51
|
Laurance S, Bertin FR, Ebrahimian T, Kassim Y, Rys RN, Lehoux S, Lemarié CA, Blostein MD. Gas6 Promotes Inflammatory (CCR2 hiCX3CR1 lo) Monocyte Recruitment in Venous Thrombosis. Arterioscler Thromb Vasc Biol 2017; 37:1315-1322. [PMID: 28450294 DOI: 10.1161/atvbaha.116.308925] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 04/17/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Coagulation and inflammation are inter-related. Gas6 (growth arrest-specific 6) promotes venous thrombosis and participates to inflammation through endothelial-innate immune cell interactions. Innate immune cells can provide the initiating stimulus for venous thrombus development. We hypothesize that Gas6 promotes monocyte recruitment during venous thrombosis. APPROACH AND RESULTS Deep venous thrombosis was induced in wild-type and Gas6-deficient (-/-) mice using 5% FeCl3 and flow reduction in the inferior vena cava. Total monocyte depletion was achieved by injection of clodronate before deep venous thrombosis. Inflammatory monocytes were depleted using an anti-C-C chemokine receptor type 2 (CCR2) antibody. Similarly, injection of an anti-chemokine ligand 2 (CCL2) antibody induced CCL2 depletion. Flow cytometry and immunofluorescence were used to characterize the monocytes recruited to the thrombus. In vivo, absence of Gas6 was associated with a reduction of monocyte recruitment in both deep venous thrombosis models. Global monocyte depletion by clodronate leads to smaller thrombi in wild-type mice. Compared with wild type, the thrombi from Gas6-/- mice contain less inflammatory (CCR2hiCX3CR1lo) monocytes, consistent with a Gas6-dependent recruitment of this monocyte subset. Correspondingly, selective depletion of CCR2hiCX3CR1lo monocytes reduced the formation of venous thrombi in wild-type mice demonstrating a predominant role of the inflammatory monocytes in thrombosis. In vitro, the expression of both CCR2 and CCL2 were Gas6 dependent in monocytes and endothelial cells, respectively, impacting monocyte migration. Moreover, Gas6-dependent CCL2 expression and monocyte migration were mediated via JNK (c-Jun N-terminal kinase). CONCLUSIONS This study demonstrates that Gas6 specifically promotes the recruitment of inflammatory CCR2hiCX3CR1lo monocytes through the regulation of both CCR2 and CCL2 during deep venous thrombosis.
Collapse
MESH Headings
- Animals
- CX3C Chemokine Receptor 1
- Cells, Cultured
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Chemotaxis, Leukocyte/drug effects
- Clodronic Acid/pharmacology
- Disease Models, Animal
- Endothelial Cells/metabolism
- Genetic Predisposition to Disease
- Inflammation/genetics
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation/prevention & control
- Intercellular Signaling Peptides and Proteins/deficiency
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- JNK Mitogen-Activated Protein Kinases/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Monocytes/drug effects
- Monocytes/metabolism
- Paracrine Communication
- Phenotype
- Receptors, CCR2/genetics
- Receptors, CCR2/metabolism
- Receptors, Chemokine/metabolism
- Signal Transduction
- Vena Cava, Inferior/drug effects
- Vena Cava, Inferior/metabolism
- Vena Cava, Inferior/pathology
- Venous Thrombosis/genetics
- Venous Thrombosis/metabolism
- Venous Thrombosis/pathology
- Venous Thrombosis/prevention & control
Collapse
Affiliation(s)
- Sandrine Laurance
- From the Lady Davis Institute for Medical Research (S.L., F.-R.B., T.E., Y.K., R.N.R., S.L., C.A.L., M.D.B.); and Department of Medicine (S.L., C.A.L., M.D.B.), Jewish General Hospital, McGill University, Montreal, Québec, Canada
| | - François-René Bertin
- From the Lady Davis Institute for Medical Research (S.L., F.-R.B., T.E., Y.K., R.N.R., S.L., C.A.L., M.D.B.); and Department of Medicine (S.L., C.A.L., M.D.B.), Jewish General Hospital, McGill University, Montreal, Québec, Canada
| | - Talin Ebrahimian
- From the Lady Davis Institute for Medical Research (S.L., F.-R.B., T.E., Y.K., R.N.R., S.L., C.A.L., M.D.B.); and Department of Medicine (S.L., C.A.L., M.D.B.), Jewish General Hospital, McGill University, Montreal, Québec, Canada
| | - Yusra Kassim
- From the Lady Davis Institute for Medical Research (S.L., F.-R.B., T.E., Y.K., R.N.R., S.L., C.A.L., M.D.B.); and Department of Medicine (S.L., C.A.L., M.D.B.), Jewish General Hospital, McGill University, Montreal, Québec, Canada
| | - Ryan N Rys
- From the Lady Davis Institute for Medical Research (S.L., F.-R.B., T.E., Y.K., R.N.R., S.L., C.A.L., M.D.B.); and Department of Medicine (S.L., C.A.L., M.D.B.), Jewish General Hospital, McGill University, Montreal, Québec, Canada
| | - Stéphanie Lehoux
- From the Lady Davis Institute for Medical Research (S.L., F.-R.B., T.E., Y.K., R.N.R., S.L., C.A.L., M.D.B.); and Department of Medicine (S.L., C.A.L., M.D.B.), Jewish General Hospital, McGill University, Montreal, Québec, Canada
| | - Catherine A Lemarié
- From the Lady Davis Institute for Medical Research (S.L., F.-R.B., T.E., Y.K., R.N.R., S.L., C.A.L., M.D.B.); and Department of Medicine (S.L., C.A.L., M.D.B.), Jewish General Hospital, McGill University, Montreal, Québec, Canada.
| | - Mark D Blostein
- From the Lady Davis Institute for Medical Research (S.L., F.-R.B., T.E., Y.K., R.N.R., S.L., C.A.L., M.D.B.); and Department of Medicine (S.L., C.A.L., M.D.B.), Jewish General Hospital, McGill University, Montreal, Québec, Canada
| |
Collapse
|
52
|
Affiliation(s)
- Rachel L Zemans
- Department of Medicine, National Jewish Health, Denver, Colorado,
USA
- Department of Medicine, University of Colorado Denver, Aurora,
Colorado, USA
| | - Michael A Matthay
- The Cardiovascular Research Institute, University of California San
Francisco, San Francisco, California, USA
- Departments of Medicine and Anesthesiology, University of
California, San Francisco, California, USA
| |
Collapse
|
53
|
Gamradt P, Xu Y, Gratz N, Duncan K, Kobzik L, Högler S, Kovarik P, Decker T, Jamieson AM. The Influence of Programmed Cell Death in Myeloid Cells on Host Resilience to Infection with Legionella pneumophila or Streptococcus pyogenes. PLoS Pathog 2016; 12:e1006032. [PMID: 27973535 PMCID: PMC5156374 DOI: 10.1371/journal.ppat.1006032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/29/2016] [Indexed: 12/21/2022] Open
Abstract
Pathogen clearance and host resilience/tolerance to infection are both important factors in surviving an infection. Cells of the myeloid lineage play important roles in both of these processes. Neutrophils, monocytes, macrophages, and dendritic cells all have important roles in initiation of the immune response and clearance of bacterial pathogens. If these cells are not properly regulated they can result in excessive inflammation and immunopathology leading to decreased host resilience. Programmed cell death (PCD) is one possible mechanism that myeloid cells may use to prevent excessive inflammation. Myeloid cell subsets play roles in tissue repair, immune response resolution, and maintenance of homeostasis, so excessive PCD may also influence host resilience in this way. In addition, myeloid cell death is one mechanism used to control pathogen replication and dissemination. Many of these functions for PCD have been well defined in vitro, but the role in vivo is less well understood. We created a mouse that constitutively expresses the pro-survival B-cell lymphoma (bcl)-2 protein in myeloid cells (CD68(bcl2tg), thus decreasing PCD specifically in myeloid cells. Using this mouse model we explored the impact that decreased cell death of these cells has on infection with two different bacterial pathogens, Legionella pneumophila and Streptococcus pyogenes. Both of these pathogens target multiple cell death pathways in myeloid cells, and the expression of bcl2 resulted in decreased PCD after infection. We examined both pathogen clearance and host resilience and found that myeloid cell death was crucial for host resilience. Surprisingly, the decreased myeloid PCD had minimal impact on pathogen clearance. These data indicate that the most important role of PCD during infection with these bacteria is to minimize inflammation and increase host resilience, not to aid in the clearance or prevent the spread of the pathogen.
Collapse
Affiliation(s)
- Pia Gamradt
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- Inserm U111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR 5308, Lyon, France
| | - Yun Xu
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States
| | - Nina Gratz
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Kellyanne Duncan
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States
| | - Lester Kobzik
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States
| | - Sandra Högler
- Institute of Pathology and Forensic Veterinary Medicine, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Thomas Decker
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Amanda M. Jamieson
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States
| |
Collapse
|
54
|
Williams AE, José RJ, Mercer PF, Brealey D, Parekh D, Thickett DR, O'Kane C, McAuley DF, Chambers RC. Evidence for chemokine synergy during neutrophil migration in ARDS. Thorax 2016; 72:66-73. [PMID: 27496101 PMCID: PMC5329051 DOI: 10.1136/thoraxjnl-2016-208597] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/07/2016] [Accepted: 07/02/2016] [Indexed: 01/05/2023]
Abstract
Background Acute respiratory distress syndrome (ARDS) is a life-threatening condition characterised by pulmonary oedema, respiratory failure and severe inflammation. ARDS is further characterised by the recruitment of neutrophils into the lung interstitium and alveolar space. Objectives The factors that regulate neutrophil infiltration into the inflamed lung and our understanding of the pathomechanisms in ARDS remain incomplete. This study aimed at determining the role of the chemokine (C-C motif) ligand (CCL)2 and CCL7 in ARDS. Methods CCL2 and CCL7 protein levels were measured in bronchoalveolar lavage (BAL) fluid obtained from lipopolysaccharide(LPS)-challenged human volunteers and two separate cohorts of patients with ARDS. Neutrophil chemotaxis to ARDS BAL fluid was evaluated and the contribution of each was assessed and compared with chemokine (C-X-C motif) ligand 8 (CXCL8). Chemokine receptor expression on neutrophils from blood or BAL fluid of patients with ARDS was analysed by flow cytometry. Results CCL2 and CCL7 were significantly elevated in BAL fluid recovered from LPS-challenged volunteers and patients with ARDS. BAL fluid from patients with ARDS was highly chemotactic for human neutrophils and neutralising either CCL2 or CCL7 attenuated the neutrophil chemotactic response. Moreover, CCL2 and CCL7 synergised with CXCL8 to promote neutrophil migration. Furthermore, neutrophils isolated from the blood or BAL fluid differentially regulated the cell surface expression of chemokine (C-X-C motif) receptor 1 and C-C chemokine receptor type 2 during ARDS. Conclusion This study highlights important inflammatory chemokines involved in regulating neutrophil migration, which may have potential value as therapeutic targets for the treatment of ARDS.
Collapse
Affiliation(s)
- Andrew E Williams
- Division of Medicine, Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Institute, University College London (UCL), London, UK
| | - Ricardo J José
- Division of Medicine, Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Institute, University College London (UCL), London, UK
| | - Paul F Mercer
- Division of Medicine, Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Institute, University College London (UCL), London, UK
| | - David Brealey
- Bloomsbury Institute of Intensive Care Medicine, University College Hospital, London, UK
| | - Dhruv Parekh
- Institute of Inflammation and Aging, University of Birmingham, Birmingham, UK
| | - David R Thickett
- Institute of Inflammation and Aging, University of Birmingham, Birmingham, UK
| | - Cecelia O'Kane
- Centre for Experimental Medicine, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast and Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, UK
| | - Danny F McAuley
- Centre for Experimental Medicine, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast and Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, UK
| | - Rachel C Chambers
- Division of Medicine, Centre for Inflammation and Tissue Repair, UCL Respiratory, Rayne Institute, University College London (UCL), London, UK
| |
Collapse
|
55
|
Amador MAT, Cavalcante GC, Santos NPC, Gusmão L, Guerreiro JF, Ribeiro-dos-Santos Â, Santos S. Distribution of allelic and genotypic frequencies of IL1A, IL4, NFKB1 and PAR1 variants in Native American, African, European and Brazilian populations. BMC Res Notes 2016; 9:101. [PMID: 26879815 PMCID: PMC4754858 DOI: 10.1186/s13104-016-1906-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/02/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The inflammatory response plays a key role at different stages of cancer development. Allelic variants of the interleukin 1A (IL1A), interleukin 4 (IL4), nuclear factor kappa B1 (NFKB1) and protease-activated receptor 1 (PAR1) genes may influence not only the inflammatory response but also susceptibility to cancer development. Among major ethnic or continental groups, these polymorphic variants present different allelic frequencies. In admixed populations, such as the Brazilian population, data on distribution of these polymorphisms are limited. Here, we collected samples of cancer-free individuals from the north, northeast, midwest, south and southeast regions of Brazil and from the three main groups that gave rise to the Brazilian population: Native Americans from the Brazilian Amazon, Africans and Europeans. We describe the allelic distributions of four IL1A (rs3783553), IL4 (rs79071878), NFKB1 (rs28362491) and PAR1 (rs11267092) gene polymorphisms, which the literature describes as polymorphisms with a risk of cancer or worse prognosis for cancer. RESULTS The genotypic distribution of the four polymorphisms was statistically distinct between Native Americans, Africans and Europeans. For the allelic frequency of these polymorphisms, the Native American population was the most distinct among the three parental populations, and it included the greatest number of alleles with a risk of cancer or worse prognosis for cancer. The PAR1 gene polymorphism allelic distribution was similar among all Brazilian regions. For the other three markers, the northern region population was statistically distinct from other Brazilian region populations. CONCLUSION The IL1A, IL4, NFKB1 and PAR1 gene polymorphism allelic distributions are homogeneous among the regional Brazilian populations, except for the northern region, which significantly differs from the other four Brazilian regions. Among the parental populations, the Native American population exhibited a higher incidence of alleles with risk of cancer or worse prognosis for cancer, which can indicate greater susceptibility to this disease. These genetic data may be useful for future studies on the association between these polymorphisms and cancer in the investigated populations.
Collapse
Affiliation(s)
- Marcos A T Amador
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Cidade Universitária Prof. José da Silveira Netto, Rua Augusto Corrêa, 01 - Guamá, Belém, PA, CEP: 66.075-110, Brazil.
| | - Giovanna C Cavalcante
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Cidade Universitária Prof. José da Silveira Netto, Rua Augusto Corrêa, 01 - Guamá, Belém, PA, CEP: 66.075-110, Brazil.
| | - Ney P C Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Cidade Universitária Prof. José da Silveira Netto, Rua Augusto Corrêa, 01 - Guamá, Belém, PA, CEP: 66.075-110, Brazil.
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil.
| | - Leonor Gusmão
- Laboratório de Diagnóstico por DNA, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal.
| | - João F Guerreiro
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Cidade Universitária Prof. José da Silveira Netto, Rua Augusto Corrêa, 01 - Guamá, Belém, PA, CEP: 66.075-110, Brazil.
| | - Ândrea Ribeiro-dos-Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Cidade Universitária Prof. José da Silveira Netto, Rua Augusto Corrêa, 01 - Guamá, Belém, PA, CEP: 66.075-110, Brazil.
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil.
| | - Sidney Santos
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Cidade Universitária Prof. José da Silveira Netto, Rua Augusto Corrêa, 01 - Guamá, Belém, PA, CEP: 66.075-110, Brazil.
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém, Brazil.
| |
Collapse
|
56
|
Huang L, Zhang L, Ju H, Li Q, Pan JSC, Al-Lawati Z, Sheikh-Hamad D. Stanniocalcin-1 inhibits thrombin-induced signaling and protects from bleomycin-induced lung injury. Sci Rep 2015; 5:18117. [PMID: 26640170 PMCID: PMC4671147 DOI: 10.1038/srep18117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/12/2015] [Indexed: 11/09/2022] Open
Abstract
Thrombin-induced and proteinase-activated receptor 1 (PAR1)-mediated signaling increases ROS production, activates ERK, and promotes inflammation and fibroblast proliferation in bleomycin-induced lung injury. Stanniocalcin-1 (STC1) activates anti-oxidant pathways, inhibits inflammation and provides cytoprotection; hence, we hypothesized that STC1 will inhibit thrombin/PAR1 signaling and protect from bleomycin-induced pneumonitis. We determined thrombin level and activity, thrombin-induced PAR-1-mediated signaling, superoxide generation and lung pathology after intra-tracheal administration of bleomycin to WT and STC1 Tg mice. Lungs of bleomycin-treated WT mice display: severe pneumonitis; increased generation of superoxide; vascular leak; increased thrombin protein abundance and activity; activation of ERK; greater cytokine/chemokine release and infiltration with T-cells and macrophages. Lungs of STC1 Tg mice displayed none of the above changes. Mechanistic analysis in cultured pulmonary epithelial cells (A549) suggests that STC1 inhibits thrombin-induced and PAR1-mediated ERK activation through suppression of superoxide. In conclusion, STC1 blunts bleomycin-induced rise in thrombin protein and activity, diminishes thrombin-induced signaling through PAR1 to ERK, and inhibits bleomycin-induced pneumonitis. Moreover, our study identifies a new set of cytokines/chemokines, which play a role in the pathogenesis of bleomycin-induced lung injury. These findings broaden the array of potential therapeutic targets for the treatment of lung diseases characterized by thrombin activation, oxidant stress and inflammation.
Collapse
Affiliation(s)
- Luping Huang
- Division of Nephrology and Selzman Institute for Kidney Health/Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Lin Zhang
- Center of General Surgery, Chengdu General Hospital of Chengdu Military Area Command, Chengdu, P.R. China.,Division of Nephrology and Selzman Institute for Kidney Health/Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Huiming Ju
- Division of Nephrology and Selzman Institute for Kidney Health/Department of Medicine, Baylor College of Medicine, Houston, TX, United States.,College of Veterinary Medicine, Yangzhou University, Yangzhou 25009, Jiangsu, P.R.China
| | - Qingtian Li
- Division of Nephrology and Selzman Institute for Kidney Health/Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Jenny Szu-Chin Pan
- Division of Nephrology and Selzman Institute for Kidney Health/Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Zahraa Al-Lawati
- Division of Nephrology and Selzman Institute for Kidney Health/Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - David Sheikh-Hamad
- Division of Nephrology and Selzman Institute for Kidney Health/Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
57
|
Fujimura N, Xu B, Dalman J, Deng H, Aoyama K, Dalman RL. CCR2 inhibition sequesters multiple subsets of leukocytes in the bone marrow. Sci Rep 2015. [PMID: 26206182 PMCID: PMC4513281 DOI: 10.1038/srep11664] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chemokine receptor CCR2 mediates monocyte mobilization from the bone marrow (BM) and subsequent migration into target tissues. The degree to which CCR2 is differentially expressed in leukocyte subsets, and the contribution of CCR2 to these leukocyte mobilization from the BM are poorly understood. Using red fluorescence protein CCR2 reporter mice, we found heterogeneity in CCR2 expression among leukocyte subsets in varying tissues. CCR2 was highly expressed by inflammatory monocytes, dendritic cells, plasmacytoid dendritic cells and NK cells in all tissues. Unexpectedly, more than 60% of neutrophils expressed CCR2, albeit at low levels. CCR2 expression in T cells, B cells and NK T cells was greatest in the BM compared to other tissues. Genetic CCR2 deficiency markedly sequestered all leukocyte subsets in the BM, with reciprocal reduction noted in the peripheral blood and spleen. CCR2 inhibition via treatment with CCR2 signaling inhibitor propagermanium produced similar effects. Propagermanium also mitigated lipopolysaccharide-induced BM leukocyte egress. Consistent with its functional significance, CCR2 antibody staining revealed surface CCR2 expression within a subset of BM neutrophils. These results demonstrate the central role CCR2 plays in mediating leukocyte mobilization from the BM, and suggest a role for CCR2 inhibition in managing monocytes/macrophages-mediated chronic inflammatory conditions.
Collapse
Affiliation(s)
- Naoki Fujimura
- 1] Departments of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA [2] Department of Vascular Surgery, Saiseikai Central Hospital, Minato-Ku Mita 1-4-17, Tokyo 108-0073, Japan
| | - Baohui Xu
- Departments of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jackson Dalman
- Departments of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hongping Deng
- Departments of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kohji Aoyama
- Department of Hygiene and Health Promotion Medicine, Kagoshima University School of Medicine, Sakuragaoka 8-35-1, Kagoshima 890-0075, Japan
| | - Ronald L Dalman
- Departments of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
58
|
José RJ, Williams AE, Mercer PF, Sulikowski MG, Brown JS, Chambers RC. Regulation of neutrophilic inflammation by proteinase-activated receptor 1 during bacterial pulmonary infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:6024-34. [PMID: 25948816 PMCID: PMC4456635 DOI: 10.4049/jimmunol.1500124] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/06/2015] [Indexed: 12/24/2022]
Abstract
Neutrophils are key effector cells of the innate immune response to pathogenic bacteria, but excessive neutrophilic inflammation can be associated with bystander tissue damage. The mechanisms responsible for neutrophil recruitment to the lungs during bacterial pneumonia are poorly defined. In this study, we focus on the potential role of the major high-affinity thrombin receptor, proteinase-activated receptor 1 (PAR-1), during the development of pneumonia to the common lung pathogen Streptococcus pneumoniae. Our studies demonstrate that neutrophils were indispensable for controlling S. pneumoniae outgrowth but contributed to alveolar barrier disruption. We further report that intra-alveolar coagulation (bronchoalveolar lavage fluid thrombin-antithrombin complex levels) and PAR-1 immunostaining were increased in this model of bacterial lung infection. Functional studies using the most clinically advanced PAR-1 antagonist, SCH530348, revealed a key contribution for PAR-1 signaling in influencing neutrophil recruitment to lung airspaces in response to both an invasive and noninvasive strain of S. pneumoniae (D39 and EF3030) but that PAR-1 antagonism did not impair the ability of the host to control bacterial outgrowth. PAR-1 antagonist treatment significantly decreased pulmonary levels of IL-1β, CXCL1, CCL2, and CCL7 and attenuated alveolar leak. Ab neutralization studies further demonstrated a nonredundant role for IL-1β, CXCL1, and CCL7 in mediating neutrophil recruitment in response to S. pneumoniae infection. Taken together, these data demonstrate a key role for PAR-1 during S. pneumoniae lung infection that is mediated, at least in part, by influencing multiple downstream inflammatory mediators.
Collapse
Affiliation(s)
- Ricardo J José
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| | - Andrew E Williams
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| | - Paul F Mercer
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| | - Michal G Sulikowski
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| | - Jeremy S Brown
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, University College London, London WC1E 6JF, United Kingdom
| |
Collapse
|
59
|
Girkin J, Hatchwell L, Foster P, Johnston SL, Bartlett N, Collison A, Mattes J. CCL7 and IRF-7 Mediate Hallmark Inflammatory and IFN Responses following Rhinovirus 1B Infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:4924-30. [PMID: 25847975 DOI: 10.4049/jimmunol.1401362] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 03/13/2015] [Indexed: 12/22/2022]
Abstract
Rhinovirus (RV) infections are common and have the potential to exacerbate asthma. We have determined the lung transcriptome in RV strain 1B-infected naive BALB/c mice (nonallergic) and identified CCL7 and IFN regulatory factor (IRF)-7 among the most upregulated mRNA transcripts in the lung. To investigate their roles we employed anti-CCL7 Abs and an IRF-7-targeting small interfering RNA in vivo. Neutralizing CCL7 or inhibiting IRF-7 limited neutrophil and macrophage influx and IFN responses in nonallergic mice. Neutralizing CCL7 also reduced activation of NF-κB p65 and p50 subunits, as well as airway hyperreactivity (AHR) in nonallergic mice. However, neither NF-κB subunit activation nor AHR was abolished with infection of allergic mice after neutralizing CCL7, despite a reduction in the number of neutrophils, macrophages, and eosinophils. IRF-7 small interfering RNA primarily suppressed IFN-α and IFN-β levels during infection of allergic mice. Our data highlight a pivotal role of CCL7 and IRF-7 in RV-induced inflammation and IFN responses and link NF-κB signaling to the development of AHR.
Collapse
Affiliation(s)
- Jason Girkin
- Experimental and Translational Respiratory Medicine Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales 2305, Australia; Priority Research Centre for Asthma and Respiratory Diseases, University of Newcastle, Newcastle, New South Wales 2305, Australia
| | - Luke Hatchwell
- Experimental and Translational Respiratory Medicine Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales 2305, Australia; Priority Research Centre for Asthma and Respiratory Diseases, University of Newcastle, Newcastle, New South Wales 2305, Australia
| | - Paul Foster
- Priority Research Centre for Asthma and Respiratory Diseases, University of Newcastle, Newcastle, New South Wales 2305, Australia
| | - Sebastian L Johnston
- Airway Disease Infection Section, National Heart and Lung Institute, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London W2 1PG, United Kingdom; and
| | - Nathan Bartlett
- Airway Disease Infection Section, National Heart and Lung Institute, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London W2 1PG, United Kingdom; and
| | - Adam Collison
- Experimental and Translational Respiratory Medicine Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales 2305, Australia; Priority Research Centre for Asthma and Respiratory Diseases, University of Newcastle, Newcastle, New South Wales 2305, Australia
| | - Joerg Mattes
- Experimental and Translational Respiratory Medicine Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales 2305, Australia; Priority Research Centre for Asthma and Respiratory Diseases, University of Newcastle, Newcastle, New South Wales 2305, Australia; Paediatric Respiratory and Sleep Medicine Unit, Newcastle Children's Hospital, Kaleidoscope, Newcastle, New South Wales 2305, Australia
| |
Collapse
|
60
|
García de Alba C, Buendia-Roldán I, Salgado A, Becerril C, Ramírez R, González Y, Checa M, Navarro C, Ruiz V, Pardo A, Selman M. Fibrocytes Contribute to Inflammation and Fibrosis in Chronic Hypersensitivity Pneumonitis through Paracrine Effects. Am J Respir Crit Care Med 2015; 191:427-36. [DOI: 10.1164/rccm.201407-1334oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
61
|
Roos AB, Berg T, Ahlgren KM, Grunewald J, Nord M. A method for generating pulmonary neutrophilia using aerosolized lipopolysaccharide. J Vis Exp 2014:51470. [PMID: 25548888 PMCID: PMC4396917 DOI: 10.3791/51470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Acute lung injury (ALI) is a severe disease characterized by alveolar neutrophilia, with limited treatment options and high mortality. Experimental models of ALI are key in enhancing our understanding of disease pathogenesis. Lipopolysaccharide (LPS) derived from gram positive bacteria induces neutrophilic inflammation in the airways and lung parenchyma of mice. Efficient pulmonary delivery of compounds such as LPS is, however, difficult to achieve. In the approach described here, pulmonary delivery in mice is achieved by challenge to aerosolized Pseudomonas aeruginosa LPS. Dissolved LPS was aerosolized by a nebulizer connected to compressed air. Mice were exposed to a continuous flow of LPS aerosol in a Plexiglas box for 10 min, followed by 2 min conditioning after the aerosol was discontinued. Tracheal intubation and subsequent bronchoalveolar lavage, followed by formalin perfusion was next performed, which allows for characterization of the sterile pulmonary inflammation. Aerosolized LPS generates a pulmonary inflammation characterized by alveolar neutrophilia, detected in bronchoalveolar lavage and by histological assessment. This technique can be set up at a small cost with few appliances, and requires minimal training and expertise. The exposure system can thus be routinely performed at any laboratory, with the potential to enhance our understanding of lung pathology.
Collapse
Affiliation(s)
- Abraham B Roos
- Department of Medicine, Solna and CMM, Respiratory Medicine Unit, Karolinska Institutet;
| | - Tove Berg
- Department of Medicine, Solna and CMM, Respiratory Medicine Unit, Karolinska Institutet
| | - Kerstin M Ahlgren
- Department of Medicine, Solna and CMM, Respiratory Medicine Unit, Karolinska Institutet
| | - Johan Grunewald
- Department of Medicine, Solna and CMM, Respiratory Medicine Unit, Karolinska Institutet
| | - Magnus Nord
- Department of Medicine, Solna and CMM, Respiratory Medicine Unit, Karolinska Institutet; Safety Science, Global Regulator Affairs & Patient Safety, AstraZeneca Global Medicines Development
| |
Collapse
|
62
|
Small DM, Zani ML, Quinn DJ, Dallet-Choisy S, Glasgow AMA, O'Kane C, McAuley DF, McNally P, Weldon S, Moreau T, Taggart CC. A functional variant of elafin with improved anti-inflammatory activity for pulmonary inflammation. Mol Ther 2014; 23:24-31. [PMID: 25189740 DOI: 10.1038/mt.2014.162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 08/22/2014] [Indexed: 12/25/2022] Open
Abstract
Elafin is a serine protease inhibitor produced by epithelial and immune cells with anti-inflammatory properties. Research has shown that dysregulated protease activity may elicit proteolytic cleavage of elafin, thereby impairing the innate immune function of the protein. The aim of this study was to generate variants of elafin (GG- and QQ-elafin) that exhibit increased protease resistance while retaining the biological properties of wild-type (WT) elafin. Similar to WT-elafin, GG- and QQ-elafin variants retained antiprotease activity and susceptibility to transglutaminase-mediated fibronectin cross-linking. However, in contrast to WT-elafin, GG- and QQ-elafin displayed significantly enhanced resistance to degradation when incubated with bronchoalveolar lavage fluid from patients with cystic fibrosis. Intriguingly, both variants, particularly GG-elafin, demonstrated improved lipopolysaccharide (LPS) neutralization properties in vitro. In addition, GG-elafin showed improved anti-inflammatory activity in a mouse model of LPS-induced acute lung inflammation. Inflammatory cell infiltration into the lung was reduced in lungs of mice treated with GG-elafin, predominantly neutrophilic infiltration. A reduction in MCP-1 levels in GG-elafin treated mice compared to the LPS alone treatment group was also demonstrated. GG-elafin showed increased functionality when compared to WT-elafin and may be of future therapeutic relevance in the treatment of lung diseases characterized by a protease burden.
Collapse
Affiliation(s)
- Donna M Small
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | | | - Derek J Quinn
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | | | - Arlene M A Glasgow
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Cecilia O'Kane
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Danny F McAuley
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Paul McNally
- 1] Our Lady's Hospital for Sick Children, Dublin, Ireland [2] National Children's Research Centre, Crumlin, Dublin, Ireland
| | - Sinéad Weldon
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Thierry Moreau
- CEPR, INSERM U1100/EA6305, University of Tours, Tours, France
| | - Clifford C Taggart
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| |
Collapse
|
63
|
Platé M, Lawson PJ, Hill MR, Quint JK, Kumari M, Laurent GJ, Wedzicha JA, Chambers RC, Hurst JR. Impact of a functional polymorphism in the PAR-1 gene promoter in COPD and COPD exacerbations. Am J Physiol Lung Cell Mol Physiol 2014; 307:L311-6. [PMID: 24973402 PMCID: PMC4137163 DOI: 10.1152/ajplung.00128.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/21/2014] [Indexed: 11/24/2022] Open
Abstract
Proteinase-activated receptor-1 (PAR-1) plays a key role in mediating the interplay between coagulation and inflammation in response to injury. The aim of this study was to investigate the role of the promoter single-nucleotide polymorphism (SNP) rs2227744G>A in modulating PAR-1/F2R gene expression in the context of chronic obstructive pulmonary disease (COPD) and COPD exacerbations. The function of the rs2227744G>A SNP was investigated by using reporter gene assays. The frequency of the polymorphism in the UK population was assessed by genotyping 8,579 healthy individuals from the Whitehall II and English Longitudinal Study of Ageing cohorts. The rs2227744G>A SNP was genotyped in a carefully phenotyped cohort of 203 COPD cases and matched controls. The results were further replicated in two different COPD cohorts. The minor allele of the rs2227744G>A polymorphism was found to increase F2R expression by 2.6-fold (P < 0.001). The rs2227744G>A SNP was not significantly associated with COPD, or with lung function, in all cohorts. The minor allele of the SNP was found to be associated with protection from frequent exacerbations (P = 0.04) in the cohort of COPD patients for which exacerbation frequency was available. Considering exacerbations as a continuous variable, the presence of the minor allele was associated with a significantly lower COPD exacerbation rate (3.03 vs. 1.98 exacerbations/year, Mann-Whitney U-test P = 0.04). Taken together, these data do not support a role for the rs2227744G>A F2R polymorphism in the development of COPD but suggest a protective role for this polymorphism from frequent exacerbations. Studies in separate cohorts to replicate these findings are warranted.
Collapse
Affiliation(s)
- Manuela Platé
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| | - Phillippa J Lawson
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| | - Michael R Hill
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| | - Jennifer K Quint
- Centre for Respiratory Medicine, University College London, London, United Kingdom; and
| | - Meena Kumari
- Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Geoffrey J Laurent
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| | - Jadwiga A Wedzicha
- Centre for Respiratory Medicine, University College London, London, United Kingdom; and
| | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom;
| | - John R Hurst
- Centre for Inflammation and Tissue Repair, University College London, London, United Kingdom
| |
Collapse
|
64
|
Sipka A, Klaessig S, Duhamel GE, Swinkels J, Rainard P, Schukken Y. Impact of intramammary treatment on gene expression profiles in bovine Escherichia coli mastitis. PLoS One 2014; 9:e85579. [PMID: 24454893 PMCID: PMC3891811 DOI: 10.1371/journal.pone.0085579] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/05/2013] [Indexed: 01/12/2023] Open
Abstract
Clinical mastitis caused by E. coli accounts for significant production losses and animal welfare concerns on dairy farms worldwide. The benefits of therapeutic intervention in mild to moderate cases are incompletely understood. We investigated the effect of intramammary treatment with cefapirin alone or in combination with prednisolone on gene expression profiles in experimentally-induced E. coli mastitis in six mid-lactating Holstein Friesian cows. Cows were challenged with E. coli in 3 quarters and received 4 doses of 300 mg cefapirin in one quarter and 4 doses of 300 mg cefapirin together with 20 mg prednisolone in another quarter. At 24 h (n = 3) or 48 h (n = 3) post-challenge, tissue samples from control and treated quarters were collected for microarray analysis. Gene expression analysis of challenged, un-treated quarters revealed an up-regulation of transcripts associated with immune response functions compared to un-challenged quarters. Both treatments resulted in down-regulation of these transcripts compared to challenged, un-treated quarters most prominently for genes representing Chemokine and TLR-signaling pathways. Gene expression of Lipopolysaccharide Binding Protein (LBP), CCL2 and CXCL2 were only significantly down-regulated in cefapirin-prednisolone-treated quarters compared to un-treated controls. Down-regulation of chemokines was further confirmed on the basis of protein levels in milk whey for CXCL1, CXCL2 and CXCL8 in both treatments with a greater decrease in cefapirin-prednisolone-treated quarters. The data reveal a significant effect of treatment on cell recruitment with a more pronounced effect in cefapirin-prednisolone treated quarters. Provided a rapid bacteriological clearance, combination therapy may prevent neutrophil-induced tissue damage and promote recovery of the gland.
Collapse
Affiliation(s)
- Anja Sipka
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| | - Suzanne Klaessig
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Gerald E. Duhamel
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | | | - Pascal Rainard
- INRA, UMR1282, Infectiologie Animale et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282 ISP, Tours, France
| | - Ynte Schukken
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
65
|
Williams AE, Chambers RC. The mercurial nature of neutrophils: still an enigma in ARDS? Am J Physiol Lung Cell Mol Physiol 2013; 306:L217-30. [PMID: 24318116 DOI: 10.1152/ajplung.00311.2013] [Citation(s) in RCA: 306] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The acute respiratory distress syndrome (ARDS) is a life-threatening lung condition resulting from direct and indirect insults to the lung. It is characterized by disruption of the endothelial-epithelial barrier, alveolar damage, pulmonary edema, and respiratory failure. A key feature of ARDS is the accumulation of neutrophils in the lung microvasculature, interstitium, and alveolar space. Despite a clear association between neutrophil influx into the lung and disease severity, there is some debate as to whether neutrophils directly contribute to disease pathogenesis. The primary function of neutrophils is to provide immediate host defense against pathogenic microorganisms. Neutrophils release numerous antimicrobial factors such as reactive oxygen species, proteinases, and neutrophil extracellular traps. However, these factors are also toxic to host cells and can result in bystander tissue damage. The excessive accumulation of neutrophils in ARDS may therefore contribute to disease progression. Central to neutrophil recruitment is the release of chemokines, including the archetypal neutrophil chemoattractant IL-8, from resident pulmonary cells. However, the chemokine network in the inflamed lung is complex and may involve several other chemokines, including CXCL10, CCL2, and CCL7. This review will therefore focus on the experimental and clinical evidence supporting neutrophils as key players in ARDS and the chemokines involved in recruiting them into the lung.
Collapse
Affiliation(s)
- Andrew E Williams
- Centre for Inflammation and Tissue Repair, Univ. College London, Rayne Institute, 5 Univ. St., London WC1E 6JF, UK.
| | | |
Collapse
|