51
|
Quan C, Bai Z, Zheng S, Zhou J, Yu Q, Xu Z, Gao X, Li L, Zhu J, Jia X, Chen R. Genome-wide analysis and environmental response profiling of phosphate-induced-1 family genes in rice (Oryza sativa). BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1604157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Changqian Quan
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhigang Bai
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shiwei Zheng
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jingming Zhou
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiang Yu
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhengjun Xu
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoling Gao
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lihua Li
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jianqing Zhu
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaomei Jia
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Rongjun Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
52
|
Skorupa M, Gołębiewski M, Kurnik K, Niedojadło J, Kęsy J, Klamkowski K, Wójcik K, Treder W, Tretyn A, Tyburski J. Salt stress vs. salt shock - the case of sugar beet and its halophytic ancestor. BMC PLANT BIOLOGY 2019; 19:57. [PMID: 30727960 PMCID: PMC6364445 DOI: 10.1186/s12870-019-1661-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/24/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Sugar beet is a highly salt-tolerant crop. However, its ability to withstand high salinity is reduced compared to sea beet, a wild ancestor of all beet crops. The aim of this study was to investigate transcriptional patterns associated with physiological, cytological and biochemical mechanisms involved in salt response in these closely related subspecies. Salt acclimation strategies were assessed in plants subjected to either gradually increasing salt levels (salt-stress) or in excised leaves, exposed instantly to salinity (salt-shock). RESULT The majority of DEGs was down-regulated under stress, which may lead to certain aspects of metabolism being reduced in this treatment, as exemplified by lowered transpiration and photosynthesis. This effect was more pronounced in sugar beet. Additionally, sugar beet, but not sea beet, growth was restricted. Silencing of genes encoding numerous transcription factors and signaling proteins was observed, concomitantly with the up-regulation of lipid transfer protein-encoding genes and those coding for NRTs. Bark storage protein genes were up-regulated in sugar beet to the level observed in unstressed sea beet. Osmotic adjustment, manifested by increased water and proline content, occurred in salt-shocked leaves of both genotypes, due to the concerted activation of genes encoding aquaporins, ion channels and osmoprotectants synthesizing enzymes. bHLH137 was the only TF-encoding gene induced by salt in a dose-dependent manner irrespective of the mode of salt treatment. Moreover, the incidence of bHLH-binding motives in promoter regions of salinity-regulated genes was significantly greater than in non-regulated ones. CONCLUSIONS Maintaining homeostasis under salt stress requires deeper transcriptomic changes in the sugar beet than in the sea beet. In both genotypes salt shock elicits greater transcriptomic changes than stress and it results in greater number of up-regulated genes compared to the latter. NRTs and bark storage protein may play a yet undefined role in salt stress-acclimation in beet. bHLH is a putative regulator of salt response in beet leaves and a promising candidate for further studies.
Collapse
Affiliation(s)
- Monika Skorupa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Marcin Gołębiewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Katarzyna Kurnik
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Janusz Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Jacek Kęsy
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | | | | | | | - Andrzej Tretyn
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Jarosław Tyburski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
53
|
Quantitative Proteomic Analysis of the Response to Cold Stress in Jojoba, a Tropical Woody Crop. Int J Mol Sci 2019; 20:ijms20020243. [PMID: 30634475 PMCID: PMC6359463 DOI: 10.3390/ijms20020243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/01/2019] [Accepted: 01/03/2019] [Indexed: 02/08/2023] Open
Abstract
Jojoba (Simmondsia chinensis) is a semi-arid, oil-producing industrial crop that have been widely cultivated in tropical arid region. Low temperature is one of the major environmental stress that impair jojoba's growth, development and yield and limit introduction of jojoba in the vast temperate arid areas. To get insight into the molecular mechanisms of the cold stress response of jojoba, a combined physiological and quantitative proteomic analysis was conducted. Under cold stress, the photosynthesis was repressed, the level of malondialdehyde (MDA), relative electrolyte leakage (REL), soluble sugars, superoxide dismutase (SOD) and phenylalanine ammonia-lyase (PAL) were increased in jojoba leaves. Of the 2821 proteins whose abundance were determined, a total of 109 differentially accumulated proteins (DAPs) were found and quantitative real time PCR (qRT-PCR) analysis of the coding genes for 7 randomly selected DAPs were performed for validation. The identified DAPs were involved in various physiological processes. Functional classification analysis revealed that photosynthesis, adjustment of cytoskeleton and cell wall, lipid metabolism and transport, reactive oxygen species (ROS) scavenging and carbohydrate metabolism were closely associated with the cold stress response. Some cold-induced proteins, such as cold-regulated 47 (COR47), staurosporin and temperature sensitive 3-like a (STT3a), phytyl ester synthase 1 (PES1) and copper/zinc superoxide dismutase 1, might play important roles in cold acclimation in jojoba seedlings. Our work provided important data to understand the plant response to the cold stress in tropical woody crops.
Collapse
|
54
|
Song J, Zhang Y, Song S, Su W, Chen R, Sun G, Hao Y, Liu H. Comparative RNA-Seq analysis on the regulation of cucumber sex differentiation under different ratios of blue and red light. BOTANICAL STUDIES 2018; 59:21. [PMID: 30203294 PMCID: PMC6131680 DOI: 10.1186/s40529-018-0237-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/27/2018] [Indexed: 05/13/2023]
Abstract
Cucumber (Cucumis sativus L.) is a typical monoecism vegetable with individual male and female flowers, which has been used as a plant model for sex determination. It is well known that light is one of the most important environmental stimuli, which control the timing of the transition from vegetative growth to reproductive development. However, whether light controls sex determination remains elusive. To unravel this problem, we performed high-throughput RNA-Seq analyses, which compared the transcriptomes of shoot apices between R2B1(Red light:Blue light = 2:1)-treated and R4B1(Red light:Blue light = 4:1)-treated cucumber seedlings. Results showed that the higher proportion of blue light in the R2B1 treatment significantly induced the formation of female flowers and accelerated female flowering time in this whole study. The genes related to flowering time, such as flowering locus T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1), were up-regulated after R2B1 treatment. Furthermore, the transcriptome analysis showed that up-regulation and down-regulation of specific DEGs (the differentially expressed genes) were primarily the result of plant hormone signal transduction after treatments. The specific DEGs related with auxin formed the highest percentage of DEGs in the plant hormone signal transduction. In addition, the expression levels of transcription factors also changed after R2B1 treatment. Thus, sex differentiation affected by light quality might be induced by plant hormone signal transduction and transcription factors. These results provide a theoretical basis for further investigation of the regulatory mechanism of female flower formation under different light qualities in cucumber seedlings.
Collapse
Affiliation(s)
- Jiali Song
- College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Yiting Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Shiwei Song
- College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Wei Su
- College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Guangwen Sun
- College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Yanwei Hao
- College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Houcheng Liu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
55
|
Shukla D, Rinehart CA, Sahi SV. Comprehensive study of excess phosphate response reveals ethylene mediated signaling that negatively regulates plant growth and development. Sci Rep 2017; 7:3074. [PMID: 28596610 PMCID: PMC5465178 DOI: 10.1038/s41598-017-03061-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/21/2017] [Indexed: 12/19/2022] Open
Abstract
Excess Phosphorus (P) in agriculture is causing serious environmental problems like eutrophication of lakes and rivers. Unlike the enormous information available for phosphate starvation response (P0), very few information is available for the effect of excess phosphate Pi on plants. Characterization of Excess Phosphate Response (EPiR) is essential for designing strategies to increase phosphate accumulation and tolerance. We show a significant modulation in the root developmental plasticity under the increasing supply of excess Pi. An excess supply of 20 mM Pi (P20) produces a shallow root system architecture (RSA), reduces primary root growth, root apical meristem size, and meristematic activity in Arabidopsis. The inhibition of primary root growth and development is indeterminate in nature and caused by the decrease in number of meristematic cortical cells due to EPiR. Significant changes occurred in metal nutrients level due to excess Pi supply. A comparative microarray investigation of the EPiR response reveals a modulation in ethylene biosynthesis and signaling, metal ions deficiency response, and root development related genes. We used ethylene-insensitive or sensitive mutants to provide more evidence for ethylene-mediated signaling. A new role of EPiR in regulating the developmental responses of plants mediated by ethylene has been demonstrated.
Collapse
Affiliation(s)
- Devesh Shukla
- Department of Biology, 1906 College Heights, Western Kentucky University, Bowling Green, 42101-1080, Kentucky, USA.
| | - Claire A Rinehart
- Department of Biology, 1906 College Heights, Western Kentucky University, Bowling Green, 42101-1080, Kentucky, USA
| | - Shivendra V Sahi
- Department of Biology, 1906 College Heights, Western Kentucky University, Bowling Green, 42101-1080, Kentucky, USA.
| |
Collapse
|
56
|
Hirano K, Yoshida H, Aya K, Kawamura M, Hayashi M, Hobo T, Sato-Izawa K, Kitano H, Ueguchi-Tanaka M, Matsuoka M. SMALL ORGAN SIZE 1 and SMALL ORGAN SIZE 2/DWARF AND LOW-TILLERING Form a Complex to Integrate Auxin and Brassinosteroid Signaling in Rice. MOLECULAR PLANT 2017; 10:590-604. [PMID: 28069545 DOI: 10.1016/j.molp.2016.12.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/20/2016] [Accepted: 12/27/2016] [Indexed: 05/21/2023]
Abstract
Although auxin and brassinosteroid (BR) synergistically control various plant responses, the molecular mechanism underlying the auxin-BR crosstalk is not well understood. We previously identified SMOS1, an auxin-regulated APETALA2-type transcription factor, as the causal gene of the small organ size 1 (smos1) mutant that is characterized by a decreased final size of various organs in rice. In this study, we identified another smos mutant, smos2, which shows the phenotype indistinguishable from smos1. SMOS2 was identical to the previously reported DWARF AND LOW-TILLERING (DLT), which encodes a GRAS protein involved in BR signaling. SMOS1 and SMOS2/DLT physically interact to cooperatively enhance transcriptional transactivation activity in yeast and in rice nuclei. Consistently, the expression of OsPHI-1, a direct target of SMOS1, is upregulated only when SMOS1 and SMOS2/DLT proteins are both present in rice cells. Taken together, our results suggest that SMOS1 and SMOS2/DLT form a keystone complex on auxin-BR signaling crosstalk in rice.
Collapse
Affiliation(s)
- Ko Hirano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan.
| | - Hideki Yoshida
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Koichiro Aya
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Mayuko Kawamura
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Makoto Hayashi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Tokunori Hobo
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Kanna Sato-Izawa
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | - Hidemi Kitano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| | | | - Makoto Matsuoka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
57
|
Voogd C, Brian LA, Varkonyi-Gasic E. Two Subclasses of Differentially Expressed TPS1 Genes and Biochemically Active TPS1 Proteins May Contribute to Sugar Signalling in Kiwifruit Actinidia chinensis. PLoS One 2016; 11:e0168075. [PMID: 27992562 PMCID: PMC5167275 DOI: 10.1371/journal.pone.0168075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/26/2016] [Indexed: 12/14/2022] Open
Abstract
Trehalose metabolism and its intermediate trehalose-6-phosphate (T6P) are implicated in sensing and signalling sucrose availability. Four class I TREHALOSE-6-PHOSPHATE SYNTHASE (TPS1) genes were identified in kiwifruit, three of which have both the TPS and trehalose-6-phosphate phosphatase (TPP) domain, while the fourth gene gives rise to a truncated transcript. The transcript with highest sequence homology to Arabidopsis TPS1, designated TPS1.1a was the most highly abundant TPS1 transcript in all examined kiwifruit tissues. An additional exon giving rise to a small N-terminal extension was found for two of the TPS1 transcripts, designated TPS1.2a and TPS1.2b. Homology in sequence and gene structure with TPS1 genes from Solanaceae suggests they belong to a separate, asterid-specific class I TPS subclade. Expression of full-length and potential splice variants of these two kiwifruit TPS1.2 transcripts was sufficient to substitute for the lack of functional TPS1 in the yeast tps1Δ tps2Δ mutant, but only weak complementation was detected in the yeast tps1Δ mutant, and no or very weak complementation was obtained with the TPS1.1a construct. Transgenic Arabidopsis lines expressing kiwifruit TPS1.2 under the control of 35S promoter exhibited growth and morphological defects. We investigated the responses of plants to elevated kiwifruit TPS1 activity at the transcriptional level, using transient expression of TPS1.2a in Nicotiana benthamiana leaves, followed by RNA-seq. Differentially expressed genes were identified as candidates for future functional analyses.
Collapse
Affiliation(s)
- Charlotte Voogd
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Auckland Mail Centre, Auckland, New Zealand
| | - Lara A. Brian
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Auckland Mail Centre, Auckland, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Auckland Mail Centre, Auckland, New Zealand
| |
Collapse
|
58
|
Ying P, Li C, Liu X, Xia R, Zhao M, Li J. Identification and molecular characterization of an IDA-like gene from litchi, LcIDL1, whose ectopic expression promotes floral organ abscission in Arabidopsis. Sci Rep 2016; 6:37135. [PMID: 27845425 PMCID: PMC5109030 DOI: 10.1038/srep37135] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/25/2016] [Indexed: 01/29/2023] Open
Abstract
Unexpected abscission of flowers or fruits is a major limiting factor for crop productivity. Key genes controlling abscission in plants, especially in popular fruit trees, are largely unknown. Here we identified a litchi (Litchi chinensis Sonn.) IDA-like (INFLORESCENCE DEFICIENT IN ABSCISSION-like) gene LcIDL1 as a potential key regulator of abscission. LcIDL1 encodes a peptide that shows the closest homology to Arabidopsis IDA, and is localized in cell membrane and cytoplasm. Real-time PCR analysis showed that the expression level of LcIDL1 accumulated gradually following flower abscission, and it was obviously induced by fruit abscission-promoting treatments. Transgenic plants expressing LcIDL1 in Arabidopsis revealed a role of LcIDL1 similar to IDA in promoting floral organ abscission. Moreover, ectopic expression of LcIDL1 in Arabidopsis activated the expression of abscission-related genes. Taken together, our findings provide evidence that LcIDL1 may act as a key regulator in control of abscission.
Collapse
Affiliation(s)
- Peiyuan Ying
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Caiqin Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Xuncheng Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Minglei Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, China Litchi Research Center, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
59
|
Royer M, Cohen D, Aubry N, Vendramin V, Scalabrin S, Cattonaro F, Bogeat-Triboulot MB, Hummel I. The build-up of osmotic stress responses within the growing root apex using kinematics and RNA-sequencing. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5961-5973. [PMID: 27702994 PMCID: PMC5100013 DOI: 10.1093/jxb/erw350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Molecular regulation of growth must include spatial and temporal coupling of cell production and cell expansion. The underlying mechanisms, especially under environmental challenge, remain obscure. Spatial patterns of cell processes make the root apex well suited to deciphering stress signaling pathways, and to investigating both processes. Kinematics and RNA-sequencing were used to analyze the immediate growth response of hydroponically grown Populus nigra cuttings submitted to osmotic stress. About 7400 genes and unannotated transcriptionally active regions were differentially expressed between the division and elongation zones. Following the onset of stress, growth decreased sharply, probably due to mechanical effects, before recovering partially. Stress impaired cell expansion over the apex, progressively shortened the elongation zone, and reduced the cell production rate. Changes in gene expression revealed that growth reduction was mediated by a shift in hormone homeostasis. Osmotic stress rapidly elicited auxin, ethylene, and abscisic acid. When growth restabilized, transcriptome remodeling became complex and zone specific, with the deployment of hormone signaling cascades, transcriptional regulators, and stress-responsive genes. Most transcriptional regulations fit growth reduction, but stress also promoted expression of some growth effectors, including aquaporins and expansins Together, osmotic stress interfered with growth by activating regulatory proteins rather than by repressing the machinery of expansive growth.
Collapse
Affiliation(s)
- Mathilde Royer
- UMR EEF, INRA, Université de Lorraine, 54280 Champenoux, France
| | - David Cohen
- UMR EEF, INRA, Université de Lorraine, 54280 Champenoux, France
| | - Nathalie Aubry
- UMR EEF, INRA, Université de Lorraine, 54280 Champenoux, France
| | | | | | | | | | - Irène Hummel
- UMR EEF, INRA, Université de Lorraine, 54280 Champenoux, France
| |
Collapse
|
60
|
Rabiger DS, Taylor JM, Spriggs A, Hand ML, Henderson ST, Johnson SD, Oelkers K, Hrmova M, Saito K, Suzuki G, Mukai Y, Carroll BJ, Koltunow AMG. Generation of an integrated Hieracium genomic and transcriptomic resource enables exploration of small RNA pathways during apomixis initiation. BMC Biol 2016; 14:86. [PMID: 27716180 PMCID: PMC5054587 DOI: 10.1186/s12915-016-0311-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/21/2016] [Indexed: 11/23/2022] Open
Abstract
Background Application of apomixis, or asexual seed formation, in crop breeding would allow rapid fixation of complex traits, economizing improved crop delivery. Identification of apomixis genes is confounded by the polyploid nature, high genome complexity and lack of genomic sequence integration with reproductive tissue transcriptomes in most apomicts. Results A genomic and transcriptomic resource was developed for Hieracium subgenus Pilosella (Asteraceae) which incorporates characterized sexual, apomictic and mutant apomict plants exhibiting reversion to sexual reproduction. Apomicts develop additional female gametogenic cells that suppress the sexual pathway in ovules. Disrupting small RNA pathways in sexual Arabidopsis also induces extra female gametogenic cells; therefore, the resource was used to examine if changes in small RNA pathways correlate with apomixis initiation. An initial characterization of small RNA pathway genes within Hieracium was undertaken, and ovary-expressed ARGONAUTE genes were identified and cloned. Comparisons of whole ovary transcriptomes from mutant apomicts, relative to the parental apomict, revealed that differentially expressed genes were enriched for processes involved in small RNA biogenesis and chromatin silencing. Small RNA profiles within mutant ovaries did not reveal large-scale alterations in composition or length distributions; however, a small number of differentially expressed, putative small RNA targets were identified. Conclusions The established Hieracium resource represents a substantial contribution towards the investigation of early sexual and apomictic female gamete development, and the generation of new candidate genes and markers. Observed changes in small RNA targets and biogenesis pathways within sexual and apomictic ovaries will underlie future functional research into apomixis initiation in Hieracium. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0311-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David S Rabiger
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Private Bag 2, Glen Osmond, South Australia, 5064, Australia
| | - Jennifer M Taylor
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Bellenden Street, Crace, Australian Capital Territory, 2911, Australia
| | - Andrew Spriggs
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Bellenden Street, Crace, Australian Capital Territory, 2911, Australia
| | - Melanie L Hand
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Private Bag 2, Glen Osmond, South Australia, 5064, Australia
| | - Steven T Henderson
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Private Bag 2, Glen Osmond, South Australia, 5064, Australia
| | - Susan D Johnson
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Private Bag 2, Glen Osmond, South Australia, 5064, Australia
| | - Karsten Oelkers
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Private Bag 2, Glen Osmond, South Australia, 5064, Australia
| | - Maria Hrmova
- Australian Centre for Plant Functional Genomics, University of Adelaide PMB 1, Glen Osmond, South Australia, 5064, Australia
| | - Keisuke Saito
- Division of Natural Science, Osaka Kyoiku University, Osaka, 582-8582, Japan
| | - Go Suzuki
- Division of Natural Science, Osaka Kyoiku University, Osaka, 582-8582, Japan
| | - Yasuhiko Mukai
- Division of Natural Science, Osaka Kyoiku University, Osaka, 582-8582, Japan
| | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Anna M G Koltunow
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, Private Bag 2, Glen Osmond, South Australia, 5064, Australia.
| |
Collapse
|
61
|
Ghosh R, Mishra RC, Choi B, Kwon YS, Bae DW, Park SC, Jeong MJ, Bae H. Exposure to Sound Vibrations Lead to Transcriptomic, Proteomic and Hormonal Changes in Arabidopsis. Sci Rep 2016; 6:33370. [PMID: 27665921 PMCID: PMC5036088 DOI: 10.1038/srep33370] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/22/2016] [Indexed: 11/09/2022] Open
Abstract
Sound vibration (SV) is considered as an external mechanical force that modulates plant growth and development like other mechanical stimuli (e.g., wind, rain, touch and vibration). A number of previous and recent studies reported developmental responses in plants tailored against SV of varied frequencies. This strongly suggests the existence of sophisticated molecular mechanisms for SV perception and signal transduction. Despite this there exists a huge gap in our understanding regarding the SV-mediated molecular alterations, which is a prerequisite to gain insight into SV-mediated plant development. Herein, we investigated the global gene expression changes in Arabidopsis thaliana upon treatment with five different single frequencies of SV at constant amplitude for 1 h. As a next step, we also studied the SV-mediated proteomic changes in Arabidopsis. Data suggested that like other stimuli, SV also activated signature cellular events, for example, scavenging of reactive oxygen species (ROS), alteration of primary metabolism, and hormonal signaling. Phytohormonal analysis indicated that SV-mediated responses were, in part, modulated by specific alterations in phytohormone levels; especially salicylic acid (SA). Notably, several touch regulated genes were also up-regulated by SV treatment suggesting a possible molecular crosstalk among the two mechanical stimuli, sound and touch. Overall, these results provide a molecular basis to SV triggered global transcriptomic, proteomic and hormonal changes in plant.
Collapse
Affiliation(s)
- Ritesh Ghosh
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Bosung Choi
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Young Sang Kwon
- Environmental Biology and Chemistry Center, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Dong Won Bae
- Central Instrument Facility, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Soo-Chul Park
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Mi-Jeong Jeong
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
62
|
Davin N, Edger PP, Hefer CA, Mizrachi E, Schuetz M, Smets E, Myburg AA, Douglas CJ, Schranz ME, Lens F. Functional network analysis of genes differentially expressed during xylogenesis in soc1ful woody Arabidopsis plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:376-90. [PMID: 26952251 DOI: 10.1111/tpj.13157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 05/21/2023]
Abstract
Many plant genes are known to be involved in the development of cambium and wood, but how the expression and functional interaction of these genes determine the unique biology of wood remains largely unknown. We used the soc1ful loss of function mutant - the woodiest genotype known in the otherwise herbaceous model plant Arabidopsis - to investigate the expression and interactions of genes involved in secondary growth (wood formation). Detailed anatomical observations of the stem in combination with mRNA sequencing were used to assess transcriptome remodeling during xylogenesis in wild-type and woody soc1ful plants. To interpret the transcriptome changes, we constructed functional gene association networks of differentially expressed genes using the STRING database. This analysis revealed functionally enriched gene association hubs that are differentially expressed in herbaceous and woody tissues. In particular, we observed the differential expression of genes related to mechanical stress and jasmonate biosynthesis/signaling during wood formation in soc1ful plants that may be an effect of greater tension within woody tissues. Our results suggest that habit shifts from herbaceous to woody life forms observed in many angiosperm lineages could have evolved convergently by genetic changes that modulate the gene expression and interaction network, and thereby redeploy the conserved wood developmental program.
Collapse
Affiliation(s)
- Nicolas Davin
- Naturalis Biodiversity Center, Leiden University, PO Box 9517, 2300 RA Leiden, The Netherlands
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48823, USA
| | - Charles A Hefer
- Department of Botany, University of British Columbia, Department of Botany, 6270 University Blvd, Vancouver BC V6T 1Z4, Canada
- Biotechnology Platform, Agricultural Research Council, Private Bag X5, Onderstepoort, 0110, South Africa
| | - Eshchar Mizrachi
- Department of Genetics, University of Pretoria, PO Box X20, Pretoria, 0028, South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Mathias Schuetz
- Department of Botany, University of British Columbia, Department of Botany, 6270 University Blvd, Vancouver BC V6T 1Z4, Canada
- Michael Smith Laboratories, University of British Columbia, 6270 University boulevard, V6T 1Z4, Vancouver, BC, Canada
| | - Erik Smets
- Naturalis Biodiversity Center, Leiden University, PO Box 9517, 2300 RA Leiden, The Netherlands
- Ecology, Evolution and Biodiversity Conservation Section, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31 box 2435, 3001 Leuven, Belgium
| | - Alexander A Myburg
- Department of Genetics, University of Pretoria, PO Box X20, Pretoria, 0028, South Africa
- Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Carl J Douglas
- Department of Botany, University of British Columbia, Department of Botany, 6270 University Blvd, Vancouver BC V6T 1Z4, Canada
| | - Michael E Schranz
- Biosystematics Group, Wageningen University, PO Box 16, 6700AP Wageningen, The Netherlands
| | - Frederic Lens
- Naturalis Biodiversity Center, Leiden University, PO Box 9517, 2300 RA Leiden, The Netherlands
| |
Collapse
|
63
|
Luo J, Zhou J, Li H, Shi W, Polle A, Lu M, Sun X, Luo ZB. Global poplar root and leaf transcriptomes reveal links between growth and stress responses under nitrogen starvation and excess. TREE PHYSIOLOGY 2015; 35:1283-302. [PMID: 26420789 DOI: 10.1093/treephys/tpv091] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/10/2015] [Indexed: 05/23/2023]
Abstract
Nitrogen (N) starvation and excess have distinct effects on N uptake and metabolism in poplars, but the global transcriptomic changes underlying morphological and physiological acclimation to altered N availability are unknown. We found that N starvation stimulated the fine root length and surface area by 54 and 49%, respectively, decreased the net photosynthetic rate by 15% and reduced the concentrations of NH4+, NO3(-) and total free amino acids in the roots and leaves of Populus simonii Carr. in comparison with normal N supply, whereas N excess had the opposite effect in most cases. Global transcriptome analysis of roots and leaves elucidated the specific molecular responses to N starvation and excess. Under N starvation and excess, gene ontology (GO) terms related to ion transport and response to auxin stimulus were enriched in roots, whereas the GO term for response to abscisic acid stimulus was overrepresented in leaves. Common GO terms for all N treatments in roots and leaves were related to development, N metabolism, response to stress and hormone stimulus. Approximately 30-40% of the differentially expressed genes formed a transcriptomic regulatory network under each condition. These results suggest that global transcriptomic reprogramming plays a key role in the morphological and physiological acclimation of poplar roots and leaves to N starvation and excess.
Collapse
Affiliation(s)
- Jie Luo
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jing Zhou
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Hong Li
- Key Laboratory of Applied Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenguang Shi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Andrea Polle
- Büsgen-Institute, Department of Forest Botany and Tree Physiology, Georg-August University, Büsgenweg 2, 37077 Göttingen, Germany
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaomei Sun
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhi-Bin Luo
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
64
|
Kurth F, Feldhahn L, Bönn M, Herrmann S, Buscot F, Tarkka MT. Large scale transcriptome analysis reveals interplay between development of forest trees and a beneficial mycorrhiza helper bacterium. BMC Genomics 2015; 16:658. [PMID: 26328611 PMCID: PMC4557895 DOI: 10.1186/s12864-015-1856-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 08/18/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Pedunculate oak, Quercus robur is an abundant forest tree species that hosts a large and diverse community of beneficial ectomycorrhizal fungi (EMFs), whereby ectomycorrhiza (EM) formation is stimulated by mycorrhiza helper bacteria such as Streptomyces sp. AcH 505. Oaks typically grow rhythmically, with alternating root flushes (RFs) and shoot flushes (SFs). We explored the poorly understood mechanisms by which oaks integrate signals induced by their beneficial microbes and endogenous rhythmic growth at the level of gene expression. To this end, we compared transcript profiles of oak microcuttings at RF and SF during interactions with AcH 505 alone and in combination with the basidiomycetous EMF Piloderma croceum. RESULTS The local root and distal leaf responses to the microorganisms differed substantially. More genes involved in the recognition of bacteria and fungi, defence and cell wall remodelling related transcription factors (TFs) were differentially expressed in the roots than in the leaves of oaks. In addition, interaction with AcH 505 and P. croceum affected the expression of a higher number of genes during SF than during RF, including AcH 505 elicited defence response, which was attenuated by co-inoculation with P. croceum in the roots during SF. Genes encoding leucine-rich receptor-like kinases (LRR-RLKs) and proteins (LRR-RLPs), LRR containing defence response regulators, TFs from bZIP, ERF and WRKY families, xyloglucan cell wall transglycolases/hydrolases and exordium proteins were differentially expressed in both roots and leaves of plants treated with AcH 505. Only few genes, including specific RLKs and TFs, were induced in both AcH 505 and co-inoculation treatments. CONCLUSION Treatment with AcH 505 induces and maintains the expression levels of signalling genes encoding candidate receptor protein kinases and TFs and leads to differential expression of cell wall modification related genes in pedunculate oak microcuttings. Local gene expression response to AcH 505 alone and in combination with P. croceum are more pronounced when roots are in resting stages, possibly due to the fact that non growing roots re-direct their activity towards plant defence rather than growth.
Collapse
Affiliation(s)
- Florence Kurth
- UFZ - Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany.
| | - Lasse Feldhahn
- UFZ - Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany.
| | - Markus Bönn
- UFZ - Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle - Jena - Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany.
| | - Sylvie Herrmann
- UFZ - Helmholtz Centre for Environmental Research, Department of Community Ecology, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle - Jena - Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany.
| | - François Buscot
- UFZ - Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle - Jena - Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany.
| | - Mika T Tarkka
- UFZ - Helmholtz Centre for Environmental Research, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120, Halle/Saale, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle - Jena - Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany.
| |
Collapse
|
65
|
Schröder F, Lisso J, Obata T, Erban A, Maximova E, Giavalisco P, Kopka J, Fernie AR, Willmitzer L, Müssig C. Consequences of induced brassinosteroid deficiency in Arabidopsis leaves. BMC PLANT BIOLOGY 2014; 14:309. [PMID: 25403461 PMCID: PMC4240805 DOI: 10.1186/s12870-014-0309-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/27/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND The identification of brassinosteroid (BR) deficient and BR insensitive mutants provided conclusive evidence that BR is a potent growth-promoting phytohormone. Arabidopsis mutants are characterized by a compact rosette structure, decreased plant height and reduced root system, delayed development, and reduced fertility. Cell expansion, cell division, and multiple developmental processes depend on BR. The molecular and physiological basis of BR action is diverse. The BR signalling pathway controls the activity of transcription factors, and numerous BR responsive genes have been identified. The analysis of dwarf mutants, however, may to some extent reveal phenotypic changes that are an effect of the altered morphology and physiology. This restriction holds particularly true for the analysis of established organs such as rosette leaves. RESULTS In this study, the mode of BR action was analysed in established leaves by means of two approaches. First, an inhibitor of BR biosynthesis (brassinazole) was applied to 21-day-old wild-type plants. Secondly, BR complementation of BR deficient plants, namely CPD (constitutive photomorphogenic dwarf)-antisense and cbb1 (cabbage1) mutant plants was stopped after 21 days. BR action in established leaves is associated with stimulated cell expansion, an increase in leaf index, starch accumulation, enhanced CO2 release by the tricarboxylic acid cycle, and increased biomass production. Cell number and protein content were barely affected. CONCLUSION Previous analysis of BR promoted growth focused on genomic effects. However, the link between growth and changes in gene expression patterns barely provided clues to the physiological and metabolic basis of growth. Our study analysed comprehensive metabolic data sets of leaves with altered BR levels. The data suggest that BR promoted growth may depend on the increased provision and use of carbohydrates and energy. BR may stimulate both anabolic and catabolic pathways.
Collapse
Affiliation(s)
- Florian Schröder
- />University of Potsdam, c/o Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Janina Lisso
- />University of Potsdam, c/o Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Toshihiro Obata
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alexander Erban
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Eugenia Maximova
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Patrick Giavalisco
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Joachim Kopka
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Lothar Willmitzer
- />Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Carsten Müssig
- />University of Potsdam, c/o Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
66
|
Moran Lauter AN, Peiffer GA, Yin T, Whitham SA, Cook D, Shoemaker RC, Graham MA. Identification of candidate genes involved in early iron deficiency chlorosis signaling in soybean (Glycine max) roots and leaves. BMC Genomics 2014; 15:702. [PMID: 25149281 PMCID: PMC4161901 DOI: 10.1186/1471-2164-15-702] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/12/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Iron is an essential micronutrient for all living things, required in plants for photosynthesis, respiration and metabolism. A lack of bioavailable iron in soil leads to iron deficiency chlorosis (IDC), causing a reduction in photosynthesis and interveinal yellowing of leaves. Soybeans (Glycine max (L.) Merr.) grown in high pH soils often suffer from IDC, resulting in substantial yield losses. Iron efficient soybean cultivars maintain photosynthesis and have higher yields under IDC-promoting conditions than inefficient cultivars. RESULTS To capture signaling between roots and leaves and identify genes acting early in the iron efficient cultivar Clark, we conducted a RNA-Seq study at one and six hours after replacing iron sufficient hydroponic media (100 μM iron(III) nitrate nonahydrate) with iron deficient media (50 μM iron(III) nitrate nonahydrate). At one hour of iron stress, few genes were differentially expressed in leaves but many were already changing expression in roots. By six hours, more genes were differentially expressed in the leaves, and a massive shift was observed in the direction of gene expression in both roots and leaves. Further, there was little overlap in differentially expressed genes identified in each tissue and time point. CONCLUSIONS Genes involved in hormone signaling, regulation of DNA replication and iron uptake utilization are key aspects of the early iron-efficiency response. We observed dynamic gene expression differences between roots and leaves, suggesting the involvement of many transcription factors in eliciting rapid changes in gene expression. In roots, genes involved iron uptake and development of Casparian strips were induced one hour after iron stress. In leaves, genes involved in DNA replication and sugar signaling responded to iron deficiency. The differentially expressed genes (DEGs) and signaling components identified here represent new targets for soybean improvement.
Collapse
Affiliation(s)
- Adrienne N Moran Lauter
- />USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, 1565 Agronomy Hall, Ames, IA 50011 USA
| | - Gregory A Peiffer
- />USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, 1565 Agronomy Hall, Ames, IA 50011 USA
| | - Tengfei Yin
- />Department of Statistics, Iowa State University, Ames, Iowa 50011 USA
| | - Steven A Whitham
- />Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011 USA
| | - Dianne Cook
- />Department of Statistics, Iowa State University, Ames, Iowa 50011 USA
| | - Randy C Shoemaker
- />USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, 1565 Agronomy Hall, Ames, IA 50011 USA
- />Department of Agronomy, Iowa State University, Ames, Iowa 50011 USA
| | - Michelle A Graham
- />USDA-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, 1565 Agronomy Hall, Ames, IA 50011 USA
- />Department of Agronomy, Iowa State University, Ames, Iowa 50011 USA
| |
Collapse
|
67
|
Aya K, Hobo T, Sato-Izawa K, Ueguchi-Tanaka M, Kitano H, Matsuoka M. A novel AP2-type transcription factor, SMALL ORGAN SIZE1, controls organ size downstream of an auxin signaling pathway. PLANT & CELL PHYSIOLOGY 2014; 55:897-912. [PMID: 24486766 DOI: 10.1093/pcp/pcu023] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The organ size of flowering plants is determined by two post-embryonic developmental events: cell proliferation and cell expansion. In this study, we identified a new rice loss-of-function mutant, small organ size1 (smos1), that decreases the final size of various organs due to decreased cell size and abnormal microtubule orientation. SMOS1 encodes an unusual APETALA2 (AP2)-type transcription factor with an imperfect AP2 domain, and its product belongs to the basal AINTEGUMENTA (ANT) lineage, including WRINKLED1 (WRI1) and ADAP. SMOS1 expression was induced by exogenous auxin treatment, and the auxin response element (AuxRE) of the SMOS1 promoter acts as a cis-motif through interaction with auxin response factor (ARF). Furthermore, a functional fluorophore-tagged SMOS1 was localized to the nucleus, supporting the role of SMOS1 as a transcriptional regulator for organ size control. Microarray analysis showed that the smos1 mutation represses expression of several genes involved in microtubule-based movement and DNA replication. Among the down-regulated genes, we demonstrated by gel-shift and chromatin immunoprecipitation (ChIP) experiments that OsPHI-1, which is involved in cell expansion, is a target of SMOS1. SMOS1 homologs in early-diverged land plants partially rescued the smos1 phenotype of rice. We propose that SMOS1 acts as an auxin-dependent regulator for cell expansion during organ size control, and that its function is conserved among land plants.
Collapse
Affiliation(s)
- Koichiro Aya
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601 Japan
| | | | | | | | | | | |
Collapse
|
68
|
Takahashi M, Furuhashi T, Ishikawa N, Horiguchi G, Sakamoto A, Tsukaya H, Morikawa H. Nitrogen dioxide regulates organ growth by controlling cell proliferation and enlargement in Arabidopsis. THE NEW PHYTOLOGIST 2014; 201:1304-1315. [PMID: 24354517 DOI: 10.1111/nph.12609] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/20/2013] [Indexed: 05/08/2023]
Abstract
• To gain more insight into the physiological function of nitrogen dioxide (NO₂), we investigated the effects of exogenous NO₂ on growth in Arabidopsis thaliana. • Plants were grown in air without NO₂ for 1 wk after sowing and then grown for 1-4 wk in air with (designated treated plants) or without (control plants) NO₂. Plants were irrigated semiweekly with a nutrient solution containing 19.7 mM nitrate and 10.3 mM ammonium. • Five-week-old plants treated with 50 ppb NO₂ showed a ≤ 2.8-fold increase in biomass relative to controls. Treated plants also showed early flowering. The magnitude of the effects of NO₂ on leaf expansion, cell proliferation and enlargement was greater in developing than in maturing leaves. Leaf areas were 1.3-8.4 times larger on treated plants than corresponding leaves on control plants. The NO₂-induced increase in leaf size was largely attributable to cell proliferation in developing leaves, but was attributable to both cell proliferation and enlargement in maturing leaves. The expression of different sets of genes for cell proliferation and/or enlargement was induced by NO₂, but depended on the leaf developmental stage. • Collectively, these results indicated that NO₂ regulates organ growth by controlling cell proliferation and enlargement.
Collapse
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - Takamasa Furuhashi
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - Naoko Ishikawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Atsushi Sakamoto
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| |
Collapse
|
69
|
Liu B, Butenko MA, Shi CL, Bolivar JL, Winge P, Stenvik GE, Vie AK, Leslie ME, Brembu T, Kristiansen W, Bones AM, Patterson SE, Liljegren SJ, Aalen RB. NEVERSHED and INFLORESCENCE DEFICIENT IN ABSCISSION are differentially required for cell expansion and cell separation during floral organ abscission in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5345-5357. [PMID: 23963677 DOI: 10.1093/jxb/ert232] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Floral organ shedding is a cell separation event preceded by cell-wall loosening and generally accompanied by cell expansion. Mutations in NEVERSHED (NEV) or INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) block floral organ abscission in Arabidopsis thaliana. NEV encodes an ADP-ribosylation factor GTPase-activating protein, and cells of nev mutant flowers display membrane-trafficking defects. IDA encodes a secreted peptide that signals through the receptor-like kinases HAESA (HAE) and HAESA-LIKE2 (HSL2). Analyses of single and double mutants revealed unique features of the nev and ida phenotypes. Cell-wall loosening was delayed in ida flowers. In contrast, nev and nev ida mutants displayed ectopic enlargement of abscission zone (AZ) cells, indicating that cell expansion alone is not sufficient to trigger organ loss. These results suggest that NEV initially prevents precocious cell expansion but is later integral for cell separation. IDA is involved primarily in the final cell separation step. A mutation in KNOTTED-LIKE FROM ARABIDOPSIS THALIANA1 (KNAT1), a suppressor of the ida mutant, could not rescue the abscission defects of nev mutant flowers, indicating that NEV-dependent activity downstream of KNAT1 is required. Transcriptional profiling of mutant AZs identified gene clusters regulated by IDA-HAE/HSL2. Several genes were more strongly downregulated in nev-7 compared with ida and hae hsl2 mutants, consistent with the rapid inhibition of organ loosening in nev mutants, and the overlapping roles of NEV and IDA in cell separation. A model of the crosstalk between the IDA signalling pathway and NEV-mediated membrane traffic during floral organ abscission is presented.
Collapse
Affiliation(s)
- Bin Liu
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Schmidt R, Schippers JHM, Mieulet D, Obata T, Fernie AR, Guiderdoni E, Mueller-Roeber B. MULTIPASS, a rice R2R3-type MYB transcription factor, regulates adaptive growth by integrating multiple hormonal pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:258-73. [PMID: 23855375 DOI: 10.1111/tpj.12286] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 07/07/2013] [Accepted: 07/10/2013] [Indexed: 05/20/2023]
Abstract
Growth regulation is an important aspect of plant adaptation during environmental perturbations. Here, the role of MULTIPASS (OsMPS), an R2R3-type MYB transcription factor of rice, was explored. OsMPS is induced by salt stress and expressed in vegetative and reproductive tissues. Over-expression of OsMPS reduces growth under non-stress conditions, while knockdown plants display increased biomass. OsMPS expression is induced by abscisic acid and cytokinin, but is repressed by auxin, gibberellin and brassinolide. Growth retardation caused by OsMPS over-expression is partially restored by auxin application. Expression profiling revealed that OsMPS negatively regulates the expression of EXPANSIN (EXP) and cell-wall biosynthesis as well as phytohormone signaling genes. Furthermore, the expression of OsMPS-dependent genes is regulated by auxin, cytokinin and abscisic acid. Moreover, we show that OsMPS is a direct upstream regulator of OsEXPA4, OsEXPA8, OsEXPB2, OsEXPB3, OsEXPB6 and the endoglucanase genes OsGLU5 and OsGLU14. The multiple responses of OsMPS and its target genes to various hormones suggest an integrative function of OsMPS in the cross-talk between phytohormones and the environment to regulate adaptive growth.
Collapse
Affiliation(s)
- Romy Schmidt
- Institute of Biochemistry and Biology, University of Potsdam, Karl Liebknecht Straße 24-25, Haus 20, 14476, Potsdam, Germany; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | | | | | | | | | | | | |
Collapse
|
71
|
Lisso J, Schröder F, Müssig C. EXO modifies sucrose and trehalose responses and connects the extracellular carbon status to growth. FRONTIERS IN PLANT SCIENCE 2013; 4:219. [PMID: 23805150 PMCID: PMC3691544 DOI: 10.3389/fpls.2013.00219] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/06/2013] [Indexed: 05/21/2023]
Abstract
Plants have the capacity to adapt growth to changing environmental conditions. This implies the modulation of metabolism according to the availability of carbon (C). Particular interest in the response to the C availability is based on the increasing atmospheric levels of CO2. Several regulatory pathways that link the C status to growth have emerged. The extracellular EXO protein is essential for cell expansion and promotes shoot and root growth. Homologous proteins were identified in evolutionarily distant green plants. We show here that the EXO protein connects growth with C responses. The exo mutant displayed altered responses to exogenous sucrose supplemented to the growth medium. Impaired growth of the mutant in synthetic medium was associated with the accumulation of starch and anthocyanins, altered expression of sugar-responsive genes, and increased abscisic acid levels. Thus, EXO modulates several responses related to the C availability. Growth retardation on medium supplemented with 2-deoxy-glucose, mannose, and palatinose was similar to the wild type. Trehalose feeding stimulated root growth and shoot biomass production of exo plants whereas it inhibited growth of the wild type. The phenotypic features of the exo mutant suggest that apoplastic processes coordinate growth and C responses.
Collapse
Affiliation(s)
| | | | - Carsten Müssig
- *Correspondence: Carsten Müssig, Department Lothar Willmitzer, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany e-mail:
| |
Collapse
|
72
|
Navarre C, De Muynck B, Alves G, Vertommen D, Magy B, Boutry M. Identification, gene cloning and expression of serine proteases in the extracellular medium of Nicotiana tabacum cells. PLANT CELL REPORTS 2012; 31:1959-68. [PMID: 22801865 DOI: 10.1007/s00299-012-1308-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/12/2012] [Accepted: 06/19/2012] [Indexed: 05/22/2023]
Abstract
Recombinant proteins secreted from plant suspension cells into the medium are susceptible to degradation by host proteases secreted during growth. Some degradation phenomena are inhibited in the presence of various protease inhibitors, such as EDTA or AEBSF/PMSF, suggesting the presence of different classes of proteases in the medium. Here, we report the results of a proteomic analysis of the extracellular medium of a Nicotiana tabacum bright yellow 2 culture. Several serine proteases belonging to a Solanaceae-specific subtilase subfamily were identified and the genes for four cloned. Their expression at the RNA level during culture growth varied depending on the gene. An in-gel protease assay (zymography) demonstrated serine protease activity in the extracellular medium from cultures. This was confirmed by testing the degradation of an antibody added to the culture medium. This particular subtilase subfamily, therefore, represents an interesting target for gene silencing to improve recombinant protein production. Key message The extracellular medium of Nicotiana tabacum suspension cells contains serine proteases that degrade antibodies.
Collapse
Affiliation(s)
- Catherine Navarre
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-5, 1348, Louvain la Neuve, Belgium
| | | | | | | | | | | |
Collapse
|
73
|
Schröder F, Lisso J, Müssig C. Expression pattern and putative function of EXL1 and homologous genes in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2012; 7:22-7. [PMID: 22301961 PMCID: PMC3357360 DOI: 10.4161/psb.7.1.18369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The Arabidopsis EXORDIUM-LIKE1 (EXL1) gene (At1g35140) is required for adaptation to carbon (C)- and energy-limiting growth conditions. An exl1 loss of function mutant showed diminished biomass production in a low total irradiance growth regime, impaired survival during extended night, and impaired survival of anoxia stress. We show here additional expression data and discuss the putative roles of EXL1. We hypothesize that EXL1 suppresses brassinosteroid-dependent growth and controls C allocation in the cell. In-depth expression analysis of homologous genes suggests that the EXL2 (At5g64260) and EXL4 (At5g09440) genes play similar roles.
Collapse
Affiliation(s)
- Florian Schröder
- Universität Potsdam, Max Planck Institute of Molecular Plant Physiology, Department Lothar Willmitzer; Golm, Germany
| | - Janina Lisso
- Universität Potsdam, Max Planck Institute of Molecular Plant Physiology, Department Lothar Willmitzer; Golm, Germany
| | | |
Collapse
|
74
|
Schröder F, Lisso J, Müssig C. EXORDIUM-LIKE1 promotes growth during low carbon availability in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:1620-30. [PMID: 21543728 PMCID: PMC3135934 DOI: 10.1104/pp.111.177204] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 05/01/2011] [Indexed: 05/18/2023]
Abstract
Little is known about genes that control growth and development under low carbon (C) availability. The Arabidopsis (Arabidopsis thaliana) EXORDIUM-LIKE1 (EXL1) gene (At1g35140) was identified as a brassinosteroid-regulated gene in a previous study. We show here that the EXL1 protein is required for adaptation to C- and energy-limiting growth conditions. In-depth analysis of EXL1 transcript levels under various environmental conditions indicated that EXL1 expression is controlled by the C and energy status. Sugar starvation, extended night, and anoxia stress induced EXL1 gene expression. The C status also determined EXL1 protein levels. These results suggested that EXL1 is involved in the C-starvation response. Phenotypic changes of an exl1 loss-of-function mutant became evident only under corresponding experimental conditions. The mutant showed diminished biomass production in a short-day/low-light growth regime, impaired survival during extended night, and impaired survival of anoxia stress. Basic metabolic processes and signaling pathways are presumed to be barely impaired in exl1, because the mutant showed wild-type levels of major sugars, and transcript levels of only a few genes such as QUA-QUINE STARCH were altered. Our data suggest that EXL1 is part of a regulatory pathway that controls growth and development when C and energy supply is poor.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Adaptation, Physiological/radiation effects
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/radiation effects
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Biomass
- Blotting, Western
- Brassinosteroids
- Carbon/pharmacology
- Cholestanols/pharmacology
- Darkness
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/radiation effects
- Light
- Mutation/genetics
- Phenotype
- Photoperiod
- Plant Leaves/drug effects
- Plant Leaves/growth & development
- Plant Leaves/radiation effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Steroids, Heterocyclic/pharmacology
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Stress, Physiological/radiation effects
- Sucrose/pharmacology
Collapse
Affiliation(s)
| | | | - Carsten Müssig
- Universität Potsdam, Max Planck Institute of Molecular Plant Physiology, Department Lothar Willmitzer, 14476 Golm, Germany (F.S., J.L.); GoFORSYS, Universität Potsdam, 14476 Golm, Germany (C.M.)
| |
Collapse
|
75
|
Sun Y, Fan XY, Cao DM, Tang W, He K, Zhu JY, He JX, Bai MY, Zhu S, Oh E, Patil S, Kim TW, Ji H, Wong WH, Rhee SY, Wang ZY. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell 2010; 19:765-77. [PMID: 21074725 DOI: 10.1016/j.devcel.2010.10.010] [Citation(s) in RCA: 654] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 09/15/2010] [Accepted: 10/04/2010] [Indexed: 11/16/2022]
Abstract
Brassinosteroids (BRs) regulate a wide range of developmental and physiological processes in plants through a receptor-kinase signaling pathway that controls the BZR transcription factors. Here, we use transcript profiling and chromatin-immunoprecipitation microarray (ChIP-chip) experiments to identify 953 BR-regulated BZR1 target (BRBT) genes. Functional studies of selected BRBTs further demonstrate roles in BR promotion of cell elongation. The BRBT genes reveal numerous molecular links between the BR-signaling pathway and downstream components involved in developmental and physiological processes. Furthermore, the results reveal extensive crosstalk between BR and other hormonal and light-signaling pathways at multiple levels. For example, BZR1 not only controls the expression of many signaling components of other hormonal and light pathways but also coregulates common target genes with light-signaling transcription factors. Our results provide a genomic map of steroid hormone actions in plants that reveals a regulatory network that integrates hormonal and light-signaling pathways for plant growth regulation.
Collapse
Affiliation(s)
- Yu Sun
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|