51
|
Ronaldson PT, Davis TP. Regulation of blood-brain barrier integrity by microglia in health and disease: A therapeutic opportunity. J Cereb Blood Flow Metab 2020; 40:S6-S24. [PMID: 32928017 PMCID: PMC7687032 DOI: 10.1177/0271678x20951995] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The blood-brain barrier (BBB) is a critical regulator of CNS homeostasis. It possesses physical and biochemical characteristics (i.e. tight junction protein complexes, transporters) that are necessary for the BBB to perform this physiological role. Microvascular endothelial cells require support from astrocytes, pericytes, microglia, neurons, and constituents of the extracellular matrix. This intricate relationship implies the existence of a neurovascular unit (NVU). NVU cellular components can be activated in disease and contribute to dynamic remodeling of the BBB. This is especially true of microglia, the resident immune cells of the brain, which polarize into distinct proinflammatory (M1) or anti-inflammatory (M2) phenotypes. Current data indicate that M1 pro-inflammatory microglia contribute to BBB dysfunction and vascular "leak", while M2 anti-inflammatory microglia play a protective role at the BBB. Understanding biological mechanisms involved in microglia activation provides a unique opportunity to develop novel treatment approaches for neurological diseases. In this review, we highlight characteristics of M1 proinflammatory and M2 anti-inflammatory microglia and describe how these distinct phenotypes modulate BBB physiology. Additionally, we outline the role of other NVU cell types in regulating microglial activation and highlight how microglia can be targeted for treatment of disease with a focus on ischemic stroke and Alzheimer's disease.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Pharmacology, College of Medicine University of Arizona, Tucson, AZ, USA
| | - Thomas P Davis
- Department of Pharmacology, College of Medicine University of Arizona, Tucson, AZ, USA
| |
Collapse
|
52
|
Sant'Anna MB, Giardini AC, Ribeiro MAC, Lopes FSR, Teixeira NB, Kimura LF, Bufalo MC, Ribeiro OG, Borrego A, Cabrera WHK, Ferreira JCB, Zambelli VO, Sant'Anna OA, Picolo G. The Crotoxin:SBA-15 Complex Down-Regulates the Incidence and Intensity of Experimental Autoimmune Encephalomyelitis Through Peripheral and Central Actions. Front Immunol 2020; 11:591563. [PMID: 33193433 PMCID: PMC7655790 DOI: 10.3389/fimmu.2020.591563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/05/2020] [Indexed: 01/18/2023] Open
Abstract
Crotoxin (CTX), the main neurotoxin from Crotalus durissus terrificus snake venom, has anti-inflammatory, immunomodulatory and antinociceptive activities. However, the CTX-induced toxicity may compromise its use. Under this scenario, the use of nanoparticle such as nanostructured mesoporous silica (SBA-15) as a carrier might become a feasible approach to improve CTX safety. Here, we determined the benefits of SBA-15 on CTX-related neuroinflammatory and immunomodulatory properties during experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis that replicates several histopathological and immunological features observed in humans. We showed that a single administration of CTX:SBA-15 (54 μg/kg) was more effective in reducing pain and ameliorated the clinical score (motor impairment) in EAE animals compared to the CTX-treated EAE group; therefore, improving the disease outcome. Of interest, CTX:SBA-15, but not unconjugated CTX, prevented EAE-induced atrophy and loss of muscle function. Further supporting an immune mechanism, CTX:SBA-15 treatment reduced both recruitment and proliferation of peripheral Th17 cells as well as diminished IL-17 expression and glial cells activation in the spinal cord in EAE animals when compared with CTX-treated EAE group. Finally, CTX:SBA-15, but not unconjugated CTX, prevented the EAE-induced cell infiltration in the CNS. These results provide evidence that SBA-15 maximizes the immunomodulatory and anti-inflammatory effects of CTX in an EAE model; therefore, suggesting that SBA-15 has the potential to improve CTX effectiveness in the treatment of MS.
Collapse
Affiliation(s)
| | - Aline C Giardini
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - Marcio A C Ribeiro
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Flavia S R Lopes
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | | | - Louise F Kimura
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | - Michelle C Bufalo
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| | | | - Andrea Borrego
- Laboratory of Immunogenetics, Butantan Institute, Sao Paulo, Brazil
| | - Wafa H K Cabrera
- Laboratory of Immunogenetics, Butantan Institute, Sao Paulo, Brazil
| | - Julio C B Ferreira
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.,Department of Chemical and Systems Biology, School of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Vanessa O Zambelli
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil.,Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | | | - Gisele Picolo
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| |
Collapse
|
53
|
Chen J, Liu X, Zhong Y. Interleukin-17A: The Key Cytokine in Neurodegenerative Diseases. Front Aging Neurosci 2020; 12:566922. [PMID: 33132897 PMCID: PMC7550684 DOI: 10.3389/fnagi.2020.566922] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are characterized by the loss of neurons and/or myelin sheath, which deteriorate over time and cause dysfunction. Interleukin 17A is the signature cytokine of a subset of CD4+ helper T cells known as Th17 cells, and the IL-17 cytokine family contains six cytokines and five receptors. Recently, several studies have suggested a pivotal role for the interleukin-17A (IL-17A) cytokine family in human inflammatory or autoimmune diseases and neurodegenerative diseases, including psoriasis, rheumatoid arthritis (RA), Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and glaucoma. Studies in recent years have shown that the mechanism of action of IL-17A is more subtle than simply causing inflammation. Although the specific mechanism of IL-17A in neurodegenerative diseases is still controversial, it is generally accepted now that IL-17A causes diseases by activating glial cells. In this review article, we will focus on the function of IL-17A, in particular the proposed roles of IL-17A, in the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Junjue Chen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohong Liu
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
54
|
Ormstad H, Simonsen CS, Broch L, Maes DM, Anderson G, Celius EG. Chronic fatigue and depression due to multiple sclerosis: Immune-inflammatory pathways, tryptophan catabolites and the gut-brain axis as possible shared pathways. Mult Scler Relat Disord 2020; 46:102533. [PMID: 33010585 DOI: 10.1016/j.msard.2020.102533] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/03/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Chronic fatigue and major depression (MDD)-like symptoms are common manifestations of multiple sclerosis (MS), both with huge impact on quality of life. Depression can manifest itself as fatigue, and depressive symptoms are often mistaken for fatigue, and vice versa. The two conditions are sometimes difficult to differentiate, and their relationship is unclear. Whether chronic fatigue and depression occur primarily, secondarily or coincidentally with activated immune-inflammatory pathways in MS is still under debate. We have carried out a descriptive review aiming to gain a deeper understanding of the relationship between chronic fatigue and depression in MS, and the shared pathways that underpin both conditions. This review focuses on immune-inflammatory pathways, the kynurenine pathway and the gut-brain axis. It seems likely that proinflammatory cytokines, tryptophan catabolites (the KYN pathway) and the gut-brain axis are involved in the mechanisms causing chronic fatigue and MDD-like symptoms in MS. However, the evidence base is weak, and more research is needed. In order to advance our understanding of the underlying pathological mechanisms, MS-related fatigue and depression should be examined using a longitudinal design and both immune-inflammatory and KYN pathway biomarkers should be measured, relevant clinical characteristics judiciously registered, and self-report instruments for both fatigue and depression should be used.
Collapse
Affiliation(s)
- Heidi Ormstad
- University of South-Eastern Norway and University Oslo Metropolitan University.
| | | | | | - Dr Michael Maes
- Chulalongkorn University, Bangkok, Thailand; Medical University of Plovdiv, Plovdiv, Bulgaria; IMPACT Strategic Center, Deakin University, Australia
| | - George Anderson
- CRC Scotland & London, Eccleston Square, London, United Kingdom
| | | |
Collapse
|
55
|
Brandão WN, De Oliveira MG, Andreoni RT, Nakaya H, Farias AS, Peron JPS. Neuroinflammation at single cell level: What is new? J Leukoc Biol 2020; 108:1129-1137. [PMID: 32779279 DOI: 10.1002/jlb.3mr0620-035r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/05/2020] [Accepted: 07/16/2020] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis is a chronic and demyelinating disease of the central nervous system (CNS), most prevalent in women, and with an important social and economic cost worldwide. It is triggered by self-reacting lymphocytes that infiltrate the CNS and initiate neuroinflammation. Further, axonal loss and neuronal death takes place, leading to neurodegeneration and brain atrophy. The murine model for studying MS, experimental autoimmune encephalomyelitis (EAE), consists in immunizing mice with myelin-derived epitopes. APCs activate encephalitogenic T CD4 and CD8 lymphocytes that migrate mainly to the spinal cord resulting in neuroinflammation. Most of the knowledge on the pathophysiology and treatment of MS was obtained from EAE experiments, as Th17 cells, anti-alpha4 blocking Abs and the role of microbiota. Conversely, recent technology breakthroughs, such as CyTOF and single-cell RNA-seq, promise to revolutionize our understanding on the mechanisms involved both in MS and EAE. In fact, the importance of specific cellular populations and key molecules in MS/EAE is a constant matter of debate. It is well accepted that both Th1 and Th17 T CD4 lymphocytes play a relevant role in disease initiation after re-activation in situ. What is still under constant investigation, however, is the plasticity of the lymphocyte population, and the individual contribution of both resident and inflammatory cells for the progression or recovery of the disease. Thus, in this review, new findings obtained after single-cell analysis of blood and central nervous system infiltrating cells from MS/EAE and how they have contributed to a better knowledge on the cellular and molecular mechanisms of neuroinflammation are discussed.
Collapse
Affiliation(s)
- W N Brandão
- Neuroimmune Interactions Laboratory, Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo, São Paulo, Brazil
| | - M G De Oliveira
- Neuroimmune Interactions Laboratory, Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo, São Paulo, Brazil
| | - R T Andreoni
- Neuroimmune Interactions Laboratory, Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo, São Paulo, Brazil
| | - H Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - A S Farias
- Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology - Institute of Biology, University of Campinas, Campinas, Brazil.,Experimental Medicine Research Cluster (EMRC), Division of Immune-Mediated Diseases
| | - J P S Peron
- Neuroimmune Interactions Laboratory, Institute of Biomedical Sciences, Department of Immunology, University of Sao Paulo, São Paulo, Brazil.,Scientific Platform Pasteur, University of São Paulo, São Paulo, Brazil.,Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
56
|
Marks K, Coutinho E, Vincent A. Maternal-Autoantibody-Related (MAR) Autism: Identifying Neuronal Antigens and Approaching Prospects for Intervention. J Clin Med 2020; 9:jcm9082564. [PMID: 32784803 PMCID: PMC7465310 DOI: 10.3390/jcm9082564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
Recent studies indicate the existence of a maternal-autoantibody-related subtype of autism spectrum disorder (ASD). To date, a large number of studies have focused on describing patterns of brain-reactive serum antibodies in maternal-autoantibody-related (MAR) autism and some have described attempts to define the antigenic targets. This article describes evidence on MAR autism and the various autoantibodies that have been implicated. Among other possibilities, antibodies to neuronal surface protein Contactin Associated Protein 2 (CASPR2) have been found more frequently in mothers of children with neurodevelopmental disorders or autism, and two independent experimental studies have shown pathogenicity in mice. The N-methyl-D-aspartate receptor (NMDAR) is another possible target for maternal antibodies as demonstrated in mice. Here, we discuss the growing evidence, discuss issues regarding biomarker definition, and summarise the therapeutic approaches that might be used to reduce or prevent the transfer of pathogenic maternal antibodies.
Collapse
Affiliation(s)
- Katya Marks
- Medical Sciences Division, John Radcliffe Hospital, University of Oxford, OX3 9DU Oxford, UK;
| | - Ester Coutinho
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, SE5 9RT London, UK;
- Nuffield Department of Clinical Neurosciences and Weatherall Institute for Molecular Medicine, University of Oxford, OX3 9DS Oxford, UK
| | - Angela Vincent
- Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, SE1 1UL London, UK
- Correspondence: ; Tel.: +44-781-722-4849 or +44-186-555-9636
| |
Collapse
|
57
|
Abdel-Maged AES, Gad AM, Rashed LA, Azab SS, Mohamed EA, Awad AS. Repurposing of Secukinumab as Neuroprotective in Cuprizone-Induced Multiple Sclerosis Experimental Model via Inhibition of Oxidative, Inflammatory, and Neurodegenerative Signaling. Mol Neurobiol 2020; 57:3291-3306. [PMID: 32514862 DOI: 10.1007/s12035-020-01972-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, and neurodegenerative autoimmune disease. MS is a devastating disorder that is characterized by cognitive and motor deficits. Cuprizone-induced demyelination is the most widely experimental model used for MS. Cuprizone is a copper chelator that is well characterized by microgliosis and astrogliosis and is reproducible for demyelination and remyelination. Secukinumab (SEC) is a fully human monoclonal anti-human antibody of the IgG1/kappa isotype that selectively targets IL-17A. Expression of IL-17 is associated with MS. Also, IL-17 stimulates microglia and astrocytes resulting in progression of MS through chemokine production and neutrophil recruitment. This study aimed to investigate the neuroprotective effects of SEC on cuprizone-induced demyelination with examining the underlying mechanisms. Locomotor activity, short-term spatial memory function, staining by Luxol Fast Blue, myelin basic protein, gliasosis, inflammatory, and oxidative-stress markers were assessed to evaluate neuroprotective, anti-inflammatory and antioxidant effects. Moreover, the safety profile of SEC was evaluated. The present study concludes the efficacy of SEC in Cup-induced demyelination experimental model. Interestingly, SEC had neuroprotective and antioxidant effects besides its anti-inflammatory effect in the studied experimental model of MS. Graphical abstract.
Collapse
Affiliation(s)
| | - Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Laila Ahmed Rashed
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Eman A Mohamed
- Departmentof Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Azza S Awad
- Departmentof Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
58
|
Ribeiro M, Brigas HC, Temido-Ferreira M, Pousinha PA, Regen T, Santa C, Coelho JE, Marques-Morgado I, Valente CA, Omenetti S, Stockinger B, Waisman A, Manadas B, Lopes LV, Silva-Santos B, Ribot JC. Meningeal γδ T cell-derived IL-17 controls synaptic plasticity and short-term memory. Sci Immunol 2020; 4:4/40/eaay5199. [PMID: 31604844 DOI: 10.1126/sciimmunol.aay5199] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
The notion of "immune privilege" of the brain has been revised to accommodate its infiltration, at steady state, by immune cells that participate in normal neurophysiology. However, the immune mechanisms that regulate learning and memory remain poorly understood. Here, we show that noninflammatory interleukin-17 (IL-17) derived from a previously unknown fetal-derived meningeal-resident γδ T cell subset promotes cognition. When tested in classical spatial learning paradigms, mice lacking γδ T cells or IL-17 displayed deficient short-term memory while retaining long-term memory. The plasticity of glutamatergic synapses was reduced in the absence of IL-17, resulting in impaired long-term potentiation in the hippocampus. Conversely, IL-17 enhanced glial cell production of brain-derived neurotropic factor, whose exogenous provision rescued the synaptic and behavioral phenotypes of IL-17-deficient animals. Together, our work provides previously unknown clues on the mechanisms that regulate short-term versus long-term memory and on the evolutionary and functional link between the immune and nervous systems.
Collapse
Affiliation(s)
- Miguel Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Helena C Brigas
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Mariana Temido-Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Paula A Pousinha
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Université de Côte d'Azur, Nice, France
| | - Tommy Regen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Cátia Santa
- Center for Neuroscience and Cell Biology, Universidade de Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, Universidade de Coimbra, Coimbra, Portugal
| | - Joana E Coelho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Inês Marques-Morgado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia A Valente
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | | | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Bruno Manadas
- Center for Neuroscience and Cell Biology, Universidade de Coimbra, Coimbra, Portugal
| | - Luísa V Lopes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| | - Julie C Ribot
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
59
|
Chakravarty D, Saadi F, Kundu S, Bose A, Khan R, Dine K, Kenyon LC, Shindler KS, Das Sarma J. CD4 Deficiency Causes Poliomyelitis and Axonal Blebbing in Murine Coronavirus-Induced Neuroinflammation. J Virol 2020; 94:e00548-20. [PMID: 32404525 PMCID: PMC7343199 DOI: 10.1128/jvi.00548-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
Mouse hepatitis virus (MHV) is a murine betacoronavirus (m-CoV) that causes a wide range of diseases in mice and rats, including hepatitis, enteritis, respiratory diseases, and encephalomyelitis in the central nervous system (CNS). MHV infection in mice provides an efficient cause-effect experimental model to understand the mechanisms of direct virus-induced neural-cell damage leading to demyelination and axonal loss, which are pathological features of multiple sclerosis (MS), the most common disabling neurological disease in young adults. Infiltration of T lymphocytes, activation of microglia, and their interplay are the primary pathophysiological events leading to disruption of the myelin sheath in MS. However, there is emerging evidence supporting gray matter involvement and degeneration in MS. The investigation of T cell function in the pathogenesis of deep gray matter damage is necessary. Here, we employed RSA59 (an isogenic recombinant strain of MHV-A59)-induced experimental neuroinflammation model to compare the disease in CD4-/- mice with that in CD4+/+ mice at days 5, 10, 15, and 30 postinfection (p.i.). Viral titer estimation, nucleocapsid gene amplification, and viral antinucleocapsid staining confirmed enhanced replication of the virions in the absence of functional CD4+ T cells in the brain. Histopathological analyses showed elevated susceptibility of CD4-/- mice to axonal degeneration in the CNS, with augmented progression of acute poliomyelitis and dorsal root ganglionic inflammation rarely observed in CD4+/+ mice. Depletion of CD4+ T cells showed unique pathological bulbar vacuolation in the brain parenchyma of infected mice with persistent CD11b+ microglia/macrophages in the inflamed regions on day 30 p.i. In summary, the current study suggests that CD4+ T cells are critical for controlling acute-stage poliomyelitis (gray matter inflammation), chronic axonal degeneration, and inflammatory demyelination due to loss of protective antiviral host immunity.IMPORTANCE The current trend in CNS disease biology is to attempt to understand the neural-cell-immune interaction to investigate the underlying mechanism of neuroinflammation, rather than focusing on peripheral immune activation. Most studies in MS are targeted toward understanding the involvement of CNS white matter. However, the importance of gray matter damage has become critical in understanding the long-term progressive neurological disorder. Our study highlights the importance of CD4+ T cells in safeguarding neurons against axonal blebbing and poliomyelitis from murine betacoronavirus-induced neuroinflammation. Current knowledge of the mechanisms that lead to gray matter damage in MS is limited, because the most widely used animal model, experimental autoimmune encephalomyelitis (EAE), does not present this aspect of the disease. Our results, therefore, add to the existing limited knowledge in the field. We also show that the microglia, though important for the initiation of neuroinflammation, cannot establish a protective host immune response without the help of CD4+ T cells.
Collapse
Affiliation(s)
- Debanjana Chakravarty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Fareeha Saadi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Soumya Kundu
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Abhishek Bose
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Reas Khan
- Department of Ophthalmology, University of Pennsylvania Scheie Eye Institute, Philadelphia, Pennsylvania, USA
| | - Kimberly Dine
- Department of Ophthalmology, University of Pennsylvania Scheie Eye Institute, Philadelphia, Pennsylvania, USA
| | - Lawrence C Kenyon
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kenneth S Shindler
- Department of Ophthalmology, University of Pennsylvania Scheie Eye Institute, Philadelphia, Pennsylvania, USA
- Department of Neurology, University of Pennsylvania Scheie Eye Institute, Philadelphia, Pennsylvania, USA
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
60
|
Sasaki T, Tome S, Takei Y. Intraventricular IL-17A administration activates microglia and alters their localization in the mouse embryo cerebral cortex. Mol Brain 2020; 13:93. [PMID: 32546246 PMCID: PMC7298827 DOI: 10.1186/s13041-020-00635-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022] Open
Abstract
Viral infection during pregnancy has been suggested to increase the probability of autism spectrum disorder (ASD) in offspring via the phenomenon of maternal immune activation (MIA). This has been modeled in rodents. Maternal T helper 17 cells and the effector cytokine, interleukin 17A (IL-17A), play a central role in MIA-induced behavioral abnormalities and cortical dysgenesis, termed cortical patch. However, it is unclear how IL-17A acts on fetal brain cells to cause ASD pathologies. To assess the effect of IL-17A on cortical development, we directly administered IL-17A into the lateral ventricles of the fetal mouse brain. We analyzed injected brains focusing on microglia, which express IL-17A receptors. We found that IL-17A activated microglia and altered their localization in the cerebral cortex. Our data indicate that IL-17A activates cortical microglia, which leads to a cascade of ASD-related brain pathologies, including excessive phagocytosis of neural progenitor cells in the ventricular zone.
Collapse
Affiliation(s)
- Tetsuya Sasaki
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan. .,PhD Program of Neurosciences, Degree Program of Comprehensive Human Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Saki Tome
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yosuke Takei
- Department of Anatomy and Neuroscience, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan. .,PhD Program of Neurosciences, Degree Program of Comprehensive Human Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
| |
Collapse
|
61
|
Milovanovic J, Arsenijevic A, Stojanovic B, Kanjevac T, Arsenijevic D, Radosavljevic G, Milovanovic M, Arsenijevic N. Interleukin-17 in Chronic Inflammatory Neurological Diseases. Front Immunol 2020; 11:947. [PMID: 32582147 PMCID: PMC7283538 DOI: 10.3389/fimmu.2020.00947] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
A critical role for IL-17, a cytokine produced by T helper 17 (Th17) cells, has been indicated in the pathogenesis of chronic inflammatory and autoimmune diseases. A positive effect of blockade of IL-17 secreted by autoreactive T cells has been shown in various inflammatory diseases. Several cytokines, whose production is affected by environmental factors, control Th17 differentiation and its maintenance in tissues during chronic inflammation. The roles of IL-17 in the pathogenesis of chronic neuroinflammatory conditions, multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE), Alzheimer's disease, and ischemic brain injury are reviewed here. The role of environmental stimuli in Th17 differentiation is also summarized, highlighting the role of viral infection in the regulation of pathogenic T helper cells in EAE.
Collapse
Affiliation(s)
- Jelena Milovanovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Histology and Embriology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Bojana Stojanovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Tatjana Kanjevac
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Gordana Radosavljevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Marija Milovanovic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Faculty of Medical Sciences, Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
62
|
Kunkl M, Frascolla S, Amormino C, Volpe E, Tuosto L. T Helper Cells: The Modulators of Inflammation in Multiple Sclerosis. Cells 2020; 9:cells9020482. [PMID: 32093011 PMCID: PMC7072830 DOI: 10.3390/cells9020482] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative disease characterized by the progressive loss of axonal myelin in several areas of the central nervous system (CNS) that is responsible for clinical symptoms such as muscle spasms, optic neuritis, and paralysis. The progress made in more than one decade of research in animal models of MS for clarifying the pathophysiology of MS disease validated the concept that MS is an autoimmune inflammatory disorder caused by the recruitment in the CNS of self-reactive lymphocytes, mainly CD4+ T cells. Indeed, high levels of T helper (Th) cells and related cytokines and chemokines have been found in CNS lesions and in cerebrospinal fluid (CSF) of MS patients, thus contributing to the breakdown of the blood-brain barrier (BBB), the activation of resident astrocytes and microglia, and finally the outcome of neuroinflammation. To date, several types of Th cells have been discovered and designated according to the secreted lineage-defining cytokines. Interestingly, Th1, Th17, Th1-like Th17, Th9, and Th22 have been associated with MS. In this review, we discuss the role and interplay of different Th cell subpopulations and their lineage-defining cytokines in modulating the inflammatory responses in MS and the approved as well as the novel therapeutic approaches targeting T lymphocytes in the treatment of the disease.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | - Simone Frascolla
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | - Carola Amormino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | - Elisabetta Volpe
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| |
Collapse
|
63
|
Parker H, Ellison SM, Holley RJ, O'Leary C, Liao A, Asadi J, Glover E, Ghosh A, Jones S, Wilkinson FL, Brough D, Pinteaux E, Boutin H, Bigger BW. Haematopoietic stem cell gene therapy with IL-1Ra rescues cognitive loss in mucopolysaccharidosis IIIA. EMBO Mol Med 2020; 12:e11185. [PMID: 32057196 PMCID: PMC7059006 DOI: 10.15252/emmm.201911185] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 01/12/2023] Open
Abstract
Mucopolysaccharidosis IIIA is a neuronopathic lysosomal storage disease, characterised by heparan sulphate and other substrates accumulating in the brain. Patients develop behavioural disturbances and cognitive decline, a possible consequence of neuroinflammation and abnormal substrate accumulation. Interleukin (IL)‐1β and interleukin‐1 receptor antagonist (IL‐1Ra) expression were significantly increased in both murine models and human MPSIII patients. We identified pathogenic mechanisms of inflammasome activation, including that disease‐specific 2‐O‐sulphated heparan sulphate was essential for priming an IL‐1β response via the Toll‐like receptor 4 complex. However, mucopolysaccharidosis IIIA primary and secondary storage substrates, such as amyloid beta, were both required to activate the NLRP3 inflammasome and initiate IL‐1β secretion. IL‐1 blockade in mucopolysaccharidosis IIIA mice using IL‐1 receptor type 1 knockout or haematopoietic stem cell gene therapy over‐expressing IL‐1Ra reduced gliosis and completely prevented behavioural phenotypes. In conclusion, we demonstrate that IL‐1 drives neuroinflammation, behavioural abnormality and cognitive decline in mucopolysaccharidosis IIIA, highlighting haematopoietic stem cell gene therapy treatment with IL‐1Ra as a potential neuronopathic lysosomal disease treatment.
Collapse
Affiliation(s)
- Helen Parker
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Stuart M Ellison
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Rebecca J Holley
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Claire O'Leary
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Aiyin Liao
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Jalal Asadi
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Emily Glover
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Arunabha Ghosh
- Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Simon Jones
- Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Fiona L Wilkinson
- Division of Biomedical Sciences, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK.,The Centre for Bioscience, Manchester Metropolitan University, Manchester, UK
| | - David Brough
- Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Emmanuel Pinteaux
- Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Hervé Boutin
- Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - Brian W Bigger
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
64
|
Liu Z, Qiu AW, Huang Y, Yang Y, Chen JN, Gu TT, Cao BB, Qiu YH, Peng YP. IL-17A exacerbates neuroinflammation and neurodegeneration by activating microglia in rodent models of Parkinson's disease. Brain Behav Immun 2019; 81:630-645. [PMID: 31351185 DOI: 10.1016/j.bbi.2019.07.026] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/17/2019] [Accepted: 07/23/2019] [Indexed: 12/26/2022] Open
Abstract
Neuroinflammation has been involved in pathogenesis of Parkinson's disease (PD), a chronic neurodegenerative disease characterized neuropathologically by progressive dopaminergic neuronal loss in the substantia nigra (SN). We recently have shown that helper T (Th)17 cells facilitate dopaminergic neuronal loss in vitro. Herein, we demonstrated that interleukin (IL)-17A, a proinflammatory cytokine produced mainly by Th17 cells, contributed to PD pathogenesis depending on microglia. Mouse and rat models for PD were prepared by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or striatal injection of 1-methyl-4-phenylpyridinium (MPP+), respectively. Both in MPTP-treated mice and MPP+-treated rats, blood-brain barrier (BBB) was disrupted and IL-17A level increased in the SN but not in cortex. Effector T (Teff) cells that were adoptively transferred via tail veins infiltrated into the brain of PD mice but not into that of normal mice. The Teff cell transfer aggravated nigrostriatal dopaminergic neurodegeneration, microglial activation and motor impairment. Contrarily, IL-17A deficiency alleviated BBB disruption, dopaminergic neurodegeneration, microglial activation and motor impairment. Anti-IL-17A-neutralizing antibody that was injected into lateral cerebral ventricle in PD rats ameliorated the manifestations mentioned above. IL-17A activated microglia but did not directly affect dopaminergic neuronal survival in vitro. IL-17A exacerbated dopaminergic neuronal loss only in the presence of microglia, and silencing IL-17A receptor gene in microglia abolished the IL-17A effect. IL-17A-treated microglial medium that contained higher concentration of tumor necrosis factor (TNF)-α facilitated dopaminergic neuronal death. Further, TNF-α-neutralizing antibody attenuated MPP+-induced neurotoxicity. The findings suggest that IL-17A accelerates neurodegeneration in PD depending on microglial activation and at least partly TNF-α release.
Collapse
Affiliation(s)
- Zhan Liu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Ao-Wang Qiu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Yan Huang
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Ya Yang
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Jin-Na Chen
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Ting-Ting Gu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Bei-Bei Cao
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yi-Hua Qiu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Yu-Ping Peng
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
65
|
McGonagle DG, McInnes IB, Kirkham BW, Sherlock J, Moots R. The role of IL-17A in axial spondyloarthritis and psoriatic arthritis: recent advances and controversies. Ann Rheum Dis 2019; 78:1167-1178. [PMID: 31278139 PMCID: PMC6788885 DOI: 10.1136/annrheumdis-2019-215356] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/17/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022]
Abstract
Although the pathogenic mechanisms underlying axial spondyloarthritis (axSpA) and psoriatic arthritis (PsA) are not fully elucidated, several lines of evidence suggest that immune responses mediated by interleukin 17A (IL-17A) play a pivotal role in both diseases. This is best highlighted by the significant clinical efficacy shown with inhibitors of IL-17A in treating axSpA and PsA. Nevertheless, a number of knowledge gaps exist regarding the role of IL-17A in the pathophysiology of spondyloarthritis in man, including its cellular origin, its precise role in discrete disease processes such enthesitis, bone erosion, and bone formation, and the reasons for the discrepant responses to IL-17A inhibition observed in certain other spondyloarthritis manifestations. In this review, we focus on the latest data from studies investigating the role of IL-17A in ankylosing spondylitis (AS) and PsA that build on existing and emerging scientific knowledge in the field. Key remaining research questions are also highlighted to guide future research.
Collapse
Affiliation(s)
- Dennis G McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton, Leeds Teaching Hospital Trust, Leeds, UK
| | - Iain B McInnes
- Institute of Infection Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Bruce W Kirkham
- Rheumatology Department, Guy's and Saint Thomas' NHS Foundation Trust, London, UK
| | - Jonathan Sherlock
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Robert Moots
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
- Department of Academic Rheumatology, Aintree University Hospital, Liverpool, UK
| |
Collapse
|
66
|
The contribution of astrocytes to the neuroinflammatory response in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol 2019; 137:757-783. [PMID: 30847559 DOI: 10.1007/s00401-019-01980-7] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 02/06/2023]
Abstract
Neuroinflammation is the coordinated response of the central nervous system (CNS) to threats to its integrity posed by a variety of conditions, including autoimmunity, pathogens and trauma. Activated astrocytes, in concert with other cellular elements of the CNS and immune system, are important players in the modulation of the neuroinflammatory response. During neurological disease, they produce and respond to cellular signals that often lead to dichotomous processes, which can promote further damage or contribute to repair. This occurs also in multiple sclerosis (MS), where astrocytes are now recognized as key components of its immunopathology. Evidence supporting this role has emerged not only from studies in MS patients, but also from animal models, among which the experimental autoimmune encephalomyelitis (EAE) model has proved especially instrumental. Based on this premise, the purpose of the present review is to summarize the current knowledge of astrocyte behavior in MS and EAE. Following a brief description of the pathological characteristics of the two diseases and the main functional roles of astrocytes in CNS physiology, we will delve into the specific responses of this cell population, analyzing MS and EAE in parallel. We will define the temporal and anatomical profile of astroglial activation, then focus on key processes they participate in. These include: (1) production and response to soluble mediators (e.g., cytokines and chemokines), (2) regulation of oxidative stress, and (3) maintenance of BBB integrity and function. Finally, we will review the state of the art on the available methods to measure astroglial activation in vivo in MS patients, and how this could be exploited to optimize diagnosis, prognosis and treatment decisions. Ultimately, we believe that integrating the knowledge obtained from studies in MS and EAE may help not only better understand the pathophysiology of MS, but also uncover new signals to be targeted for therapeutic intervention.
Collapse
|
67
|
Ubiquitination and SUMOylation in the chronic inflammatory tumor microenvironment. Biochim Biophys Acta Rev Cancer 2018; 1870:165-175. [DOI: 10.1016/j.bbcan.2018.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/10/2018] [Accepted: 08/15/2018] [Indexed: 12/28/2022]
|
68
|
Personalized Antidepressant Selection and Pathway to Novel Treatments: Clinical Utility of Targeting Inflammation. Int J Mol Sci 2018; 19:ijms19010233. [PMID: 29329256 PMCID: PMC5796181 DOI: 10.3390/ijms19010233] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/27/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
Major depressive disorder (MDD) is a chronic condition that affects one in six adults in the US during their lifetime. The current practice of antidepressant medication prescription is a trial-and-error process. Additionally, over a third of patients with MDD fail to respond to two or more antidepressant treatments. There are no valid clinical markers to personalize currently available antidepressant medications, all of which have similar mechanisms targeting monoamine neurotransmission. The goal of this review is to summarize the recent findings of immune dysfunction in patients with MDD, the utility of inflammatory markers to personalize treatment selection, and the potential of targeting inflammation to develop novel antidepressant treatments. To personalize antidepressant prescription, a c-reactive protein (CRP)-matched treatment assignment can be rapidly implemented in clinical practice with point-of-care fingerstick tests. With this approach, 4.5 patients need to be treated for 1 additional remission as compared to a CRP-mismatched treatment assignment. Anti-cytokine treatments may be effective as novel antidepressants. Monoclonal antibodies against proinflammatory cytokines, such as interleukin 6, interleukin 17, and tumor necrosis factor α, have demonstrated antidepressant effects in patients with chronic inflammatory conditions who report significant depressive symptoms. Additional novel antidepressant strategies targeting inflammation include pharmaceutical agents that block the effect of systemic inflammation on the central nervous system. In conclusion, inflammatory markers offer the potential not only to personalize antidepressant prescription but also to guide the development of novel mechanistically-guided antidepressant treatments.
Collapse
|
69
|
Hyperforin protects against acute cerebral ischemic injury through inhibition of interleukin-17A-mediated microglial activation. Brain Res 2018; 1678:254-261. [DOI: 10.1016/j.brainres.2017.08.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 02/04/2023]
|
70
|
Abstract
Although autism spectrum disorder (ASD) has a strong genetic basis, its etiology is complex, with several genetic factors likely to be involved as well as environmental factors. Immune dysregulation has gained significant attention as a causal mechanism in ASD pathogenesis. ASD has been associated with immune abnormalities in the brain and periphery, including inflammatory disorders and autoimmunity in not only the affected individuals but also their mothers. Prenatal exposure to maternal immune activation (MIA) has been implicated as an environmental risk factor for ASD. In support of this notion, animal models have shown that MIA results in offspring with behavioral, neurological, and immunological abnormalities similar to those observed in ASD. This raises the question of how MIA exposure can lead to ASD in susceptible individuals. Recent evidence points to a potential inflammation pathway linking MIA-associated ASD with the activity of T helper 17 (Th17) lymphocytes and their effector cytokine interleukin-17A (IL-17A). IL-17A has been implicated from human studies and elevated IL-17A levels in the blood have been found to correlate with phenotypic severity in a subset of ASD individuals. In MIA model mice, elevated IL-17A levels also have been observed. Additionally, antibody blockade to inhibit IL-17A signaling was found to prevent ASD-like behaviors in offspring exposed to MIA. Therefore, IL-17A dysregulation may play a causal role in the development of ASD. The source of increased IL-17A in the MIA mouse model was attributed to maternal Th17 cells because genetic removal of the transcription factor RORγt to selectively inhibit Th17 differentiation in pregnant mice was able to prevent ASD-like behaviors in the offspring. Similar to ASD individuals, the MIA-exposed offspring also displayed cortical dysplasia which could be prevented by inhibition of IL-17A signaling in pregnant mice. This finding reveals one possible cellular mechanism through which ASD-related cognitive and behavioral deficits may emerge following maternal inflammation. IL-17A can exert strong effects on cell survival and differentiation and the activity of signal transduction cascades, which can have important consequences during cortical development on neural function. This review examines IL-17A signaling pathways in the context of both immunity and neural function that may contribute to the development of ASD associated with MIA.
Collapse
Affiliation(s)
- Helen Wong
- Institute for Behavioral Genetics, University of Colorado-Boulder, CO 80303, United States; Department of Integrative Physiology, University of Colorado-Boulder, Boulder, CO 80303, United States; Linda Crnic Institute, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Charles Hoeffer
- Institute for Behavioral Genetics, University of Colorado-Boulder, CO 80303, United States; Department of Integrative Physiology, University of Colorado-Boulder, Boulder, CO 80303, United States; Linda Crnic Institute, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, United States.
| |
Collapse
|
71
|
Mouse macrophages show different requirements for phosphatidylserine receptor Tim4 in efferocytosis. Proc Natl Acad Sci U S A 2017; 114:8800-8805. [PMID: 28768810 DOI: 10.1073/pnas.1705365114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Protein S (ProS) and growth arrest-specific 6 (Gas6) bind to phosphatidylserine (PtdSer) and induce efferocytosis upon binding TAM-family receptors (Tyro3, Axl, and Mer). Here, we produced mouse ProS, Gas6, and TAM-receptor extracellular region fused to IgG fragment crystallizable region in HEK293T cells. ProS and Gas6 bound Ca2+ dependently to PtdSer (Kd 20-40 nM), Mer, and Tyro3 (Kd 15-50 nM). Gas6 bound Axl strongly (Kd < 1.0 nM), but ProS did not bind Axl. Using NIH 3T3-based cell lines expressing a single TAM receptor, we showed that TAM-mediated efferocytosis was determined by the receptor-binding ability of ProS and Gas6. Tim4 is a membrane protein that strongly binds PtdSer. Tim4 alone did not support efferocytosis, but enhanced TAM-dependent efferocytosis. Resident peritoneal macrophages, Kupffer cells, and CD169+ skin macrophages required Tim4 for TAM-stimulated efferocytosis, whereas efferocytosis by thioglycollate-elicited peritoneal macrophages or primary cultured microglia was TAM dependent, but not Tim4 dependent. These results indicate that TAM and Tim4 collaborate for efficient efferocytosis in certain macrophage populations.
Collapse
|
72
|
Jha MK, Minhajuddin A, Gadad BS, Trivedi MH. Platelet-Derived Growth Factor as an Antidepressant Treatment Selection Biomarker: Higher Levels Selectively Predict Better Outcomes with Bupropion-SSRI Combination. Int J Neuropsychopharmacol 2017; 20:919-927. [PMID: 29016822 PMCID: PMC5737519 DOI: 10.1093/ijnp/pyx060] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Platelet derived growth factor is integral to maintenance of blood brain barrier, increases in response to blood brain barrier disruption, and may reflect neuroinflammation. Based on previous reports of better outcomes with dopaminergic antidepressants in depressed patients with elevated inflammatory biomarkers, we hypothesize that elevated peripheral platelet derived growth factor levels can serve as a powerful biomarker for selecting dopaminergic antidepressants. METHODS Platelet derived growth factor, basic fibroblast growth factor, and granulocyte colony stimulating factor were measured as part of Bioplex Pro human cytokine 27-plex kit in participants of the Combining Medications to Enhance Depression Outcomes trial who provided baseline plasma (n=166) and were treated with either bupropion-plus-escitalopram, escitalopram-plus-placebo, or venlafaxine-plus-mirtazapine. Differential changes in overall symptom severity and anhedonia as well as side effects were tested with a treatment-arm-by-biomarker interaction in mixed model analyses. Effect of biomarkers with significant interaction was calculated in subsequent analyses stratified by treatment arm. RESULTS There was a significant treatment-arm-by-platelet derived growth factor interaction for depression severity (P=.03) and anhedonia (P=.008) but not for side effects (P=.44). Higher baseline platelet derived growth factor level was associated with greater reduction in depression severity (effect size=0.71, P=.015) and anhedonia (effect size=0.66, P=.02) in the bupropion- selective serotonin reuptake inhibitor but not the other two treatment arms. There was no significant treatment-arm-by-biomarker interaction for both depression severity and side effects with the other two biomarkers. CONCLUSION As compared with selective serotonin reuptake inhibitor monotherapy or venlafaxine-plus-mirtazapine, bupropion-plus-escitalopram selectively improves anhedonia, which in turn results in improved overall depression severity in depressed patients with elevated platelet derived growth factor levels.
Collapse
Affiliation(s)
- Manish K Jha
- Center for Depression Research and Clinical Care (Drs Jha, Gadad
and Trivedi), and Department of Clinical Sciences (Dr
Minhajuddin), University of Texas Southwestern Medical Center,
Dallas, Texas
| | - Abu Minhajuddin
- Center for Depression Research and Clinical Care (Drs Jha, Gadad
and Trivedi), and Department of Clinical Sciences (Dr
Minhajuddin), University of Texas Southwestern Medical Center,
Dallas, Texas
| | - Bharathi S Gadad
- Center for Depression Research and Clinical Care (Drs Jha, Gadad
and Trivedi), and Department of Clinical Sciences (Dr
Minhajuddin), University of Texas Southwestern Medical Center,
Dallas, Texas
| | - Madhukar H Trivedi
- Center for Depression Research and Clinical Care (Drs Jha, Gadad
and Trivedi), and Department of Clinical Sciences (Dr
Minhajuddin), University of Texas Southwestern Medical Center,
Dallas, Texas.,Correspondence: Madhukar H. Trivedi, MD, Professor of Psychiatry, Betty Jo
Hay Distinguished Chair in Mental Health, Director, Center for Depression Research and
Clinical Care, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd.,
Dallas, TX 75390–9119 ()
| |
Collapse
|
73
|
Abstract
The interleukin-17 (IL-17) family cytokines, such as IL-17A and IL-17F, play
important protective roles in host immune response to a variety of infections
such as bacterial, fungal, parasitic, and viral. The IL-17R signaling and
downstream pathways mediate induction of proinflammatory molecules which
participate in control of these pathogens. However, the production of IL-17 can
also mediate pathology and inflammation associated with infections. In this
review, we will discuss the yin-and-yang roles of IL-17 in host immunity to
pathogens.
Collapse
Affiliation(s)
- Shibali Das
- Department of Molecular Microbiology, Washington University in St. Louis, St Louis, MO, USA
| | - Shabaana Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St Louis, MO, USA
| |
Collapse
|
74
|
Shan K, Pang R, Zhao C, Liu X, Gao W, Zhang J, Zhao D, Wang Y, Qiu W. IL-17-triggered downregulation of miR-497 results in high HIF-1α expression and consequent IL-1β and IL-6 production by astrocytes in EAE mice. Cell Mol Immunol 2017; 14:cmi201712. [PMID: 28458392 PMCID: PMC5675954 DOI: 10.1038/cmi.2017.12] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/16/2017] [Accepted: 01/31/2017] [Indexed: 01/14/2023] Open
Abstract
Interleukin 17 (IL-17) is increasingly recognized as a key factor that contributes to the pathogenesis of multiple sclerosis (MS) and its experimental mouse autoimmune encephalomyelitis (EAE) model. However, the roles and regulatory mechanisms of IL-17-induced pro-inflammatory cytokine production in EAE mice remain largely unclear. In this study, the expression of IL-17, hypoxia inducible factor-1α (HIF-1α), IL-1β, IL-6 and microRNA-497 (miR-497), as well as their intrinsic associations, was investigated using EAE model mice and cultured astrocytes exposed to IL-17 in vitro. We observed markedly increased production of IL-17, HIF-1α, IL-1β and IL-6 in the brain tissues of EAE mice, while the expression and secretion of HIF-1α, IL-1β and IL-6 were also significantly increased when cultured primary astrocytes from mice were stimulated with IL-17. Meanwhile, the expression of miR-497 was downregulated both in vivo and in vitro. Subsequent in vitro experiments revealed that IL-17 induced the production of IL-1β and IL-6 in astrocytes through the upregulation of HIF-1α as a transcriptional factor, indicating that IL-17-mediated downregulation of miR-497 enhanced HIF-1α expression. Furthermore, astrocyte-specific knockdown of IL-17RA and HIF-1α or astrocyte-specific overexpression of miR-497 by infection with different lentiviral vectors containing an astrocyte-specific promotor markedly decreased IL-1β and IL-6 production in brain tissues and alleviated the pathological changes and score of EAE mice. Collectively, these findings indicate that decreased miR-497 expression is responsible for IL-17-triggered high HIF-1α expression and consequent IL-1β and IL-6 production by astrocytes in EAE mice.Cellular & Molecular Immunology advance online publication, 1 May 2017; doi:10.1038/cmi.2017.12.
Collapse
Affiliation(s)
- Kai Shan
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Rongrong Pang
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chenhui Zhao
- Department of Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaomei Liu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Pathogen Biology and Immunology and Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Wenxing Gao
- Basic Medical Science of Basic Medical College, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jing Zhang
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dan Zhao
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yingwei Wang
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wen Qiu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
75
|
Anti-inflammatory Effects of Atorvastatin by Suppressing TRAF3IP2 and IL-17RA in Human Glioblastoma Spheroids Cultured in a Three-dimensional Model: Possible Relevance to Glioblastoma Treatment. Mol Neurobiol 2017; 55:2102-2110. [DOI: 10.1007/s12035-017-0445-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/06/2017] [Indexed: 12/20/2022]
|
76
|
IL-17A Promotes Granulocyte Infiltration, Myelin Loss, Microglia Activation, and Behavioral Deficits During Cuprizone-Induced Demyelination. Mol Neurobiol 2017; 55:946-957. [DOI: 10.1007/s12035-016-0368-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/28/2016] [Indexed: 12/23/2022]
|
77
|
Interleukin-17A Promotes CD8+ T Cell Cytotoxicity To Facilitate West Nile Virus Clearance. J Virol 2016; 91:JVI.01529-16. [PMID: 27795421 PMCID: PMC5165211 DOI: 10.1128/jvi.01529-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/06/2016] [Indexed: 01/05/2023] Open
Abstract
CD8+ T cells are crucial components of immunity and play a vital role in recovery from West Nile virus (WNV) infection. Here, we identify a previously unrecognized function of interleukin-17A (IL-17A) in inducing cytotoxic-mediator gene expression and promoting CD8+ T cell cytotoxicity against WNV infection in mice. We find that IL-17A-deficient (Il17a-/-) mice are more susceptible to WNV infection and develop a higher viral burden than wild-type (WT) mice. Interestingly, the CD8+ T cells isolated from Il17a-/- mice are less cytotoxic and express lower levels of cytotoxic-mediator genes, which can be restored by supplying recombinant IL-17A in vitro and in vivo Importantly, treatment of WNV-infected mice with recombinant IL-17A, as late as day 6 postinfection, significantly reduces the viral burden and increases survival, suggesting a therapeutic potential for IL-17A. In conclusion, we report a novel function of IL-17A in promoting CD8+ T cell cytotoxicity, which may have broad implications in other microbial infections and cancers. IMPORTANCE Interleukin-17A (IL-17A) and CD8+ T cells regulate diverse immune functions in microbial infections, malignancies, and autoimmune diseases. IL-17A is a proinflammatory cytokine produced by diverse cell types, while CD8+ T cells (known as cytotoxic T cells) are major cells that provide immunity against intracellular pathogens. Previous studies have demonstrated a crucial role of CD8+ T cells in recovery from West Nile virus (WNV) infection. However, the role of IL-17A during WNV infection remains unclear. Here, we demonstrate that IL-17A protects mice from lethal WNV infection by promoting CD8+ T cell-mediated clearance of WNV. In addition, treatment of WNV-infected mice with recombinant IL-17A reduces the viral burden and increases survival of mice, suggesting a potential therapeutic. This novel IL-17A-CD8+ T cell axis may also have broad implications for immunity to other microbial infections and cancers, where CD8+ T cell functions are crucial.
Collapse
|
78
|
Abstract
Cytokines provide cells with the ability to communicate with one another and orchestrate complex multicellular behaviour. There is an emerging understanding of the role that cytokines play in normal homeostatic tissue function and how dysregulation of these cytokine networks is associated with pathological conditions. The central nervous system (CNS), where few blood-borne immune cells circulate, seems to be particularly vulnerable to dysregulated cytokine networks. In degenerative diseases, such as proteopathies, CNS-resident cells are the predominant producers of pro-inflammatory cytokines. By contrast, in classical neuroinflammatory diseases, such as multiple sclerosis and encephalitides, pro-inflammatory cytokines are mainly produced by tissue-invading leukocytes. Whereas the effect of dysregulated cytokine networks in proteopathies is controversial, cytokines delivered to the CNS by invading immune cells are in general detrimental to the tissue. Here, we summarize recent observations on the impact of dysregulated cytokine networks in neuroinflammation.
Collapse
|
79
|
Debnath M, Berk M. Functional Implications of the IL-23/IL-17 Immune Axis in Schizophrenia. Mol Neurobiol 2016; 54:8170-8178. [PMID: 27900676 DOI: 10.1007/s12035-016-0309-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/17/2016] [Indexed: 12/14/2022]
Abstract
The aetiology of schizophrenia seems to stem from complex interactions amongst environmental, genetic, metabolic, immunologic and oxidative components. Chronic low-grade inflammation has been persistently linked to schizophrenia, and this has primarily been based on the findings derived from Th1/Th2 cytokine balance. While the IL-23/IL-17 axis plays crucial role in the pathogenesis of several immune-mediated disorders, it has remained relatively unexplored in neuropsychiatric disorders. Altered levels of cytokines related to IL-23/IL-17 axis have been observed in schizophrenia patients in a few studies. In addition, other indirect factors known to confer schizophrenia risk like complement activation and altered gut microbiota are shown to modulate the IL-23/IL-17 axis. These preliminary observations provide crucial clues about the functional implications of IL-23/IL-17 axis in schizophrenia. In this review, an attempt has been made to highlight the biology of IL-23/IL-17 axis and its relevance to schizophrenia risk and pathogenesis. Given the pathogenic potential of the IL-23/IL-17 axis, therapeutic targeting of this axis may be a promising approach to benefit patients suffering from this devastating disorder.
Collapse
Affiliation(s)
- Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, 560029, India.
| | - Michael Berk
- School of Medicine, IMPACT Strategic Research Centre, Deakin University, Geelong, VIC, Australia.,Department of Psychiatry, the Florey Institute of Neuroscience and Mental Health, and Orygen Youth Health Research Centre, University of Melbourne, Parkville, Australia
| |
Collapse
|
80
|
Ahmad SF, Ansari MA, Nadeem A, Zoheir KMA, Bakheet SA, Al-Shabanah OA, Al Rikabi AC, Attia SM. The tyrosine kinase inhibitor tyrphostin AG126 reduces activation of inflammatory cells and increases Foxp3 + regulatory T cells during pathogenesis of rheumatoid arthritis. Mol Immunol 2016; 78:65-78. [PMID: 27608299 DOI: 10.1016/j.molimm.2016.08.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 12/31/2022]
Abstract
Protein tyrosine kinases are key mediators of the signal transduction cascades that control expression of many genes involved in the induction of inflammation caused by arthritis. Here we investigate the effect of the tyrosine kinase inhibitor tyrphostin AG126 on a mouse model of adjuvant-induced arthritis (AIA). We report that when given at 5mg/kg i.p. every 48h from days 0-21, AG126 exerts potent anti-arthritic effects. Further, we investigated the role of AG126 on the key mediators of arthritic inflammation, namely, edema, arthritic score, presence of immunophenotypes including Foxp3+, CD4+Foxp3+, and CD25+Foxp3+ T regulatory (Treg) cells, as well as pro- and anti-inflammatory mediators. AG126 treatment significantly attenuated the severity of AIA and caused a substantial reduction in the percentage of CD2+, CD3+, CD4+, CD8+, CD23+, CD80+, CD86+ CD122+, CD195+, TCRβ+, and GITR+ cells in whole blood. Moreover, administration of AG126 under arthritis-inducing conditions resulted in suppression of IL-17A+, IFN-γ+, CD4+ and CD25+ populations while causing an increase in the Foxp3+, CD4+Foxp3+, and CD25+Foxp3+ Treg populations in the spleen. In addition, RT-PCR analysis revealed increased expression of CD4, CD8, IL-17A, IFN-γ, TNF-α, and NF-κB p65 mRNAs and decreased IL-4 mRNA in the arthritic control (AC) mice, while treatment of animals with AG126 reversed these effects. Western blot analysis confirmed the decreased expression of IL-17, GITR, NF-κB p65 proteins and increased Foxp3 and IL-4 proteins following AG126 treatment of knee tissue. Thus, our findings provide new evidence that inhibition of protein tyrosine kinase activity decreases the progression of arthritis.
Collapse
Affiliation(s)
- Sheikh Fayaz Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khairy M A Zoheir
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Cell Biology, National Research Center, Cairo, Egypt
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Othman A Al-Shabanah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ammar Cherkess Al Rikabi
- Department of Pathology, College of Medicine & King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
81
|
Jo H, Kim SK, Youn H, Lee H, Lee K, Jeong J, Mok J, Kim SH, Park HS, Ban C. A highly sensitive and selective impedimetric aptasensor for interleukin-17 receptor A. Biosens Bioelectron 2016; 81:80-86. [PMID: 26921556 DOI: 10.1016/j.bios.2016.02.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 01/10/2023]
Abstract
Interleukin-17 receptor A (IL-17RA) has been recognized as a valuable biomarker for diverse diseases, including autoimmune diseases. In this work, an electrochemical biosensor with great sensitivity and selectivity toward IL-17RA was fabricated using an IL-17RA aptamer (Kd=14.00nM) for the first time. The aptasensor was manufactured using electrodeposition of gold nanoparticles, and then quantitative detection of IL-17RA was performed based on impedimetry. The developed sensor exhibited a superior analytical performance for IL-17RA with a wide dynamic range of 10-10,000pg/mL in buffer and a detection limit of 2.13pg/mL, which is lower than that of commercially available ELISA kits. In addition, we validated the high specificity of the designed aptasensor to only IL-17RA, which showed good sensitivity even in human serum solution. Furthermore, the detection of the differentiated HL-60 cells expressing IL-17RA was successfully performed. Clinical applicability of the sensor was also demonstrated utilizing neutrophils separated from asthma patients. It is expected that the fabricated aptasensor will become an excellent diagnostic platform for IL-17RA-mediated diseases.
Collapse
Affiliation(s)
- Hunho Jo
- Department of Chemistry, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 790-784, South Korea.
| | - Seong-Kyeong Kim
- Department of Chemistry, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 790-784, South Korea.
| | - Hyungjun Youn
- Department of Chemistry, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 790-784, South Korea.
| | - Heehyun Lee
- Department of Life Sciences, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 790-784, South Korea.
| | - Kwanghyun Lee
- Department of Chemistry, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 790-784, South Korea.
| | - Jian Jeong
- Department of Chemistry, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 790-784, South Korea.
| | - Jihyun Mok
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 790-784, South Korea.
| | - Seung-Hyun Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, San-5, Woncheon-dong, Yeongtong-gu, Suwon 442-749, South Korea.
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, San-5, Woncheon-dong, Yeongtong-gu, Suwon 442-749, South Korea.
| | - Changill Ban
- Department of Chemistry, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 790-784, South Korea.
| |
Collapse
|
82
|
Guzmán-Soto I, Salinas E, Quintanar JL. Leuprolide Acetate Inhibits Spinal Cord Inflammatory Response in Experimental Autoimmune Encephalomyelitis by Suppressing NF-κB Activation. Neuroimmunomodulation 2016; 23:33-40. [PMID: 26445405 DOI: 10.1159/000438927] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/17/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Recent findings have shown that gonadotropin-releasing hormone (GnRH) administration in an animal model of multiple sclerosis (experimental autoimmune encephalomyelitis, EAE) improves clinical signs of locomotion. The present study was designed to determine whether the administration of the synthetic analog of GnRH, leuprolide acetate (LA) - besides its effects on clinical signs of locomotion - also has an effect on the activation/expression levels of molecular markers of EAE, namely transcription nuclear factor (NF)-κB and the proinflammatory cytokines IL-1β, IL-17A, IL-23 and TNF-α. METHODS EAE spinal cords were collected from control and LA-administered rats. Lumbar sections were processed at four different time points during the course of the disease to analyze NF-κB activation by chemiluminescent Western blot, and during the EAE recovery phase to evaluate proinflammatory cytokine levels by quantitative real-time PCR. RESULTS It was found that LA administration to EAE rats promoted a significant reduction of NF-κB activation during the course of the disease and also decreased the mRNA expression levels of the proinflammatory cytokines IL-1β, IL-17A and TNF-α in the EAE recovery phase; both effects are consistent with the decrease in the severity of clinical signs of locomotion induced by the treatment. CONCLUSION LA causes a reduction in the severity of locomotor activity, as well as in the activation of NF-κB and the number of proinflammatory markers in rats with EAE. These results suggest the use of this agonist as a potential therapeutic approach for multiple sclerosis.
Collapse
Affiliation(s)
- Irene Guzmán-Soto
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Centro de Ciencias Bx00E1;sicas, Universidad Autx00F3;noma de Aguascalientes, Aguascalientes, Mexico
| | | | | |
Collapse
|
83
|
Tian A, Ma H, Zhang R, Tan W, Wang X, Wu B, Wang J, Wan C. Interleukin17A Promotes Postoperative Cognitive Dysfunction by Triggering β-Amyloid Accumulation via the Transforming Growth Factor-β (TGFβ)/Smad Signaling Pathway. PLoS One 2015; 10:e0141596. [PMID: 26509545 PMCID: PMC4624903 DOI: 10.1371/journal.pone.0141596] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 10/09/2015] [Indexed: 02/05/2023] Open
Abstract
Although postoperative cognitive dysfunction (POCD) is relatively common in elderly patients who have undergone major surgery, the mechanisms underlying this postoperative complication are unclear. Previously, we have investigated the role of cytokine-mediated hippocampal inflammation in the development of POCD in a rat model. Here, we sought to determine in mice the role of cytokine interleukin17A (IL17A) in POCD and to characterize the associated signaling pathways. Old mice underwent hepatectomy surgery in the presence or absence of IL17A monoclonal antibody, and cognitive function, hippocampal neuroinflammation, and pathologic markers of Alzheimer’s disease (AD) were assessed. We found that the level of IL17A in the hippocampus was increased in hepatectomy mice and that cognitive impairment after surgery was associated with the appearance of certain pathological hallmarks of AD: activation of astrocytes, β-amyloid1-42 (Aβ1–42) production, upregulation of transforming growth factor-β (TGFβ), and increased phosphorylation of signaling mother against decapentaplegic peptide 3 (Smad3) protein in the hippocampus. Surgery-induced changes in cognitive dysfunction and changes in Aβ1–42 and TGFβ/Smad signaling were prevented by the administration of IL17A monoclonal antibody. In addition, IL17A-stimulated TGFβ/Smad activation and Aβ1–42 expression were reversed by IL17A receptor small interfering RNA and a TGFβ receptor inhibitor in cultured astrocytes. Our findings suggest that surgery can provoke IL17A-related hippocampal damage, as characterized by activation of astrocytes and TGFβ/Smad pathway dependent Aβ1–42 accumulation in old subjects. These changes likely contribute to the cognitive decline seen in POCD.
Collapse
Affiliation(s)
- Ayong Tian
- Department of Anesthesiology, the first Affiliated Hospital of China Medical University, Nanjing North Street 155, Shenyang, Liaoning, China
| | - Hong Ma
- Department of Anesthesiology, the first Affiliated Hospital of China Medical University, Nanjing North Street 155, Shenyang, Liaoning, China
- * E-mail:
| | - Rongwei Zhang
- Department of Gerontology and Geriatrics, the first Affiliated Hospital of China Medical University, Nanjing North Street 155, Shenyang, Liaoning, China
| | - Wenfei Tan
- Department of Anesthesiology, the first Affiliated Hospital of China Medical University, Nanjing North Street 155, Shenyang, Liaoning, China
| | - Xiaolong Wang
- Department of Anesthesiology, the first Affiliated Hospital of China Medical University, Nanjing North Street 155, Shenyang, Liaoning, China
| | - Binyang Wu
- Department of Anesthesiology, the first Affiliated Hospital of China Medical University, Nanjing North Street 155, Shenyang, Liaoning, China
| | - Jun Wang
- Department of Neurology, the first Affiliated Hospital of China Medical University, Nanjing North Street 155, Shenyang, Liaoning, China
| | - Chengfu Wan
- Department of Pain Medicine, the first Affiliated Hospital of China Medical University, Nanjing North Street 155, Shenyang, Liaoning, China
| |
Collapse
|
84
|
Grigoriadis N, van Pesch V. A basic overview of multiple sclerosis immunopathology. Eur J Neurol 2015; 22 Suppl 2:3-13. [DOI: 10.1111/ene.12798] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 06/05/2015] [Indexed: 12/12/2022]
Affiliation(s)
- N. Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology; Second Department of Neurology; AHEPA University Hospital; Aristotle University of Thessaloniki; Macedonia Greece
| | - V. van Pesch
- Neurology Department; Cliniques Universitaires St-Luc; Brussels Belgium
| | | |
Collapse
|
85
|
Sahin E, Brunner JS, Kral JB, Kuttke M, Hanzl L, Datler H, Paar H, Neuwinger N, Saferding V, Zinser E, Halfmann A, Soukup K, Hainzl E, Lohmeyer T, Niederreiter B, Haider T, Dohnal AM, Krönke G, Blüml S, Schabbauer G. Loss of Phosphatase and Tensin Homolog in APCs Impedes Th17-Mediated Autoimmune Encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:2560-70. [PMID: 26246144 DOI: 10.4049/jimmunol.1402511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 07/12/2015] [Indexed: 12/22/2022]
Abstract
The PI3K signaling cascade in APCs has been recognized as an essential pathway to initiate, maintain, and resolve immune responses. In this study, we demonstrate that a cell type-specific loss of the PI3K antagonist phosphatase and tensin homolog (PTEN) in myeloid cells renders APCs toward a regulatory phenotype. APCs deficient for PTEN exhibit reduced activation of p38 MAPK and reduced expression of T cell-polarizing cytokines. Furthermore, PTEN deficiency leads to upregulation of markers for alternative activation, such as Arginase 1, with concomitant downregulation of inducible NO synthase in APCs in vitro and in vivo. As a result, T cell polarization was dysfunctional in PTEN(-/-) APCs, in particular affecting the Th17 cell subset. Intriguingly, mice with cell type-specific deletions of PTEN-targeting APCs were protected from experimental autoimmune encephalomyelitis, which was accompanied by a pronounced reduction of IL-17- and IL-22-producing autoreactive T cells and reduced CNS influx of classically activated monocytes/macrophages. These observations support the notion that activation of the PI3K signaling cascade promotes regulatory APC properties and suppresses pathogenic T cell polarization, thereby reducing the clinical symptoms and pathology of experimental autoimmune encephalomyelitis.
Collapse
Affiliation(s)
- Emine Sahin
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Julia S Brunner
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Julia B Kral
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Mario Kuttke
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Leslie Hanzl
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Hannes Datler
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Hannah Paar
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Nick Neuwinger
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Victoria Saferding
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, A-1090 Vienna, Austria
| | - Elisabeth Zinser
- Department of Immune Modulation, Department of Dermatology, University Hospital Erlangen, 91052 Erlangen, Germany
| | - Angela Halfmann
- St. Anna Children's Cancer Research Institute, A-1090 Vienna, Austria
| | - Klara Soukup
- St. Anna Children's Cancer Research Institute, A-1090 Vienna, Austria
| | - Eva Hainzl
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Tobias Lohmeyer
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Birgit Niederreiter
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, A-1090 Vienna, Austria
| | - Thomas Haider
- University Clinic for Trauma Surgery, Medical University of Vienna, A-1090 Vienna, Austria
| | | | - Gerhard Krönke
- Department of Internal Medicine 3, University Hospital Erlangen, 91052 Erlangen, Germany; Institute for Clinical Immunology, University Hospital Erlangen, 91052 Erlangen, Germany; and Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, 91052 Erlangen, Germany
| | - Stephan Blüml
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, A-1090 Vienna, Austria;
| | - Gernot Schabbauer
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria;
| |
Collapse
|
86
|
Abstract
Multiple sclerosis is a neurologic disease caused by immune cell infiltration into the central nervous system, resulting in gray and white matter inflammation, progressive demyelination, and neuronal loss. Astrocytes, the most abundant cell population in the central nervous system (CNS), have been considered inert scaffold or housekeeping cells for many years. However, recently, it has become clear that this cell population actively modulates the immune response in the CNS at multiple levels. While being exposed to a plethora of cytokines during ongoing autoimmune inflammation, astrocytes modulate local CNS inflammation by secreting cytokines and chemokines, among other factors. This review article gives an overview of the most recent understanding about cytokine networks operational in astrocytes during autoimmune neuroinflammation and highlights potential targets for immunomodulatory therapies for multiple sclerosis.
Collapse
Affiliation(s)
- Veit Rothhammer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Ave. Louis Pasteur, HIM 714, Boston, MA, 02115, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Ave. Louis Pasteur, HIM 714, Boston, MA, 02115, USA.
| |
Collapse
|
87
|
Das A, Chai JC, Kim SH, Lee YS, Park KS, Jung KH, Chai YG. Transcriptome sequencing of microglial cells stimulated with TLR3 and TLR4 ligands. BMC Genomics 2015; 16:517. [PMID: 26159724 PMCID: PMC4497376 DOI: 10.1186/s12864-015-1728-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 06/26/2015] [Indexed: 01/07/2023] Open
Abstract
Background Resident macrophages in the CNS microglia become activated and produce proinflammatory molecules upon encountering bacteria or viruses. TLRs are a phylogenetically conserved diverse family of sensors that drive innate immune responses following interactions with PAMPs. TLR3 and TLR4 recognize viral dsRNA Poly (I:C) and bacterial endotoxin LPS, respectively. Importantly, these receptors differ in their downstream adaptor molecules. Thus far, only a few studies have investigated the effects of TLR3 and TLR4 in macrophages. However, a genome-wide search for the effects of these TLRs has not been performed in microglia using RNA-seq. Gene expression patterns were determined for the BV-2 microglial cell line when stimulated with viral dsRNA Poly (I:C) or bacterial endotoxin LPS to identify novel transcribed genes, as well as investigate how differences in downstream signaling could influence gene expression in innate immunity. Results Sequencing assessment and quality evaluation revealed that common and unique patterns of proinflammatory genes were significantly up-regulated in response to TLR3 and TLR4 stimulation. However, the IFN/viral response gene showed a stronger response to TLR3 stimulation than to TLR4 stimulation. Unexpectedly, TLR3 and TLR4 stimulation did not activate IFN-ß and IRF3 in BV-2 microglia. Most importantly, we observed that previously unidentified transcription factors (TFs) (i.e., IRF1, IRF7, and IRF9) and the epigenetic regulators KDM4A and DNMT3L were significantly up-regulated in both TLR3- and TLR4-stimulated microglia. We also identified 29 previously unidentified genes that are important in immune regulation. In addition, we confirmed the expressions of key inflammatory genes as well as pro-inflammatory mediators in the supernatants were significantly induced in TLR3-and TLR4-stimulated primary microglial cells. Moreover, transcriptional start sites (TSSs) and isoforms, as well as differential promoter usage, revealed a complex pattern of transcriptional and post-transcriptional gene regulation upon infection with TLR3 and TLR4. Furthermore, TF motif analysis (-950 to +50 bp of the 5′ upstream promoters) revealed that the DNA sequences for NF-κB, IRF1, and STAT1 were significantly enriched in TLR3- and TLR4-stimulated microglia. Conclusions These unprecedented findings not only permit a comparison of TLR3-and TLR4-stimulated genes but also identify new genes that have not been previously implicated in innate immunity. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1728-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amitabh Das
- Department of Bionanotechnology, Hanyang University, Seoul, 133-791, Republic of Korea.
| | - Jin Choul Chai
- Department of Molecular & Life Sciences, Hanyang University, Ansan, 426-791, Republic of Korea.
| | - Sun Hwa Kim
- Department of Molecular & Life Sciences, Hanyang University, Ansan, 426-791, Republic of Korea.
| | - Young Seek Lee
- Department of Molecular & Life Sciences, Hanyang University, Ansan, 426-791, Republic of Korea.
| | - Kyoung Sun Park
- Department of Molecular & Life Sciences, Hanyang University, Ansan, 426-791, Republic of Korea.
| | - Kyoung Hwa Jung
- Department of Molecular & Life Sciences, Hanyang University, Ansan, 426-791, Republic of Korea. .,Institute of Natural Science & Technology, Hanyang University, Ansan, 426-791, South Korea.
| | - Young Gyu Chai
- Department of Bionanotechnology, Hanyang University, Seoul, 133-791, Republic of Korea. .,Department of Molecular & Life Sciences, Hanyang University, Ansan, 426-791, Republic of Korea.
| |
Collapse
|
88
|
Choi EY, Lim JH, Neuwirth A, Economopoulou M, Chatzigeorgiou A, Chung KJ, Bittner S, Lee SH, Langer H, Samus M, Kim H, Cho GS, Ziemssen T, Bdeir K, Chavakis E, Koh JY, Boon L, Hosur K, Bornstein SR, Meuth SG, Hajishengallis G, Chavakis T. Developmental endothelial locus-1 is a homeostatic factor in the central nervous system limiting neuroinflammation and demyelination. Mol Psychiatry 2015; 20:880-888. [PMID: 25385367 PMCID: PMC4351922 DOI: 10.1038/mp.2014.146] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 09/01/2014] [Accepted: 09/29/2014] [Indexed: 01/05/2023]
Abstract
Inflammation in the central nervous system (CNS) and disruption of its immune privilege are major contributors to the pathogenesis of multiple sclerosis (MS) and of its rodent counterpart, experimental autoimmune encephalomyelitis (EAE). We have previously identified developmental endothelial locus-1 (Del-1) as an endogenous anti-inflammatory factor, which inhibits integrin-dependent leukocyte adhesion. Here we show that Del-1 contributes to the immune privilege status of the CNS. Intriguingly, Del-1 expression decreased in chronic-active MS lesions and in the inflamed CNS in the course of EAE. Del-1-deficiency was associated with increased EAE severity, accompanied by increased demyelination and axonal loss. As compared with control mice, Del-1(-/-) mice displayed enhanced disruption of the blood-brain barrier and increased infiltration of neutrophil granulocytes in the spinal cord in the course of EAE, accompanied by elevated levels of inflammatory cytokines, including interleukin-17 (IL-17). The augmented levels of IL-17 in Del-1-deficiency derived predominantly from infiltrated CD8(+) T cells. Increased EAE severity and neutrophil infiltration because of Del-1-deficiency was reversed in mice lacking both Del-1 and IL-17 receptor, indicating a crucial role for the IL-17/neutrophil inflammatory axis in EAE pathogenesis in Del-1(-/-) mice. Strikingly, systemic administration of Del-1-Fc ameliorated clinical relapse in relapsing-remitting EAE. Therefore, Del-1 is an endogenous homeostatic factor in the CNS protecting from neuroinflammation and demyelination. Our findings provide mechanistic underpinnings for the previous implication of Del-1 as a candidate MS susceptibility gene and suggest that Del-1-centered therapeutic approaches may be beneficial in neuroinflammatory and demyelinating disorders.
Collapse
MESH Headings
- Animals
- Axons/drug effects
- Axons/metabolism
- Axons/pathology
- Blood-Brain Barrier/drug effects
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/pathology
- Calcium-Binding Proteins
- Capillary Permeability/drug effects
- Capillary Permeability/physiology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Adhesion Molecules
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Granulocytes/drug effects
- Granulocytes/metabolism
- Granulocytes/pathology
- Homeostasis/drug effects
- Homeostasis/physiology
- Intercellular Signaling Peptides and Proteins
- Interleukin-17/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Myelin Sheath/drug effects
- Myelin Sheath/metabolism
- Myelin Sheath/pathology
- Neuroimmunomodulation/drug effects
- Neuroimmunomodulation/physiology
- Neutrophils/drug effects
- Neutrophils/metabolism
- Neutrophils/pathology
- Receptors, Interleukin-17/genetics
- Receptors, Interleukin-17/metabolism
- Severity of Illness Index
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Spinal Cord/pathology
Collapse
Affiliation(s)
- Eun Young Choi
- Department of Biomedical Sciences and Department of Pharmacology, Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul, Republic of Korea
- Experimental Immunology Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Technische Universität Dresden, Germany
- Department of Internal Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Jong-Hyung Lim
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Ales Neuwirth
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Technische Universität Dresden, Germany
| | - Matina Economopoulou
- Clinic for Ophthalmology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Antonios Chatzigeorgiou
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Technische Universität Dresden, Germany
- Department of Internal Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Kyoung-Jin Chung
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Technische Universität Dresden, Germany
| | | | - Seung-Hwan Lee
- Department of Biomedical Sciences and Department of Pharmacology, Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Harald Langer
- Experimental Immunology Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Medizinische Klinik III, Eberhard Karls-University Tübingen, Tübingen, Germany
| | - Maryna Samus
- Department of Internal Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Hyesoon Kim
- Department of Biomedical Sciences and Department of Pharmacology, Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Geum-Sil Cho
- Department of Biomedical Sciences and Department of Pharmacology, Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Tjalf Ziemssen
- Department of Neurology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Khalil Bdeir
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emmanouil Chavakis
- Department of Internal Medicine, Cardiology, Goethe University Frankfurt, Frankfurt, Germany
| | - Jae-Young Koh
- Department of Neurology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | - Kavita Hosur
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stefan R. Bornstein
- Department of Internal Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sven G. Meuth
- Department for Neurology, University Münster, Germany
| | - George Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Triantafyllos Chavakis
- Experimental Immunology Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Technische Universität Dresden, Germany
- Department of Internal Medicine III, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden, Germany
| |
Collapse
|
89
|
T Cells-Protective or Pathogenic in Alzheimer's Disease? J Neuroimmune Pharmacol 2015; 10:547-60. [PMID: 25957956 DOI: 10.1007/s11481-015-9612-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/29/2015] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and is characterised by deposits of amyloid β (Aβ), neurofibrillary tangles and neuronal loss. Neuroinflammatory changes have been identified as a feature of the disease, and recent studies have suggested a potential role for the peripheral immune system in driving these changes and, ultimately, the associated neuronal degeneration. A number of reports have detailed changes in the activation state and subtype of T cells in the circulation and CSF of AD patients and there is evidence of T cell infiltration into the brain. In this review, we examine the possible impact of T cell infiltration in the progression of pathology in AD and consider the data obtained from animal models of the disease. We consider how these cells infiltrate the brain, particularly in AD, and discuss whether the presence of T cells in the AD brain is protective or pathogenic. Finally we evaluate the current therapies, particularly those that involve immunization.
Collapse
|
90
|
The role of IL-17 in CNS diseases. Acta Neuropathol 2015; 129:625-37. [PMID: 25716179 DOI: 10.1007/s00401-015-1402-7] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 12/19/2022]
Abstract
Cytokines of the IL-17 family are uniquely placed on the border between immune cells and tissue. Although IL-17 was originally found to induce the activation and mobilization of neutrophils to sites of inflammation, its tissue-specific function is not yet fully understood. The best-studied IL-17 family members, IL-17A and IL-17F, are both typically produced by immune cells such as Th17, γδ T cells and innate lymphoid cells group 3. However, the cells that respond to these cytokines are mostly found in inflamed tissue. As seen in psoriatic skin lesions or in joints of rheumatoid arthritis patients, high levels of IL-17 have been detected in the central nervous system (CNS) during inflammatory responses. Here, we provide a general review of the molecular function of IL-17 and its role in the CNS in particular. Of the different inflammatory conditions of the CNS, we found multiple sclerosis (MS) to be the one most associated with the presence of Th17 cells and IL-17. In particular, many studies using the murine model for MS, experimental autoimmune encephalomyelitis, found a clear association of Th17 and IL-17 with disease severity and progression. We summarize the recent advances made in correlating the presence of IL-17 with impaired blood-brain barrier integrity as well as the activation of astrocytes and microglia and the consequences for disease progression. There is also evidence that IL-17 plays a pathogenic role in the post-ischemic phase of stroke as well as its experimental model. We review the limited but promising data on the sources of post-stroke IL-17 production and its effects on CNS-resident target cells. In addition to MS and stroke, there is also evidence linking high levels of IL-17 to depression, as a frequent comorbidity of several inflammatory diseases, as well as to different types of infections of the CNS. The evidence we supply here suggests that inhibiting the function of the IL-17 cytokine family could have a beneficial effect on pathogenic conditions in the CNS.
Collapse
|
91
|
Dual RNA sequencing reveals the expression of unique transcriptomic signatures in lipopolysaccharide-induced BV-2 microglial cells. PLoS One 2015; 10:e0121117. [PMID: 25811458 PMCID: PMC4374676 DOI: 10.1371/journal.pone.0121117] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/28/2015] [Indexed: 11/26/2022] Open
Abstract
Microglial cells become rapidly activated through interactions with pathogens, and the persistent activation of these cells is associated with various neurodegenerative diseases. Previous studies have investigated the transcriptomic signatures in microglia or macrophages using microarray technologies. However, this method has numerous restrictions, such as spatial biases, uneven probe properties, low sensitivity, and dependency on the probes spotted. To overcome this limitation and identify novel transcribed genes in response to LPS, we used RNA Sequencing (RNA-Seq) to determine the novel transcriptomic signatures in BV-2 microglial cells. Sequencing assessment and quality evaluation showed that approximately 263 and 319 genes (≥ 1.5 log2-fold), such as cytokines and chemokines, were strongly induced after 2 and 4 h, respectively, and the induction of several genes with unknown immunological functions was also observed. Importantly, we observed that previously unidentified transcription factors (TFs) (irf1, irf7, and irf9), histone demethylases (kdm4a) and DNA methyltransferases (dnmt3l) were significantly and selectively expressed in BV-2 microglial cells. The gene expression levels, transcription start sites (TSS), isoforms, and differential promoter usage revealed a complex pattern of transcriptional and post-transcriptional gene regulation upon infection with LPS. In addition, gene ontology, molecular networks and pathway analyses identified the top significantly regulated functional classification, canonical pathways and network functions at each activation status. Moreover, we further analyzed differentially expressed genes to identify transcription factor (TF) motifs (−950 to +50 bp of the 5’ upstream promoters) and epigenetic mechanisms. Furthermore, we confirmed that the expressions of key inflammatory genes as well as pro-inflammatory mediators in the supernatants were significantly induced in LPS treated primary microglial cells. This transcriptomic analysis is the first to show a comparison of the family-wide differential expression of most known immune genes and also reveal transcription evidence of multiple gene families in BV-2 microglial cells. Collectively, these findings reveal unique transcriptomic signatures in BV-2 microglial cells required for homeostasis and effective immune responses.
Collapse
|
92
|
Menzfeld C, John M, van Rossum D, Regen T, Scheffel J, Janova H, Götz A, Ribes S, Nau R, Borisch A, Boutin P, Neumann K, Bremes V, Wienands J, Reichardt HM, Lühder F, Tischner D, Waetzig V, Herdegen T, Teismann P, Greig I, Müller M, Pukrop T, Mildner A, Kettenmann H, Brück W, Prinz M, Rotshenker S, Weber MS, Hanisch UK. Tyrphostin AG126 exerts neuroprotection in CNS inflammation by a dual mechanism. Glia 2015; 63:1083-99. [PMID: 25731696 DOI: 10.1002/glia.22803] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/20/2015] [Indexed: 01/17/2023]
Abstract
The putative protein tyrosine kinase (PTK) inhibitor tyrphostin AG126 has proven beneficial in various models of inflammatory disease. Yet molecular targets and cellular mechanisms remained enigmatic. We demonstrate here that AG126 treatment has beneficial effects in experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. AG126 alleviates the clinical symptoms, diminishes encephalitogenic Th17 differentiation, reduces inflammatory CNS infiltration as well as microglia activation and attenuates myelin damage. We show that AG126 directly inhibits Bruton's tyrosine kinase (BTK), a PTK associated with B cell receptor and Toll-like receptor (TLR) signaling. However, BTK inhibition cannot account for the entire activity spectrum. Effects on TLR-induced proinflammatory cytokine expression in microglia involve AG126 hydrolysis and conversion of its dinitrile side chain to malononitrile (MN). Notably, while liberated MN can subsequently mediate critical AG126 features, full protection in EAE still requires delivery of intact AG126. Its anti-inflammatory potential and especially interference with TLR signaling thus rely on a dual mechanism encompassing BTK and a novel MN-sensitive target. Both principles bear great potential for the therapeutic management of disturbed innate and adaptive immune functions.
Collapse
|
93
|
Jung KH, Das A, Chai JC, Kim SH, Morya N, Park KS, Lee YS, Chai YG. RNA sequencing reveals distinct mechanisms underlying BET inhibitor JQ1-mediated modulation of the LPS-induced activation of BV-2 microglial cells. J Neuroinflammation 2015; 12:36. [PMID: 25890327 PMCID: PMC4359438 DOI: 10.1186/s12974-015-0260-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 02/02/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Microglial cells become rapidly activated through interaction with pathogens, and their persistent activation is associated with the production and secretion of various pro-inflammatory genes, cytokines, and chemokines, which may initiate or amplify neurodegenerative diseases. Bromodomain and extraterminal domain (BET) proteins are a group of epigenetic regulators that associate with acetylated histones and facilitate the transcription of target genes. A novel synthetic BET inhibitor, JQ1, was proven to exert immunosuppressive activities by inhibiting the expression of IL-6 and Tnf-α in macrophages. However, a genome-wide search for JQ1 molecular targets is largely unexplored in microglia. METHODS The present study was aimed at evaluating the anti-inflammatory function and underlying genes targeted by JQ1 in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells using two transcriptomic techniques: global transcriptomic biological duplicate RNA sequencing and quantitative real-time PCR. Associated biological pathways and functional gene ontology were also evaluated. RESULTS With a cutoff value of P ≤ 0.01 and fold change ≥1.5 log2, the expression level of 214 and 301 genes, including pro-inflammatory cytokine, chemokine, and transcription factors, was found to be upregulated in BV-2 cells stimulated with LPS for 2 and 4 h, respectively. Among these annotated genes, we found that JQ1 selectively reduced the expression of 78 and 118 genes (P ≤ 0.01, and fold change ≥ 1.5, respectively). Importantly, these inflammatory genes were not affected by JQ1 treatment alone. Furthermore, we confirmed that JQ1 reduced the expression of key inflammation- and immunity-related genes as well as cytokines/chemokines in the supernatants of LPS-treated primary microglial cells isolated from 3-day-old ICR mice. Utilizing functional group analysis, the genes affected by JQ1 were classified into four categories related to biological regulation, immune system processes, and response to stimuli. Moreover, the biological pathways and functional genomics obtained in this study may facilitate the suppression of different key inflammatory genes through JQ1-treated BV-2 microglial cells. CONCLUSIONS These unprecedented results suggest the BET inhibitor JQ1 as a candidate for the prevention or therapeutic treatment of inflammation-mediated neurodegenerative diseases.
Collapse
Affiliation(s)
- Kyoung Hwa Jung
- Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan, Gyeonggi-do, 426-791, South Korea.
| | - Amitabh Das
- Department of Bionanotechnology, Hanyang University, 222 Wangsimni-ro, Seoul, 133-791, South Korea.
| | - Jin Choul Chai
- Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan, Gyeonggi-do, 426-791, South Korea.
| | - Sun Hwa Kim
- Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan, Gyeonggi-do, 426-791, South Korea.
| | - Nishi Morya
- Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan, Gyeonggi-do, 426-791, South Korea.
| | - Kyoung Sun Park
- Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan, Gyeonggi-do, 426-791, South Korea.
| | - Young Seek Lee
- Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan, Gyeonggi-do, 426-791, South Korea.
| | - Young Gyu Chai
- Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan, Gyeonggi-do, 426-791, South Korea. .,Department of Bionanotechnology, Hanyang University, 222 Wangsimni-ro, Seoul, 133-791, South Korea.
| |
Collapse
|
94
|
Rodgers JM, Robinson AP, Rosler ES, Lariosa-Willingham K, Persons RE, Dugas JC, Miller SD. IL-17A activates ERK1/2 and enhances differentiation of oligodendrocyte progenitor cells. Glia 2014; 63:768-79. [PMID: 25557204 DOI: 10.1002/glia.22783] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 12/15/2014] [Indexed: 01/05/2023]
Abstract
Inflammatory signals present in demyelinated multiple sclerosis lesions affect the reparative remyelination process conducted by oligodendrocyte progenitor cells (OPCs). Interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and interleukin (IL)-6 have differing effects on the viability and growth of OPCs, however the effects of IL-17A are largely unknown. Primary murine OPCs were stimulated with IL-17A and their viability, proliferation, and maturation were assessed in culture. IL-17A-stimulated OPCs exited the cell cycle and differentiated with no loss in viability. Expression of the myelin-specific protein, proteolipid protein, increased in a cerebellar slice culture assay in the presence of IL-17A. Downstream, IL-17A activated ERK1/2 within 15 min and induced chemokine expression in 2 days. These results demonstrate that IL-17A exposure stimulates OPCs to mature and participate in the inflammatory response.
Collapse
Affiliation(s)
- Jane M Rodgers
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611; Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | | | | | | | | | | | | |
Collapse
|
95
|
Interleukin-17 inhibits adult hippocampal neurogenesis. Sci Rep 2014; 4:7554. [PMID: 25523081 PMCID: PMC4271266 DOI: 10.1038/srep07554] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/16/2014] [Indexed: 12/20/2022] Open
Abstract
Interleukin 17(A) (IL-17) is a potent pro-inflammatory cytokine that acts as a central regulator of inflammatory response within the brain, but its physiological roles under non-inflammatory conditions remain elusive. Here we report that endogenous IL-17 ablates neurogenesis in the adult dentate gyrus (DG) of hippocampus. Genetic deletion of IL-17 increased the number of adult-born neurons in the DG. Further, we found that IL-17 deletion altered cytokine network, facilitated basal excitatory synaptic transmission, enhanced intrinsic neuronal excitability, and increased expression of proneuronal genes in neuronal progenitor cells (NPCs). Our findings suggest a profound role of IL-17 in the negative regulation of adult hippocampal neurogenesis under physiology conditions.
Collapse
|
96
|
Sie C, Korn T, Mitsdoerffer M. Th17 cells in central nervous system autoimmunity. Exp Neurol 2014; 262 Pt A:18-27. [DOI: 10.1016/j.expneurol.2014.03.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/12/2014] [Accepted: 03/19/2014] [Indexed: 01/08/2023]
|
97
|
Moynes DM, Vanner SJ, Lomax AE. Participation of interleukin 17A in neuroimmune interactions. Brain Behav Immun 2014; 41:1-9. [PMID: 24642072 DOI: 10.1016/j.bbi.2014.03.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/24/2014] [Accepted: 03/09/2014] [Indexed: 01/02/2023] Open
Abstract
Inflammation involving the helper T cell 17 (Th17) subset of lymphocytes has been implicated in a number of diseases that affect the nervous system. As the canonical cytokine of Th17 cells, interleukin 17A (IL-17A) is thought to contribute to these neuroimmune interactions. The main receptor for IL-17A is expressed in many neural tissues. IL-17A has direct effects on neurons but can also impact neural function via signaling to satellite cells and immune cells. In the central nervous system, IL-17A has been associated with neuropathology in multiple sclerosis, epilepsy syndromes and ischemic brain injury. Effects of IL-17A at the level of dorsal root ganglia and the spinal cord may contribute to enhanced nociception during neuropathic and inflammatory pain. Finally, IL-17A plays a role in sympathetic axon growth and regeneration of damaged axons that innervate the cornea. Given the widespread effects of IL-17A on neural tissues, it will be important to determine whether selectively mitigating the damaging effects of this cytokine while augmenting its beneficial effects is a possible strategy to treat inflammatory damage to the nervous system.
Collapse
Affiliation(s)
- Derek M Moynes
- Department of Biomedical and Molecular Sciences, Gastrointestinal Diseases Research Unit and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Stephen J Vanner
- Department of Biomedical and Molecular Sciences, Gastrointestinal Diseases Research Unit and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Medicine, Gastrointestinal Diseases Research Unit and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Alan E Lomax
- Department of Biomedical and Molecular Sciences, Gastrointestinal Diseases Research Unit and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Medicine, Gastrointestinal Diseases Research Unit and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
98
|
IL-17 and related cytokines involved in the pathology and immunotherapy of multiple sclerosis: Current and future developments. Cytokine Growth Factor Rev 2014; 25:403-13. [DOI: 10.1016/j.cytogfr.2014.07.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
99
|
Liu G, Guo J, Liu J, Wang Z, Liang D. Toll-like receptor signaling directly increases functional IL-17RA expression in neuroglial cells. Clin Immunol 2014; 154:127-40. [PMID: 25076485 DOI: 10.1016/j.clim.2014.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 07/18/2014] [Accepted: 07/19/2014] [Indexed: 11/26/2022]
Abstract
IL-17, the hallmark cytokine of Th17 cells, plays a pivotal role in the pathogenesis of autoimmune diseases, including encephalomyelitis. In the central nervous system, neuroglial cells are the main residents that express IL-17R and respond to IL-17 by producing chemokines/cytokines and boosting local inflammation. Factors that influence the IL-17R expression in neuroglial cells can also exert their impacts on the outbreak, progression and outcome of encephalomyelitis. Here, we reported that Toll-like receptor signaling has its bias for promoting the IL-17RA, but not the IL-17RC, expression in mouse neuroglial cells in a T cell infiltration independent manner. Elevated IL-17R functionally responded to IL-17 by secreting more chemokines and accelerating CD4 cell migration. First, real-time PCR confirmed that the expression of Il-17ra, but not Il-17rc, was significantly increased in the brain and spinal cord of EAE-induced mice. This effect was elicited by something in complete Freund's adjuvant (CFA), because markedly increased IL-17R was detected in mice immunized with CFA only, even though no evidence of EAE was found. Furthermore, in Rag1(-/-) mice, it was confirmed that CFA could augment the IL-17RA expression in the CNS in the absence of T cell infiltration. In vivo immunization with TLR ligands and in vitro treatment of purified neuroglial cells demonstrated that TLR ligands directly and effectively evoke the IL-17RA expression in the CNS and in cultured astrocytes, microglia and oligodendrocytes. LPS was the most effective inducer of the IL-17RA expression in astrocytes, and polyIC was superior to LPS for microglia and oligodendrocytes. Activated CD4 cells can also promote the secretion of chemokines by LPS pre-treated astrocytes, and hence accelerate the migration of CD4 cells, which was blocked by the neutralization of IL-17RA on the surface of the astrocyte. Taken together, we concluded that TLR signaling can directly stimulate the expression of IL-17RA, but not IL-17RC, in neuroglial cells, which functionally respond to IL-17A by secreting chemokines, accelerating CD4 cell migration, and contributing to the pathogenesis of encephalomyelitis.
Collapse
Affiliation(s)
- Guoping Liu
- Department of Neurology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Jie Guo
- Department of Neurology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Jin Liu
- Department of Neurology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Zhiyun Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Dongchun Liang
- Doheny Eye Institute, University of Southern California, CA 90033, USA.
| |
Collapse
|
100
|
Lemos H, Huang L, Chandler PR, Mohamed E, Souza GR, Li L, Pacholczyk G, Barber GN, Hayakawa Y, Munn DH, Mellor AL. Activation of the STING adaptor attenuates experimental autoimmune encephalitis. THE JOURNAL OF IMMUNOLOGY 2014; 192:5571-8. [PMID: 24799564 DOI: 10.4049/jimmunol.1303258] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cytosolic DNA sensing activates the stimulator of IFN genes (STING) adaptor to induce IFN type I (IFN-αβ) production. Constitutive DNA sensing to induce sustained STING activation incites tolerance breakdown, leading to autoimmunity. In this study, we show that systemic treatments with DNA nanoparticles (DNPs) induced potent immune regulatory responses via STING signaling that suppressed experimental autoimmune encephalitis (EAE) when administered to mice after immunization with myelin oligodendrocyte glycoprotein (MOG), at EAE onset, or at peak disease severity. DNP treatments attenuated infiltration of effector T cells into the CNS and suppressed innate and adaptive immune responses to myelin oligodendrocyte glycoprotein immunization in spleen. Therapeutic responses were not observed in mice treated with cargo DNA or cationic polymers alone, indicating that DNP uptake and cargo DNA sensing by cells with regulatory functions was essential for therapeutic responses to manifest. Intact STING and IFN-αβ receptor genes, but not IFN-γ receptor genes, were essential for therapeutic responses to DNPs to manifest. Treatments with cyclic diguanylate monophosphate to activate STING also delayed EAE onset and reduced disease severity. Therapeutic responses to DNPs were critically dependent on IDO enzyme activity in hematopoietic cells. Thus, DNPs and cyclic diguanylate monophosphate attenuate EAE by inducing dominant T cell regulatory responses via the STING/IFN-αβ/IDO pathway that suppress CNS-specific autoimmunity. These findings reveal dichotomous roles for the STING/IFN-αβ pathway in either stimulating or suppressing autoimmunity and identify STING-activating reagents as a novel class of immune modulatory drugs.
Collapse
Affiliation(s)
- Henrique Lemos
- Cancer Immunology, Inflammation and Tolerance Program, Cancer Center, Georgia Regents University, Augusta, GA 30912
| | - Lei Huang
- Cancer Immunology, Inflammation and Tolerance Program, Cancer Center, Georgia Regents University, Augusta, GA 30912
| | - Phillip R Chandler
- Cancer Immunology, Inflammation and Tolerance Program, Cancer Center, Georgia Regents University, Augusta, GA 30912
| | - Eslam Mohamed
- Cancer Immunology, Inflammation and Tolerance Program, Cancer Center, Georgia Regents University, Augusta, GA 30912
| | - Guilherme R Souza
- Cancer Immunology, Inflammation and Tolerance Program, Cancer Center, Georgia Regents University, Augusta, GA 30912; Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900 Sao Paulo, Brazil
| | - Lingqian Li
- Cancer Immunology, Inflammation and Tolerance Program, Cancer Center, Georgia Regents University, Augusta, GA 30912
| | - Gabriela Pacholczyk
- Cancer Immunology, Inflammation and Tolerance Program, Cancer Center, Georgia Regents University, Augusta, GA 30912
| | - Glen N Barber
- Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, FL 33136; and
| | - Yoshihiro Hayakawa
- Department of Applied Chemistry, Faculty of Engineering, Aichi Institute of Technology, Toyota 470-0392, Japan
| | - David H Munn
- Cancer Immunology, Inflammation and Tolerance Program, Cancer Center, Georgia Regents University, Augusta, GA 30912
| | - Andrew L Mellor
- Cancer Immunology, Inflammation and Tolerance Program, Cancer Center, Georgia Regents University, Augusta, GA 30912;
| |
Collapse
|