51
|
Brown GC, Heneka MT. The endotoxin hypothesis of Alzheimer's disease. Mol Neurodegener 2024; 19:30. [PMID: 38561809 PMCID: PMC10983749 DOI: 10.1186/s13024-024-00722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Lipopolysaccharide (LPS) constitutes much of the surface of Gram-negative bacteria, and if LPS enters the human body or brain can induce inflammation and act as an endotoxin. We outline the hypothesis here that LPS may contribute to the pathophysiology of Alzheimer's disease (AD) via peripheral infections or gut dysfunction elevating LPS levels in blood and brain, which promotes: amyloid pathology, tau pathology and microglial activation, contributing to the neurodegeneration of AD. The evidence supporting this hypothesis includes: i) blood and brain levels of LPS are elevated in AD patients, ii) AD risk factors increase LPS levels or response, iii) LPS induces Aβ expression, aggregation, inflammation and neurotoxicity, iv) LPS induces TAU phosphorylation, aggregation and spreading, v) LPS induces microglial priming, activation and neurotoxicity, and vi) blood LPS induces loss of synapses, neurons and memory in AD mouse models, and cognitive dysfunction in humans. However, to test the hypothesis, it is necessary to test whether reducing blood LPS reduces AD risk or progression. If the LPS endotoxin hypothesis is correct, then treatments might include: reducing infections, changing gut microbiome, reducing leaky gut, decreasing blood LPS, or blocking LPS response.
Collapse
Affiliation(s)
- Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
52
|
Ngo HKC, Le H, Ayer SJ, Crotty GF, Schwarzschild MA, Bakshi R. Short-term lipopolysaccharide treatment leads to astrocyte activation in LRRK2 G2019S knock-in mice without loss of dopaminergic neurons. RESEARCH SQUARE 2024:rs.3.rs-4076333. [PMID: 38562908 PMCID: PMC10984011 DOI: 10.21203/rs.3.rs-4076333/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background The G2019S mutation of LRRK2, which enhances kinase activity of the protein, confers a substantial risk of developing Parkinson's disease (PD). However, the mutation demonstrates incomplete penetrance, suggesting the involvement of other genetic or environmental modulating factors. Here, we investigated whether LRRK2 G2019S knock-in (KI) mice treated with the inflammogen lipopolysaccharide (LPS) could model LRRK2 PD. Results We found that short-term (2 weeks) treatment with LPS did not result in the loss of dopaminergic neurons in either LRRK2 G2019S KI or wild-type (WT) mice. Compared with WT mice, LRRK2 G2019S-KI mice showed incomplete recovery from LPS-induced weight loss. In LRRK2 G2019S KI mice, LPS treatment led to upregulated phosphorylation of LRRK2 at the autophosphorylation site Serine 1292, which is known as a direct readout of LRRK2 kinase activity. LPS treatment caused a greater increase in the activated astrocyte marker glial fibrillary acidic protein (GFAP) in the striatum and substantia nigra of LRRK2 G2019S mice than in those of WT mice. The administration of caffeine, which was recently identified as a biomarker of resistance to developing PD in individuals with LRRK2 mutations, attenuated LPS-induced astrocyte activation specifically in LRRK2 G2019S KI mice. Conclusions Our findings suggest that 2 weeks of exposure to LPS is not sufficient to cause dopaminergic neuronal loss in LRRK2 G2019S KI mice but rather results in increased astrocyte activation, which can be ameliorated by caffeine.
Collapse
|
53
|
Asejeje FO, Abiola MA, Adeyemo OA, Ogunro OB, Ajayi AM. Exogenous monosodium glutamate exacerbates lipopolysaccharide-induced neurobehavioral deficits, oxidative damage, neuroinflammation, and cholinergic dysfunction in rat brain. Neurosci Lett 2024; 825:137710. [PMID: 38432355 DOI: 10.1016/j.neulet.2024.137710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Extensive experimental evidence points to neuroinflammation and oxidative stress as major pathogenic events that initiate and drive the neurodegenerative process. Monosodium glutamate (MSG) is a widely used food additive in processed foods known for its umami taste-enhancing properties. However, concerns about its potential adverse effects on the brain have been raised. Thus, the present study investigated the impact of MSG on lipopolysaccharide (LPS)-induced neurotoxicity in rat brains. Wistar rats weighing between 180 g and 200 g were randomly allocated into four groups: control (received distilled water), MSG (received 1.5 g/kg/day), LPS (received 250 µg/kg/day), and LPS + MSG (received LPS, 250 µg/kg, and MSG, 1.5 g/kg). LPS was administered intraperitoneally for 7 days while MSG was administered orally for 14 days. Our results showed that MSG exacerbated LPS-induced impairment in locomotor and exploratory activities in rats. Similarly, MSG exacerbated LPS-induced oxidative stress as evidenced by increased levels of malondialdehyde (MDA) with a concomitant decrease in levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione-s-transferase (GST) in the brain tissue. In addition, MSG potentiated LPS-induced neuroinflammation, as indicated by increased levels of pro-inflammatory cytokines such as interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) as well as myeloperoxidase (MPO) and nitric oxide (NO) in the brain. Moreover, MSG aggravated LPS-induced cholinergic dysfunction, as demonstrated by increased activity of acetylcholinesterase (AChE) in the brain. Further, we found a large number of degenerative neurons widespread in hippocampal CA1, CA3 regions, cerebellum, and cortex according to H&E staining. Taken together, our findings suggest that MSG aggravates LPS-induced neurobehavioral deficits, oxidative stress, neuroinflammation, cholinergic dysfunction, and neurodegeneration in rat brains.
Collapse
Affiliation(s)
- Folake Olubukola Asejeje
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria.
| | - Michael Abayomi Abiola
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Oluwatobi Adewumi Adeyemo
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | | | - Abayomi Mayowa Ajayi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
54
|
Ganesan K, Rentsch P, Langdon A, Milham LT, Vissel B. Modeling sporadic Alzheimer's disease in mice by combining Apolipoprotein E4 risk gene with environmental risk factors. Front Aging Neurosci 2024; 16:1357405. [PMID: 38476659 PMCID: PMC10927790 DOI: 10.3389/fnagi.2024.1357405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Developing effective treatment for Alzheimer's disease (AD) remains a challenge. This can be partially attributed to the fact that the mouse models used in preclinical research largely replicate familial form of AD, while majority of human cases are sporadic; both forms differ widely in the onset and origin of pathology, therefore requiring specific/targeted treatments. Methods In this study, we aimed to model sporadic AD in mice by combining two of the many risk factors that are strongly implicated in AD: ApoE4, a major genetic risk factor, together with an inflammatory stimuli. Accordingly, we subjected ApoE4 knock in (KI) mice, expressing humanized ApoE4, to low doses of Lipopolysaccharide (LPS) injections (i.p, weekly, for 4 months). Results We assessed these animals for behavioral impairments at 6 months of age using Open Field, Y-maze, and Barnes Maze Test. LPS induced hypoactivity was observed in the Open Field and Y-maze test, whereas spatial learning and memory was intact. We then quantified differences in dendritic spine density, which is a strong correlate of AD. ApoE4KI mice showed a significant reduction in the number of spines after treatment with LPS, whereas there were no obvious differences in the total number of microglia and astrocytes. Discussion To conclude, in the current study the APoEe4 risk gene increases the vulnerability of hippocampal neurons to inflammation induced spine loss, laying a foundation for an early sporadic AD mouse model.
Collapse
Affiliation(s)
- Kiruthika Ganesan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Peggy Rentsch
- Centre for Neuroscience and Regenerative Medicine, St. Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- UNSW St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Alexander Langdon
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Luke T. Milham
- Centre for Neuroscience and Regenerative Medicine, St. Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- UNSW St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine, St. Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- UNSW St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
55
|
Cichońska D, Mazuś M, Kusiak A. Recent Aspects of Periodontitis and Alzheimer's Disease-A Narrative Review. Int J Mol Sci 2024; 25:2612. [PMID: 38473858 DOI: 10.3390/ijms25052612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Periodontitis is an inflammatory condition affecting the supporting structures of the teeth. Periodontal conditions may increase the susceptibility of individuals to various systemic illnesses, including Alzheimer's disease. Alzheimer's disease is a neurodegenerative condition characterized by a gradual onset and progressive deterioration, making it the primary cause of dementia, although the exact cause of the disease remains elusive. Both Alzheimer's disease and periodontitis share risk factors and clinical studies comparing the associations and occurrence of periodontitis among individuals with Alzheimer's disease have suggested a potential correlation between these conditions. Brains of individuals with Alzheimer's disease have substantiated the existence of microorganisms related to periodontitis, especially Porphyromonas gingivalis, which produces neurotoxic gingipains and may present the capability to breach the blood-brain barrier. Treponema denticola may induce tau hyperphosphorylation and lead to neuronal apoptosis. Lipopolysaccharides-components of bacterial cell membranes and mediators of inflammation-also have an impact on brain function. Further research could unveil therapeutic approaches targeting periodontal pathogens to potentially alleviate AD progression.
Collapse
Affiliation(s)
- Dominika Cichońska
- Department of Periodontology and Oral Mucosa Diseases, Medical University of Gdańsk, Orzeszkowej 18 St. 18, 80-208 Gdańsk, Poland
| | - Magda Mazuś
- Student Research Group of the Department of Periodontology and Oral Mucosa Diseases, Medical University of Gdańsk, Orzeszkowej 18 St. 18, 80-208 Gdańsk, Poland
| | - Aida Kusiak
- Department of Periodontology and Oral Mucosa Diseases, Medical University of Gdańsk, Orzeszkowej 18 St. 18, 80-208 Gdańsk, Poland
| |
Collapse
|
56
|
Gouveia F, Fonseca C, Silva A, Camins A, Teresa Cruz M, Ettcheto M, Fortuna A. Intranasal irbesartan reverts cognitive decline and activates the PI3K/AKT pathway in an LPS-induced neuroinflammation mice model. Int Immunopharmacol 2024; 128:111471. [PMID: 38199198 DOI: 10.1016/j.intimp.2023.111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/13/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND New strategies are urgently needed to manage and delay the development of Alzheimer's disease (AD). Neuroinflammation is a significant contributor to cognitive decline in neurodegenerative diseases, including AD. Angiotensin receptor blockers (ARBs) and angiotensin converting enzyme inhibitors (ACEIs) protect hypertensive patients against AD, but the cellular and molecular mechanisms underlying these effects remain unknown. In light of this, the protective effects of three ARBs and three ACEIs against neuroinflammation and cognitive decline were investigated through comprehensive pharmacologicalin vitro/in vivoscreening. METHODS BV-2 microglia cells were exposed tolipopolysaccharide (LPS) and treated with ARBs and ACEIs to provide initial insights into the anti-inflammatory properties of the drugs. Subsequently, irbesartan was selected, and its efficacy was evaluated inC57/BL6 male miceintranasally administered with irbesartan and injected with LPS. Long-term memory and depressive-like behavior were evaluated; dendritic spines were measured as well as neuroinflammation, neurodegeneration and cognitive decline biomarkers. RESULTS Irbesartan mitigated memory loss and depressive-like behavior in mice treated with LPS, probably because itincreased spine density, ameliorated synapsis dysfunction and activated the PI3K/AKT pathway. Irbesartan elevated the levels of hippocampalsuperoxide dismutase2 andglutathione peroxidaseandsuppressed LPS-induced astrogliosis. CONCLUSIONS Overall, this study provides compelling evidence that multiple intranasal administrations of irbesartan can effectively prevent LPS-induced cognitive decline by activating pathways involved in neuroprotection and anti-inflammatory events. These findings underscore the potential of irbesartan as a preventive strategy against the development of AD and other neurodegenerative conditions associated with neuroinflammation.
Collapse
Affiliation(s)
- Filipa Gouveia
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal; Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Carla Fonseca
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal; Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Ana Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - M Teresa Cruz
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, Madrid, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
57
|
Sardelli L, Campanile M, Boeri L, Donnaloja F, Fanizza F, Perottoni S, Petrini P, Albani D, Giordano C. A novel on-a-chip system with a 3D-bioinspired gut mucus suitable to investigate bacterial endotoxins dynamics. Mater Today Bio 2024; 24:100898. [PMID: 38204482 PMCID: PMC10776420 DOI: 10.1016/j.mtbio.2023.100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024] Open
Abstract
The possible pathogenic impact of pro-inflammatory molecules produced by the gut microbiota is one of the hypotheses considered at the basis of the biomolecular dialogue governing the microbiota-gut-brain axis. Among these molecules, lipopolysaccharides (LPS) produced by Gram-negative gut microbiota strains may have a potential key role due to their toxic effects in both the gut and the brain. In this work, we engineered a new dynamic fluidic system, the MINERVA device (MI-device), with the potential to advance the current knowledge of the biological mechanisms regulating the microbiota-gut molecular crosstalk. The MI-device supported the growth of bacteria that are part of the intestinal microbiota under dynamic conditions within a 3D moving mucus model, with features comparable to the physiological conditions (storage modulus of 80 ± 19 Pa, network mesh size of 41 ± 3 nm), without affecting their viability (∼ 109 bacteria/mL). The integration of a fluidically optimized and user-friendly design with a bioinspired microenvironment enabled the sterile extraction and quantification of the LPS produced within the mucus by bacteria (from 423 ± 34 ng/mL to 1785 ± 91 ng/mL). Compatibility with commercially available Transwell-like inserts allows the user to precisely control the transport phenomena that occur between the two chambers by selecting the pore density of the insert membrane without changing the design of the system. The MI-device is able to provide the flow of sterile medium enriched with LPS directly produced by bacteria, opening up the possibility of studying the effects of bacteria-derived molecules on cells in depth, as well as the assessment and characterization of their effects in a physiological or pathological scenario.
Collapse
Affiliation(s)
- L. Sardelli
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - M. Campanile
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - L. Boeri
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - F. Donnaloja
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - F. Fanizza
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - S. Perottoni
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - P. Petrini
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| | - D. Albani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - C. Giordano
- Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta,’ Politecnico di Milano, Milan, Italy
| |
Collapse
|
58
|
Hussein RM, Kandeil MA, Soliman HM, El-Shahawy AA. Effect of quercetin-loaded poly (lactic-co-glycolic) acid nanoparticles on lipopolysaccharide-induced memory decline, oxidative stress, amyloidogenesis, neurotransmission, and Nrf2/HO-1 expression. Heliyon 2024; 10:e23527. [PMID: 38169932 PMCID: PMC10758873 DOI: 10.1016/j.heliyon.2023.e23527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/11/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Neuroinflammation contributes to the pathogenesis of several neurodegenerative disorders. This study examined the neuroprotective effect of quercetin (QUR)-loaded poly (lactic-co-glycolic) acid (PLGA) nanoparticles (QUR NANO) against the neurotoxicity induced by lipopolysaccharide (LPS) in mice. A QUR NANO formulation was prepared and characterized by differential scanning calorimetry, X-ray diffraction, entrapment efficiency (EE), high-resolution transmission electron microscopy, field emission scanning electron microscopy, and in vitro drug release profile. Levels of glutathione, malondialdehyde, catalase, inducible nitric oxide synthase (iNOS), amyloid beta 42 (Aβ42), β-secretase, gamma-aminobutyric acid (GABA), and acetylcholine esterase (AChE) were measured in the mouse brain tissues. The gene expression of nuclear factor erythroid-related factor 2 (Nrf-2) and heme oxygenase-1 (HO-1) were also determined. The prepared QUR NANO formulation showed 92.07 ± 3.21% EE and drug loading of 4.62 ± 0.55. It exhibited clusters of nano-spherical particles with smooth surface areas, and the loading process was confirmed. In vivo, the QUR NANO preserved the spatial memory of mice and protected the hippocampus from LPS-induced histological lesions. The QUR NANO significantly reduced the levels of malondialdehyde, iNOS, Aβ42, β-secretase, and AChE in brain tissue homogenates. Conversely, QUR NANO increased the glutathione, catalase, and GABA concentrations and upregulated the expression of Nrf-2 and HO-1 genes. Remarkably, the neuroprotective effect of QUR NANO was significantly greater than that of herbal QUR. In summary, the prepared QUR NANO formulation was efficient in mitigating LPS-induced neurotoxicity by reducing memory loss, oxidative stress, and amyloidogenesis while preserving neurotransmission and upregulating the expression of Nrf2 and HO-1 genes. This study addresses several key factors in neuroinflammatory disorders and explores the potential of QUR-loaded nanoparticles as a novel therapeutic approach to alleviate these factors.
Collapse
Affiliation(s)
- Rasha M. Hussein
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-Karak, Jordan
| | - Mohamed A. Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Hatem M. Soliman
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed A.G. El-Shahawy
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Egypt
| |
Collapse
|
59
|
Lee MY, Kim M. Effects of Red ginseng on neuroinflammation in neurodegenerative diseases. J Ginseng Res 2024; 48:20-30. [PMID: 38223824 PMCID: PMC10785270 DOI: 10.1016/j.jgr.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/17/2023] [Accepted: 08/25/2023] [Indexed: 01/16/2024] Open
Abstract
Red ginseng (RG) is widely used as a herbal medicine. As the human lifespan has increased, numerous diseases have developed, and RG has also been used to treat various diseases. Neurodegenerative diseases are major problems that modern people face through their lives. Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are featured by progressive nerve system damage. Recently, neuroinflammation has emerged as a degenerative factor and is an immune response in which cytokines with nerve cells that constitute the nervous system. RG, a natural herbal medicine with fewer side effects than chemically synthesized drugs, is currently in the spotlight. Therefore, we reviewed studies reporting the roles of RG in treating neuroinflammation and neurodegenerative diseases and found that RG might help alleviate neurodegenerative diseases by regulating neuroinflammation.
Collapse
Affiliation(s)
- Min Yeong Lee
- Department of Chemistry & Life Science, Sahmyook University, Hwarangro 815, Nowongu, Seoul, Republic of Korea
| | - Mikyung Kim
- Department of Chemistry & Life Science, Sahmyook University, Hwarangro 815, Nowongu, Seoul, Republic of Korea
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Hwarangro 815, Nowongu, Seoul, Republic of Korea
| |
Collapse
|
60
|
Liu P, Lan X, Tao X, Tian J, Ying X, Stien D. A new alkaloid and two organic acids from Portulaca oleracea L. and their bioactivities. Nat Prod Res 2024; 38:68-77. [PMID: 35876167 DOI: 10.1080/14786419.2022.2103696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/15/2022] [Indexed: 10/16/2022]
Abstract
A new alkaloid, identified as 1-benzyl-2-nitroso-1,2,3,4-tetrahydroisoquinoline-6,7-diol, named oleraisoquinoline (1), and five organic acids and two esters, identified as 5-(hydroxymethyl)furan-2-carboxylic acid (2), 1H-pyrrole-2,5-dicarboxylic acid (3), (7E,10E)-octadeca-7,10-dienoic acid (4), (10E,13E)-octadeca-10,13-dienoic acid (5), (7E,10E)-hexadeca-7,10-dienoic acid (6), methyl tridecanoate (7) and methyl (9E,12E)-octadeca-9,12-dienoate (8), were isolated from Portulaca oleracea L., among which compounds 2 and 4‒7 were isolated for the first time. Moreover, the anti-inflammatory activities of compounds 1‒3 were studied, especially, compound 1 presented good inhibitory effects on the production of inflammatory factors IL-1β and TNF-α.
Collapse
Affiliation(s)
- Peishan Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Xiujuan Lan
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Xiaojun Tao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Jiayin Tian
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Xixiang Ying
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, UAR3579, Observatoire Océanologique, 66650, Banyuls-sur-mer, France
| |
Collapse
|
61
|
Jauregui GV, Vukić D, Onyango IG, Arias C, Novotný JS, Texlová K, Wang S, Kovačovicova KL, Polakova N, Zelinkova J, Čarna M, Strašil VL, Head BP, Havas D, Mistrik M, Zorec R, Verkhratsky A, Keegan L, O'Connel M, Rissman R, Stokin GB. Amyloid precursor protein induces reactive astrogliosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.571817. [PMID: 38187544 PMCID: PMC10769227 DOI: 10.1101/2023.12.18.571817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
We present in vitro and in vivo evidence demonstrating that Amyloid Precursor Protein (APP) acts as an essential instigator of reactive astrogliosis. Cell-specific overexpression of APP in cultured astrocytes led to remodelling of the intermediate filament network, enhancement of cytokine production and activation of cellular programs centred around the interferon (IFN) pathway, all signs of reactive astrogliosis. Conversely, APP deletion in cultured astrocytes abrogated remodelling of the intermediate filament network and blunted expression of IFN stimulated gene (ISG) products in response to lipopolysaccharide (LPS). Following traumatic brain injury (TBI), mouse reactive astrocytes also exhibited an association between APP and IFN, while APP deletion curbed the increase in glial fibrillary acidic protein (GFAP) observed canonically in astrocytes in response to TBI. Thus, APP represents a molecular inducer and regulator of reactive astrogliosis.
Collapse
Affiliation(s)
- Gretsen Velezmoro Jauregui
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
| | - Dragana Vukić
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomedical Research, Faculty of Science, Masaryk University, Brno Czech Republic
| | - Isaac G Onyango
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
| | - Carlos Arias
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Jan S Novotný
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Kateřina Texlová
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
| | - Shanshan Wang
- Veterans Affairs San Diego Healthcare System, San Diego, USA
- Department of Anesthesia, University of California San Diego, San Diego, USA
| | | | - Natalie Polakova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Jana Zelinkova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Maria Čarna
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | | | - Brian P Head
- Veterans Affairs San Diego Healthcare System, San Diego, USA
- Department of Anesthesia, University of California San Diego, San Diego, USA
| | | | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Robert Zorec
- Laboratory of Neuroendocrinology - Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Technology Park, Ljubljana, Slovenia
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Achucarro Centre for Neuroscience, IIKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Stem Cell Biology, State Research Institute Centre for innovative Medicine, Vilnius, Lithuania
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, China
| | - Liam Keegan
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Mary O'Connel
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Robert Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Gorazd B Stokin
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St. Anne's University Hospital, Brno, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Neurology, Gloucestershire Royal Hospital, Gloucestershire NHS Foundation Trust, Gloucester, UK
| |
Collapse
|
62
|
Chowdari Gurram P, Satarker S, Kumar G, Begum F, Mehta C, Nayak U, Mudgal J, Arora D, Nampoothiri M. Avanafil mediated dual inhibition of IKKβ and TNFR1 in an experimental paradigm of Alzheimer's disease: in silico and in vivo approach. J Biomol Struct Dyn 2023; 41:10659-10677. [PMID: 36533331 DOI: 10.1080/07391102.2022.2156924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
In Alzheimer's disease pathology, inhibitors of nuclear factor kappa-β kinase subunit β (IKKB) and Tumor necrosis factor receptor 1 (TNFR1) signaling are linked to neuroinflammation-mediated cognitive decline. We explored the role of a phosphodiesterase 5 inhibitor (PDE5I) with dual antagonistic action on IKKB and TNFR1 to inhibit nuclear factor kappa B (NF-kB) and curb neuroinflammation. In the in silico approach, the FDA-approved Zinc 15 library was docked with IKKB and TNFR1. The top compound with dual antagonistic action on IKKB and TNFR1 was selected based on bonding and non-bonding interactions. Further, induced fit docking (IFD), molecular mechanics-generalized Born and surface area (MMGBSA), and molecular dynamic studies were carried out and evaluated. Lipopolysaccharide (LPS) administration caused a neuroinflammation-mediated cognitive decline in mice. Two doses of avanafil were administered for 28 days while LPS was administered for 10 days. Morris water maze (MWM) along with the passive avoidance test (PAT) were carried out. Concurrently brain levels of inflammatory markers, oxidative parameters, amyloid beta (Aβ), IKKB and NF-kB levels were estimated. Avanafil produced good IKKB and TNFR1 binding ability. It interacted with crucial inhibitory amino acids of IKKB and TNFR1. MD analysis predicted good stability of avanafil with TNFR1 and IKKB. Avanafil 6 mg/kg could significantly improve performance in MWM, PAT and oxidative parameters and reduce Aβ levels and inflammatory markers. As compared to avanafil 3 mg/kg, 6 mg/kg dose was found to exert better efficacy against elevated Aβ , neuroinflammatory cytokines and oxidative markers while improving behavioural parameters.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Gautam Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Farmiza Begum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Chetan Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Usha Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Devinder Arora
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
63
|
Kim N, Ju IG, Jeon SH, Lee Y, Jung MJ, Gee MS, Cho JS, Inn KS, Garrett-Sinha LA, Oh MS, Lee JK. Inhibition of microfold cells ameliorates early pathological phenotypes by modulating microglial functions in Alzheimer's disease mouse model. J Neuroinflammation 2023; 20:282. [PMID: 38012646 PMCID: PMC10680211 DOI: 10.1186/s12974-023-02966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The gut microbiota has recently attracted attention as a pathogenic factor in Alzheimer's disease (AD). Microfold (M) cells, which play a crucial role in the gut immune response against external antigens, are also exploited for the entry of pathogenic bacteria and proteins into the body. However, whether changes in M cells can affect the gut environments and consequently change brain pathologies in AD remains unknown. METHODS Five familial AD (5xFAD) and 5xFAD-derived fecal microbiota transplanted (5xFAD-FMT) naïve mice were used to investigate the changes of M cells in the AD environment. Next, to establish the effect of M cell depletion on AD environments, 5xFAD mice and Spib knockout mice were bred, and behavioral and histological analyses were performed when M cell-depleted 5xFAD mice were six or nine months of age. RESULTS In this study, we found that M cell numbers were increased in the colons of 5xFAD and 5xFAD-FMT mice compared to those of wild-type (WT) and WT-FMT mice. Moreover, the level of total bacteria infiltrating the colons increased in the AD-mimicked mice. The levels of M cell-related genes and that of infiltrating bacteria showed a significant correlation. The genetic inhibition of M cells (Spib knockout) in 5xFAD mice changed the composition of the gut microbiota, along with decreasing proinflammatory cytokine levels in the colons. M cell depletion ameliorated AD symptoms including amyloid-β accumulation, microglial dysfunction, neuroinflammation, and memory impairment. Similarly, 5xFAD-FMT did not induce AD-like pathologies, such as memory impairment and excessive neuroinflammation in Spib-/- mice. CONCLUSION Therefore, our findings provide evidence that the inhibiting M cells can prevent AD progression, with therapeutic implications.
Collapse
Affiliation(s)
- Namkwon Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - In Gyoung Ju
- Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul, Republic of Korea
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Seung Ho Jeon
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Yeongae Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Min-Ji Jung
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Min Sung Gee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Jae Seok Cho
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Kyung-Soo Inn
- Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea.
- Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul, Republic of Korea.
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.
| | - Jong Kil Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.
- Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
64
|
Tang D, Sun C, Yang J, Fan L, Wang Y. Advances in the Study of the Pathology and Treatment of Alzheimer's Disease and Its Association with Periodontitis. Life (Basel) 2023; 13:2203. [PMID: 38004343 PMCID: PMC10672606 DOI: 10.3390/life13112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) has become one of the leading causes of health problems in the elderly, and studying its causes and treatments remains a serious challenge for researchers worldwide. The two main pathological features of Alzheimer's disease are the extracellular deposition of β-amyloid (Aβ) to form senile plaques and the intracellular aggregation of hyperphosphorylated Tau protein to form neurofibrillary tangles (NFTs). Researchers have proposed several hypotheses to elucidate the pathogenesis of AD, but due to the complexity of the pathophysiologic factors involved in the development of AD, no effective drugs have been found to stop the progression of the disease. Currently, the mainstay drugs used to treat AD can only alleviate the patient's symptoms and do not have a therapeutic effect. As researchers explore interactions among diseases, much evidence suggests that there is a close link between periodontitis and AD, and that periodontal pathogenic bacteria can exacerbate Aβ deposition and Tau protein hyperphosphorylation through neuroinflammatory mechanisms, thereby advancing the pathogenesis of AD. This article reviews recent advances in the pathogenesis of AD, available therapeutic agents, the relevance of periodontitis to AD, and mechanisms of action.
Collapse
Affiliation(s)
- Dan Tang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Chang Sun
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Jumei Yang
- Lanzhou University Second Hospital, Lanzhou 730000, China;
| | - Lili Fan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| |
Collapse
|
65
|
Seifert RM, Rauch M, Klingebiel R, Boese LM, Greeve I, Rudwaleit M, Schäbitz WR. Case report: Cerebral amyloid angiopathy-related inflammation in a patient with granulomatosis with polyangiitis. Front Neurol 2023; 14:1277843. [PMID: 38020617 PMCID: PMC10666051 DOI: 10.3389/fneur.2023.1277843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Background Cerebral amyloid angiopathy-related inflammation (CAA-ri) defines a subacute autoimmune encephalopathy, which is presumably caused by increased CSF concentrations of anti-Aβ autoantibodies. This autoinflammatory reaction is temporally and regionally associated with microglial activation, inflammation and radiological presence of vasogenic edema. Clinical characteristics include progressive demential development as well as headache and epileptic seizures. In the absence of histopathologic confirmation, the criteria defined by Auriel et al. allow diagnosis of probable resp. possible CAA-ri. CAA-ri shows responsiveness to immunosuppressive therapies and a possible coexistence with other autoinflammatory diseases. Methods We present a case report and literature review on the diagnosis of CAA-ri in a patient with known granulomatosis with polyangiitis (GPA). Results Initially, the presented patient showed neuropsychiatric abnormalities and latent arm paresis. Due to slight increase in CSF cell count, an initial antiviral therapy was started. MR tomography showed a pronounced frontotemporal edema as well as cerebral microhemorrhages, leading to the diagnosis of CAA-ri. Subsequent high-dose steroid treatment followed by six intravenous cyclophosphamide pulses resulted in decreased CSF cell count and regression of cerebral MRI findings. Conclusion The symptoms observed in the patient are consistent with previous case reports on CAA-ri. Due to previously known GPA, we considered a cerebral manifestation of this disease as a differential diagnosis. However, absence of pachymeningitis as well as granulomatous infiltrations on imaging made cerebral GPA less likely. An increased risk for Aβ-associated pathologies in systemic rheumatic diseases is discussed variously.
Collapse
Affiliation(s)
- Rebecca M. Seifert
- Universitätsklinik für Neurologie, Evangelisches Klinikum Bethel, Bielefeld, Germany
| | - Michael Rauch
- Universitätsklinik für Neurologie, Evangelisches Klinikum Bethel, Bielefeld, Germany
| | - Randolf Klingebiel
- Institut für diagnostische und interventionelle Neuroradiologie, Evangelisches Klinikum Bethel, Bielefeld, Germany
| | - Lennart-Maximilian Boese
- Institut für diagnostische und interventionelle Neuroradiologie, Evangelisches Klinikum Bethel, Bielefeld, Germany
| | - Isabell Greeve
- Universitätsklinik für Neurologie, Evangelisches Klinikum Bethel, Bielefeld, Germany
| | - Martin Rudwaleit
- Universitätsklinik für Innere Medizin und Rheumatologie, Klinikum Bielefeld Rosenhöhe, Bielefeld, Germany
| | - Wolf-Rüdiger Schäbitz
- Universitätsklinik für Neurologie, Evangelisches Klinikum Bethel, Bielefeld, Germany
| |
Collapse
|
66
|
Xie R, Chen F, Ma Y, Hu W, Zheng Q, Cao J, Wu Y. Network pharmacology‒based analysis of marine cyanobacteria derived bioactive compounds for application to Alzheimer's disease. Front Pharmacol 2023; 14:1249632. [PMID: 37927608 PMCID: PMC10620974 DOI: 10.3389/fphar.2023.1249632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
In recent years, the Alzheimer's disease (AD) epidemic has become one of the largest global healthcare crises. Besides, the available systemic therapies for AD are still inadequate. Due to the insufficient therapeutic options, new treatment strategies are urgently needed to achieve a satisfactory therapeutic effect. Marine bio-resources have been accepted as one of the most economically viable and sustainable sources with potential applications for drug discovery and development. In this study, a marine cyanobacteria-Synechococcus sp. XM-24 was selected as the object of research, to systematically investigate its therapeutic potential mechanisms for AD. The major active compounds derived from the Synechococcus sp. biomass were identified via pyrolysis-gas chromatography-mass spectrometry (GC-MS), and 22 compounds were identified in this strain. The most abundant chemical compounds was (E)-octadec-11-enoic acid, with the peak area of 30.6%. Follow by tridecanoic acid, 12-methyl- and hexadecanoic acid, with a peak area of 23.26% and 18.23%, respectively. GC-MS analysis also identified indolizine, isoquinoline, 3,4-dihydro- and Phthalazine, 1-methyl-, as well as alkene and alkane from the strain. After the chemical toxicity test, 10 compounds were finally collected to do the further analysis. Then, network pharmacology and molecular docking were adopted to systematically study the potential anti-AD mechanism of these compounds. Based on the analysis, the 10 Synechococcus-derived active compounds could interact with 128 related anti-AD targets. Among them, epidermal growth factor receptor (EGFR), vascular endothelial growth factor A (VEGFA) and mitogen-activated protein kinase 3 (MAPK3) were the major targets. Furthermore, the compounds N-capric acid isopropyl ester, (E)-octadec-11-enoic acid, and 2H-Pyran-2,4(3H)-dione, dihydro-6-methyl- obtained higher degrees in the compounds-intersection targets network analysis, indicating these compounds may play more important role in the process of anti-AD. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these active compounds exert the anti-AD effects mainly through PI3K-Akt signaling pathway, neuroactive ligand-receptor interaction and ras signaling pathway. Our study identified Synechococcus-derived bioactive compounds have the potential for application to AD by targeting multiple targets and related pathways, which will provide a foundation for future research on applications of marine cyanobacteria in the functional drug industry.
Collapse
Affiliation(s)
- Rui Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Feng Chen
- Department of Pediatric Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yixuan Ma
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Wen Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jinguo Cao
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Yi Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| |
Collapse
|
67
|
Fan Q, Wu YZ, Jia XX, A R, Liu CM, Zhang WW, Chao ZY, Zhou DH, Wang Y, Chen J, Xiao K, Chen C, Shi Q, Dong XP. Increased Gal-3 Mediates Microglia Activation and Neuroinflammation via the TREM2 Signaling Pathway in Prion Infection. ACS Chem Neurosci 2023; 14:3772-3793. [PMID: 37769016 DOI: 10.1021/acschemneuro.3c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Galectin 3 (Gal-3) is one of the major elements for activating microglia and mediating neuroinflammation in some types of neurodegenerative diseases. However, its role in the pathogenesis of prion disease is seldom addressed. In this study, markedly increased brain Gal-3 was identified in three scrapie-infected rodent models at the terminal stage. The increased Gal-3 was mainly colocalized with the activated microglia. Coincidental with the increased brain Gal-3 in prion-infected animals, the expression of brain trigger receptor expressed in myeloid cell 2 (TREM2), one of the Gal-3 receptors, and some components in the downstream pathway also significantly increased, whereas Toll-like receptor 4 (TLR4), another Gal-3 receptor, and the main components in its downstream signaling were less changed. The increased Gal-3 signals were distributed at the areas with PrPSc deposit but looked not to colocalize directly with PrPSc/PrP signals. Similar changing profiles of Gal-3, the receptors TREM2 and TLR4, as well as the proteins in the downstream pathways were also observed in prion-infected cell line SMB-S15. Removal of PrPSc replication in SMB-S15 cells reversed the upregulation of cellular Gal-3, TREM2, and the relevant proteins. Moreover, we presented data for interactions of Gal-3 with TREM2 and with TLR4 morphologically and molecularly in the cultured cells. Stimulation of prion-infected cells or their normal partner cells with recombinant mouse Gal-3 in vitro induced obvious responses for activation of TREM2 signaling and TLR4 signaling. Our data here strongly indicate that prion infection or PrPSc deposit induces remarkably upregulated brain Gal-3, which is actively involved in the microglia activation and neuroinflammation mainly via TREM2 signaling.
Collapse
Affiliation(s)
- Qin Fan
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yue-Zhang Wu
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiao-Xi Jia
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ruhan A
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Chu-Mou Liu
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wei-Wei Zhang
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- North China University of Science and Technology, Tangshan 063210 China
| | - Zhi-Yue Chao
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Dong-Hua Zhou
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuan Wang
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- North China University of Science and Technology, Tangshan 063210 China
| | - Jia Chen
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Kang Xiao
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Cao Chen
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Qi Shi
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiao-Ping Dong
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- China Academy of Chinese Medical Sciences, Beijing 100700, China
- Shanghai Institute of Infectious Disease and Biosafety, Shanghai 200032, China
| |
Collapse
|
68
|
Spoelder M, Bright Y, Morrison MC, van Kempen V, de Groodt L, Begalli M, Schuijt N, Kruiger E, Bulthuis R, Gross G, Kleemann R, van Diepen JA, Homberg JR. Cognitive Performance during the Development of Diabetes in the Zucker Diabetic Fatty Rat. Cells 2023; 12:2463. [PMID: 37887307 PMCID: PMC10605915 DOI: 10.3390/cells12202463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Increased insulin levels may support the development of neural circuits involved in cognition, while chronic mild inflammation may also result in cognitive impairment. This study aimed to gain more insight into whether cognition is already impacted during adolescence in a genetic rat model for obesity and type 2 diabetes. Visual discrimination learning throughout adolescence and the level of motivation during early adulthood were investigated in Zucker Diabetic Fatty (ZDF) obese and ZDF lean rats using operant touchscreens. Blood glucose, insulin, and lipids were longitudinally analyzed. Histological analyses were performed in the liver, white adipose tissues, and the prefrontal cortex. Prior to the experiments with the genetic ZDF research model, all experimental assays were performed in two groups of outbred Long Evans rats to investigate the effect of different feeding circumstances. Adolescent ZDF obese rats outperformed ZDF lean rats on visual discrimination performance. During the longitudinal cognitive testing period, insulin levels sharply increased over weeks in ZDF obese rats and were significantly enhanced from 6 weeks of age onwards. Early signs of liver steatosis and enlarged adipocytes in white adipose tissue were observed in early adult ZDF obese rats. Histological analyses in early adulthood showed no group differences in the number of prefrontal cortex neurons and microglia, nor PSD95 and SIRT1 mRNA expression levels. Together, our data show that adolescent ZDF obese rats even display enhanced cognition despite their early diabetic profile.
Collapse
Affiliation(s)
- Marcia Spoelder
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (Y.B.)
| | - Yami Bright
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (Y.B.)
| | - Martine C. Morrison
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 CE Leiden, The Netherlands
| | - Veerle van Kempen
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (Y.B.)
| | - Lilian de Groodt
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (Y.B.)
| | - Malvina Begalli
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (Y.B.)
| | - Nikita Schuijt
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (Y.B.)
| | - Eva Kruiger
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (Y.B.)
| | - Ronald Bulthuis
- Metris B.V., Kruisweg 829c, 2132 NG Hoofddorp, The Netherlands
| | - Gabriele Gross
- Medical and Scientific Affairs, Reckitt|Mead Johnson Nutrition Institute, Middenkampweg 2, 6545 CJ Nijmegen, The Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 CE Leiden, The Netherlands
| | - Janna A. van Diepen
- Medical and Scientific Affairs, Reckitt|Mead Johnson Nutrition Institute, Middenkampweg 2, 6545 CJ Nijmegen, The Netherlands
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; (Y.B.)
| |
Collapse
|
69
|
Yang Y, García-Cruzado M, Zeng H, Camprubí-Ferrer L, Bahatyrevich-Kharitonik B, Bachiller S, Deierborg T. LPS priming before plaque deposition impedes microglial activation and restrains Aβ pathology in the 5xFAD mouse model of Alzheimer's disease. Brain Behav Immun 2023; 113:228-247. [PMID: 37437821 DOI: 10.1016/j.bbi.2023.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
Microglia have an innate immunity memory (IIM) with divergent functions in different animal models of neurodegenerative diseases, including Alzheimer's disease (AD). AD is characterized by chronic neuroinflammation, neurodegeneration, tau tangles and β-amyloid (Aβ) deposition. Systemic inflammation has been implicated in contributing to the progression of AD. Multiple reports have demonstrated unique microglial signatures in AD mouse models and patients. However, the proteomic profiles of microglia modified by IIM have not been well-documented in an AD model. Therefore, in the present study, we investigate whether lipopolysaccharide (LPS)-induced IIM in the pre-clinical stage of AD alters the microglial responses and shapes the neuropathology. We accomplished this by priming 5xFAD and wild-type (WT) mice with an LPS injection at 6 weeks (before the robust development of plaques). 140 days later, we evaluated microglial morphology, activation, the microglial barrier around Aβ, and Aβ deposition in both 5xFAD primed and unprimed mice. Priming induced decreased soma size of microglia and reduced colocalization of PSD95 and Synaptophysin in the retrosplenial cortex. Priming appeared to increase phagocytosis of Aβ, resulting in fewer Thioflavin S+ Aβ fibrils in the dentate gyrus. RIPA-soluble Aβ 40 and 42 were significantly reduced in Primed-5xFAD mice leading to a smaller size of MOAB2+ Aβ plaques in the prefrontal cortex. We also found that Aβ-associated microglia in the Primed-5xFAD mice were less activated and fewer in number. After priming, we also observed improved memory performance in 5xFAD. To further elucidate the molecular mechanism underlying these changes, we performed quantitative proteomic analysis of microglia and bone marrow monocytes. A specific pattern in the microglial proteome was revealed in primed 5xFAD mice. These results suggest that the imprint signatures of primed microglia display a distinctive phenotype and highlight the potential for a beneficial adaption of microglia when intervention occurs in the pre-clinical stage of AD.
Collapse
Affiliation(s)
- Yiyi Yang
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden.
| | - Marta García-Cruzado
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden
| | - Hairuo Zeng
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden
| | - Lluís Camprubí-Ferrer
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden
| | - Bazhena Bahatyrevich-Kharitonik
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden; Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, University of Seville, CSIC, Spain; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Sara Bachiller
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden; Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, University of Seville, CSIC, Spain; Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Sweden.
| |
Collapse
|
70
|
Smolen P, Dash PK, Redell JB. Traumatic brain injury-associated epigenetic changes and the risk for neurodegenerative diseases. Front Neurosci 2023; 17:1259405. [PMID: 37795186 PMCID: PMC10546067 DOI: 10.3389/fnins.2023.1259405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Epidemiological studies have shown that traumatic brain injury (TBI) increases the risk for developing neurodegenerative diseases (NDs). However, molecular mechanisms that underlie this risk are largely unidentified. TBI triggers widespread epigenetic modifications. Similarly, NDs such as Alzheimer's or Parkinson's are associated with numerous epigenetic changes. Although epigenetic changes can persist after TBI, it is unresolved if these modifications increase the risk of later ND development and/or dementia. We briefly review TBI-related epigenetic changes, and point out putative feedback loops that might contribute to long-term persistence of some modifications. We then focus on evidence suggesting persistent TBI-associated epigenetic changes may contribute to pathological processes (e.g., neuroinflammation) which may facilitate the development of specific NDs - Alzheimer's disease, Parkinson's disease, or chronic traumatic encephalopathy. Finally, we discuss possible directions for TBI therapies that may help prevent or delay development of NDs.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | | | | |
Collapse
|
71
|
Beheshti F, Hosseini M, Bakhtiari-Dovvombaygi H, Salmani H, Ahmadabady S, Marefati N, Baghcheghi Y. Rosiglitazone attenuates amyloid beta and glial fibrillary acidic protein in the hippocampus and neuroinflammation associated learning and memory impairments in rats. Behav Brain Res 2023; 452:114549. [PMID: 37343837 DOI: 10.1016/j.bbr.2023.114549] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/05/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVE The aim of the current study was to investigate the beneficial effects of rosiglitazone (Rosi) on amyloid beta(Aβ) and glial fibrillary acidic protein (GFAP) in the hippocampus and neuroinflammation-associated learning and memory impairments in rats. MATERIALS AND METHODS The rats were grouped and treated as follows: (1) Control in which saline and vehicle were administered instead of LPS and Rosi respectively. (2) Lipopolysaccharide (LPS) group in which LPS was dissolved in saline and injected (1 mg/kg) intraperitoneally. Vehicle was administered instead of Rosi in this group. (3-5) LPS+ Rosi 1, LPS+ Rosi 3, and LPS+ Rosi 5 groups in them 1, 3, or 5 mg/kg of Rosi respectively was administered 30 min before LPS. The treatments were done for two weeks. In the first week, Rosi or its vehicle was injected 30 min before LPS. In the second week, the treatments were the same as the first week and behavioral tests were also carried out in the second week. The hippocampal tissues were finally detached for biochemical assessment. RESULTS The results showed that Rosi reversed increased levels of Aβ, GFAP, interleukin (IL)- 6, tumor necrosis factor-α (TNF-α), nitric oxide (NO) metabolites, and malondialdehyde (MDA) due to LPS injection. Rosi also reversed attenuating effects of LPS on IL-10 and thiol concentration and activities of catalase (CAT) and superoxide dismutase (SOD). In the Morris water maze test, the LPS group had a longer latency to find the platform while spent a shorter time spent in the target quadrant in the probe trial than the control group. In the passive avoidance test, the animals of the LPS group had a shorter delay to enter the dark chamber than the animals of the control group. Treatment with Rosi reversed these parameters. CONCLUSION The findings showed Rosi attenuated Aβ, GFAP, and oxidative stress in the hippocampus and neuroinflammation-associated learning and memory impairments in rats.
Collapse
Affiliation(s)
- Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Department of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Bakhtiari-Dovvombaygi
- Nursing and Midwifery School, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Salmani
- Student Research Committee Jiroft University of Medical Sciences, Jiroft, Iran
| | - Somaieh Ahmadabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Marefati
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yousef Baghcheghi
- Student Research Committee Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
72
|
Naik S, Katariya R, Shelke S, Patravale V, Umekar M, Kotagale N, Taksande B. Nattokinase prevents β-amyloid peptide (Aβ 1-42) induced neuropsychiatric complications, neuroinflammation and BDNF signalling disruption in mice. Eur J Pharmacol 2023; 952:175821. [PMID: 37263404 DOI: 10.1016/j.ejphar.2023.175821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023]
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurodegenerative disorder characterized by abnormal accumulation of extracellular β-amyloid (Aβ) plaques and neuronal damage. Although AD is typically considered a cognitive neurodegenerative disorder, almost all people diagnosed with AD develop neuropsychiatric complications at some stage in their life span. The present study investigated the effect of chronic Nattokinase (NK) administration on β-Amyloid peptide (Aβ1-42) induced neuropsychiatric conditions (depression-like behaviour, anxiety, and memory impairment) in mice. Aβ1-42 peptide injected mice demonstrated depression, anxiety, and impairment of cognitive abilities evaluated as increased immobility time in forced swim test (FST), decreased open arm time/entries in elevated plus maze (EPM) and reference and working memory error in radial arm maze (RAM) respectively with elevation in Interleukin-6 (IL-6), Tumour necrosis factor-α (TNF-α), reduction in Interleukin-10 (IL-10) and Brain-derived neurotrophic factor (BDNF) immunocontent within the hippocampus. Chronic administration of NK (50-100 mg/kg, i.p.) from day 8-27, prevented depression-like behaviour, anxiety, and memory impairment and normalized the neurochemical alteration within the hippocampus of mice injected with Aβ1-42 peptide. The effect of NK on psychiatric complications, learning, and memory was comparable to peripheral donepezil treatment. This study suggests that NK improves learning, memory impairment, and neuropsychiatric complications possibly through the downregulation of neuroinflammatory pathways and restoring BDNF signalling in AD.
Collapse
Affiliation(s)
- Shivraj Naik
- Pharmaceutical Science & Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Raj Katariya
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS, 441 002, India
| | - Shraddha Shelke
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS, 441 002, India
| | - Vandana Patravale
- Pharmaceutical Science & Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Milind Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS, 441 002, India
| | - Nandkishor Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, MS, 444604, India
| | - Brijesh Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, MS, 441 002, India.
| |
Collapse
|
73
|
Eleiwa NZH, Ali MAA, Said EN, Metwally MMM, Abd-ElHakim YM. Bee venom (Apis mellifera L.) rescues zinc oxide nanoparticles induced neurobehavioral and neurotoxic impact via controlling neurofilament and GAP-43 in rat brain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88685-88703. [PMID: 37442924 PMCID: PMC10412495 DOI: 10.1007/s11356-023-28538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
This study investigated the possible beneficial role of the bee venom (BV, Apis mellifera L.) against zinc oxide nanoparticles (ZNPs)-induced neurobehavioral and neurotoxic impacts in rats. Fifty male Sprague Dawley rats were alienated into five groups. Three groups were intraperitoneally injected distilled water (C 28D group), ZNPs (100 mg/kg b.wt) (ZNPs group), or ZNPs (100 mg/kg.wt) and BV (1 mg/ kg.bwt) (ZNPs + BV group) for 28 days. One group was intraperitoneally injected with 1 mL of distilled water for 56 days (C 56D group). The last group was intraperitoneally injected with ZNPs for 28 days, then BV for another 28 days at the same earlier doses and duration (ZNPs/BV group). Depression, anxiety, locomotor activity, spatial learning, and memory were evaluated using the forced swimming test, elevated plus maze, open field test, and Morris water maze test, respectively. The brain contents of dopamine, serotonin, total antioxidant capacity (TAC), malondialdehyde (MDA), and Zn were estimated. The histopathological changes and immunoexpressions of neurofilament and GAP-43 protein in the brain tissues were followed. The results displayed that BV significantly decreased the ZNPs-induced depression, anxiety, memory impairment, and spatial learning disorders. Moreover, the ZNPs-induced increment in serotonin and dopamine levels and Zn content was significantly suppressed by BV. Besides, BV significantly restored the depleted TAC but minimized the augmented MDA brain content associated with ZNPs exposure. Likewise, the neurodegenerative changes induced by ZNPs were significantly abolished by BV. Also, the increased neurofilament and GAP-43 immunoexpression due to ZNPs exposure were alleviated with BV. Of note, BV achieved better results in the ZNPs + BV group than in the ZNPs/BV group. Conclusively, these results demonstrated that BV could be employed as a biologically effective therapy to mitigate the neurotoxic and neurobehavioral effects of ZNPs, particularly when used during ZNPs exposure.
Collapse
Affiliation(s)
- Naglaa Z H Eleiwa
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mahmoud Abo-Alkasem Ali
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Enas N Said
- Department of Behaviour and Management of Animal, Poultry and Aquatic, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Yasmina M Abd-ElHakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
74
|
Kang DH, Ahn S, Chae JW, Song JS. Differential effects of two phosphodiesterase 4 inhibitors against lipopolysaccharide-induced neuroinflammation in mice. BMC Neurosci 2023; 24:39. [PMID: 37525115 PMCID: PMC10391911 DOI: 10.1186/s12868-023-00810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/06/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Several phosphodiesterase 4 (PDE4) inhibitors have emerged as potential therapeutics for central nervous system (CNS) diseases. This study investigated the pharmacological effects of two selective PDE4 inhibitors, roflumilast and zatolmilast, against lipopolysaccharide-induced neuroinflammation. RESULTS In BV-2 cells, the PDE4 inhibitor roflumilast reduced the production of nitric oxide and tumor necrosis factor-α (TNF-α) by inhibiting NF-κB phosphorylation. Moreover, mice administered roflumilast had significantly reduced TNF-α, interleukin-1β (IL-1β), and IL-6 levels in plasma and brain tissues. By contrast, zatolmilast, a PDE4D inhibitor, showed no anti-neuroinflammatory effects in vitro or in vivo. Next, in vitro and in vivo pharmacokinetic studies of these compounds in the brain were performed. The apparent permeability coefficients of 3 µM roflumilast and zatolmilast were high (> 23 × 10-6 cm/s) and moderate (3.72-7.18 × 10-6 cm/s), respectively, and increased in a concentration-dependent manner in the MDR1-MDCK monolayer. The efflux ratios were < 1.92, suggesting that these compounds are not P-glycoprotein substrates. Following oral administration, both roflumilast and zatolmilast were slowly absorbed and eliminated, with time-to-peak drug concentrations of 2-2.3 h and terminal half-lives of 7-20 h. Assessment of their brain dispositions revealed the unbound brain-to-plasma partition coefficients of roflumilast and zatolmilast to be 0.17 and 0.18, respectively. CONCLUSIONS These findings suggest that roflumilast, but not zatolmilast, has the potential for use as a therapeutic agent against neuroinflammatory diseases.
Collapse
Affiliation(s)
- Dong Ho Kang
- Data Convergence Drug Research Center, Therapeutics & Biotechnology Division, Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Korea
- College of Pharmacy, Chungnam National University, Daejeon, Korea
| | - Sunjoo Ahn
- Data Convergence Drug Research Center, Therapeutics & Biotechnology Division, Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Korea
| | - Jung Woo Chae
- College of Pharmacy, Chungnam National University, Daejeon, Korea
| | - Jin Sook Song
- Data Convergence Drug Research Center, Therapeutics & Biotechnology Division, Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Korea.
| |
Collapse
|
75
|
Millán Solano MV, Salinas Lara C, Sánchez-Garibay C, Soto-Rojas LO, Escobedo-Ávila I, Tena-Suck ML, Ortíz-Butrón R, Choreño-Parra JA, Romero-López JP, Meléndez Camargo ME. Effect of Systemic Inflammation in the CNS: A Silent History of Neuronal Damage. Int J Mol Sci 2023; 24:11902. [PMID: 37569277 PMCID: PMC10419139 DOI: 10.3390/ijms241511902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/13/2023] Open
Abstract
Central nervous system (CNS) infections including meningitis and encephalitis, resulting from the blood-borne spread of specific microorganisms, provoke nervous tissue damage due to the inflammatory process. Moreover, different pathologies such as sepsis can generate systemic inflammation. Bacterial lipopolysaccharide (LPS) induces the release of inflammatory mediators and damage molecules, which are then released into the bloodstream and can interact with structures such as the CNS, thus modifying the blood-brain barrier's (BBB´s) and blood-cerebrospinal fluid barrier´s (BCSFB´s) function and inducing aseptic neuroinflammation. During neuroinflammation, the participation of glial cells (astrocytes, microglia, and oligodendrocytes) plays an important role. They release cytokines, chemokines, reactive oxygen species, nitrogen species, peptides, and even excitatory amino acids that lead to neuronal damage. The neurons undergo morphological and functional changes that could initiate functional alterations to neurodegenerative processes. The present work aims to explain these processes and the pathophysiological interactions involved in CNS damage in the absence of microbes or inflammatory cells.
Collapse
Affiliation(s)
- Mara Verónica Millán Solano
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cos’ıo Villegas, Mexico City 14080, Mexico;
| | - Citlaltepetl Salinas Lara
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City 14269, Mexico;
| | - Carlos Sánchez-Garibay
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City 14269, Mexico;
| | - Luis O. Soto-Rojas
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Itzel Escobedo-Ávila
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Departamento de Neurodesarrollo y Fisiología, Instituto de Fisiología Celular, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico
| | - Martha Lilia Tena-Suck
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suarez, Mexico City 14269, Mexico;
| | - Rocío Ortíz-Butrón
- Laboratorio de Neurobiología, Departamento de Fisiología de ENCB, Instituto Politécnico Nacional, Mexico City 07738, Mexico;
| | - José Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cos’ıo Villegas, Mexico City 14080, Mexico;
| | - José Pablo Romero-López
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Tlalnepantla 54090, Mexico; (M.V.M.S.); (C.S.-G.); (L.O.S.-R.); (I.E.-Á.); (J.P.R.-L.)
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - María Estela Meléndez Camargo
- Laboratorio de Farmacología, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu Esq. Manuel Luis Stampa S/N, U.P. Adolfo López Mateos, Mexico City 07738, Mexico;
| |
Collapse
|
76
|
Wang Q, Zhang X, Guo YJ, Pang YY, Li JJ, Zhao YL, Wei JF, Zhu BT, Tang JX, Jiang YY, Meng J, Yue JR, Lei P. Scopolamine causes delirium-like brain network dysfunction and reversible cognitive impairment without neuronal loss. Zool Res 2023; 44:712-724. [PMID: 37313848 PMCID: PMC10415773 DOI: 10.24272/j.issn.2095-8137.2022.473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
Delirium is a severe acute neuropsychiatric syndrome that commonly occurs in the elderly and is considered an independent risk factor for later dementia. However, given its inherent complexity, few animal models of delirium have been established and the mechanism underlying the onset of delirium remains elusive. Here, we conducted a comparison of three mouse models of delirium induced by clinically relevant risk factors, including anesthesia with surgery (AS), systemic inflammation, and neurotransmission modulation. We found that both bacterial lipopolysaccharide (LPS) and cholinergic receptor antagonist scopolamine (Scop) induction reduced neuronal activities in the delirium-related brain network, with the latter presenting a similar pattern of reduction as found in delirium patients. Consistently, Scop injection resulted in reversible cognitive impairment with hyperactive behavior. No loss of cholinergic neurons was found with treatment, but hippocampal synaptic functions were affected. These findings provide further clues regarding the mechanism underlying delirium onset and demonstrate the successful application of the Scop injection model in mimicking delirium-like phenotypes in mice.
Collapse
Affiliation(s)
- Qing Wang
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiang Zhang
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yu-Jie Guo
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ya-Yan Pang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jun-Jie Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Yan-Li Zhao
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jun-Fen Wei
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bai-Ting Zhu
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing-Xiang Tang
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang-Yang Jiang
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jie Meng
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ji-Rong Yue
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail:
| | - Peng Lei
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. E-mail:
| |
Collapse
|
77
|
Kumar P, Mathew S, Gamage R, Bodkin F, Doyle K, Rossetti I, Wagnon I, Zhou X, Raju R, Gyengesi E, Münch G. From the Bush to the Brain: Preclinical Stages of Ethnobotanical Anti-Inflammatory and Neuroprotective Drug Discovery-An Australian Example. Int J Mol Sci 2023; 24:11086. [PMID: 37446262 DOI: 10.3390/ijms241311086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
The Australian rainforest is a rich source of medicinal plants that have evolved in the face of dramatic environmental challenges over a million years due to its prolonged geographical isolation from other continents. The rainforest consists of an inherent richness of plant secondary metabolites that are the most intense in the rainforest. The search for more potent and more bioavailable compounds from other plant sources is ongoing, and our short review will outline the pathways from the discovery of bioactive plants to the structural identification of active compounds, testing for potency, and then neuroprotection in a triculture system, and finally, the validation in an appropriate neuro-inflammatory mouse model, using some examples from our current research. We will focus on neuroinflammation as a potential treatment target for neurodegenerative diseases including multiple sclerosis (MS), Parkinson's (PD), and Alzheimer's disease (AD) for these plant-derived, anti-inflammatory molecules and highlight cytokine suppressive anti-inflammatory drugs (CSAIDs) as a better alternative to conventional nonsteroidal anti-inflammatory drugs (NSAIDs) to treat neuroinflammatory disorders.
Collapse
Affiliation(s)
- Payaal Kumar
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Shintu Mathew
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Rashmi Gamage
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Frances Bodkin
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Kerrie Doyle
- Indigenous Health Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Ilaria Rossetti
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Ingrid Wagnon
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Ritesh Raju
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Erika Gyengesi
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Gerald Münch
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| |
Collapse
|
78
|
Lee S, Eom S, Lee J, Pyeon M, Kim K, Choi KY, Lee JH, Shin DJ, Lee KH, Oh S, Lee JH. Probiotics that Ameliorate Cognitive Impairment through Anti-Inflammation and Anti-Oxidation in Mice. Food Sci Anim Resour 2023; 43:612-624. [PMID: 37484004 PMCID: PMC10359840 DOI: 10.5851/kosfa.2023.e22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 07/25/2023] Open
Abstract
The gut-brain axis encompasses a bidirectional communication pathway between the gastrointestinal microbiota and the central nervous system. There is some evidence to suggest that probiotics may have a positive effect on cognitive function, but more research is needed before any definitive conclusions can be drawn. Inflammation-induced by lipopolysaccharide (LPS) may affect cognitive function. To confirm the effect of probiotics on oxidative stress induced by LPS, the relative expression of antioxidant factors was confirmed, and it was revealed that the administration of probiotics had a positive effect on the expression of antioxidant-related factors. After oral administration of probiotics to mice, an intentional inflammatory response was induced through LPS i.p., and the effect on cognition was confirmed by the Morris water maze test, nitric oxide (NO) assay, and interleukin (IL)-1β enzyme-linked immunosorbent assay performed. Experimental results, levels of NO and IL-1 β in the blood of LPS i.p. mice were significantly decreased, and cognitive evaluation using the Morris water maze test showed significant values in the latency and target quadrant percentages in the group that received probiotics. This proves that intake of these probiotics improves cognitive impairment and memory loss through anti-inflammatory and antioxidant mechanisms.
Collapse
Affiliation(s)
- Shinhui Lee
- Department of Biotechnology, Chonnam
National University, Gwangju 61186, Korea
| | - Sanung Eom
- Department of Biotechnology, Chonnam
National University, Gwangju 61186, Korea
| | - Jiwon Lee
- Department of Biotechnology, Chonnam
National University, Gwangju 61186, Korea
| | - Minsu Pyeon
- Department of Biotechnology, Chonnam
National University, Gwangju 61186, Korea
| | - Kieup Kim
- Division of Animal Science, Chonnam
National University, Gwangju 61186, Korea
| | - Kyu Yeong Choi
- Gwangju Alzheimer’s &
Related Dementia Cohort Research Center, Chosun University,
Gwangju 61452, Korea
- Kolab Inc., Gwangju 61436,
Korea
| | | | | | - Kun Ho Lee
- Gwangju Alzheimer’s &
Related Dementia Cohort Research Center, Chosun University,
Gwangju 61452, Korea
- Department of Biomedical Science, Chosun
University, Gwangju 61452, Korea
| | - Sejong Oh
- Division of Animal Science, Chonnam
National University, Gwangju 61186, Korea
| | - Junho H Lee
- Department of Biotechnology, Chonnam
National University, Gwangju 61186, Korea
| |
Collapse
|
79
|
Sunna S, Bowen CA, Ramelow CC, Santiago JV, Kumar P, Rangaraju S. Advances in proteomic phenotyping of microglia in neurodegeneration. Proteomics 2023; 23:e2200183. [PMID: 37060300 PMCID: PMC10528430 DOI: 10.1002/pmic.202200183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
Microglia are dynamic resident immune cells of the central nervous system (CNS) that sense, survey, and respond to changes in their environment. In disease states, microglia transform from homeostatic to diverse molecular phenotypic states that play complex and causal roles in neurologic disease pathogenesis, as evidenced by the identification of microglial genes as genetic risk factors for neurodegenerative disease. While advances in transcriptomic profiling of microglia from the CNS of humans and animal models have provided transformative insights, the transcriptome is only modestly reflective of the proteome. Proteomic profiling of microglia is therefore more likely to provide functionally and therapeutically relevant targets. In this review, we discuss molecular insights gained from transcriptomic studies of microglia in the context of Alzheimer's disease as a prototypic neurodegenerative disease, and highlight existing and emerging approaches for proteomic profiling of microglia derived from in vivo model systems and human brain.
Collapse
Affiliation(s)
- Sydney Sunna
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Christine A. Bowen
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Christina C. Ramelow
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Juliet V. Santiago
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Prateek Kumar
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Srikant Rangaraju
- Department of Neurology, Emory University,201 Dowman Drive Atlanta Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
80
|
Karaahmet B, Olschowka JA, O'Banion MK. Inconsistent Effects of Glatiramer Acetate Treatment in the 5xFAD Mouse Model of Alzheimer's Disease. Pharmaceutics 2023; 15:1809. [PMID: 37513996 PMCID: PMC10383120 DOI: 10.3390/pharmaceutics15071809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that involves strong inflammatory components. Aberrant and prolonged inflammation in the CNS is thought to contribute to the development of the pathology. The use of single cytokine approaches to curb or leverage inflammatory mechanisms for disease modifying benefit has often resulted in conflicting data. Furthermore, these treatments were usually delivered locally into the CNS parenchyma, complicating translational efforts. To overcome these hurdles, we tested the use of glatiramer acetate (GA) in reducing amyloid beta (Aβ) plaque pathology in the 5xFAD model of AD. GA immunizations were begun at the ages of 2.5 months, 5.5 months, and 8.5 months, and GA was delivered weekly for 8 weeks. While previous data describe potential benefits of GA immunization in decreasing Aβ levels in murine models of AD, we found modest decreases in Aβ levels if given during the development of pathology but, surprisingly, found increased Aβ levels if GA was administered at later stages. The impact of GA treatment was only significant for female mice. Furthermore, we observed no changes between microglial uptake of plaque, CD11c immunopositivity of microglia, or levels of TMEM119 and P2Ry12 on microglia. Overall, these data warrant exercising caution when aiming to repurpose GA for AD.
Collapse
Affiliation(s)
- Berke Karaahmet
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - John A Olschowka
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - M Kerry O'Banion
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
81
|
Martin M, Pusceddu MM, Teichenné J, Negra T, Connolly A, Escoté X, Torrell Galceran H, Cereto Massagué A, Samarra Mestre I, Del Pino Rius A, Romero-Gimenez J, Egea C, Alcaide-Hidalgo JM, Del Bas JM. Preventive Treatment with Astaxanthin Microencapsulated with Spirulina Powder, Administered in a Dose Range Equivalent to Human Consumption, Prevents LPS-Induced Cognitive Impairment in Rats. Nutrients 2023; 15:2854. [PMID: 37447181 DOI: 10.3390/nu15132854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Cognitive alterations are a common feature associated with many neurodegenerative diseases and are considered a major health concern worldwide. Cognitive alterations are triggered by microglia activation and oxidative/inflammatory processes in specific areas of the central nervous system. Consumption of bioactive compounds with antioxidative and anti-inflammatory effects, such as astaxanthin and spirulina, can help in preventing the development of these pathologies. In this study, we have investigated the potential beneficial neuroprotective effects of a low dose of astaxanthin (ASX) microencapsulated within spirulina (ASXSP) in female rats to prevent the cognitive deficits associated with the administration of LPS. Alterations in memory processing were evaluated in the Y-Maze and Morris Water Maze (MWM) paradigms. Changes in microglia activation and in gut microbiota content were also investigated. Our results demonstrate that LPS modified long-term memory in the MWM and increased microglia activation in the hippocampus and prefrontal cortex. Preventive treatment with ASXSP ameliorated LPS-cognitive alterations and microglia activation in both brain regions. Moreover, ASXSP was able to partially revert LPS-induced gut dysbiosis. Our results demonstrate the neuroprotective benefits of ASX when microencapsulated with spirulina acting through different mechanisms, including antioxidant, anti-inflammatory and, probably, prebiotic actions.
Collapse
Affiliation(s)
- Miquel Martin
- Eurecat-Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain
| | - Matteo M Pusceddu
- Eurecat-Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain
| | - Joan Teichenné
- Eurecat-Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain
| | | | | | - Xavier Escoté
- Eurecat-Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain
| | - Helena Torrell Galceran
- Eurecat-Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain
| | - Adrià Cereto Massagué
- Eurecat-Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain
| | - Iris Samarra Mestre
- Eurecat-Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain
| | - Antoni Del Pino Rius
- Eurecat-Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain
| | - Jordi Romero-Gimenez
- Eurecat-Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain
| | - Cristina Egea
- Eurecat-Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain
| | | | - Josep Maria Del Bas
- Eurecat-Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain
| |
Collapse
|
82
|
Ospondpant D, Xia Y, Lai QWS, Yuen GKW, Yang M, Chanthanam K, Dong TT, Tsim KWK. The extracts of Dracaena cochinchinensis stemwood suppress inflammatory response and phagocytosis in lipopolysaccharide-activated microglial cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154936. [PMID: 37385071 DOI: 10.1016/j.phymed.2023.154936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Neuroinflammation is a pivotal process in the brain that contributes to the development of neurodegenerative diseases, such as Alzheimer's disease (AD). During neuroinflammation, the over-activation of microglial cells can drive the pathological processes underlying AD, including an increase in amyloid β (Aβ) production and accumulation, ultimately leading to neuronal and synaptic loss. Dracaena cochinchinensis (Lour.) S.C. Chen, also known as "Chan-daeng" in Thai, belongs to the Asparagaceae family. In Thai traditional medicine, it has been used as an antipyretic, pain reliever, and anti-inflammatory agent. However, the effects of D. cochinchinensis on neuroinflammation are yet to be determined. PURPOSE We aimed to evaluate the anti-neuroinflammatory activities of D. cochinchinensis stemwood extract in activated microglia. METHODS In this study, lipopolysaccharide (LPS), a potent pro-inflammatory stimulus, was used to activate microglial BV2 cells, as a cell model of neuroinflammation. Our investigation included several techniques, including qRT-PCR, ELISA, Western blotting, phagocytosis, and immunofluorescence staining, to examine the potential anti-inflammatory effects of D. cochinchinensis stemwood. RESULTS D. cochinchinensis stemwood, named DCS, was extracted with ethanol and water. The extracts of DCS showed dose-dependent anti-inflammatory effects, markedly suppressing the LPS-mediated mRNA expression of pro-inflammatory factors, including IL-1β, TNF-α, and iNOS, while increasing expression of the anti-inflammatory biomarker Arg1 in both BV2 microglia and RAW264.7 macrophages. DCS extracts also decreased the protein levels of IL-1β, TNF-α, and iNOS. These findings were correlated with the suppression of phosphorylated proteins of p38, JNK, and Akt in the LPS-activated microglia. Moreover, DCS extracts significantly attenuated excessive phagocytosis of beads and Aβ fibrils during the LPS-mediated microglial activation. CONCLUSION Taken together, our results indicated that DCS extracts had anti-neuroinflammatory properties by suppressing the expression of pro-inflammatory factors, increasing the expression of the anti-inflammatory biomarker Arg1, and modulating excessive phagocytosis in activated microglia. These findings suggested that DCS extract could be a promising natural product for the treatment of neuroinflammatory and neurodegenerative diseases, like AD.
Collapse
Affiliation(s)
- Dusadee Ospondpant
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Yingjie Xia
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Queenie Wing Sze Lai
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Gary Ka-Wing Yuen
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Meixia Yang
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Kanlayakorn Chanthanam
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tina Tingxia Dong
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Karl Wah Keung Tsim
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China; Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
83
|
Guan S, Sun L, Wang X, Huang X, Luo T. Propofol inhibits neuroinflammation and metabolic reprogramming in microglia in vitro and in vivo. Front Pharmacol 2023; 14:1161810. [PMID: 37383725 PMCID: PMC10293632 DOI: 10.3389/fphar.2023.1161810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/12/2023] [Indexed: 06/30/2023] Open
Abstract
Microglial activation-induced neuroinflammation is closely related to the development of sepsis-associated encephalopathy. Accumulating evidence suggests that changes in the metabolic profile of microglia is crucial for their response to inflammation. Propofol is widely used for sedation in mechanically ventilated patients with sepsis. Here, we investigate the effect of propofol on lipopolysaccharide-induced neuroinflammation, neuronal injuries, microglia metabolic reprogramming as well as the underlying molecular mechanisms. The neuroprotective effects of propofol (80 mg/kg) in vivo were measured in the lipopolysaccharide (2 mg/kg)-induced sepsis in mice through behavioral tests, Western blot analysis and immunofluorescent staining. The anti-inflammatory effects of propofol (50 μM) in microglial cell cultures under lipopolysaccharide (10 ng/ml) challenge were examined with Seahorse XF Glycolysis Stress test, ROS assay, Western blot, and immunofluorescent staining. We showed that propofol treatment reduced microglia activation and neuroinflammation, inhibited neuronal apoptosis and improved lipopolysaccharide-induced cognitive dysfunction. Propofol also attenuated lipopolysaccharide-stimulated increases of inducible nitric oxide synthase, nitric oxide, tumor necrosis factor-α, interlukin-1β and COX-2 in cultured BV-2 cells. Propofol-treated microglia showed a remarkable suppression of lipopolysaccharide-induced HIF-1α, PFKFB3, HK2 expression and along with downregulation of the ROS/PI3K/Akt/mTOR signaling pathway. Moreover, propofol attenuated the enhancement of mitochondrial respiration and glycolysis induced by lipopolysaccharide. Together, our data suggest that propofol attenuated inflammatory response by inhibiting metabolic reprogramming, at least in part, through downregulation of the ROS/PI3K/Akt/mTOR/HIF-1α signaling pathway.
Collapse
|
84
|
Bircak-Kuchtova B, Chung HY, Wickel J, Ehler J, Geis C. Neurofilament light chains to assess sepsis-associated encephalopathy: Are we on the track toward clinical implementation? Crit Care 2023; 27:214. [PMID: 37259091 DOI: 10.1186/s13054-023-04497-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
Sepsis is the most common cause of admission to intensive care units worldwide. Sepsis patients frequently suffer from sepsis-associated encephalopathy (SAE) reflecting acute brain dysfunction. SAE may result in increased mortality, extended length of hospital stay, and long-term cognitive dysfunction. The diagnosis of SAE is based on clinical assessments, but a valid biomarker to identify and confirm SAE and to assess SAE severity is missing. Several blood-based biomarkers indicating neuronal injury have been evaluated in sepsis and their potential role as early diagnosis and prognostic markers has been studied. Among those, the neuroaxonal injury marker neurofilament light chain (NfL) was identified to potentially serve as a prognostic biomarker for SAE and to predict long-term cognitive impairment. In this review, we summarize the current knowledge of biomarkers, especially NfL, in SAE and discuss a possible future clinical application considering existing limitations.
Collapse
Affiliation(s)
- Barbora Bircak-Kuchtova
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Ha-Yeun Chung
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany.
| | - Jonathan Wickel
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| | - Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747, Jena, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department for Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747, Jena, Germany
| |
Collapse
|
85
|
Marizzoni M, Mirabelli P, Mombelli E, Coppola L, Festari C, Lopizzo N, Luongo D, Mazzelli M, Naviglio D, Blouin JL, Abramowicz M, Salvatore M, Pievani M, Cattaneo A, Frisoni GB. A peripheral signature of Alzheimer's disease featuring microbiota-gut-brain axis markers. Alzheimers Res Ther 2023; 15:101. [PMID: 37254223 PMCID: PMC10230724 DOI: 10.1186/s13195-023-01218-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/21/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Increasing evidence links the gut microbiota (GM) to Alzheimer's disease (AD) but the mechanisms through which gut bacteria influence the brain are still unclear. This study tests the hypothesis that GM and mediators of the microbiota-gut-brain axis (MGBA) are associated with the amyloid cascade in sporadic AD. METHODS We included 34 patients with cognitive impairment due to AD (CI-AD), 37 patients with cognitive impairment not due to AD (CI-NAD), and 13 cognitively unimpaired persons (CU). We studied the following systems: (1) fecal GM, with 16S rRNA sequencing; (2) a panel of putative MGBA mediators in the blood including immune and endothelial markers as bacterial products (i.e., lipopolysaccharide, LPS), cell adhesion molecules (CAMs) indicative of endothelial dysfunction (VCAM-1, PECAM-1), vascular changes (P-, E-Selectin), and upregulated after infections (NCAM, ICAM-1), as well as pro- (IL1β, IL6, TNFα, IL18) and anti- (IL10) inflammatory cytokines; (3) the amyloid cascade with amyloid PET, plasma phosphorylated tau (pTau-181, for tau pathology), neurofilament light chain (NfL, for neurodegeneration), and global cognition measured using MMSE and ADAScog. We performed 3-group comparisons of markers in the 3 systems and calculated correlation matrices for the pooled group of CI-AD and CU as well as CI-NAD and CU. Patterns of associations based on Spearman's rho were used to validate the study hypothesis. RESULTS CI-AD were characterized by (1) higher abundance of Clostridia_UCG-014 and decreased abundance of Moryella and Blautia (p < .04); (2) elevated levels of LPS (p < .03), upregulation of CAMs, Il1β, IL6, and TNFα, and downregulation of IL10 (p < .05); (3) increased brain amyloid, plasma pTau-181, and NfL (p < 0.004) compared with the other groups. CI-NAD showed (1) higher abundance of [Eubacterium] coprostanoligenes group and Collinsella and decreased abundance of Lachnospiraceae_ND3007_group, [Ruminococcus]_gnavus_group and Oscillibacter (p < .03); (2) upregulation of PECAM-1 and TNFα (p < .03); (4) increased plasma levels of NfL (p < .02) compared with CU. Different GM genera were associated with immune and endothelial markers in both CI-NAD and CI-AD but these mediators were widely related to amyloid cascade markers only in CI-AD. CONCLUSIONS Specific bacterial genera are associated with immune and endothelial MGBA mediators, and these are associated with amyloid cascade markers in sporadic AD. The physiological mechanisms linking the GM to the amyloid cascade should be further investigated to elucidate their potential therapeutic implications.
Collapse
Affiliation(s)
- Moira Marizzoni
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy.
- Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy.
| | | | - Elisa Mombelli
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | | | - Cristina Festari
- Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | - Nicola Lopizzo
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Delia Luongo
- Istituto Di Biostrutture E Bioimmagini (I.B.B.) - CNR, Naples, Italy
| | - Monica Mazzelli
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Daniele Naviglio
- Dip.to Di Scienze Chimiche, Università Degli Studi Di Napoli - Federico II, Naples, Italy
| | - Jean-Louis Blouin
- Genetic Medicine Division, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Marc Abramowicz
- Genetic Medicine Division, University Hospitals and University of Geneva, Geneva, Switzerland
| | | | - Michela Pievani
- Laboratory of Neuroimaging and Alzheimer's Epidemiology, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | - Annamaria Cattaneo
- Laboratory of Biological Psychiatry, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Giovanni B Frisoni
- Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
86
|
Ban YH, Park D, Choi EK, Kim TM, Joo SS, Kim YB. Effectiveness of Combinational Treatments for Alzheimer's Disease with Human Neural Stem Cells and Microglial Cells Over-Expressing Functional Genes. Int J Mol Sci 2023; 24:9561. [PMID: 37298510 PMCID: PMC10253978 DOI: 10.3390/ijms24119561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. In AD patients, amyloid-β (Aβ) peptide-mediated degeneration of the cholinergic system utilizing acetylcholine (ACh) for memory acquisition is observed. Since AD therapy using acetylcholinesterase (AChE) inhibitors are only palliative for memory deficits without reversing disease progress, there is a need for effective therapies, and cell-based therapeutic approaches should fulfil this requirement. We established F3.ChAT human neural stem cells (NSCs) encoding the choline acetyltransferase (ChAT) gene, an ACh-synthesizing enzyme, HMO6.NEP human microglial cells encoding the neprilysin (NEP) gene, an Aβ-degrading enzyme, and HMO6.SRA cells encoding the scavenger receptor A (SRA) gene, an Aβ-uptaking receptor. For the efficacy evaluation of the cells, first, we established an appropriate animal model based on Aβ accumulation and cognitive dysfunction. Among various AD models, intracerebroventricular (ICV) injection of ethylcholine mustard azirinium ion (AF64A) induced the most severe Aβ accumulation and memory dysfunction. Established NSCs and HMO6 cells were transplanted ICV to mice showing memory loss induced by AF64A challenge, and brain Aβ accumulation, ACh concentration and cognitive function were analyzed. All the transplanted F3.ChAT, HMO6.NEP and HMO6.SRA cells were found to survive up to 4 weeks in the mouse brain and expressed their functional genes. Combinational treatment with the NSCs (F3.ChAT) and microglial cells encoding each functional gene (HMO6.NEP or HMO6.SRA) synergistically restored the learning and memory function of AF64A-challenged mice by eliminating Aβ deposits and recovering ACh level. The cells also attenuated inflammatory astrocytic (glial fibrillary acidic protein) response by reducing Aβ accumulation. Taken together, it is expected that NSCs and microglial cells over-expressing ChAT, NEP or SRA genes could be strategies for replacement cell therapy of AD.
Collapse
Affiliation(s)
- Young-Hwan Ban
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Dongsun Park
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Chungbuk, Republic of Korea
| | - Ehn-Kyoung Choi
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Chungbuk, Republic of Korea
| | - Tae Myoung Kim
- Central Research Institute, Designed Cells Co., Ltd., Cheongju 28576, Chungbuk, Republic of Korea
| | - Seong Soo Joo
- College of Life Science, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea
| | - Yun-Bae Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Chungbuk, Republic of Korea
| |
Collapse
|
87
|
Wagdy R, Abdel-Kader RM, El-Khatib AH, Linscheid MW, Handoussa H, Hamdi N. Origanum majorana L. protects against neuroinflammation-mediated cognitive impairment: a phyto-pharmacological study. BMC Complement Med Ther 2023; 23:165. [PMID: 37210483 DOI: 10.1186/s12906-023-03994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/09/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Neuroinflammation and oxidative stress are critical players in the pathogenesis of numerous neurodegenerative diseases, such as Alzheimer's disease (AD) which is responsible for most cases of dementia in the elderly. With the lack of curative treatments, natural phenolics are potential candidates to delay the onset and progression of such age-related disorders due to their potent antioxidant and anti-inflammatory effects. This study aims at assessing the phytochemical characteristics of Origanum majorana L. (OM) hydroalcohol extract and its neuroprotective activities in a murine neuroinflammatory model. METHODS OM phytochemical analysis was done by HPLC/PDA/ESI-MSn. Oxidative stress was induced in vitro by hydrogen peroxide and cell viability was measured using WST-1 assay. Swiss albino mice were injected intraperitoneally with OM extract at a dose of 100 mg/kg for 12 days and with 250 μg/kg LPS daily starting from day 6 to induce neuroinflammation. Cognitive functions were assessed by novel object recognition and Y-maze behavioral tests. Hematoxylin and eosin staining was used to assess the degree of neurodegeneration in the brain. Reactive astrogliosis and inflammation were assessed by immunohistochemistry using GFAP and COX-2 antibodies, respectively. RESULTS OM is rich in phenolics, with rosmarinic acid and its derivatives being major constituents. OM extract and rosmarinic acid significantly protected microglial cells against oxidative stress-induced cell death (p < 0.001). OM protected against the LPS-induced alteration of recognition and spatial memory in mice (p < 0.001) and (p < 0.05), respectively. Mice that received OM extract prior to the induction of neuroinflammation showed comparable histology to control brains, with no overt neurodegeneration. Furthermore, OM pre-treatment decreased the immunohistochemistry profiler score of GFAP from positive to low positive and COX-2 from low positive to negative in the brain tissue, compared to the LPS group. CONCLUSION These findings highlight the potential preventive effects of OM phenolics against neuroinflammation and pave the way toward drug discovery and development for neurodegenerative disorders.
Collapse
Affiliation(s)
- Reham Wagdy
- Department of Pharmaceutical Biology, German University in Cairo, Cairo, Egypt
| | - Reham M Abdel-Kader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, 11835, Egypt
| | - Ahmed H El-Khatib
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Department of Chemistry, Humboldt-Universität Zu Berlin, Berlin, Germany
| | | | - Heba Handoussa
- Department of Pharmaceutical Biology, German University in Cairo, Cairo, Egypt
| | - Nabila Hamdi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, New Cairo City, 11835, Egypt.
| |
Collapse
|
88
|
Sbai O, Bazzani V, Tapaswi S, McHale J, Vascotto C, Perrone L. Is Drp1 a link between mitochondrial dysfunction and inflammation in Alzheimer's disease? Front Mol Neurosci 2023; 16:1166879. [PMID: 37251647 PMCID: PMC10213291 DOI: 10.3389/fnmol.2023.1166879] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Recent advances highlight that inflammation is critical to Alzheimer Disease (AD) pathogenesis. Indeed, several diseases characterized by inflammation are considered risk factors for AD, such as type 2 diabetes, obesity, hypertension, and traumatic brain injury. Moreover, allelic variations in genes involved in the inflammatory cascade are risk factors for AD. AD is also characterized by mitochondrial dysfunction, which affects the energy homeostasis of the brain. The role of mitochondrial dysfunction has been characterized mostly in neuronal cells. However, recent data are demonstrating that mitochondrial dysfunction occurs also in inflammatory cells, promoting inflammation and the secretion of pro-inflammatory cytokines, which in turn induce neurodegeneration. In this review, we summarize the recent finding supporting the hypothesis of the inflammatory-amyloid cascade in AD. Moreover, we describe the recent data that demonstrate the link between altered mitochondrial dysfunction and the inflammatory cascade. We focus in summarizing the role of Drp1, which is involved in mitochondrial fission, showing that altered Drp1 activation affects the mitochondrial homeostasis and leads to the activation of the NLRP3 inflammasome, promoting the inflammatory cascade, which in turn aggravates Amyloid beta (Ab) deposition and tau-induced neurodegeneration, showing the relevance of this pro-inflammatory pathway as an early event in AD.
Collapse
Affiliation(s)
- Oualid Sbai
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis, Tunisia
| | | | | | - Joshua McHale
- Department of Medicine, University of Udine, Udine, Italy
| | - Carlo Vascotto
- Department of Medicine, University of Udine, Udine, Italy
- IMol Polish Academy of Sciences, Warsaw, Poland
| | - Lorena Perrone
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
89
|
Wei ZH, Koya J, Acharekar N, Trejos J, Dong XD, Schanne FA, Ashby CR, Reznik SE. N,N-dimethylacetamide targets neuroinflammation in Alzheimer's disease in in-vitro and ex-vivo models. Sci Rep 2023; 13:7077. [PMID: 37127686 PMCID: PMC10151369 DOI: 10.1038/s41598-023-34355-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/28/2023] [Indexed: 05/03/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic degenerative brain disorder with no clear pathogenesis or effective cure, accounting for 60-80% of cases of dementia. In recent years, the importance of neuroinflammation in the pathogenesis of AD and other neurodegenerative disorders has come into focus. Previously, we made the serendipitous discovery that the widely used drug excipient N,N-dimethylacetamide (DMA) attenuates endotoxin-induced inflammatory responses in vivo. In the current work, we investigate the effect of DMA on neuroinflammation and its mechanism of action in in-vitro and ex-vivo models of AD. We show that DMA significantly suppresses the production of inflammatory mediators, such as reactive oxygen species (ROS), nitric oxide (NO) and various cytokines and chemokines, as well as amyloid-β (Aβ), in cultured microglia and organotypic hippocampal slices induced by lipopolysaccharide (LPS). We also demonstrate that DMA inhibits Aβ-induced inflammation. Finally, we show that the mechanism of DMA's effect on neuroinflammation is inhibition of the nuclear factor kappa-B (NF-κB) signaling pathway and we show how DMA dismantles the positive feedback loop between NF-κB and Aβ synthesis. Taken together, our findings suggest that DMA, a generally regarded as safe compound that crosses the blood brain barrier, should be further investigated as a potential therapy for Alzheimer's disease and neuroinflammatory disorders.
Collapse
Affiliation(s)
- Zeng-Hui Wei
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jagadish Koya
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, 11439, USA
| | - Nikita Acharekar
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jesus Trejos
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, 11439, USA
| | - Xing-Duo Dong
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, 11439, USA
| | - Francis A Schanne
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, 11439, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, 11439, USA
| | - Sandra E Reznik
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, 11439, USA.
- Departments of Pathology and Obstetrics and Gynecology and Women's Health, The University Hospital for Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, 10461, USA.
| |
Collapse
|
90
|
Malko P, Jia X, Wood I, Jiang LH. Piezo1 channel-mediated Ca 2+ signaling inhibits lipopolysaccharide-induced activation of the NF-κB inflammatory signaling pathway and generation of TNF-α and IL-6 in microglial cells. Glia 2023; 71:848-865. [PMID: 36447422 DOI: 10.1002/glia.24311] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/20/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
Microglial cells are crucial in maintaining central nervous system (CNS) homeostasis and mediating CNS disease pathogenesis. Increasing evidence supports that alterations in the mechanical properties of CNS microenvironments influence glial cell phenotypes, but the mechanisms regulating microglial cell function remain elusive. Here, we examined the mechanosensitive Piezo1 channel in microglial cells, particularly, how Piezo1 channel activation regulates pro-inflammatory activation and production of pro-inflammatory cytokines, using BV2 and primary microglial cells. Piezo1 expression in microglial cells was detected both at mRNA and protein levels. Application of Piezo1 channel activator Yoda1 induced Ca2+ flux to increase intracellular Ca2+ concentration that was reduced by treatment with ruthenium red, a Piezo1 inhibitor, or Piezo1-specific siRNA, supporting that Piezo1 functions as a cell surface Ca2+ -permeable channel. Priming with lipopolysaccharide (LPS) induced microglial cell activation and production of TNF-α and IL-6, which were inhibited by treatment with Yoda1. Furthermore, LPS priming induced the activation of ERK, p38 MAPKs, and NF-κB. LPS-induced activation of NF-κB, but not ERK and p38, was inhibited by treatment with Yoda1. Yoda1-induced inhibition was blunted by siRNA-mediated depletion of Piezo1 expression and, furthermore, treatment with BAPTA-AM to prevent intracellular Ca2+ increase. Collectively, our results support that Piezo1 channel activation downregulates the pro-inflammatory function of microglial cells, especially production of TNF-α and IL-6, by initiating intracellular Ca2+ signaling to inhibit the NF-κB inflammatory signaling pathway. These findings reveal Piezo1 channel activation as a previously unrecognized mechanism regulating microglial cell function, raising an interesting perspective on targeting this molecular mechanism to alleviate neuroinflammation and associated CNS pathologies.
Collapse
Affiliation(s)
- Philippa Malko
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Xiaoling Jia
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ian Wood
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Lin-Hua Jiang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Department of Physiology and Pathophysiology, and Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Xinxiang Medical University, Xinxiang, China.,A4245-Transplantation, Immunology and Inflammation, Faculty of Medicine, University of Tours, Tours, France
| |
Collapse
|
91
|
Kaplan H, Hooper PL, Gatz M, Mack WJ, Law EM, Chui HC, Sutherland ML, Sutherland JD, Rowan CJ, Wann LS, Allam AH, Thompson RC, Michalik DE, Lombardi G, Miyamoto MI, Eid Rodriguez D, Copajira Adrian J, Quispe Gutierrez R, Beheim BA, Cummings DK, Seabright E, Alami S, R. Garcia A, Buetow K, Thomas GS, Finch CE, Stieglitz J, Trumble BC, Gurven MD, Irimia A. Brain volume, energy balance, and cardiovascular health in two nonindustrial South American populations. Proc Natl Acad Sci U S A 2023; 120:e2205448120. [PMID: 36940322 PMCID: PMC10068758 DOI: 10.1073/pnas.2205448120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 01/24/2023] [Indexed: 03/22/2023] Open
Abstract
Little is known about brain aging or dementia in nonindustrialized environments that are similar to how humans lived throughout evolutionary history. This paper examines brain volume (BV) in middle and old age among two indigenous South American populations, the Tsimane and Moseten, whose lifestyles and environments diverge from those in high-income nations. With a sample of 1,165 individuals aged 40 to 94, we analyze population differences in cross-sectional rates of decline in BV with age. We also assess the relationships of BV with energy biomarkers and arterial disease and compare them against findings in industrialized contexts. The analyses test three hypotheses derived from an evolutionary model of brain health, which we call the embarrassment of riches (EOR). The model hypothesizes that food energy was positively associated with late life BV in the physically active, food-limited past, but excess body mass and adiposity are now associated with reduced BV in industrialized societies in middle and older ages. We find that the relationship of BV with both non-HDL cholesterol and body mass index is curvilinear, positive from the lowest values to 1.4 to 1.6 SDs above the mean, and negative from that value to the highest values. The more acculturated Moseten exhibit a steeper decrease in BV with age than Tsimane, but still shallower than US and European populations. Lastly, aortic arteriosclerosis is associated with lower BV. Complemented by findings from the United States and Europe, our results are consistent with the EOR model, with implications for interventions to improve brain health.
Collapse
Affiliation(s)
- Hillard Kaplan
- Economic Science Institute, Chapman University, Orange, CA82866
| | - Paul L. Hooper
- Economic Science Institute, Chapman University, Orange, CA82866
- Department of Anthropology, University of New Mexico, Albuquerque, NM87131
| | - Margaret Gatz
- Center for Economic and Social Research, University of Southern California, Los Angeles, CA90089
| | - Wendy J. Mack
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - E. Meng Law
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
- Department of Radiology, The Alfred Health Hospital, Melbourne, VIC3004, Australia
- iBRAIN Research Laboratory, Departments of Neuroscience, Computer Systems and Electrical Engineering, Monash University, Melbourne, VIC3800, Australia
| | - Helena C. Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
- Alzheimer’s Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | | | | | - Christopher J. Rowan
- Renown Institute for Heart and Vascular Health, Reno, NV89502
- School of Medicine, University of Nevada, Reno, NV89557
| | - L. Samuel Wann
- Division of Cardiology, University of New Mexico, Albuquerque, NM87131
| | - Adel H. Allam
- Department of Cardiology, School of Medicine, Al-Azhar University, Al Mikhaym Al Daem, Cairo4334003, Egypt
| | - Randall C. Thompson
- Saint Luke’s Mid America Heart Institute, University of Missouri - Kansas City, Kansas City, MO64111
| | - David E. Michalik
- Department of Pediatrics, School of Medicine, University of California at Irvine, Orange, CA92617
- MemorialCare Miller Children’s and Women’s Hospital, Long Beach, CA90806
| | - Guido Lombardi
- Laboratorio de Paleopatologia, Catedra Pedro Weiss, Universidad Peruana Cayetano Heredia, Lima15102, Peru
| | | | | | | | | | - Bret A. Beheim
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig04103, Germany
| | | | - Edmond Seabright
- Department of Anthropology, University of New Mexico, Albuquerque, NM87131
- School of Collective Intelligence, Universite Mohammed 6 Polytechnic, Ben Guerir43150, Morocco
| | - Sarah Alami
- School of Collective Intelligence, Universite Mohammed 6 Polytechnic, Ben Guerir43150, Morocco
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Angela R. Garcia
- Scientific Research Core, Phoenix Children’s Hospital, Phoenix, AZ85016
- Department of Child Health, University of Arizona, Tucson, AZ85724
| | - Kenneth Buetow
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ85287
| | - Gregory S. Thomas
- MemorialCare Health Systems, Fountain Valley, CA92708
- Division of Cardiology, University of California, Irvine, Orange, CA92868
| | - Caleb E. Finch
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA90089
- Department of Biological Sciences, Anthropology and Psychology, University of Southern California, Los Angeles, CA90089
| | - Jonathan Stieglitz
- Institute for Advanced Study in Toulouse, Toulouse 1 Capitole University, Toulouse31000, France
| | - Benjamin C. Trumble
- Center for Evolution and Medicine, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ85287
| | - Michael D. Gurven
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA90089
- Corwin D. Denney Research Center, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA90089
| |
Collapse
|
92
|
McNaughton KA, Williamson LL. Effects of sex and pro-inflammatory cytokines on context discrimination memory. Behav Brain Res 2023; 442:114320. [PMID: 36720350 PMCID: PMC9930642 DOI: 10.1016/j.bbr.2023.114320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
In learning and memory tasks, immune overactivation is associated with impaired performance, while normal immune activation is associated with optimal performance. In one specific domain of memory, context discrimination memory, peripheral immune stimulation has been shown to impair performance on the context-object discrimination memory task in male rats. In order to evaluate potential sex differences in this task, as well as potential mechanisms for the memory impairment, we evaluated the ability of peripheral immune stimulation to impair task performance in both males and females. Next, we examined whether treatment with interleukin-1 receptor antagonist (IL-1ra), a receptor antagonist for the pro-inflammatory cytokine interleukin (IL)-1β, was able to rescue the memory deficit. We examined microglial morphology in the hippocampus and cytokine mRNA and protein expression in the hippocampus and the periphery. Male rats displayed memory impairment in response to LPS, and this impairment was not rescued by IL-1ra. Female rats did not have significant memory impairments and IL-1ra administration improved memory following inflammation. A subset of cytokines and chemokines were increased only in LPS-treated males. Inflammation alone did not alter microglia morphology, but IL-1ra did in certain sub-regions of the hippocampus. Together, these results indicate that sex differences exist in the ability of a peripheral immune stimulus to influence context discrimination memory and specific cytokine signals may be altered in impaired males. This study highlights the importance of sex differences in response to inflammatory challenges, especially related to memory impairments in context discrimination memory.
Collapse
Affiliation(s)
- Kathryn A McNaughton
- University of Maryland (UMD), 0112 Biology-Psychology Building, Department of Psychology, College Park, MD 20742, United States.
| | - Lauren L Williamson
- Northern Kentucky University, 100 Nunn Dr, FH 359F, Highland Heights, KY 41099, United States.
| |
Collapse
|
93
|
Decandia D, Gelfo F, Landolfo E, Balsamo F, Petrosini L, Cutuli D. Dietary Protection against Cognitive Impairment, Neuroinflammation and Oxidative Stress in Alzheimer's Disease Animal Models of Lipopolysaccharide-Induced Inflammation. Int J Mol Sci 2023; 24:ijms24065921. [PMID: 36982996 PMCID: PMC10051444 DOI: 10.3390/ijms24065921] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Alzheimer's disease (AD) is a rapidly growing epidemic with a heavy social and economic burden. Evidence suggests that systemic inflammation, dysregulation of the immune response and the resulting neuroinflammation and neurodegeneration play a significant role in AD pathogenesis. Currently, given that there is no fully convincing cure for AD, the interest in lifestyle factors (such as diet), which potentially delay onset and reduce the severity of symptoms, is increasing. This review is aimed at summarizing the effects of dietary supplementation on cognitive decline, neuroinflammation and oxidative stress in AD-like animal models with a focus on neuroinflammation induced by lipopolysaccharide (LPS) injection, which mimics systemic inflammation in animals. The compounds reviewed include curcumin, krill oil, chicoric acid, plasmalogens, lycopene, tryptophan-related dipeptides, hesperetin and selenium peptides. Despite the heterogeneity of these compounds, there is a strong consensus on their counteracting action on LPS-induced cognitive deficits and neuroinflammatory responses in rodents by modulating cell-signaling processes, such as the NF-κB pathway. Overall, dietary interventions could represent an important resource to oppose AD due to their influence in neuroprotection and immune regulation.
Collapse
Affiliation(s)
- Davide Decandia
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Francesca Gelfo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
| | - Eugenia Landolfo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Francesca Balsamo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Debora Cutuli
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| |
Collapse
|
94
|
Wang M, Zhang H, Liang J, Huang J, Chen N. Exercise suppresses neuroinflammation for alleviating Alzheimer's disease. J Neuroinflammation 2023; 20:76. [PMID: 36935511 PMCID: PMC10026496 DOI: 10.1186/s12974-023-02753-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 02/28/2023] [Indexed: 03/21/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease, with the characteristics of neurofibrillary tangle (NFT) and senile plaque (SP) formation. Although great progresses have been made in clinical trials based on relevant hypotheses, these studies are also accompanied by the emergence of toxic and side effects, and it is an urgent task to explore the underlying mechanisms for the benefits to prevent and treat AD. Herein, based on animal experiments and a few clinical trials, neuroinflammation in AD is characterized by long-term activation of pro-inflammatory microglia and the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasomes. Damaged signals from the periphery and within the brain continuously activate microglia, thus resulting in a constant source of inflammatory responses. The long-term chronic inflammatory response also exacerbates endoplasmic reticulum oxidative stress in microglia, which triggers microglia-dependent immune responses, ultimately leading to the occurrence and deterioration of AD. In this review, we systematically summarized and sorted out that exercise ameliorates AD by directly and indirectly regulating immune response of the central nervous system and promoting hippocampal neurogenesis to provide a new direction for exploring the neuroinflammation activity in AD.
Collapse
Affiliation(s)
- Minghui Wang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Hu Zhang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Jiling Liang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Jielun Huang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China.
| |
Collapse
|
95
|
Hsp22 pretreatment protection against LPS-induced hippocampal injury by alleviating neuroinflammation and apoptosis by regulating the NLRP3/Caspase1/IL-1β signaling pathway in mice. Aging (Albany NY) 2023; 15:1977-2004. [PMID: 36934348 PMCID: PMC10085591 DOI: 10.18632/aging.204586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/01/2023] [Indexed: 03/19/2023]
Abstract
Neuroinflammation is an important reason for the occurrence and development of cognitive impairment. The Lentiviral vector Hsp22 was constructed for intracerebroventricular injection pretreatment, LPS was used to induce the cognitive impairment model in mice, and the Morris water maze was used to examine the changes in cognitive behavior in mice. LPS was used to induce BV-2 microglial cells, and plasmid pretreatment was used to overexpress Hsp22. HE staining, Nissl staining, immunohistochemistry, immunofluorescence, ELISA and protein blotting were used to examine microglial activation, changes in inflammatory factors, changes in pathway proteins and apoptosis. The results showed that LPS induced microglial expression of NLRP3/Caspase-1/IL-1β signaling pathway protein Iba1, and the inflammatory protein and inflammatory factors IL-1β, IL-6 and TNF-α, the expression of Bax increased significantly, Bcl2 expression decreased, and the learning and memory abilities of mice decreased significantly. Preconditioning with the Hsp22-overexpressing lentivirus attenuated LPS-induced activation of hippocampal microglia, the expression of inflammatory factors and pathway proteins, and apoptosis, and improved cognitive impairment in mice. In addition, plasmid-mediated Hsp22 overexpression reversed LPS-induced inflammation. These findings suggest that Hsp22 overexpression is a promising method for the treatment of cognitive impairment.
Collapse
|
96
|
Araldi GL, Hwang YW. Development of Novel Fluorinated Polyphenols as Selective Inhibitors of DYRK1A/B Kinase for Treatment of Neuroinflammatory Diseases including Parkinson's Disease. Pharmaceuticals (Basel) 2023; 16:443. [PMID: 36986543 PMCID: PMC10058583 DOI: 10.3390/ph16030443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Natural polyphenol derivatives such as those found in green tea have been known for a long time for their useful therapeutic activity. Starting from EGCG, we have discovered a new fluorinated polyphenol derivative (1c) characterized by improved inhibitory activity against DYRK1A/B enzymes and by considerably improved bioavailability and selectivity. DYRK1A is an enzyme that has been implicated as an important drug target in various therapeutic areas, including neurological disorders (Down syndrome and Alzheimer's disease), oncology, and type 2 diabetes (pancreatic β-cell expansion). Systematic structure-activity relationship (SAR) on trans-GCG led to the discovery that the introduction of a fluoro atom in the D ring and methylation of the hydroxy group from para to the fluoro atom provide a molecule (1c) with more desirable drug-like properties. Owing to its good ADMET properties, compound 1c showed excellent activity in two in vivo models, namely the lipopolysaccharide (LPS)-induced inflammation model and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) animal model for Parkinson's disease.
Collapse
Affiliation(s)
- Gian Luca Araldi
- Avanti Biosciences, Inc., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Yu-Wen Hwang
- New York State Institute for Basic Research in Developmental Disabilities, Department of Molecular Biology, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| |
Collapse
|
97
|
Landolfo E, Cutuli D, Decandia D, Balsamo F, Petrosini L, Gelfo F. Environmental Enrichment Protects against Neurotoxic Effects of Lipopolysaccharide: A Comprehensive Overview. Int J Mol Sci 2023; 24:ijms24065404. [PMID: 36982478 PMCID: PMC10049264 DOI: 10.3390/ijms24065404] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Neuroinflammation is a pathophysiological condition associated with damage to the nervous system. Maternal immune activation and early immune activation have adverse effects on the development of the nervous system and cognitive functions. Neuroinflammation during adulthood leads to neurodegenerative diseases. Lipopolysaccharide (LPS) is used in preclinical research to mimic neurotoxic effects leading to systemic inflammation. Environmental enrichment (EE) has been reported to cause a wide range of beneficial changes in the brain. Based on the above, the purpose of the present review is to describe the effects of exposure to EE paradigms in counteracting LPS-induced neuroinflammation throughout the lifespan. Up to October 2022, a methodical search of studies in the literature, using the PubMed and Scopus databases, was performed, focusing on exposure to LPS, as an inflammatory mediator, and to EE paradigms in preclinical murine models. On the basis of the inclusion criteria, 22 articles were considered and analyzed in the present review. EE exerts sex- and age-dependent neuroprotective and therapeutic effects in animals exposed to the neurotoxic action of LPS. EE’s beneficial effects are present throughout the various ages of life. A healthy lifestyle and stimulating environments are essential to counteract the damages induced by neurotoxic exposure to LPS.
Collapse
Affiliation(s)
- Eugenia Landolfo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Debora Cutuli
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Davide Decandia
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy
| | - Francesca Balsamo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Francesca Gelfo
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Via Plinio 44, 00193 Rome, Italy
- Correspondence:
| |
Collapse
|
98
|
Cangalaya C, Wegmann S, Sun W, Diez L, Gottfried A, Richter K, Stoyanov S, Pakan J, Fischer KD, Dityatev A. Real-time mechanisms of exacerbated synaptic remodeling by microglia in acute models of systemic inflammation and tauopathy. Brain Behav Immun 2023; 110:245-259. [PMID: 36906076 DOI: 10.1016/j.bbi.2023.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/13/2023] Open
Abstract
Remodeling of synapses by microglia is essential for synaptic plasticity in the brain. However, during neuroinflammation and neurodegenerative diseases, microglia can induce excessive synaptic loss, although the precise underlying mechanisms are unknown. To directly observe microglia-synapse interactions under inflammatory conditions, we performed in vivo two-photon time-lapse imaging of microglia-synapse interactions after bacterial lipopolysaccharide administration to model systemic inflammation, or after inoculation of Alzheimer's disease (AD) brain extracts to model disease-associated neuroinflammatory microglial response. Both treatments prolonged microglia-neuron contacts, decreased basal surveillance of synapses and promoted synaptic remodeling in response to synaptic stress induced by focal single-synapse photodamage. Spine elimination correlated with the expression of microglial complement system/phagocytic proteins and the occurrence of synaptic filopodia. Microglia were observed contacting spines, then stretching and phagocytosing spine head filopodia. Thus, in response to inflammatory stimuli microglia exacerbated spine remodeling through prolonged microglial contact and elimination of spines 'tagged' by synaptic filopodia.
Collapse
Affiliation(s)
- Carla Cangalaya
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institut für Biochemie und Zellbiologie, Otto-von-Guericke-University, Medical Faculty, Magdeburg, Germany; ESF International Graduate School on Analysis, Imaging and Modelling of Neuronal and Inflammatory Processes, Magdeburg, Germany
| | - Susanne Wegmann
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Weilun Sun
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Lisa Diez
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Anna Gottfried
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-University, Medical Faculty, Magdeburg, Germany
| | - Karin Richter
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-University, Medical Faculty, Magdeburg, Germany
| | - Stoyan Stoyanov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Janelle Pakan
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Klaus-Dieter Fischer
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-University, Medical Faculty, Magdeburg, Germany
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| |
Collapse
|
99
|
Meng HW, Kim JH, Kim HY, Lee AY, Cho EJ. Paeoniflorin Attenuates Lipopolysaccharide-Induced Cognitive Dysfunction by Inhibition of Amyloidogenesis in Mice. Int J Mol Sci 2023; 24:ijms24054838. [PMID: 36902268 PMCID: PMC10003666 DOI: 10.3390/ijms24054838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, associated with progressive cognitive impairment and memory loss. In the present study, we examined the protective effects of paeoniflorin against memory loss and cognitive decline in lipopolysaccharide (LPS)-induced mice. Treatment with paeoniflorin alleviated LPS-induced neurobehavioral dysfunction, as confirmed by behavioral tests, including the T-maze test, novel-object recognition test, and Morris water maze test. LPS stimulated the amyloidogenic pathway-related proteins (amyloid precursor protein, APP; β-site APP cleavage enzyme, BACE; presenilin1, PS1; presenilin2, PS2) expression in the brain. However, paeoniflorin decreased APP, BACE, PS1, and PS2 protein levels. Therefore, paeoniflorin reverses LPS-induced cognitive impairment via inhibition of the amyloidogenic pathway in mice, which suggests that paeoniflorin may be useful in the prevention of neuroinflammation related to AD.
Collapse
Affiliation(s)
- Hui Wen Meng
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| | - Ji-Hyun Kim
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun Young Kim
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Ah Young Lee
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Republic of Korea
- Correspondence: (A.Y.L.); (E.J.C.)
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
- Correspondence: (A.Y.L.); (E.J.C.)
| |
Collapse
|
100
|
Wang X, Li Z, Li X, Liu X, YingMao, Cao F, Zhu X, Zhang J. Integrated metabolomics and transcriptomics reveal the neuroprotective effect of nervonic acid on LPS-induced AD model mice. Biochem Pharmacol 2023; 209:115411. [PMID: 36639003 DOI: 10.1016/j.bcp.2023.115411] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Nervonic acid (NA) is one of the long-chain fatty acids with significant biological activity that has been widely studied in recent years. It is believed that NA may play a crucial role in the recovery of human cognitive disorders. Although many literatures have shown that NA has some neuroprotective effect in experimental animal models, the detailed neuroprotective mechanism of NA is still poorly understood. In this study, we applied behavioral, transcriptomic and metabolomic approaches to analyze the neuroprotective effect of NA and its molecular mechanism in AD (Alzheimer's disease) model mice. We demonstrated that NA improved motor skills and learning and memory abilities of mice at the behavioral level. To further understand the specific pathways involved in this protective effect, we applied the metabolomics and transcriptomics profilings and focused on the expression patterns of genes that NA might alter, particularly those related to the accumulation of metabolites in the brain. According to the results, pathways related to neuroinflammation were significantly increased in LPS (lipopolysaccharide)-induced AD mice compared with the normal control, and pathways related to neuronal growth and synaptic plasticity were significantly downregulated. When NA was used for protection, these signaling pathways induced by LPS were partially reversed. At the same time, compared with the AD model group, upregulation of arachidonic acid metabolism, purine metabolism, and primary bile acid biosynthesis and downregulation of amino acid metabolic pathways were particularly pronounced in the NA treatment group. We also verified the enzymes of some metabolic pathways were consistent with transcriptome result. In summary, our results show that NA can significantly ameliorate LPS-induced neuroinflammation and deterioration of learning and memory, and exerts a neuroprotective function through regulation of multiple gene transcription and metabolism pathways. In particular, the arachidonic acid metabolism which related to inflammation and the amino acids metabolism which related to the synthesis of neurotransmitters were most significant response to NA treatment. Our results provided the first preliminary evidences for molecular mechanism investigation of NA from a combined transcriptome and metabolome perspective.
Collapse
Affiliation(s)
- Xueqi Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Zhengdou Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Xu Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Xiaoxiao Liu
- Lanzhou Institute of Food and Drug Control, Lanzhou 740050, China.
| | - YingMao
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Fuliang Cao
- Nanjing Forestry University, Nanjing 210037, Jiangsu Province, China.
| | - Xinliang Zhu
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China; Institute of Rural Development and Research, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, Gansu Province, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China; Institute of Rural Development and Research, Northwest Normal University, Lanzhou 730070, Gansu Province, China.
| |
Collapse
|