratnam C, Branagan P, O'Brien ME, Morgan RK, Costello RW, Hurley K, Walsh S, de Barra E, McNally C, McConkey S, Boland F, Galvin S, Kiernan F, O'Rourke J, Dwyer R, Power M, Geoghegan P, Larkin C, O'Leary RA, Freeman J, Gaffney A, Marsh B, Curley GF, McElvaney NG. Characterization of the Inflammatory Response to Severe COVID-19 Illness. Am J Respir Crit Care Med 2020; 202:812-821. [PMID: 32584597 PMCID: PMC7491404 DOI: 10.1164/rccm.202005-1583oc] [Citation(s) in RCA: 457] [Impact Index Per Article: 91.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/25/2020] [Indexed: 12/22/2022] Open
Abstract
Rationale: Coronavirus disease (COVID-19) is a global threat to health. Its inflammatory characteristics are incompletely understood.Objectives: To define the cytokine profile of COVID-19 and to identify evidence of immunometabolic alterations in those with severe illness.Methods: Levels of IL-1β, IL-6, IL-8, IL-10, and sTNFR1 (soluble tumor necrosis factor receptor 1) were assessed in plasma from healthy volunteers, hospitalized but stable patients with COVID-19 (COVIDstable patients), patients with COVID-19 requiring ICU admission (COVIDICU patients), and patients with severe community-acquired pneumonia requiring ICU support (CAPICU patients). Immunometabolic markers were measured in circulating neutrophils from patients with severe COVID-19. The acute phase response of AAT (alpha-1 antitrypsin) to COVID-19 was also evaluated.Measurements and Main Results: IL-1β, IL-6, IL-8, and sTNFR1 were all increased in patients with COVID-19. COVIDICU patients could be clearly differentiated from COVIDstable patients, and demonstrated higher levels of IL-1β, IL-6, and sTNFR1 but lower IL-10 than CAPICU patients. COVID-19 neutrophils displayed altered immunometabolism, with increased cytosolic PKM2 (pyruvate kinase M2), phosphorylated PKM2, HIF-1α (hypoxia-inducible factor-1α), and lactate. The production and sialylation of AAT increased in COVID-19, but this antiinflammatory response was overwhelmed in severe illness, with the IL-6:AAT ratio markedly higher in patients requiring ICU admission (P < 0.0001). In critically unwell patients with COVID-19, increases in IL-6:AAT predicted prolonged ICU stay and mortality, whereas improvement in IL-6:AAT was associated with clinical resolution (P < 0.0001).Conclusions: The COVID-19 cytokinemia is distinct from that of other types of pneumonia, leading to organ failure and ICU need. Neutrophils undergo immunometabolic reprogramming in severe COVID-19 illness. Cytokine ratios may predict outcomes in this population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jennifer Clarke
- Department of Anaesthesia and Critical Care
- Beaumont Hospital, Dublin, Ireland; and
| | | | | | | | | | | | | | | | | | | | | | | | - Eoghan de Barra
- Department of International Health and Tropical Medicine, and
| | | | - Samuel McConkey
- Department of International Health and Tropical Medicine, and
| | - Fiona Boland
- Data Science Centre, Division of Biostatistics and Population Health Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | - Brian Marsh
- Department of Critical Care Medicine, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Gerard F Curley
- Department of Anaesthesia and Critical Care
- Beaumont Hospital, Dublin, Ireland; and
| | | |
Collapse
|
70
|
Saez A, Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Rius C, Gonzalez-Granado JM. Lamin A/C and the Immune System: One Intermediate Filament, Many Faces. Int J Mol Sci 2020; 21:E6109. [PMID: 32854281 PMCID: PMC7504305 DOI: 10.3390/ijms21176109] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
Nuclear envelope lamin A/C proteins are a major component of the mammalian nuclear lamina, a dense fibrous protein meshwork located in the nuclear interior. Lamin A/C proteins regulate nuclear mechanics and structure and control cellular signaling, gene transcription, epigenetic regulation, cell cycle progression, cell differentiation, and cell migration. The immune system is composed of the innate and adaptive branches. Innate immunity is mediated by myeloid cells such as neutrophils, macrophages, and dendritic cells. These cells produce a rapid and nonspecific response through phagocytosis, cytokine production, and complement activation, as well as activating adaptive immunity. Specific adaptive immunity is activated by antigen presentation by antigen presenting cells (APCs) and the cytokine microenvironment, and is mainly mediated by the cellular functions of T cells and the production of antibodies by B cells. Unlike most cell types, immune cells regulate their lamin A/C protein expression relatively rapidly to exert their functions, with expression increasing in macrophages, reducing in neutrophils, and increasing transiently in T cells. In this review, we discuss and summarize studies that have addressed the role played by lamin A/C in the functions of innate and adaptive immune cells in the context of human inflammatory and autoimmune diseases, pathogen infections, and cancer.
Collapse
Affiliation(s)
- Angela Saez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (B.H.-F.); (R.G.-B.); (B.S.-C.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (B.H.-F.); (R.G.-B.); (B.S.-C.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Beatriz Somovilla-Crespo
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (B.H.-F.); (R.G.-B.); (B.S.-C.)
| | - Cristina Rius
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid (UEM), Villaviciosa de Odón, 28670 Madrid, Spain;
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (B.H.-F.); (R.G.-B.); (B.S.-C.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| |
Collapse
|
71
|
Gautam S, Stahl Y, Young GM, Howell R, Cohen AJ, Tsang DA, Martin T, Sharma L, Dela Cruz CS. Quantification of bronchoalveolar neutrophil extracellular traps and phagocytosis in murine pneumonia. Am J Physiol Lung Cell Mol Physiol 2020; 319:L661-L669. [PMID: 32783617 DOI: 10.1152/ajplung.00316.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The past two decades have witnessed a resurgence in neutrophil research, inspired in part by the discovery of neutrophil extracellular traps (NETs) and their myriad roles in health and disease. Within the lung, dysregulation of neutrophils and NETosis have been linked to an array of diseases including pneumonia, cystic fibrosis, acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), and severe asthma. However, our understanding of pathologic neutrophil responses in the lung remains incomplete. Two methodologic issues have contributed to this gap: first, an emphasis on studying neutrophils from blood rather than the lung and second, the technical difficulties of interrogating neutrophil responses in mice, which has largely restricted basic murine research to specialized laboratories. To address these limitations, we have developed a suite of techniques for studying neutrophil effector functions specifically in the mouse lung. These include ex vivo assays for phagocytosis and NETosis using bronchoalveolar neutrophils and in situ evaluation of NETosis in a murine model of pneumonia. Throughout, we have prioritized technical ease and robust, quantitative readouts. We hope these assays will help to standardize research on lung neutrophils and improve accessibility to this burgeoning field.
Collapse
Affiliation(s)
- Samir Gautam
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut
| | - Yannick Stahl
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut
| | - Grant M Young
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut
| | - Rebecca Howell
- Department of Chemistry, Yale University, New Haven, Connecticut
| | - Avi J Cohen
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut
| | - Derek A Tsang
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut
| | - Tommy Martin
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut
| | - Lokesh Sharma
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut
| | - Charles S Dela Cruz
- Yale School of Medicine, Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut.,Yale School of Medicine, Department of Microbial Pathogenesis, Yale University, New Haven, Connecticut
| |
Collapse
|
72
|
Wood AJ, Vassallo AM, Ruchaud-Sparagano MH, Scott J, Zinnato C, Gonzalez-Tejedo C, Kishore K, D'Santos CS, Simpson AJ, Menon DK, Summers C, Chilvers ER, Okkenhaug K, Morris AC. C5a impairs phagosomal maturation in the neutrophil through phosphoproteomic remodeling. JCI Insight 2020; 5:137029. [PMID: 32634128 PMCID: PMC7455072 DOI: 10.1172/jci.insight.137029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/24/2020] [Indexed: 12/26/2022] Open
Abstract
Critical illness is accompanied by the release of large amounts of the anaphylotoxin, C5a. C5a suppresses antimicrobial functions of neutrophils which is associated with adverse outcomes. The signaling pathways that mediate C5a-induced neutrophil dysfunction are incompletely understood. Healthy donor neutrophils exposed to purified C5a demonstrated a prolonged defect (7 hours) in phagocytosis of Staphylococcus aureus. Phosphoproteomic profiling of 2712 phosphoproteins identified persistent C5a signaling and selective impairment of phagosomal protein phosphorylation on exposure to S. aureus. Notable proteins included early endosomal marker ZFYVE16 and V-ATPase proton channel component ATPV1G1. An assay of phagosomal acidification demonstrated C5a-induced impairment of phagosomal acidification, which was recapitulated in neutrophils from critically ill patients. Examination of the C5a-impaired protein phosphorylation indicated a role for the PI3K VPS34 in phagosomal maturation. Inhibition of VPS34 impaired neutrophil phagosomal acidification and killing of S. aureus. This study provides a phosphoproteomic assessment of human neutrophil signaling in response to S. aureus and its disruption by C5a, identifying a defect in phagosomal maturation and mechanisms of immune failure in critical illness. C5a disrupts the neutrophil phosphoproteomic response to bacteria, impairing phagosomal maturation and bacterial killing.
Collapse
Affiliation(s)
- Alexander Jt Wood
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, United Kingdom
| | - Arlette M Vassallo
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, United Kingdom
| | | | - Jonathan Scott
- Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom
| | - Carmelo Zinnato
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, United Kingdom
| | - Carmen Gonzalez-Tejedo
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, United Kingdom
| | - Kamal Kishore
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, United Kingdom
| | - Clive S D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, United Kingdom
| | - A John Simpson
- Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, United Kingdom.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne, United Kingdom
| | - David K Menon
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, United Kingdom
| | - Charlotte Summers
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, United Kingdom
| | - Edwin R Chilvers
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, United Kingdom.,National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Klaus Okkenhaug
- Division of Immunology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Andrew Conway Morris
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, United Kingdom.,Division of Immunology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| |
Collapse
|
73
|
Kumar V. Pulmonary Innate Immune Response Determines the Outcome of Inflammation During Pneumonia and Sepsis-Associated Acute Lung Injury. Front Immunol 2020; 11:1722. [PMID: 32849610 PMCID: PMC7417316 DOI: 10.3389/fimmu.2020.01722] [Citation(s) in RCA: 391] [Impact Index Per Article: 78.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
The lung is a primary organ for gas exchange in mammals that represents the largest epithelial surface in direct contact with the external environment. It also serves as a crucial immune organ, which harbors both innate and adaptive immune cells to induce a potent immune response. Due to its direct contact with the outer environment, the lung serves as a primary target organ for many airborne pathogens, toxicants (aerosols), and allergens causing pneumonia, acute respiratory distress syndrome (ARDS), and acute lung injury or inflammation (ALI). The current review describes the immunological mechanisms responsible for bacterial pneumonia and sepsis-induced ALI. It highlights the immunological differences for the severity of bacterial sepsis-induced ALI as compared to the pneumonia-associated ALI. The immune-based differences between the Gram-positive and Gram-negative bacteria-induced pneumonia show different mechanisms to induce ALI. The role of pulmonary epithelial cells (PECs), alveolar macrophages (AMs), innate lymphoid cells (ILCs), and different pattern-recognition receptors (PRRs, including Toll-like receptors (TLRs) and inflammasome proteins) in neutrophil infiltration and ALI induction have been described during pneumonia and sepsis-induced ALI. Also, the resolution of inflammation is frequently observed during ALI associated with pneumonia, whereas sepsis-associated ALI lacks it. Hence, the review mainly describes the different immune mechanisms responsible for pneumonia and sepsis-induced ALI. The differences in immune response depending on the causal pathogen (Gram-positive or Gram-negative bacteria) associated pneumonia or sepsis-induced ALI should be taken in mind specific immune-based therapeutics.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, Faculty of Medicine, School of Clinical Medicine, Mater Research, University of Queensland, Brisbane, QLD, Australia.,Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
74
|
Mehta P, Porter JC, Manson JJ, Isaacs JD, Openshaw PJM, McInnes IB, Summers C, Chambers RC. Therapeutic blockade of granulocyte macrophage colony-stimulating factor in COVID-19-associated hyperinflammation: challenges and opportunities. THE LANCET. RESPIRATORY MEDICINE 2020; 8:822-830. [PMID: 32559419 PMCID: PMC7834476 DOI: 10.1016/s2213-2600(20)30267-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/19/2023]
Abstract
The COVID-19 pandemic is a global public health crisis, with considerable mortality and morbidity exerting pressure on health-care resources, including critical care. An excessive host inflammatory response in a subgroup of patients with severe COVID-19 might contribute to the development of acute respiratory distress syndrome (ARDS) and multiorgan failure. Timely therapeutic intervention with immunomodulation in patients with hyperinflammation could prevent disease progression to ARDS and obviate the need for invasive ventilation. Granulocyte macrophage colony-stimulating factor (GM-CSF) is an immunoregulatory cytokine with a pivotal role in initiation and perpetuation of inflammatory diseases. GM-CSF could link T-cell-driven acute pulmonary inflammation with an autocrine, self-amplifying cytokine loop leading to monocyte and macrophage activation. This axis has been targeted in cytokine storm syndromes and chronic inflammatory disorders. Here, we consider the scientific rationale for therapeutic targeting of GM-CSF in COVID-19-associated hyperinflammation. Since GM-CSF also has a key role in homoeostasis and host defence, we discuss potential risks associated with inhibition of GM-CSF in the context of viral infection and the challenges of doing clinical trials in this setting, highlighting in particular the need for a patient risk-stratification algorithm.
Collapse
Affiliation(s)
- Puja Mehta
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College London, London, UK; Department of Rheumatology, University College London Hospital, London, UK
| | - Joanna C Porter
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College London, London, UK
| | - Jessica J Manson
- Department of Rheumatology, University College London Hospital, London, UK
| | - John D Isaacs
- Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| | - Peter J M Openshaw
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, Division of Medicine, University College London, London, UK.
| |
Collapse
|
75
|
Hu L, Zhao T, Sun Y, Chen Y, Bai K, Xu F. Bioinformatic identification of hub genes and key pathways in neutrophils of patients with acute respiratory distress syndrome. Medicine (Baltimore) 2020; 99:e19820. [PMID: 32282748 PMCID: PMC7220668 DOI: 10.1097/md.0000000000019820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized as a neutrophil-dominant disorder without effective pharmacological interventions. Knowledge of neutrophils in ARDS patients at the transcriptome level is still limited. We aimed to identify the hub genes and key pathways in neutrophils of patients with ARDS. The transcriptional profiles of neutrophils from ARDS patients and healthy volunteers were obtained from the GSE76293 dataset. The differentially expressed genes (DEGs) between ARDS and healthy samples were screened using the limma R package. Subsequently, functional and pathway enrichment analyses were performed based on the database for annotation, visualization, and integrated discovery (DAVID). The construction of a protein-protein interaction network was carried out using the search tool for the retrieval of interacting genes (STRING) database and the network was visualized by Cytoscape software. The Cytoscape plugins cytoHubba and MCODE were used to identify hub genes and significant modules. Finally, 136 upregulated genes and 95 downregulated genes were identified. Gene ontology analyses revealed MHC class II plays a major role in functional annotations. SLC11A1, ARG1, CHI3L1, HP, LCN2, and MMP8 were identified as hub genes, and they were all involved in the neutrophil degranulation pathway. The MAPK and neutrophil degranulation pathways in neutrophils were considered as key pathways in the pathogenesis of ARDS. This study improves our understanding of the biological characteristics of neutrophils and the mechanisms underlying ARDS, and key pathways and hub genes identified in this work can serve as targets for novel ARDS treatment strategies.
Collapse
Affiliation(s)
- Lan Hu
- Department of Intensive Care Unit, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University
- Chongqing Key Laboratory of Pediatrics
- Department of Outpatient, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Tianxin Zhao
- Department of Intensive Care Unit, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University
- Chongqing Key Laboratory of Pediatrics
| | - Yuelin Sun
- Department of Intensive Care Unit, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University
- Chongqing Key Laboratory of Pediatrics
| | - Yingfu Chen
- Department of Intensive Care Unit, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University
- Chongqing Key Laboratory of Pediatrics
| | - Ke Bai
- Department of Intensive Care Unit, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University
- Chongqing Key Laboratory of Pediatrics
| | - Feng Xu
- Department of Intensive Care Unit, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University
- Chongqing Key Laboratory of Pediatrics
| |
Collapse
|
76
|
Catz SD, McLeish KR. Therapeutic targeting of neutrophil exocytosis. J Leukoc Biol 2020; 107:393-408. [PMID: 31990103 PMCID: PMC7044074 DOI: 10.1002/jlb.3ri0120-645r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of neutrophil activation causes disease in humans. Neither global inhibition of neutrophil functions nor neutrophil depletion provides safe and/or effective therapeutic approaches. The role of neutrophil granule exocytosis in multiple steps leading to recruitment and cell injury led each of our laboratories to develop molecular inhibitors that interfere with specific molecular regulators of secretion. This review summarizes neutrophil granule formation and contents, the role granule cargo plays in neutrophil functional responses and neutrophil-mediated diseases, and the mechanisms of granule release that provide the rationale for development of our exocytosis inhibitors. We present evidence for the inhibition of granule exocytosis in vitro and in vivo by those inhibitors and summarize animal data indicating that inhibition of neutrophil exocytosis is a viable therapeutic strategy.
Collapse
Affiliation(s)
- Sergio D. Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Kenneth R. McLeish
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY
| |
Collapse
|
77
|
Paci P, Fiscon G, Conte F, Licursi V, Morrow J, Hersh C, Cho M, Castaldi P, Glass K, Silverman EK, Farina L. Integrated transcriptomic correlation network analysis identifies COPD molecular determinants. Sci Rep 2020; 10:3361. [PMID: 32099002 PMCID: PMC7042269 DOI: 10.1038/s41598-020-60228-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/23/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex and heterogeneous syndrome. Network-based analysis implemented by SWIM software can be exploited to identify key molecular switches - called "switch genes" - for the disease. Genes contributing to common biological processes or defining given cell types are usually co-regulated and co-expressed, forming expression network modules. Consistently, we found that the COPD correlation network built by SWIM consists of three well-characterized modules: one populated by switch genes, all up-regulated in COPD cases and related to the regulation of immune response, inflammatory response, and hypoxia (like TIMP1, HIF1A, SYK, LY96, BLNK and PRDX4); one populated by well-recognized immune signature genes, all up-regulated in COPD cases; one where the GWAS genes AGER and CAVIN1 are the most representative module genes, both down-regulated in COPD cases. Interestingly, 70% of AGER negative interactors are switch genes including PRDX4, whose activation strongly correlates with the activation of known COPD GWAS interactors SERPINE2, CD79A, and POUF2AF1. These results suggest that SWIM analysis can identify key network modules related to complex diseases like COPD.
Collapse
Affiliation(s)
- Paola Paci
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy.
| | - Giulia Fiscon
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Federica Conte
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Valerio Licursi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Jarrett Morrow
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Craig Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lorenzo Farina
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
78
|
Abstract
PURPOSE OF REVIEW Neutrophils priming has been long studied in vitro. Recent studies describe it in vivo. In pathophysiological conditions, complex, heterogeneous characteristics of priming are described in the last few years. RECENT FINDINGS Priming can occur systemically when insults such as sepsis or trauma result in an array of circulating mediators and circulating primed neutrophils seem to exert detrimental effects either directly, or indirectly by interacting with other cells, thereby contributing to the development of organ dysfunction. Local priming of neutrophils augments their ability to clear infection, but may also lead to local bystander tissue injury, for example, in the inflamed joint. The complexity, heterogeneity and dynamic nature of inflammatory responses and the accessibility of cells from local sites make neutrophil priming challenging to study in human disease; however, recent advances have made significant progress to this field. SUMMARY Herein, we summarize the literature regarding neutrophil priming in selected conditions. In some diseases and in the setting of specific genetic influences, the priming repertoire seems to be restricted, with only some neutrophil functions upregulated. A greater understanding of the nature of neutrophil priming and its role in human disease is required before this process becomes tractable to therapeutic intervention.
Collapse
|
79
|
Chen X, Zhou J, Xu L, Chen L, Mao P, Yang X. Serological ferritin, 100A12, procalcitonin and APACHEII score in prediction the prognosis of acute respiratory distress syndrome. Pteridines 2019. [DOI: 10.1515/pteridines-2019-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Objective The aim of the present work was to investigate the prognostic value of serological ferritin, 100A12, procalcitonin (PCT) and APACHEII score in predicting death risk for patients with acute respiratory distress syndrome (ARDS).
Methods Forty eight ARDS patients were recruited from Feb. 2016 to Jan. 2019 from Lishui People’s Hospital. According to their prognosis (survival or death within 28 days), these 48 patients were further divided into the survival group (n=28) and death group (n=20). The serological levels of S100A12, PCT and ferritin of the 48 ARDS patients were examined within 24 hours after hospitalization. Demographic characteristics, serum S100A12, PCT and ferritin were compared between the two groups, and diagnostic analysis was performed to evaluate the clinical efficacy of these markers in predicting the death of ARDS patients.
Results The serum S100A12, ferritin and APACHEII scores of the death group were significantly higher than those of the survival group (p<0.05). However, serum PCT levels were not statistically different between the two groups (p>0.05). The death prediction sensitivity for serum S100A12, PCT, ferritin and APACHEII score were 65.0 (40.78-84.61)%, 60.00(36.05-80.88) %,75.0(50.90-91.34)% and 85.0(62.11-96.79)% respectively. The death prediction specificity for serum S100A12, PCT, ferritin and APACHEII score were 75.0(55.13-89.31)%, 60.00(36.05-80.88)%, 64.29(44.07-81.36)% and 82.14(63.11-93.94)%, respectively. The area under the ROC curve (AUC) for serum S100A12, PCT, ferritin and APACHEII score were 0.68(0.51-0.84), 0.63(0.46-0.79), 0.71(0.56-0.86) and 0.91(0.83-0.99) respectively.
Conclusion Serological ferritin, 100A12, PCT and APACHEII scores can be used as biomarkers to predict the death risk of ARDS patients.
Collapse
Affiliation(s)
- Xubin Chen
- Zhejiang University School of Medicine , Hangzhou , Zhejiang Province 310058 PR China ; Department of Rehabilitation Medicine , Lishui People’s Hospital , Lishui , Zhejiang Province, 323000 PR China
| | - Jiancang Zhou
- Zhejiang University School of Medicine , Hangzhou , Zhejiang Province 310058 PR China ; Department of ICU , Run Run Shaw Hospital affiliated to Zhejiang University School of Medicine , Hangzhou , Zhejiang Province 310020 PR China
| | - Liangfei Xu
- Department of Infectious Diseases , Lishui People’s Hospital , Lishui , Zhejiang Province, 323000 PR China
| | - Ling Chen
- Department of Respiratory and Critical Care , Lishui Second People’s Hospital , Lishui , Zhejiang Province, 323000 PR China
| | - Pingan Mao
- Department of Rehabilitation Medicine , Lishui People’s Hospital , Lishui , Zhejiang Province, 323000 PR China
| | - Xuelin Yang
- Emergency Care Unit, Lishui Central Hospital , Lishui , Zhejiang Province, 323000 PR China
| |
Collapse
|
80
|
Simpson AJ, Rostron AJ. Should We Tip Our CAPs to Statins? Am J Respir Crit Care Med 2019; 200:1204-1206. [PMID: 31310563 PMCID: PMC6857481 DOI: 10.1164/rccm.201907-1295ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- A John Simpson
- Institute of Cellular MedicineNewcastle UniversityNewcastle upon Tyne, United Kingdom.,Respiratory MedicineNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon Tyne, United Kingdomand
| | - Anthony J Rostron
- Institute of Cellular MedicineNewcastle UniversityNewcastle upon Tyne, United Kingdom.,Sunderland Royal HospitalSouth Tyneside and Sunderland NHS Foundation TrustSunderland, United Kingdom
| |
Collapse
|
81
|
Abstract
Neutrophils play a key role in innate immunity. As the dominant circulating phagocyte, they are rapidly recruited from the bloodstream to sites of infection or injury to internalize and destroy microbes. More recently, neutrophils have been identified in uninfected organs, challenging the classical view of their function. Here we show that neutrophils were present in lymph nodes (LNs) in homeostasis. Using flow cytometry and confocal imaging, we identified neutrophils within LNs in naive, unchallenged mice, including LNs draining the skin, lungs, and gastrointestinal tract. Neutrophils were enriched within specific anatomical regions, in the interfollicular zone, a site of T cell activation. Intravital two-photon microscopy demonstrated that LN neutrophils were motile, trafficked into LNs from both blood and tissues via high endothelial venules and afferent lymphatics, respectively, and formed interactions with dendritic cells in LNs. Murine and human LN neutrophils had a distinct phenotype compared with circulating neutrophils, with higher major histocompatibility complex II (MHCII) expression, suggesting a potential role in CD4 T cell activation. Upon ex vivo stimulation with IgG immune complex (IC), neutrophils up-regulated expression of MHCII and costimulatory molecules and increased T cell activation. In vivo, neutrophils were capable of delivering circulating IC to LNs, suggesting a broader functional remit. Overall, our data challenge the perception that neutrophil patrol is limited to the circulation in homeostasis, adding LNs to their routine surveillance territory.
Collapse
|
82
|
Summers C. Chasing the "Holy Grail": Modulating Neutrophils in Inflammatory Lung Disease. Am J Respir Crit Care Med 2019; 200:131-132. [PMID: 30865833 PMCID: PMC6635790 DOI: 10.1164/rccm.201902-0333ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Charlotte Summers
- 1 Department of Medicine University of Cambridge Cambridge, United Kingdom
| |
Collapse
|
83
|
Identification of Key Pathways and Genes of Acute Respiratory Distress Syndrome Specific Neutrophil Phenotype. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9528584. [PMID: 31531373 PMCID: PMC6720049 DOI: 10.1155/2019/9528584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/30/2019] [Indexed: 12/27/2022]
Abstract
Despite over 50 years of clinical and basic studies, acute respiratory distress syndrome (ARDS) is still a critical challenge with high mortality worldwide. The severity of neutrophil activation was associated with disease severity. However, the detailed pathophysiology of the circulating polymorphonuclear neutrophil activation in ARDS remains unclear. To identify key pathways and genes in the ARDS-specific neutrophil phenotype distinct from sepsis, the datasets of blood polymorphonuclear neutrophils (PMNs) from patients with ARDS (GSE76293) and from sepsis patients (GSE49757) were chosen from the Gene Expression Omnibus (GEO) and analyzed using bioinformatics methods. A total of 220 differential expressed genes (DEGs) were overlapped between GSE49757 and GSE76293 in a Venn diagram. Pathway enrichment analysis results showed that DEGs in GSE76293 were mainly enriched in the MAPK signaling pathway, FoxO signaling pathway, and AMPK signaling pathway relative to GSE49757. We identified 30 hub genes in the protein-protein interaction network. By comparing with GSE49757, we speculated that GAPDH, MAPK8, PIK3CB, and MMP9 may play important roles in the progression of ARDS-specific circulating neutrophil activation. The findings may provide novel insights into the development of promising targets for the diagnosis and treatment of ARDS in the future.
Collapse
|
84
|
Tang BM, Shojaei M, Teoh S, Meyers A, Ho J, Ball TB, Keynan Y, Pisipati A, Kumar A, Eisen DP, Lai K, Gillett M, Santram R, Geffers R, Schreiber J, Mozhui K, Huang S, Parnell GP, Nalos M, Holubova M, Chew T, Booth D, Kumar A, McLean A, Schughart K. Neutrophils-related host factors associated with severe disease and fatality in patients with influenza infection. Nat Commun 2019; 10:3422. [PMID: 31366921 PMCID: PMC6668409 DOI: 10.1038/s41467-019-11249-y] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 06/28/2019] [Indexed: 11/09/2022] Open
Abstract
Severe influenza infection has no effective treatment available. One of the key barriers to developing host-directed therapy is a lack of reliable prognostic factors needed to guide such therapy. Here, we use a network analysis approach to identify host factors associated with severe influenza and fatal outcome. In influenza patients with moderate-to-severe diseases, we uncover a complex landscape of immunological pathways, with the main changes occurring in pathways related to circulating neutrophils. Patients with severe disease display excessive neutrophil extracellular traps formation, neutrophil-inflammation and delayed apoptosis, all of which have been associated with fatal outcome in animal models. Excessive neutrophil activation correlates with worsening oxygenation impairment and predicted fatal outcome (AUROC 0.817-0.898). These findings provide new evidence that neutrophil-dominated host response is associated with poor outcomes. Measuring neutrophil-related changes may improve risk stratification and patient selection, a critical first step in developing host-directed immune therapy.
Collapse
Affiliation(s)
- Benjamin M Tang
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia. .,Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Sydney, Australia. .,Respiratory Tract Infection Research Node, Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney, Australia.
| | - Maryam Shojaei
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia.,Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Sydney, Australia
| | - Sally Teoh
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia
| | - Adrienne Meyers
- National HIV and Retrovirology Laboratories, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, Canada
| | - John Ho
- National HIV and Retrovirology Laboratories, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, Canada
| | - T Blake Ball
- National HIV and Retrovirology Laboratories, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, Canada
| | - Yoav Keynan
- Department of Internal Medicine, Medical Microbiology and Community Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Amarnath Pisipati
- Department of Chemistry and Biological Chemistry, Harvard University, Cambridge, MA, USA
| | - Aseem Kumar
- Department of Chemistry and Biochemistry, Laurentian University, Laurentian, Canada
| | - Damon P Eisen
- Townsville Hospital, Townsville, Queensland, Australia
| | - Kevin Lai
- Department of Emergency Medicine, Westmead Hospital, Sydney, Australia
| | - Mark Gillett
- Department of Emergency Medicine, Royal North Shore Hospital, Sydney, Australia
| | - Rahul Santram
- Department of Emergency Medicine, St. Vincent Hospital, Sydney, Australia
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jens Schreiber
- Otto-von-Guerike University of Magdeburg, Clinic of Pneumology, Magdeburg, Germany
| | - Khyobeni Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Centre, Memphis, TN, USA
| | - Stephen Huang
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia
| | - Grant P Parnell
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Sydney, Australia
| | - Marek Nalos
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia.,Department of Internal Medicine, Medical Faculty Plzen, Charles University Prague, Staré Město, Czech Republic
| | - Monika Holubova
- Biomedical Centre, Medical Faculty Plzen, Charles University Prague, Staré Město, Czech Republic
| | - Tracy Chew
- Sydney Informatic Hub, The University of Sydney, Sydney, Australia
| | - David Booth
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Sydney, Australia
| | - Anand Kumar
- Section of Critical Care Medicine and Section of Infectious Diseases, Departments of Medicine, Medical Microbiology and Pharmacology, University of Manitoba, Winnipeg, Canada
| | - Anthony McLean
- Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany.,University of Veterinary Medicine, Hannover, Germany.,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Centre, Memphis, TN, USA
| |
Collapse
|
85
|
Pan LL, Niu W, Fang X, Liang W, Li H, Chen W, Zhang H, Bhatia M, Sun J. Clostridium butyricum Strains Suppress Experimental Acute Pancreatitis by Maintaining Intestinal Homeostasis. Mol Nutr Food Res 2019; 63:e1801419. [PMID: 31034143 DOI: 10.1002/mnfr.201801419] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/13/2019] [Indexed: 01/24/2023]
Abstract
SCOPE Acute pancreatitis (AP) is a common abdominal inflammatory disease. Disturbed gut homeostasis secondary to pancreatic inflammation aggravates the condition retroactively. The current study investigates potential beneficial effects of Clostridium butyricum (C. butyricum) strains on AP and underlying mechanisms. METHODS AND RESULTS C. butyricum strains MIYAIRI 588 (CBM588) and CGMCC0313.1 (CB0313.1) were supplemented to mice for three weeks before experimental AP or SAP induction. Both CBM588 and CB0313.1 protected against AP, as evidenced by reduced serum amylase and lipase levels, pancreatic edema, and myeloperoxidase activity. Amelioration of both experimental AP and SAP by CB0313.1 indicated a non-model-specific effect. Moreover, C. butyricum inhibited pancreatic neutrophil and dendritic cell infiltration, nucleotide-binding domain leucine-rich repeat-containing family, pyrin domain-containing 3 inflammasome activation, and pro-inflammatory pathways. Additionally in the gut, C. butyricum strains attenuated AP-associated intestinal inflammation and barrier dysfunction, accompanied with reduced pathogenic bacteria Escherichia coli and Enterococcus penetration into pancreas. Gut microbiome analyses further revealed that beneficial effects of C. butyricum on pancreatic-gut homeostasis were correlated with improved dysbiosis. In particular, relative abundance of Desulfovibrionaceae decreased, and Verrucomicrobiaceae Clostridiaceae and Lactobacillaceae increased. CONCLUSIONS For the first time, a protective effect of C. butyricum in AP by modulating intestinal homeostasis is demonstrated.
Collapse
Affiliation(s)
- Li-Long Pan
- School of Medicine, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wenying Niu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xin Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wenjie Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Hongli Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Madhav Bhatia
- Inflammation Research Group, Department of Pathology, University of Otago, Christchurch, 8140, New Zealand
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
86
|
Rungelrath V, Kobayashi SD, DeLeo FR. Neutrophils in innate immunity and systems biology-level approaches. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 12:e1458. [PMID: 31218817 DOI: 10.1002/wsbm.1458] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022]
Abstract
The innate immune system is the first line of host defense against invading microorganisms. Polymorphonuclear leukocytes (PMNs or neutrophils) are the most abundant leukocyte in humans and essential to the innate immune response against invading pathogens. Compared to the acquired immune response, which requires time to develop and is dependent on previous interaction with specific microbes, the ability of neutrophils to kill microorganisms is immediate, nonspecific, and not dependent on previous exposure to microorganisms. Historically, studies of PMN-pathogen interaction focused on the events leading to killing of microorganisms, such as recruitment/chemotaxis, transmigration, phagocytosis, and activation, whereas postphagocytosis sequelae were infrequently considered. In addition, it was widely accepted that human neutrophils possessed limited capacity for new gene transcription and thus, relatively little biosynthetic capacity. This notion has changed dramatically within the past 20 years. Further, there is now more effort directed to understand the events occurring in PMNs after killing of microbes. Herein, we give an updated review of the systems biology-level approaches that have been used to gain an enhanced view of the role of neutrophils during host-pathogen interaction and neutrophil-mediated diseases. We anticipate that these and future systems-level studies will continue to provide information important for understanding, treatment, and control of diseases caused by pathogenic microorganisms. This article is categorized under: Physiology > Organismal Responses to Environment Physiology > Mammalian Physiology in Health and Disease Biological Mechanisms > Cell Fates.
Collapse
Affiliation(s)
- Viktoria Rungelrath
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Scott D Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Frank R DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| |
Collapse
|
87
|
Bashant KR, Vassallo A, Herold C, Berner R, Menschner L, Subburayalu J, Kaplan MJ, Summers C, Guck J, Chilvers ER, Toepfner N. Real-time deformability cytometry reveals sequential contraction and expansion during neutrophil priming. J Leukoc Biol 2019; 105:1143-1153. [PMID: 30835869 PMCID: PMC7587463 DOI: 10.1002/jlb.ma0718-295rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022] Open
Abstract
It has become increasingly apparent that the biomechanical properties of neutrophils impact on their trafficking through the circulation and in particularly through the pulmonary capillary bed. The retention of polarized or shape-changed neutrophils in the lungs was recently proposed to contribute to acute respiratory distress syndrome pathogenesis. Accordingly, this study tested the hypothesis that neutrophil priming is coupled to morpho-rheological (MORE) changes capable of altering cell function. We employ real-time deformability cytometry (RT-DC), a recently developed, rapid, and sensitive way to assess the distribution of size, shape, and deformability of thousands of cells within seconds. During RT-DC analysis, neutrophils can be easily identified within anticoagulated "whole blood" due to their unique granularity and size, thus avoiding the need for further isolation techniques, which affect biomechanical cell properties. Hence, RT-DC is uniquely suited to describe the kinetics of MORE cell changes. We reveal that, following activation or priming, neutrophils undergo a short period of cell shrinking and stiffening, followed by a phase of cell expansion and softening. In some contexts, neutrophils ultimately recover their un-primed mechanical phenotype. The mechanism(s) underlying changes in human neutrophil size are shown to be Na+ /H+ antiport-dependent and are predicted to have profound implications for neutrophil movement through the vascular system in health and disease.
Collapse
Affiliation(s)
- Kathleen R Bashant
- Department of Medicine, University of Cambridge, Cambridge, UK
- National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Reinhard Berner
- Department of Pediatrics, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Leonhard Menschner
- Department of Pediatrics, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | | | | | - Jochen Guck
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | | | - Nicole Toepfner
- Department of Pediatrics, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
88
|
Hidalgo A, Chilvers ER, Summers C, Koenderman L. The Neutrophil Life Cycle. Trends Immunol 2019; 40:584-597. [PMID: 31153737 DOI: 10.1016/j.it.2019.04.013] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/25/2019] [Accepted: 04/28/2019] [Indexed: 02/07/2023]
Abstract
Neutrophils are recognized as an essential part of the innate immune response, but an active debate still exists regarding the life cycle of these cells. Neutrophils first differentiate in the bone marrow through progenitor intermediaries before entering the blood, in a process that gauges the extramedullary pool size. Once believed to be directly eliminated in the marrow, liver, and spleen, neutrophils, after circulating for less than 1 day, are now known to redistribute into multiple tissues with poorly understood kinetics. In this review, we provide an update on the dynamic distribution of neutrophils across tissues in health and disease, and emphasize differences between humans and model organisms. We further highlight issues to be addressed to exploit the unique features of neutrophils in the clinic.
Collapse
Affiliation(s)
- Andrés Hidalgo
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones, Cardiovasculares Carlos III (CNIC), Madrid, Spain; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität München, Munich, Germany; German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.
| | - Edwin R Chilvers
- National Heart and Lung Institute, Imperial College London, London, UK.
| | - Charlotte Summers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK.
| | - Leo Koenderman
- Laboratory of Translational Immunology, Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
89
|
Glutamine Therapy Reduces Inflammation and Extracellular Trap Release in Experimental Acute Respiratory Distress Syndrome of Pulmonary Origin. Nutrients 2019; 11:nu11040831. [PMID: 31013737 PMCID: PMC6520877 DOI: 10.3390/nu11040831] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 12/16/2022] Open
Abstract
The innate immune response plays an important role in the pathophysiology of acute respiratory distress syndrome (ARDS). Glutamine (Gln) decreases lung inflammation in experimental ARDS, but its impact on the formation of extracellular traps (ETs) in the lung is unknown. In a mouse model of endotoxin-induced pulmonary ARDS, the effects of Gln treatment on leukocyte counts and ET content in bronchoalveolar lavage fluid (BALF), inflammatory profile in lung tissue, and lung morphofunction were evaluated in vivo. Furthermore, ET formation, reactive oxygen species (ROS) production, glutathione peroxidase (GPx), and glutathione reductase (GR) activities were tested in vitro. Our in vivo results demonstrated that Gln treatment reduced ET release (as indicated by cell-free-DNA content and myeloperoxidase activity), decreased lung inflammation (reductions in interferon-γ and increases in interleukin-10 levels), and improved lung morpho-function (decreased static lung elastance and alveolar collapse) in comparison with ARDS animals treated with saline. Moreover, Gln reduced ET and ROS formation in BALF cells stimulated with lipopolysaccharide in vitro, but it did not alter GPx or GR activity. In this model of endotoxin-induced pulmonary ARDS, treatment with Gln reduced pulmonary functional and morphological impairment, inflammation, and ET release in the lung.
Collapse
|
90
|
De Alessandris S, Ferguson GJ, Dodd AJ, Juss JK, Devaprasad A, Piper S, Wyatt O, Killick H, Corkill DJ, Cohen ES, Pandit A, Radstake TRDJ, Simmonds R, Condliffe AM, Sleeman MA, Cowburn AS, Finch DK, Chilvers ER. Neutrophil GM-CSF receptor dynamics in acute lung injury. J Leukoc Biol 2019; 105:1183-1194. [PMID: 30942918 PMCID: PMC6850700 DOI: 10.1002/jlb.3ma0918-347r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/18/2019] [Accepted: 03/12/2019] [Indexed: 11/13/2022] Open
Abstract
GM‐CSF is important in regulating acute, persistent neutrophilic inflammation in certain settings, including lung injury. Ligand binding induces rapid internalization of the GM‐CSF receptor (GM‐CSFRα) complex, a process essential for signaling. Whereas GM‐CSF controls many aspects of neutrophil biology, regulation of GM‐CSFRα expression is poorly understood, particularly the role of GM‐CSFRα in ligand clearance and whether signaling is sustained despite major down‐regulation of GM‐CSFRα surface expression. We established a quantitative assay of GM‐CSFRα surface expression and used this, together with selective anti‐GM‐CSFR antibodies, to define GM‐CSFRα kinetics in human neutrophils, and in murine blood and alveolar neutrophils in a lung injury model. Despite rapid sustained ligand‐induced GM‐CSFRα loss from the neutrophil surface, which persisted even following ligand removal, pro‐survival effects of GM‐CSF required ongoing ligand‐receptor interaction. Neutrophils recruited to the lungs following LPS challenge showed initially high mGM‐CSFRα expression, which along with mGM‐CSFRβ declined over 24 hr; this was associated with a transient increase in bronchoalveolar lavage fluid (BALF) mGM‐CSF concentration. Treating mice in an LPS challenge model with CAM‐3003, an anti‐mGM‐CSFRα mAb, inhibited inflammatory cell influx into the lung and maintained the level of BALF mGM‐CSF. Consistent with neutrophil consumption of GM‐CSF, human neutrophils depleted exogenous GM‐CSF, independent of protease activity. These data show that loss of membrane GM‐CSFRα following GM‐CSF exposure does not preclude sustained GM‐CSF/GM‐CSFRα signaling and that this receptor plays a key role in ligand clearance. Hence neutrophilic activation via GM‐CSFR may play an important role in neutrophilic lung inflammation even in the absence of high GM‐CSF levels or GM‐CSFRα expression.
Collapse
Affiliation(s)
| | - G John Ferguson
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Cambridge, United Kingdom
| | - Alison J Dodd
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Cambridge, United Kingdom
| | - Jatinder K Juss
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Abhinandan Devaprasad
- Department of Rheumatology and Clinical Immunology and Laboratory of Translational Immunology, University Medical Centre, Utrecht, Netherlands
| | - Siân Piper
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Cambridge, United Kingdom
| | - Owen Wyatt
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Cambridge, United Kingdom
| | - Helen Killick
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Cambridge, United Kingdom
| | - Dominic J Corkill
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Cambridge, United Kingdom
| | - E Suzanne Cohen
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Cambridge, United Kingdom
| | - Aridaman Pandit
- Department of Rheumatology and Clinical Immunology and Laboratory of Translational Immunology, University Medical Centre, Utrecht, Netherlands
| | - Timothy R D J Radstake
- Department of Rheumatology and Clinical Immunology and Laboratory of Translational Immunology, University Medical Centre, Utrecht, Netherlands
| | - Rosalind Simmonds
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alison M Condliffe
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Matthew A Sleeman
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Cambridge, United Kingdom
| | - Andrew S Cowburn
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Donna K Finch
- Respiratory, Inflammation and Autoimmunity, MedImmune Ltd., Cambridge, United Kingdom
| | - Edwin R Chilvers
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
91
|
Grunwell JR, Giacalone VD, Stephenson S, Margaroli C, Dobosh BS, Brown MR, Fitzpatrick AM, Tirouvanziam R. Neutrophil Dysfunction in the Airways of Children with Acute Respiratory Failure Due to Lower Respiratory Tract Viral and Bacterial Coinfections. Sci Rep 2019; 9:2874. [PMID: 30814584 PMCID: PMC6393569 DOI: 10.1038/s41598-019-39726-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/23/2019] [Indexed: 12/11/2022] Open
Abstract
Neutrophils are recruited to the airways of patients with acute respiratory distress syndrome (ARDS) where they acquire an activated pro-survival phenotype with an enhanced respiratory burst thought to contribute to ARDS pathophysiology. Our in vitro model enables blood neutrophil transepithelial migration into cell-free tracheal aspirate fluid from patients to recapitulate the primary airway neutrophil phenotype observed in vivo. Neutrophils transmigrated through our model toward airway fluid from children with lower respiratory viral infections coinfected with bacteria had elevated levels of neutrophil activation markers but paradoxically exhibited an inability to kill bacteria and a defective respiratory burst compared with children without bacterial coinfection. The airway fluid from children with bacterial coinfections had higher levels of neutrophil elastase activity, as well as myeloperoxidase levels compared to children without bacterial coinfection. Neutrophils transmigrated into the aspirate fluid from children with bacterial coinfection showed decreased respiratory burst and killing activity against H. influenzae and S. aureus compared to those transmigrated into the aspirate fluid from children without bacterial coinfection. Use of a novel transmigration model recapitulates this pathological phenotype in vitro that would otherwise be impossible in a patient, opening avenues for future mechanistic and therapeutic research.
Collapse
Affiliation(s)
- Jocelyn R Grunwell
- Emory University School of Medicine, Department of Pediatrics, Atlanta, GA, USA. .,Children's Healthcare of Atlanta at Egleston, Atlanta, GA, USA.
| | - Vincent D Giacalone
- Emory University School of Medicine, Department of Pediatrics, Atlanta, GA, USA
| | - Susan Stephenson
- Emory University School of Medicine, Department of Pediatrics, Atlanta, GA, USA
| | - Camilla Margaroli
- Emory University School of Medicine, Department of Pediatrics, Atlanta, GA, USA
| | - Brian S Dobosh
- Emory University School of Medicine, Department of Pediatrics, Atlanta, GA, USA
| | - Milton R Brown
- Emory University School of Medicine, Department of Pediatrics, Atlanta, GA, USA
| | - Anne M Fitzpatrick
- Emory University School of Medicine, Department of Pediatrics, Atlanta, GA, USA.,Children's Healthcare of Atlanta at Egleston, Atlanta, GA, USA
| | | |
Collapse
|
92
|
Potey PM, Rossi AG, Lucas CD, Dorward DA. Neutrophils in the initiation and resolution of acute pulmonary inflammation: understanding biological function and therapeutic potential. J Pathol 2019; 247:672-685. [PMID: 30570146 PMCID: PMC6492013 DOI: 10.1002/path.5221] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is the often fatal sequelae of a broad range of precipitating conditions. Despite decades of intensive research and clinical trials there remain no therapies in routine clinical practice that target the dysregulated and overwhelming inflammatory response that characterises ARDS. Neutrophils play a central role in the initiation, propagation and resolution of this complex inflammatory environment by migrating into the lung and executing a variety of pro-inflammatory functions. These include degranulation with liberation of bactericidal proteins, release of cytokines and reactive oxygen species as well as production of neutrophil extracellular traps. Although these functions are advantageous in clearing bacterial infection, the consequence of associated tissue damage, the contribution to worsening acute inflammation and prolonged neutrophil lifespan at sites of inflammation are deleterious. In this review, the importance of the neutrophil will be considered, together with discussion of recent advances in understanding neutrophil function and the factors that influence them throughout the phases of inflammation in ARDS. From a better understanding of neutrophils in this context, potential therapeutic targets are identified and discussed. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Philippe Md Potey
- The University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Adriano G Rossi
- The University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Christopher D Lucas
- The University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - David A Dorward
- The University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
93
|
Rajarathnam K, Schnoor M, Richardson RM, Rajagopal S. How do chemokines navigate neutrophils to the target site: Dissecting the structural mechanisms and signaling pathways. Cell Signal 2019; 54:69-80. [PMID: 30465827 PMCID: PMC6664297 DOI: 10.1016/j.cellsig.2018.11.004] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022]
Abstract
Chemokines play crucial roles in combating microbial infection and initiating tissue repair by recruiting neutrophils in a timely and coordinated manner. In humans, no less than seven chemokines (CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8) and two receptors (CXCR1 and CXCR2) mediate neutrophil functions but in a context dependent manner. Neutrophil-activating chemokines reversibly exist as monomers and dimers, and their receptor binding triggers conformational changes that are coupled to G-protein and β-arrestin signaling pathways. G-protein signaling activates a variety of effectors including Ca2+ channels and phospholipase C. β-arrestin serves as a multifunctional adaptor and is coupled to several signaling hubs including MAP kinase and tyrosine kinase pathways. Both G-protein and β-arrestin signaling pathways play important non-overlapping roles in neutrophil trafficking and activation. Functional studies have established many similarities but distinct differences for a given chemokine and between chemokines at the level of monomer vs. dimer, CXCR1 vs. CXCR2 activation, and G-protein vs. β-arrestin pathways. We propose that two forms of the ligand binding two receptors and activating two signaling pathways enables fine-tuned neutrophil function compared to a single form, a single receptor, or a single pathway. We summarize the current knowledge on the molecular mechanisms by which chemokine monomers/dimers activate CXCR1/CXCR2 and how these interactions trigger G-protein/β-arrestin-coupled signaling pathways. We also discuss current challenges and knowledge gaps, and likely advances in the near future that will lead to a better understanding of the relationship between the chemokine-CXCR1/CXCR2-G-protein/β-arrestin axis and neutrophil function.
Collapse
Affiliation(s)
- Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, Department of Microbiology and Immunology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| | - Michael Schnoor
- Department for Molecular Biomedicine, Cinvestav-IPN, 07360 Mexico City, Mexico
| | - Ricardo M Richardson
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | | |
Collapse
|
94
|
Lokwani R, Wark PAB, Baines KJ, Barker D, Simpson JL. Hypersegmented airway neutrophils and its association with reduced lung function in adults with obstructive airway disease: an exploratory study. BMJ Open 2019; 9:e024330. [PMID: 30696679 PMCID: PMC6352776 DOI: 10.1136/bmjopen-2018-024330] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES The significance of neutrophilic inflammation in obstructive airway disease remains controversial. Recent studies have demonstrated presence of an active neutrophil population in systemic circulation, featuring hypersegmented morphology, with high oxidative burst and functional plasticity in inflammatory conditions. The aim of this study was to characterise neutrophil subsets in bronchial lavage (BL) of obstructive airway disease participants (asthma, chronic obstructive pulmonary disease (COPD) and bronchiectasis) and healthy controls on the basis of nuclear morphology and to assess the association between neutrophil subsets and the clinical parameters of the obstructive airway disease participants. DESIGN A cross-sectional exploratory study. SETTING John Hunter Hospital and Hunter Medical Research Institute, Australia. PARTICIPANTS Seventy-eight adults with obstructive airway disease comprised those with stable asthma (n=39), COPD (n=20) and bronchiectasis (n=19) and 20 healthy controls. MATERIALS AND METHODS Cytospins were prepared and neutrophil subsets were classified based on nuclear morphology into hypersegmented (>4 lobes), normal (2-4 lobes) and banded (1 lobe) neutrophils and enumerated. RESULTS Neutrophils from each subset were identified in all participants. Numbers of hypersegmented neutrophils were elevated in participants with airway disease compared with healthy controls (p<0.001). Both the number and the proportion of hypersegmented neutrophils were highest in COPD participants (median (Q1-Q3) of 1073.6 (258.8-2742) × 102/mL and 24.5 (14.0-46.5)%, respectively). An increased proportion of hypersegmented neutrophils in airway disease participants was significantly associated with lower forced expiratory volume in 1 s/forced vital capacity per cent (Spearman's r=-0.322, p=0.004). CONCLUSION Neutrophil heterogeneity is common in BL and is associated with more severe airflow obstruction in adults with airway disease. Further work is required to elucidate the functional consequences of hypersegmented neutrophils in the pathogenesis of disease.
Collapse
Affiliation(s)
- Ravi Lokwani
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
- Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, New Lambton, New South Wales, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
- Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, New Lambton, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton, New South Wales, Australia
| | - Katherine J Baines
- Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, New Lambton, New South Wales, Australia
| | - Daniel Barker
- Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, New Lambton, New South Wales, Australia
| | - Jodie L Simpson
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
- Faculty of Health and Medicine, School of Medicine and Public Health, University of Newcastle, New Lambton, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton, New South Wales, Australia
| |
Collapse
|
95
|
Englert JA, Cho MH, Lamb AE, Shumyatcher M, Barragan-Bradford D, Basil MC, Higuera A, Isabelle C, Vera MP, Dieffenbach PB, Fredenburgh LE, Kang JB, Bhatt AS, Antin JH, Ho VT, Soiffer RJ, Howrylak JA, Himes BE, Baron RM. Whole blood RNA sequencing reveals a unique transcriptomic profile in patients with ARDS following hematopoietic stem cell transplantation. Respir Res 2019; 20:15. [PMID: 30665420 PMCID: PMC6341764 DOI: 10.1186/s12931-019-0981-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/08/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The acute respiratory distress syndrome (ARDS) is characterized by the acute onset of hypoxemia and bilateral lung infiltrates in response to an inciting event, and is associated with high morbidity and mortality. Patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT) are at increased risk for ARDS. We hypothesized that HSCT patients with ARDS would have a unique transcriptomic profile identifiable in peripheral blood compared to those that did not undergo HSCT. METHODS We isolated RNA from banked peripheral blood samples from a biorepository of critically ill ICU patients. RNA-Seq was performed on 11 patients with ARDS (5 that had undergone HSCT and 6 that had not) and 12 patients with sepsis without ARDS (5 that that had undergone HCST and 7 that had not). RESULTS We identified 687 differentially expressed genes between ARDS and ARDS-HSCT (adjusted p-value < 0.01), including IFI44L, OAS3, LY6E, and SPATS2L that had increased expression in ARDS vs. ARDS-HSCT; these genes were not differentially expressed in sepsis vs sepsis-HSCT. Gene ontology enrichment analysis revealed that many differentially expressed genes were related to response to type I interferon. CONCLUSIONS Our findings reveal significant differences in whole blood transcriptomic profiles of patients with non-HSCT ARDS compared to ARDS-HSCT patients and point toward different immune responses underlying ARDS and ARDS-HSCT that contribute to lung injury.
Collapse
Affiliation(s)
- Joshua A. Englert
- Division of Pulmonary, Critical Care, and Sleep Medicine, The Ohio State Wexner Medical Center, 201 Davis Heart and Lung Research Institute, 473 West 12th Avenue, Columbus, OH 43210 USA
| | - Michael H. Cho
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115 USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Andrew E. Lamb
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115 USA
| | - Maya Shumyatcher
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104 USA
| | - Diana Barragan-Bradford
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Maria C. Basil
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Angelica Higuera
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Colleen Isabelle
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Mayra Pinilla Vera
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Paul B. Dieffenbach
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Laura E. Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Joyce B. Kang
- Departments of Medicine and Genetics, Stanford University, CCSR1155b, 269 Campus Drive, Palo Alto, CA 93405 USA
| | - Ami S. Bhatt
- Departments of Medicine and Genetics, Stanford University, CCSR1155b, 269 Campus Drive, Palo Alto, CA 93405 USA
| | - Joseph H. Antin
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215 USA
| | - Vincent T. Ho
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215 USA
| | - Robert J. Soiffer
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215 USA
| | - Judie A. Howrylak
- Division of Pulmonary and Critical Care Medicine, Penn State Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033 USA
| | - Blanca E. Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall, 423 Guardian Drive, Philadelphia, PA 19104 USA
| | - Rebecca M. Baron
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| |
Collapse
|
96
|
Abstract
Regulated cell death is a major mechanism to eliminate damaged, infected, or superfluous cells. Previously, apoptosis was thought to be the only regulated cell death mechanism; however, new modalities of caspase-independent regulated cell death have been identified, including necroptosis, pyroptosis, and autophagic cell death. As an understanding of the cellular mechanisms that mediate regulated cell death continues to grow, there is increasing evidence that these pathways are implicated in the pathogenesis of many pulmonary disorders. This review summarizes our understanding of regulated cell death as it pertains to the pathogenesis of chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis, acute respiratory distress syndrome, and pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Maor Sauler
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut 06520, USA;
| | - Isabel S Bazan
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut 06520, USA;
| | - Patty J Lee
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut 06520, USA;
| |
Collapse
|
97
|
Vogt KL, Summers C, Chilvers ER, Condliffe AM. Priming and de-priming of neutrophil responses in vitro and in vivo. Eur J Clin Invest 2018; 48 Suppl 2:e12967. [PMID: 29896919 DOI: 10.1111/eci.12967] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/10/2018] [Indexed: 12/20/2022]
Abstract
The activation status of neutrophils can cycle from basal through primed to fully activated ("green-amber-red"), and at least in vitro, primed cells can spontaneously revert to a near basal phenotype. This broad range of neutrophil responsiveness confers extensive functional flexibility, allowing neutrophils to respond rapidly and appropriately to varied and evolving threats throughout the body. Primed and activated cells display dramatically enhanced bactericidal capacity (including augmented respiratory burst activity, degranulation and longevity), but this enhancement also confers the capacity for significant unintended tissue injury. Neutrophil priming and its consequences have been associated with adverse outcomes in a range of disease states, hence understanding the signalling processes that regulate the transition between basal and primed states (and back again) may offer new opportunities for therapeutic intervention in pathological settings. A wide array of host- and pathogen-derived molecules is able to modulate the functional status of these versatile cells. Reflecting this extensive repertoire of potential mediators, priming can be established by a range of signalling pathways (including mitogen-activated protein kinases, phosphoinositide 3-kinases, phospholipase D and calcium transients) and intracellular processes (including endocytosis, vesicle trafficking and the engagement of adhesion molecules). The signalling pathways engaged, and the exact cellular phenotype that results, vary according to the priming agent(s) to which the neutrophil is exposed and the precise environmental context. Herein we describe the signals that establish priming (in particular for enhanced respiratory burst, degranulation and prolonged lifespan) and describe the recently recognised process of de-priming, correlating in vitro observations with in vivo significance.
Collapse
Affiliation(s)
- Katja L Vogt
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, UK.,Bateson Institute, University of Sheffield, Sheffield, UK
| | | | | | - Alison M Condliffe
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, UK.,Bateson Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
98
|
Abstract
PURPOSE OF REVIEW ARDS is a severe pulmonary disease characterized by inflammation. However, inflammation-directed therapies have yet failed to improve the outcome in ARDS patients. One of the reasons may be the underestimated complexity of inflammation. Here, we summarize recent insights into the complex interrelations between inflammatory circuits. RECENT FINDINGS Gene expression analysis from animal models or from patients with ARDS, sepsis or trauma show an enormous number of differentially expressed genes with highly significant overlaps between the various conditions. These similarities, however, should not obscure the complexity of inflammation. We suggest to consider inflammation in ARDS as a system controlled by scale-free networks of genome-wide molecular interaction with hubs (e.g. NFκB, C/EBPβ, ATF3), exhibiting nonlinear emergence and the ability to adapt, meaning for instance that mild and life-threatening inflammation in ARDS are distinct processes. In order to comprehend this complex system, it seems necessary to combine model-driven simulations, data-driven modelling and hypothesis-driven experimental studies. Recent experimental studies have illustrated how several regulatory circuits interact during pulmonary inflammation, including the resolution of inflammation, the inflammasome, autophagy and apoptosis. SUMMARY We suggest that therapeutic interventions in ARDS should be based on a systems approach to inflammation.
Collapse
|
99
|
Multilateral Functional Alterations of Human Neutrophils in Sepsis: From the Point of Diagnosis to the Seventh Day. Shock 2018; 48:629-637. [PMID: 28430717 DOI: 10.1097/shk.0000000000000883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neutrophil functional changes caused by sepsis itself and their time-course variation have not been fully elucidated because previous studies targeted patients who had received therapeutic interventions. We explored the multilateral functions of circulating neutrophils in patients with severe sepsis or septic shock who had not yet undergone interventions, and followed their changes. Patients were treated based on the Surviving Sepsis Campaign Guidelines 2012. Neutrophil functions were evaluated on days 0 (before therapeutic intervention), 3, and 7 in 59 septic patients. The clinical severity score (APACHE II and SOFA) and serum pro-/anti-inflammatory cytokine concentrations of the patients were significantly increased on day 0 and normalized on day 3. However, neutrophil priming state, estimated by measuring the fMLP-stimulated reactive oxygen species, was significantly elevated on day 0, further augmented on day 3, and then returned to day 0 levels on day 7 despite general resolution of the inflammatory response. The expression of CXC chemokine receptor 2 and paired immunoglobulin-like receptor α, assessed as surrogate markers of transmigration and adhesion potency, was suppressed most strongly on day 0 and gradually recovered. To conclude, contrary to the patient's clinical course, neutrophil priming state was augmented most strongly at 3 days after diagnosis of sepsis. Impaired transmigration and excessive adhesion potency were observed most prominently at diagnosis. These observations would partially explain the mechanism of development of multiple organ dysfunction of the host who is subjected to a secondary insult, and may provide an important perspective for the implementation of additional immune-modulating therapy in sepsis.
Collapse
|
100
|
Porter L, Toepfner N, Bashant KR, Guck J, Ashcroft M, Farahi N, Chilvers ER. Metabolic Profiling of Human Eosinophils. Front Immunol 2018; 9:1404. [PMID: 30013547 PMCID: PMC6036296 DOI: 10.3389/fimmu.2018.01404] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/06/2018] [Indexed: 12/18/2022] Open
Abstract
Immune cells face constant changes in their microenvironment, which requires rapid metabolic adaptation. In contrast to neutrophils, which are known to rely near exclusively on glycolysis, the metabolic profile of human eosinophils has not been characterized. Here, we assess the key metabolic parameters of peripheral blood-derived human eosinophils using real-time extracellular flux analysis to measure extracellular acidification rate and oxygen consumption rate, and compare these parameters to human neutrophils. Using this methodology, we demonstrate that eosinophils and neutrophils have a similar glycolytic capacity, albeit with a minimal glycolytic reserve. However, compared to neutrophils, eosinophils exhibit significantly greater basal mitochondrial respiration, ATP-linked respiration, maximum respiratory capacity, and spare respiratory capacity. Of note, the glucose oxidation pathway is also utilized by eosinophils, something not evident in neutrophils. Furthermore, using a colorimetric enzymatic assay, we show that eosinophils have much reduced glycogen stores compared to neutrophils. We also show that physiologically relevant levels of hypoxia (PO2 3 kPa), by suppressing oxygen consumption rates, have a profound effect on basal and phorbol-myristate-acetate-stimulated eosinophil and neutrophil metabolism. Finally, we compared the metabolic profile of eosinophils purified from atopic and non-atopic subjects and show that, despite a difference in the activation status of eosinophils derived from atopic subjects, these cells exhibit comparable oxygen consumption rates upon priming with IL-5 and stimulation with fMLP. In summary, our findings show that eosinophils display far greater metabolic flexibility compared to neutrophils, with the potential to use glycolysis, glucose oxidation, and oxidative phosphorylation. This flexibility may allow eosinophils to adapt better to diverse roles in host defense, homeostasis, and immunomodulation.
Collapse
Affiliation(s)
- Linsey Porter
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Nicole Toepfner
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Kathleen R Bashant
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Margaret Ashcroft
- Division of Renal Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Neda Farahi
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Edwin R Chilvers
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| |
Collapse
|