51
|
Gholamipourbarogh N, Eggert E, Münchau A, Frings C, Beste C. EEG tensor decomposition delineates neurophysiological principles underlying conflict-modulated action restraint and action cancellation. Neuroimage 2024; 295:120667. [PMID: 38825216 DOI: 10.1016/j.neuroimage.2024.120667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024] Open
Abstract
Executive functions are essential for adaptive behavior. One executive function is the so-called 'interference control' or conflict monitoring another one is inhibitory control (i.e., action restraint and action cancelation). Recent evidence suggests an interplay of these processes, which is conceptually relevant given that newer conceptual frameworks imply that nominally different action/response control processes are explainable by a small set of cognitive and neurophysiological processes. The existence of such overarching neural principles has as yet not directly been examined. In the current study, we therefore use EEG tensor decomposition methods, to look into possible common neurophysiological signatures underlying conflict-modulated action restraint and action cancelation as mechanism underlying response inhibition. We show how conflicts differentially modulate action restraint and action cancelation processes and delineate common and distinct neural processes underlying this interplay. Concerning the spatial information modulations are similar in terms of an importance of processes reflected by parieto-occipital electrodes, suggesting that attentional selection processes play a role. Especially theta and alpha activity seem to play important roles. The data also show that tensor decomposition is sensitive to the manner of task implementation, thereby suggesting that switch probability/transitional probabilities should be taken into consideration when choosing tensor decomposition as analysis method. The study provides a blueprint of how to use tensor decomposition methods to delineate common and distinct neural mechanisms underlying action control functions using EEG data.
Collapse
Affiliation(s)
- Negin Gholamipourbarogh
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Elena Eggert
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | | | - Christian Frings
- Cognitive Psychology, University of Trier, Germany; Institute for Cognitive and Affective Neuroscience (ICAN), University of Trier, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany.
| |
Collapse
|
52
|
Ehrhardt NM, Flöel A, Li SC, Lucchese G, Antonenko D. Brain oscillatory processes related to sequence memory in healthy older adults. Neurobiol Aging 2024; 139:64-72. [PMID: 38626525 DOI: 10.1016/j.neurobiolaging.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/05/2024] [Accepted: 04/02/2024] [Indexed: 04/18/2024]
Abstract
Sequence memory is subject to age-related decline, but the underlying processes are not yet fully understood. We analyzed electroencephalography (EEG) in 21 healthy older (60-80 years) and 26 young participants (20-30 years) and compared time-frequency spectra and theta-gamma phase-amplitude-coupling (PAC) during encoding of the order of visually presented items. In older adults, desynchronization in theta (4-8 Hz) and synchronization in gamma (30-45 Hz) power did not distinguish between subsequently correctly and incorrectly remembered trials, while there was a subsequent memory effect for young adults. Theta-gamma PAC was modulated by item position within a sequence for older but not young adults. Specifically, position within a sequence was coded by higher gamma amplitude for successive theta phases for later correctly remembered trials. Thus, deficient differentiation in theta desynchronization and gamma oscillations during sequence encoding in older adults may reflect neurophysiological correlates of age-related memory decline. Furthermore, our results indicate that sequences are coded by theta-gamma PAC in older adults, but that this mechanism might lose precision in aging.
Collapse
Affiliation(s)
- Nina M Ehrhardt
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald 17475, Germany.
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald 17475, Germany; German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, Greifswald, Germany
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TU Dresden, Zellescher Weg 17, Dresden 01062, Germany; Centre for Tactile Internet with Human-in-the-Loop, TU Dresden, Dresden 01062, Germany
| | - Guglielmo Lucchese
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald 17475, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatry University Hospital Zurich, University of Zurich, Lengstrasse 31, Zurich, Switzerland.
| | - Daria Antonenko
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald 17475, Germany
| |
Collapse
|
53
|
Benítez-Barrera CR, Behboudi MH, Maguire MJ. Neural oscillations during predictive sentence processing in young children. BRAIN AND LANGUAGE 2024; 254:105437. [PMID: 38878494 DOI: 10.1016/j.bandl.2024.105437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/15/2024]
Abstract
The neural correlates of predictive processing in language, critical for efficient sentence comprehension, is well documented in adults. Specifically, adults exhibit alpha power (9-12 Hz) suppression when processing high versus low predictability sentences. This study explores whether young children exhibit similar neural mechanisms. We analyzed EEG data from 29 children aged 3-5 years listening to sentences of varying predictability. Our results revealed significant neural oscillation differences in the 5-12 Hz range between high and low predictability sentences, similar to adult patterns. Crucially, the degree of these differences correlated with children's language abilities. These findings are the first to demonstrate the neural basis of predictive processing in young children and its association with language development.
Collapse
Affiliation(s)
- Carlos R Benítez-Barrera
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, United States; Waisman Center, University of Wisconsin-Madison, United States.
| | - Mohammad Hossein Behboudi
- School of Behavioral and Brain Sciences, University of Texas at Dallas, United States; Callier Center for Communication Disorders, University of Texas at Dallas, United States
| | - Mandy J Maguire
- School of Behavioral and Brain Sciences, University of Texas at Dallas, United States; Callier Center for Communication Disorders, University of Texas at Dallas, United States
| |
Collapse
|
54
|
Ghorbani F, Zhou X, Talebi N, Roessner V, Hommel B, Prochnow A, Beste C. Neural connectivity patterns explain why adolescents perceive the world as moving slow. Commun Biol 2024; 7:759. [PMID: 38909084 PMCID: PMC11193795 DOI: 10.1038/s42003-024-06439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/11/2024] [Indexed: 06/24/2024] Open
Abstract
That younger individuals perceive the world as moving slower than adults is a familiar phenomenon. Yet, it remains an open question why that is. Using event segmentation theory, electroencephalogram (EEG) beamforming and nonlinear causal relationship estimation using artificial neural network methods, we studied neural activity while adolescent and adult participants segmented a movie. We show when participants were instructed to segment a movie into meaningful units, adolescents partitioned incoming information into fewer encapsulated segments or episodes of longer duration than adults. Importantly, directed communication between medial frontal and lower-level perceptual areas and between occipito-temporal regions in specific neural oscillation spectrums explained behavioral differences between groups. Overall, the study reveals that a different organization of directed communication between brain regions and inefficient transmission of information between brain regions are key to understand why younger people perceive the world as moving slow.
Collapse
Affiliation(s)
- Foroogh Ghorbani
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
| | - Xianzhen Zhou
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
| | - Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
| | - Bernhard Hommel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
- School of Psychology, Shandong Normal University, Jinan, China
| | - Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01307, Dresden, Germany.
- School of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
55
|
Ciupińska K, Orłowska W, Zębrowski A, Łępa L, Koculak M, Bola M, Wierzchoń M. The influence of spatial and temporal attention on visual awareness-a behavioral and ERP study. Cereb Cortex 2024; 34:bhae241. [PMID: 38850216 DOI: 10.1093/cercor/bhae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024] Open
Abstract
Whether attention is a prerequisite of perceptual awareness or an independent and dissociable process remains a matter of debate. Importantly, understanding the relation between attention and awareness is probably not possible without taking into account the fact that both are heterogeneous and multifaceted mechanisms. Therefore, the present study tested the impact on visual awareness of two attentional mechanisms proposed by the Posner model: temporal alerting and spatio-temporal orienting. Specifically, we evaluated the effects of attention on the perceptual level, by measuring objective and subjective awareness of a threshold-level stimulus; and on the neural level, by investigating how attention affects two postulated event-related potential correlates of awareness. We found that alerting and orienting mechanisms additively facilitate perceptual consciousness, with activation of the latter resulting in the most vivid awareness. Furthermore, we found that late positivity is unlikely to constitute a neural correlate of consciousness as its amplitude was modulated by both attentional mechanisms, but early visual awareness negativity was independent of the alerting and orienting mechanisms. In conclusion, our study reveals a nuanced relationship between attention and awareness; moreover, by investigating the effect of the alerting mechanism, this study provides insights into the role of temporal attention in perceptual consciousness.
Collapse
Affiliation(s)
- Kinga Ciupińska
- Consciousness Lab, Institute of Psychology, Jagiellonian University, 6 Ingardena Street, 30-060 Krakow, Poland
- Social Cognition in Human-Robot Interaction (S4HRI), Italian Institute of Technology, via Enrico Melen 83, 16152 Genova, Italy
| | - Wiktoria Orłowska
- Consciousness Lab, Institute of Psychology, Jagiellonian University, 6 Ingardena Street, 30-060 Krakow, Poland
- Doctoral School in the Social Sciences, Jagiellonian University, 34 Rynek Główny, 31-010 Krakow, Poland
| | - Aleksander Zębrowski
- Doctoral School in the Social Sciences, Jagiellonian University, 34 Rynek Główny, 31-010 Krakow, Poland
- Centre for Brain Research, Jagiellonian University, 50 Kopernika Street, 31-501 Krakow, Poland
| | - Laura Łępa
- Consciousness Lab, Institute of Psychology, Jagiellonian University, 6 Ingardena Street, 30-060 Krakow, Poland
| | - Marcin Koculak
- Consciousness Lab, Institute of Psychology, Jagiellonian University, 6 Ingardena Street, 30-060 Krakow, Poland
| | - Michał Bola
- Centre for Brain Research, Jagiellonian University, 50 Kopernika Street, 31-501 Krakow, Poland
| | - Michał Wierzchoń
- Consciousness Lab, Institute of Psychology, Jagiellonian University, 6 Ingardena Street, 30-060 Krakow, Poland
- Centre for Brain Research, Jagiellonian University, 50 Kopernika Street, 31-501 Krakow, Poland
| |
Collapse
|
56
|
Rodrigues J, Müller S, Paelecke M, Wang Y, Hewig J. Exploration of the influence of the quantification method and reference scheme on feedback-related negativity and standardized measurement error of feedback-related negativity amplitudes in a trust game. Cortex 2024; 175:106-123. [PMID: 38519410 DOI: 10.1016/j.cortex.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/17/2023] [Accepted: 02/08/2024] [Indexed: 03/24/2024]
Abstract
Various approaches have been taken over the years to quantify event-related potential (ERP) responses and these approaches may vary in their utility connecting empirical research and scientific claims. In this work we compared different quantification methods as well as the influence of three reference methods (linked mastoids, average reference, and current source density) on the resulting ERP amplitude. We use the experimental effects and effect sizes (Cohen's d) to evaluate the different methodological variants and we calculate intraclass correlation coefficients (ICC). In addition, the bootstrapped standard error of the means (SME, Luck et al., 2021), which was recently suggested as a quality criterion for ERP research, is used for this purpose. Our example for an ERP is the feedback-related negativity (FRN) to feedback about trustee behavior in a trust game with participants in the trustor position. We found that the quantification methods concerning the FRN influenced the absolute value of condition effects in the experimental paradigm. Yet, the patterns of effects were detected by all chosen methods, except for the 'individual difference wave'-based peak window approach. In addition, our findings stress the importance of checking the reference electrodes concerning effects of the experimental conditions. Furthermore, interactions of topographical distribution and reference choice should be considered. Finally, we were able to show that the SME is lower for more datapoints that are given in the quantification period of the FRN, and higher for more negative FRN amplitudes. These biases may lead to divergence of SME and effect size detection. Therefore, if the SME was used to compare different processing choices one should consider controlling for these important aspects of the data and possibly include other quality criteria like effect sizes.
Collapse
|
57
|
Takacs A, Toth‐Faber E, Schubert L, Tarnok Z, Ghorbani F, Trelenberg M, Nemeth D, Münchau A, Beste C. Neural representations of statistical and rule-based predictions in Gilles de la Tourette syndrome. Hum Brain Mapp 2024; 45:e26719. [PMID: 38826009 PMCID: PMC11144952 DOI: 10.1002/hbm.26719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/11/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Gilles de la Tourette syndrome (GTS) is a disorder characterised by motor and vocal tics, which may represent habitual actions as a result of enhanced learning of associations between stimuli and responses (S-R). In this study, we investigated how adults with GTS and healthy controls (HC) learn two types of regularities in a sequence: statistics (non-adjacent probabilities) and rules (predefined order). Participants completed a visuomotor sequence learning task while EEG was recorded. To understand the neurophysiological underpinnings of these regularities in GTS, multivariate pattern analyses on the temporally decomposed EEG signal as well as sLORETA source localisation method were conducted. We found that people with GTS showed superior statistical learning but comparable rule-based learning compared to HC participants. Adults with GTS had different neural representations for both statistics and rules than HC adults; specifically, adults with GTS maintained the regularity representations longer and had more overlap between them than HCs. Moreover, over different time scales, distinct fronto-parietal structures contribute to statistical learning in the GTS and HC groups. We propose that hyper-learning in GTS is a consequence of the altered sensitivity to encode complex statistics, which might lead to habitual actions.
Collapse
Affiliation(s)
- Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTechnische Universität DresdenDresdenGermany
- University Neuropsychology Center, Faculty of Medicine, Technische Universität DresdenDresdenGermany
| | - Eszter Toth‐Faber
- Institute of PsychologyELTE Eötvös Loránd UniversityBudapestHungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
| | - Lina Schubert
- Institute of Systems Motor ScienceUniversity of LübeckLübeckGermany
| | - Zsanett Tarnok
- Vadaskert Child and Adolescent Psychiatry Hospital and Outpatient ClinicBudapestHungary
| | - Foroogh Ghorbani
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTechnische Universität DresdenDresdenGermany
- University Neuropsychology Center, Faculty of Medicine, Technische Universität DresdenDresdenGermany
| | - Madita Trelenberg
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Dezso Nemeth
- INSERMUniversité Claude Bernard Lyon 1, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292BronFrance
- NAP Research Group, Institute of Psychology, Eötvös Loránd University and Institute of Cognitive Neuroscience and Psychology, HUN‐REN Research Centre for Natural SciencesBudapestHungary
- Department of Education and Psychology, Faculty of Social SciencesUniversity of Atlántico MedioLas Palmas de Gran CanariaSpain
| | | | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTechnische Universität DresdenDresdenGermany
- University Neuropsychology Center, Faculty of Medicine, Technische Universität DresdenDresdenGermany
| |
Collapse
|
58
|
Sáringer S, Fehér Á, Sáry G, Kaposvári P. Perceptual Expectations Are Reflected by Early Alpha Power Reduction. J Cogn Neurosci 2024; 36:1282-1296. [PMID: 38652100 DOI: 10.1162/jocn_a_02169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The predictability of a stimulus can be characterized by its transitional probability. Perceptual expectations derived from the transitional probability of the stimulus were found to modulate the early alpha oscillations in the sensory regions of the brain when neural responses to expected versus unexpected stimuli were compared. The objective of our study was to find out the extent to which this low-frequency oscillation reflects stimulus predictability. We aimed to detect the alpha-power difference with smaller differences in transitional probabilities by comparing expected stimuli with neutral ones. We studied the effect of expectation on perception by applying an unsupervised visual statistical learning paradigm with expected and neutral stimuli embedded in an image sequence while recording EEG. Time-frequency analysis showed that expected stimuli elicit lower alpha power in the window of 8-12 Hz and 0-400 msec after stimulus presentation, appearing in the centroparietal region. Comparing previous findings of expectancy-based alpha-band modulation with our results suggests that early alpha oscillation shows an inverse relationship with stimulus predictability. Although current data are insufficient to determine the origin of the alpha power reduction, this could be a potential sign of expectation suppression in cortical oscillatory activity.
Collapse
|
59
|
An WW, Bhowmik AC, Nelson CA, Wilkinson CL. Prediction of chronological age from resting-state EEG power in the first three years of life. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.31.24308275. [PMID: 38853932 PMCID: PMC11160894 DOI: 10.1101/2024.05.31.24308275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The infant brain undergoes rapid and significant developmental changes in the first three years of life. Understanding these changes through the prediction of chronological age using neuroimaging data can provide insights into typical and atypical brain development. We utilized longitudinal resting-state EEG data from 457 typically developing infants, comprising 938 recordings, to develop age prediction models. The multilayer perceptron model demonstrated the highest accuracy with an R2 of 0.82 and a mean absolute error of 92.4 days. Aperiodic offset and periodic theta, alpha, and beta power were identified as key predictors of age via Shapley values. Application of the model to EEG data from infants later diagnosed with autism spectrum disorder or Down syndrome revealed significant underestimations of chronological age. This study establishes the feasibility of using EEG to assess brain maturation in early childhood and supports its potential as a clinical tool for early identification of alterations in brain development.
Collapse
Affiliation(s)
- Winko W. An
- Developmental Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, 02115, MA, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, 300 Longwood Avenue, Boston, 02115, MA, USA
- Harvard Medical School, 25 Shattuck St, Boston, 02115, MA, USA
| | - Aprotim C. Bhowmik
- Developmental Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, 02115, MA, USA
| | - Charles A. Nelson
- Developmental Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, 02115, MA, USA
- Harvard Medical School, 25 Shattuck St, Boston, 02115, MA, USA
- Harvard Graduate School of Education, 13 Appian Way, Cambridge, 02138, MA, USA
| | - Carol L. Wilkinson
- Developmental Medicine, Boston Children’s Hospital, 300 Longwood Avenue, Boston, 02115, MA, USA
- Harvard Medical School, 25 Shattuck St, Boston, 02115, MA, USA
| |
Collapse
|
60
|
Roh H, Kim W, Hwang SY, Lee MS, Kim JH. Altered pattern of theta and gamma oscillation to visual stimuli in patients with postconcussion syndrome. J Neurophysiol 2024; 131:1240-1249. [PMID: 38691013 DOI: 10.1152/jn.00253.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 03/18/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024] Open
Abstract
Although many patients with mild traumatic brain injury (mTBI) suffer from postconcussional syndrome (PCS) including abnormal emotional responses, most conventional imaging studies fail to detect any causative brain lesion. We hypothesized that event-related electroencephalography (EEG) recordings with time-frequency analysis would show a distinguishable pattern in patients with mTBI with PCS compared with normal healthy controls. EEG signals were collected from a total of 18 subjects: eight patients with mTBI with PCS and 10 healthy control subjects. The signals were recorded while the subjects were presented with affective visual stimuli, including neutral, pleasant, and unpleasant emotional cues. Event-related spectral perturbation analysis was performed to calculate frontal midline theta activity and posterior midline gamma activity, followed by statistical analysis to identify whether patients with mTBI with PCS have distinct patterns of theta or gamma oscillations in response to affective stimuli. Compared with the healthy control group, patients with mTBI with PCS did not show a significant increase in the power of frontal theta activity in response to the pleasant stimuli, indicating less susceptibility toward pleasant cues. Moreover, the patient group showed attenuated gamma oscillatory activity, with no clear alteration in gamma oscillations in response to either pleasant or unpleasant cues. This study demonstrates that patients with mTBI with PCS exhibited altered patterns of oscillatory activities in the theta and gamma bands in response to affective visual stimuli compared with the normal control group. The current finding implicates that these distinguishable patterns of brain oscillation may represent the mechanism behind various psychiatric symptoms in patients with mTBI.NEW & NOTEWORTHY Patients with mild traumatic brain injury (mTBI) with postconcussional syndrome (PCS) exhibited altered patterns of changes in oscillatory activities in the theta and gamma bands in response to visual affective stimuli. Distinguishable patterns of brain oscillation may represent the mechanism behind various psychiatric symptoms in patients with mTBI.
Collapse
Affiliation(s)
- Haewon Roh
- The Department of Neurosurgery, Guro Hospital, Korea University of Medicine, Seoul, Korea
| | - Won Kim
- The Department of Neurosurgery, Guro Hospital, Korea University of Medicine, Seoul, Korea
| | - Soon-Young Hwang
- The Department of Biostatistics, Korea University of Medicine, Seoul, Korea
| | - Moon Soo Lee
- The Department of Psychiatry, Guro Hospital, Korea University of Medicine, Seoul, Korea
| | - Jong Hyun Kim
- The Department of Neurosurgery, Guro Hospital, Korea University of Medicine, Seoul, Korea
| |
Collapse
|
61
|
Koyun AH, Talebi N, Werner A, Wendiggensen P, Kuntke P, Roessner V, Beste C, Stock AK. Interactions of catecholamines and GABA+ in cognitive control: Insights from EEG and 1H-MRS. Neuroimage 2024; 293:120619. [PMID: 38679186 DOI: 10.1016/j.neuroimage.2024.120619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Catecholamines and amino acid transmitter systems are known to interact, the exact links and their impact on cognitive control functions have however remained unclear. Using a multi-modal imaging approach combining EEG and proton-magnetic resonance spectroscopy (1H-MRS), we investigated the effect of different degrees of pharmacological catecholaminergic enhancement onto theta band activity (TBA) as a measure of interference control during response inhibition and execution. It was central to our study to evaluate the predictive impact of in-vivo baseline GABA+ concentrations in the striatum, the anterior cingulate cortex (ACC) and the supplemental motor area (SMA) of healthy adults under varying degrees of methylphenidate (MPH) stimulation. We provide evidence for a predictive interrelation of baseline GABA+ concentrations in cognitive control relevant brain areas onto task-induced TBA during response control stimulated with MPH. Baseline GABA+ concentrations in the ACC, the striatum, and the SMA had a differential impact on predicting interference control-related TBA in response execution trials. GABA+ concentrations in the ACC appeared to be specifically important for TBA modulations when the cognitive effort needed for interference control was high - that is when no prior task experience exists, or in the absence of catecholaminergic enhancement with MPH. The study highlights the predictive role of baseline GABA+ concentrations in key brain areas influencing cognitive control and responsiveness to catecholaminergic enhancement, particularly in high-effort scenarios.
Collapse
Affiliation(s)
- Anna Helin Koyun
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany
| | - Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany
| | - Annett Werner
- Institute of Diagnostic and Interventional Neuroradiology, TU Dresden, Germany
| | - Paul Wendiggensen
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany
| | - Paul Kuntke
- Institute of Diagnostic and Interventional Neuroradiology, TU Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany.
| |
Collapse
|
62
|
Becske M, Marosi C, Molnár H, Fodor Z, Farkas K, Rácz FS, Baradits M, Csukly G. Minimum spanning tree analysis of EEG resting-state functional networks in schizophrenia. Sci Rep 2024; 14:10495. [PMID: 38714807 PMCID: PMC11076461 DOI: 10.1038/s41598-024-61316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/03/2024] [Indexed: 05/10/2024] Open
Abstract
Schizophrenia is a serious and complex mental disease, known to be associated with various subtle structural and functional deviations in the brain. Recently, increased attention is given to the analysis of brain-wide, global mechanisms, strongly altering the communication of long-distance brain areas in schizophrenia. Data of 32 patients with schizophrenia and 28 matched healthy control subjects were analyzed. Two minutes long 64-channel EEG recordings were registered during resting, eyes closed condition. Average connectivity strength was estimated with Weighted Phase Lag Index (wPLI) in lower frequencies: delta and theta, and Amplitude Envelope Correlation with leakage correction (AEC-c) in higher frequencies: alpha, beta, lower gamma and higher gamma. To analyze functional network topology Minimum Spanning Tree (MST) algorithms were applied. Results show that patients have weaker functional connectivity in delta and alpha frequency bands. Concerning network differences, the result of lower diameter, higher leaf number, and also higher maximum degree and maximum betweenness centrality in patients suggest a star-like, and more random network topology in patients with schizophrenia. Our findings are in accordance with some previous findings based on resting-state EEG (and fMRI) data, suggesting that MST network structure in schizophrenia is biased towards a less optimal, more centralized organization.
Collapse
Affiliation(s)
- Melinda Becske
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa u. 6., Budapest, 1083, Hungary
| | - Csilla Marosi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa u. 6., Budapest, 1083, Hungary
| | - Hajnalka Molnár
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa u. 6., Budapest, 1083, Hungary
| | - Zsuzsanna Fodor
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa u. 6., Budapest, 1083, Hungary
| | - Kinga Farkas
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa u. 6., Budapest, 1083, Hungary
| | | | - Máté Baradits
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa u. 6., Budapest, 1083, Hungary
| | - Gábor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa u. 6., Budapest, 1083, Hungary.
| |
Collapse
|
63
|
Geiger M, Hurewitz SR, Pawlowski K, Baumer NT, Wilkinson CL. Alterations in aperiodic and periodic EEG activity in young children with Down syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.01.24306729. [PMID: 38746335 PMCID: PMC11092732 DOI: 10.1101/2024.05.01.24306729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Down syndrome is the most common cause of intellectual disability, yet little is known about the neurobiological pathways leading to cognitive impairments. Electroencephalographic (EEG) measures are commonly used to study neurodevelopmental disorders, but few studies have focused on young children with DS. Here we assess resting state EEG data collected from toddlers/preschoolers with DS (n=29, age 13-48 months old) and compare their aperiodic and periodic EEG features with both age-matched (n=29) and cognitive-matched (n=58) comparison groups. DS participants exhibited significantly reduced aperiodic slope, increased periodic theta power, and decreased alpha peak amplitude. A majority of DS participants displayed a prominent peak in the theta range, whereas a theta peak was not present in age-matched participants. Overall, similar findings were also observed when comparing DS and cognitive-matched groups, suggesting that EEG differences are not explained by delayed cognitive ability.
Collapse
|
64
|
Akuthota S, K R, Ravichander J. Artifact removal and motor imagery classification in EEG using advanced algorithms and modified DNN. Heliyon 2024; 10:e27198. [PMID: 38560190 PMCID: PMC10980936 DOI: 10.1016/j.heliyon.2024.e27198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
This paper presents an advanced approach for EEG artifact removal and motor imagery classification using a combination of Four Class Iterative Filtering and Filter Bank Common Spatial Pattern Algorithm with a Modified Deep Neural Network (DNN) classifier. The research aims to enhance the accuracy and reliability of BCI systems by addressing the challenges posed by EEG artifacts and complex motor imagery tasks. The methodology begins by introducing FCIF, a novel technique for ocular artifact removal, utilizing iterative filtering and filter banks. FCIF's mathematical formulation allows for effective artifact mitigation, thereby improving the quality of EEG data. In tandem, the FC-FBCSP algorithm is introduced, extending the Filter Bank Common Spatial Pattern approach to handle four-class motor imagery classification. The Modified DNN classifier enhances the discriminatory power of the FC-FBCSP features, optimizing the classification process. The paper showcases a comprehensive experimental setup, featuring the utilization of BCI Competition IV Dataset 2a & 2b. Detailed preprocessing steps, including filtering and feature extraction, are presented with mathematical rigor. Results demonstrate the remarkable artifact removal capabilities of FCIF and the classification prowess of FC-FBCSP combined with the Modified DNN classifier. Comparative analysis highlights the superiority of the proposed approach over baseline methods and the method achieves the mean accuracy of 98.575%.
Collapse
Affiliation(s)
- Srinath Akuthota
- Department of Electronics & Communication Engineering, SR University, Warangal-506371, Telangana, India
| | - RajKumar K
- Department of Electronics & Communication Engineering, SR University, Warangal-506371, Telangana, India
| | - Janapati Ravichander
- Department of Electronics & Communication Engineering, SR University, Warangal-506371, Telangana, India
| |
Collapse
|
65
|
Ghin F, Eggert E, Gholamipourbarogh N, Talebi N, Beste C. Response stopping under conflict: The integrative role of representational dynamics associated with the insular cortex. Hum Brain Mapp 2024; 45:e26643. [PMID: 38664992 PMCID: PMC11046082 DOI: 10.1002/hbm.26643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 04/29/2024] Open
Abstract
Coping with distracting inputs during goal-directed behavior is a common challenge, especially when stopping ongoing responses. The neural basis for this remains debated. Our study explores this using a conflict-modulation Stop Signal task, integrating group independent component analysis (group-ICA), multivariate pattern analysis (MVPA), and EEG source localization analysis. Consistent with previous findings, we show that stopping performance is better in congruent (nonconflicting) trials than in incongruent (conflicting) trials. Conflict effects in incongruent trials compromise stopping more due to the need for the reconfiguration of stimulus-response (S-R) mappings. These cognitive dynamics are reflected by four independent neural activity patterns (ICA), each coding representational content (MVPA). It is shown that each component was equally important in predicting behavioral outcomes. The data support an emerging idea that perception-action integration in action-stopping involves multiple independent neural activity patterns. One pattern relates to the precuneus (BA 7) and is involved in attention and early S-R processes. Of note, three other independent neural activity patterns were associated with the insular cortex (BA13) in distinct time windows. These patterns reflect a role in early attentional selection but also show the reiterated processing of representational content relevant for stopping in different S-R mapping contexts. Moreover, the insular cortex's role in automatic versus complex response selection in relation to stopping processes is shown. Overall, the insular cortex is depicted as a brain hub, crucial for response selection and cancellation across both straightforward (automatic) and complex (conditional) S-R mappings, providing a neural basis for general cognitive accounts on action control.
Collapse
Affiliation(s)
- Filippo Ghin
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany
| | - Elena Eggert
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany
| | - Negin Gholamipourbarogh
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany
| | - Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany
| |
Collapse
|
66
|
Kučikienė D, Rajkumar R, Timpte K, Heckelmann J, Neuner I, Weber Y, Wolking S. EEG microstates show different features in focal epilepsy and psychogenic nonepileptic seizures. Epilepsia 2024; 65:974-983. [PMID: 38289522 DOI: 10.1111/epi.17897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVE Electroencephalography (EEG) microstate analysis seeks to cluster the scalp's electric field into semistable topographical EEG activity maps at different time points. Our study aimed to investigate the features of EEG microstates in subjects with focal epilepsy and psychogenic nonepileptic seizures (PNES). METHODS We included 62 adult subjects with focal epilepsy or PNES who received video-EEG monitoring at the epilepsy monitoring unit. The subjects (mean age = 42.8 ± 21.2 years) were distributed equally between epilepsy and PNES groups. We extracted microstates from a 4.4 ± 1.0-min, 21-channel resting-state EEG. We excluded subjects with interictal epileptiform discharges during resting-state EEGs. After preprocessing, we derived five main EEG microstates-MS1 to MS5-for the full frequency band (1-30 Hz) and frequency subbands (delta, 1-4 Hz; theta, 4-8 Hz; alpha, 8-12 Hz; beta, 12-30 Hz), using the MATLAB-based EEGLAB toolkit. Statistical features of microstates (duration, occurrence, contribution, global field power [GFP]) were compared between the groups, using logistic regression corrected for age and sex. RESULTS We detected no differences in microstate parameters in the full frequency band. We found a longer duration (delta: B = -7.680, p = .046; theta: B = -16.200, p = .043) and a higher contribution (delta: B = -7.414, p = .035; theta: B = -7.509, p = .031) of MS4 in lower frequency bands in the epilepsy group. The PNES group showed a higher occurrence of MS5 in the delta subband (B = 3.283, p = .032). In the theta subband, a higher GFP of MS1 was associated with the PNES group (B = 5.674, p = .025), whereas a higher GFP of MS2 was associated with the epilepsy group (B = -6.579, p = .026). SIGNIFICANCE Microstate features show differences between patients with focal epilepsy and PNES. EEG microstates could be a promising parameter, helping to understand changes in brain dynamics in subjects with epilepsy, and should be explored as a potential biomarker.
Collapse
Affiliation(s)
- Domantė Kučikienė
- Department of Epileptology and Neurology, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen, Germany
| | - Ravichandran Rajkumar
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN-Translational Medicine, Jülich, Germany
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | - Katharina Timpte
- Department of Epileptology and Neurology, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen, Germany
| | - Jan Heckelmann
- Department of Epileptology and Neurology, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen, Germany
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA-BRAIN-Translational Medicine, Jülich, Germany
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich, Jülich, Germany
| | - Yvonne Weber
- Department of Epileptology and Neurology, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen, Germany
| | - Stefan Wolking
- Department of Epileptology and Neurology, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen, Germany
| |
Collapse
|
67
|
Dien J. Multi-Algorithm Artifact Correction (MAAC) procedure part one: Algorithm and example. Biol Psychol 2024; 188:108775. [PMID: 38499226 DOI: 10.1016/j.biopsycho.2024.108775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
The Multi-Algorithm Artifact Correction (MAAC) procedure is presented for electroencephalographic (EEG) data, as made freely available in the open-source EP Toolkit (Dien, 2010). First the major EEG artifact correction methods (regression, spatial filters, principal components analysis, and independent components analysis) are reviewed. Contrary to the dominant approach of picking one method that is thought to be most effective, this review concludes that none are globally superior, but rather each has strengths and weaknesses. Then each of the major artifact types are reviewed (Blink, Corneo-Retinal Dipole, Saccadic Spike Potential, and Movement). For each one, it is proposed that one of the major correction methods is best matched to address it, resulting in the MAAC procedure. The MAAC itself is then presented, as implemented in the EP Toolkit, in order to provide a sense of the user experience. The primary goal of this present paper is to make the conceptual argument for the MAAC approach.
Collapse
Affiliation(s)
- Joseph Dien
- Department of Human Development and Quantitative Methodology, University of Maryland, 3304 Benjamin Building, College Park, MD 20742, USA.
| |
Collapse
|
68
|
Goodman RJ, Quaglia JT, Berry DR. Uncertainty cues amplify late positive potential responses to aversive emotional stimuli. Soc Neurosci 2024; 19:57-68. [PMID: 38822767 DOI: 10.1080/17470919.2024.2358558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/31/2024] [Indexed: 06/03/2024]
Abstract
Uncertainty is unavoidable, and maladaptive responses to uncertainty may underlie the etiology and maintenance of psychopathology. A general tendency to associate uncertainty with aversive consequences, a type of covariation bias, can amplify aversive emotional experiences. To address questions about uncertainty during emotion regulation, we examined the Late Positive Potential (LPP) - an electrocortical marker of attention to and appraisal of motivationally relevant emotional stimuli - during a task designed to measure the effect of covariation bias and its emotional response consequences. Event-related potentials (ERPs) were recorded while participants (N = 52) were presented with a pre-stimulus cue that either conveyed information about the valence of an upcoming emotional image, or left them in ambiguity. We replicated findings that demonstrate expectancy biases in a priori and online expectancies of emotion-eliciting images, as well as in a posteriori estimates for concurrence of uncertainty cues and aversive images. Moreover, we demonstrate a novel finding that uncertainty cues amplify the LPP in response to subsequent aversive emotional stimuli. These findings advance research by conjoining existing emotion regulation research on the LPP with study of the effects of uncertainty on emotional appraisal and highlight the importance of accounting for stimulus uncertainty in emotion regulation research.
Collapse
Affiliation(s)
- Robert J Goodman
- Department of Psychological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Jordan T Quaglia
- Department of Contemplative Psychology, Naropa University, Boulder, Colorado, USA
| | - Daniel R Berry
- Department of Psychology, Radford University, Radford, Virginia, USA
| |
Collapse
|
69
|
Momenian M, Vaghefi M, Sadeghi H, Momtazi S, Meyer L. Language prediction in monolingual and bilingual speakers: an EEG study. Sci Rep 2024; 14:6818. [PMID: 38514713 PMCID: PMC10957906 DOI: 10.1038/s41598-024-57426-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
Prediction of upcoming words is thought to be crucial for language comprehension. Here, we are asking whether bilingualism entails changes to the electrophysiological substrates of prediction. Prior findings leave it open whether monolingual and bilingual speakers predict upcoming words to the same extent and in the same manner. We address this issue with a naturalistic approach, employing an information-theoretic metric, surprisal, to predict and contrast the N400 brain potential in monolingual and bilingual speakers. We recruited 18 Iranian Azeri-Persian bilingual speakers and 22 Persian monolingual speakers. Subjects listened to a story in Persian while their electroencephalogram (EEG) was recorded. Bayesian item-level analysis was used. While in monolingual speakers N400 was sensitive to information-theoretic properties of both the current and previous words, in bilingual speakers N400 reflected the properties of the previous word only. Our findings show evidence for a processing delay in bilingual speakers which is consistent with prior research.
Collapse
Affiliation(s)
- Mohammad Momenian
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, CF705, Hung Hom, Kowloon, Hong Kong.
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, Hong Kong.
| | - Mahsa Vaghefi
- Department of Electrical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Hamidreza Sadeghi
- Department of Computer Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Saeedeh Momtazi
- Department of Computer Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Lars Meyer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, DE, Germany
| |
Collapse
|
70
|
Takacs A, Toth-Faber E, Schubert L, Tárnok Z, Ghorbani F, Trelenberg M, Nemeth D, Münchau A, Beste C. Resting network architecture of theta oscillations reflects hyper-learning of sensorimotor information in Gilles de la Tourette syndrome. Brain Commun 2024; 6:fcae092. [PMID: 38562308 PMCID: PMC10984574 DOI: 10.1093/braincomms/fcae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/01/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Gilles de la Tourette syndrome is a neurodevelopmental disorder characterized by motor and vocal tics. It is associated with enhanced processing of stimulus-response associations, including a higher propensity to learn probabilistic stimulus-response contingencies (i.e. statistical learning), the nature of which is still elusive. In this study, we investigated the hypothesis that resting-state theta network organization is a key for the understanding of superior statistical learning in these patients. We investigated the graph-theoretical network architecture of theta oscillations in adult patients with Gilles de la Tourette syndrome and healthy controls during a statistical learning task and in resting states both before and after learning. We found that patients with Gilles de la Tourette syndrome showed a higher statistical learning score than healthy controls, as well as a more optimal (small-world-like) theta network before the task. Thus, patients with Gilles de la Tourette syndrome had a superior facility to integrate and evaluate novel information as a trait-like characteristic. Additionally, the theta network architecture in Gilles de la Tourette syndrome adapted more to the statistical information during the task than in HC. We suggest that hyper-learning in patients with Gilles de la Tourette syndrome is likely a consequence of increased sensitivity to perceive and integrate sensorimotor information leveraged through theta oscillation-based resting-state dynamics. The study delineates the neural basis of a higher propensity in patients with Gilles de la Tourette syndrome to pick up statistical contingencies in their environment. Moreover, the study emphasizes pathophysiologically endowed abilities in patients with Gilles de la Tourette syndrome, which are often not taken into account in the perception of this common disorder but could play an important role in destigmatization.
Collapse
Affiliation(s)
- Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01069, Germany
- Faculty of Medicine, University Neuropsychology Center, TU Dresden, Dresden 01069, Germany
| | - Eszter Toth-Faber
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest 1064, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Lina Schubert
- Institute of Systems Motor Science, University of Lübeck, Lübeck 23562, Germany
| | - Zsanett Tárnok
- Vadaskert Child and Adolescent Psychiatry Hospital and Outpatient Clinic, Budapest 1021, Hungary
| | - Foroogh Ghorbani
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01069, Germany
- Faculty of Medicine, University Neuropsychology Center, TU Dresden, Dresden 01069, Germany
| | - Madita Trelenberg
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01069, Germany
| | - Dezso Nemeth
- INSERM, Université Claude Bernard Lyon 1, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Bron 69500, France
- NAP Research Group, Institute of Psychology, Eötvös Loránd University & Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest 1071, Hungary
- Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria 35017, Spain
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck 23562, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden 01069, Germany
- Faculty of Medicine, University Neuropsychology Center, TU Dresden, Dresden 01069, Germany
| |
Collapse
|
71
|
Dercksen TT, Widmann A, Noesselt T, Wetzel N. Somatosensory omissions reveal action-related predictive processing. Hum Brain Mapp 2024; 45:e26550. [PMID: 38050773 PMCID: PMC10915725 DOI: 10.1002/hbm.26550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 12/06/2023] Open
Abstract
The intricate relation between action and somatosensory perception has been studied extensively in the past decades. Generally, a forward model is thought to predict the somatosensory consequences of an action. These models propose that when an action is reliably coupled to a tactile stimulus, unexpected absence of the stimulus should elicit prediction error. Although such omission responses have been demonstrated in the auditory modality, it remains unknown whether this mechanism generalizes across modalities. This study therefore aimed to record action-induced somatosensory omission responses using EEG in humans. Self-paced button presses were coupled to somatosensory stimuli in 88% of trials, allowing a prediction, or in 50% of trials, not allowing a prediction. In the 88% condition, stimulus omission resulted in a neural response consisting of multiple components, as revealed by temporal principal component analysis. The oN1 response suggests similar sensory sources as stimulus-evoked activity, but an origin outside primary cortex. Subsequent oN2 and oP3 responses, as previously observed in the auditory domain, likely reflect modality-unspecific higher order processes. Together, findings straightforwardly demonstrate somatosensory predictions during action and provide evidence for a partially amodal mechanism of prediction error generation.
Collapse
Affiliation(s)
- Tjerk T. Dercksen
- Research Group Neurocognitive DevelopmentLeibniz Institute for NeurobiologyMagdeburgGermany
- Center for Behavioral Brain SciencesMagdeburgGermany
| | - Andreas Widmann
- Research Group Neurocognitive DevelopmentLeibniz Institute for NeurobiologyMagdeburgGermany
- Wilhelm Wundt Institute for PsychologyLeipzig UniversityLeipzigGermany
| | - Tömme Noesselt
- Center for Behavioral Brain SciencesMagdeburgGermany
- Department of Biological PsychologyOtto‐von‐Guericke‐University MagdeburgMagdeburgGermany
| | - Nicole Wetzel
- Research Group Neurocognitive DevelopmentLeibniz Institute for NeurobiologyMagdeburgGermany
- Center for Behavioral Brain SciencesMagdeburgGermany
- University of Applied Sciences Magdeburg‐StendalStendalGermany
| |
Collapse
|
72
|
Ono K, Mizuochi R, Yamamoto K, Sasaoka T, Ymawaki S. Exploring the neural underpinnings of chord prediction uncertainty: an electroencephalography (EEG) study. Sci Rep 2024; 14:4586. [PMID: 38403782 PMCID: PMC10894873 DOI: 10.1038/s41598-024-55366-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/22/2024] [Indexed: 02/27/2024] Open
Abstract
Predictive processing in the brain, involving interaction between interoceptive (bodily signal) and exteroceptive (sensory) processing, is essential for understanding music as it encompasses musical temporality dynamics and affective responses. This study explores the relationship between neural correlates and subjective certainty of chord prediction, focusing on the alignment between predicted and actual chord progressions in both musically appropriate chord sequences and random chord sequences. Participants were asked to predict the final chord in sequences while their brain activity was measured using electroencephalography (EEG). We found that the stimulus preceding negativity (SPN), an EEG component associated with predictive processing of sensory stimuli, was larger for non-harmonic chord sequences than for harmonic chord progressions. Additionally, the heartbeat evoked potential (HEP), an EEG component related to interoceptive processing, was larger for random chord sequences and correlated with prediction certainty ratings. HEP also correlated with the N5 component, found while listening to the final chord. Our findings suggest that HEP more directly reflects the subjective prediction certainty than SPN. These findings offer new insights into the neural mechanisms underlying music perception and prediction, emphasizing the importance of considering auditory prediction certainty when examining the neural basis of music cognition.
Collapse
Affiliation(s)
- Kentaro Ono
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Hiroshima, Japan.
| | - Ryohei Mizuochi
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Kazuki Yamamoto
- Graduate School of Humanities and Social Sciences, Hiroshima University, Higashihiroshima, Japan
| | - Takafumi Sasaoka
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Shigeto Ymawaki
- Center for Brain, Mind and KANSEI Sciences Research, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
73
|
Bapat R, Pathak A, Banerjee A. Metastability indexes global changes in the dynamic working point of the brain following brain stimulation. Front Neurorobot 2024; 18:1336438. [PMID: 38440318 PMCID: PMC10909933 DOI: 10.3389/fnbot.2024.1336438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
Several studies have shown that coordination among neural ensembles is a key to understand human cognition. A well charted path is to identify coordination states associated with cognitive functions from spectral changes in the oscillations of EEG or MEG. A growing number of studies suggest that the tendency to switch between coordination states, sculpts the dynamic repertoire of the brain and can be indexed by a measure known as metastability. In this article, we characterize perturbations in the metastability of global brain network dynamics following Transcranial Magnetic Stimulation that could quantify the duration for which information processing is altered. Thus allowing researchers to understand the network effects of brain stimulation, standardize stimulation protocols and design experimental tasks. We demonstrate the effect empirically using publicly available datasets and use a digital twin (a whole brain connectome model) to understand the dynamic principles that generate such observations. We observed a significant reduction in metastability, concurrent with an increase in coherence following single-pulse TMS reflecting the existence of a window where neural coordination is altered. The reduction in complexity was validated by an additional measure based on the Lempel-Ziv complexity of microstate labeled EEG data. Interestingly, higher frequencies in the EEG signal showed faster recovery in metastability than lower frequencies. The digital twin shed light on how the phase resetting introduced by the single-pulse TMS in local cortical networks can propagate globally, giving rise to changes in metastability and coherence.
Collapse
Affiliation(s)
| | | | - Arpan Banerjee
- Cognitive Brain Dynamics Lab, National Brain Research Centre, Manesar, Haryana, India
| |
Collapse
|
74
|
Wolff A, Northoff G. Temporal imprecision of phase coherence in schizophrenia and psychosis-dynamic mechanisms and diagnostic marker. Mol Psychiatry 2024; 29:425-438. [PMID: 38228893 DOI: 10.1038/s41380-023-02337-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/18/2024]
Abstract
Schizophrenia (SCZ) is a complex disorder in which various pathophysiological models have been postulated. Brain imaging studies using EEG/MEG and fMRI show altered amplitude and, more recently, decrease in phase coherence in response to external stimuli. What are the dynamic mechanisms of such phase incoherence, and can it serve as a differential-diagnostic marker? Addressing this gap in our knowledge, we uniquely combine a review of previous findings, novel empirical data, and computational-dynamic simulation. The main findings are: (i) the review shows decreased phase coherence in SCZ across a variety of different tasks and frequencies, e.g., task- and frequency-unspecific, which is further supported by our own novel data; (ii) our own data demonstrate diagnostic specificity of decreased phase coherence for SCZ as distinguished from major depressive disorder; (iii) simulation data exhibit increased phase offset in SCZ leading to a precision index, in the millisecond range, of the phase coherence relative to the timing of the external stimulus. Together, we demonstrate the key role of temporal imprecision in phase coherence of SCZ, including its mechanisms (phase offsets, precision index) on the basis of which we propose a phase-based temporal imprecision model of psychosis (PTP). The PTP targets a deeper dynamic layer of a basic disturbance. This converges well with other models of psychosis like the basic self-disturbance and time-space experience changes, as discussed in phenomenological and spatiotemporal psychopathology, as well as with the models of aberrant predictive coding and disconnection as in computational psychiatry. Finally, our results show that temporal imprecision as manifest in decreased phase coherence is a promising candidate biomarker for clinical differential diagnosis of SCZ, and more broadly, psychosis.
Collapse
Affiliation(s)
- Annemarie Wolff
- University of Ottawa Institute of Mental Health Research, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada.
| | - Georg Northoff
- University of Ottawa Institute of Mental Health Research, 1145 Carling Avenue, Ottawa, ON, K1Z 7K4, Canada.
| |
Collapse
|
75
|
Wang Z, Liu A, Yu J, Wang P, Bi Y, Xue S, Zhang J, Guo H, Zhang W. The effect of aperiodic components in distinguishing Alzheimer's disease from frontotemporal dementia. GeroScience 2024; 46:751-768. [PMID: 38110590 PMCID: PMC10828513 DOI: 10.1007/s11357-023-01041-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023] Open
Abstract
Distinguishing between Alzheimer's disease (AD) and frontotemporal dementia (FTD) presents a clinical challenge. Inexpensive and accessible techniques such as electroencephalography (EEG) are increasingly being used to address this challenge. In particular, the potential relevance between aperiodic components of EEG activity and these disorders has gained interest as our understanding evolves. This study aims to determine the differences in aperiodic activity between AD and FTD and evaluate its potential for distinguishing between the two disorders. A total of 88 participants, including 36 patients with AD, 23 patients with FTD, and 29 healthy controls (CN) underwent cognitive assessment and scalp EEG acquisition. Neuronal power spectra were parameterized to decompose the EEG spectrum, enabling comparison of group differences in different components. A support vector machine was employed to assess the impact of aperiodic parameters on the differential diagnosis. Compared with the CN group, both the AD and FTD groups showed varying degrees of increased alpha power (both periodic and raw power) and theta alpha power ratio. At the channel level, theta power (both periodic and raw power) in the frontal regions was higher in the AD group compared to the FTD group, and aperiodic parameters (both exponents and offsets) in the frontal, temporal, central, and parietal regions were higher in the AD group than in the FTD group. Importantly, the inclusion of aperiodic parameters led to improved performance in distinguishing between the two disorders. These findings highlight the significance of aperiodic components in discriminating dementia-related diseases.
Collapse
Affiliation(s)
- Zhuyong Wang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, People's Republic of China
| | - Anyang Liu
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, People's Republic of China
| | - Jianshen Yu
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, People's Republic of China
| | - Pengfei Wang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, People's Republic of China
| | - Yuewei Bi
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, People's Republic of China
| | - Sha Xue
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, People's Republic of China
| | - Jiajun Zhang
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou, People's Republic of China.
| | - Hongbo Guo
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, People's Republic of China.
| | - Wangming Zhang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510280, People's Republic of China.
| |
Collapse
|
76
|
Prochnow A, Zhou X, Ghorbani F, Wendiggensen P, Roessner V, Hommel B, Beste C. The temporal dynamics of how the brain structures natural scenes. Cortex 2024; 171:26-39. [PMID: 37977111 DOI: 10.1016/j.cortex.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Abstract
Individuals organize the evolving stream of events in their environment by partitioning it into discrete units. Event segmentation theory (EST) provides a cognitive explanation for the process of this partitioning. Critically, the underlying time-resolved neural mechanisms are not understood, and thus a central conceptual aspect of how humans implement this central ability is missing. To gain better insight into the fundamental temporal dynamics of event segmentation, EEG oscillatory activity was measured while participants watched a narrative video and partitioned the movie into meaningful segments. Using EEG beamforming methods, we show that theta, alpha, and beta band activity in frontal, parietal, and occipital areas, as well as their interactions, reflect critical elements of the event segmentation process established by EST. In sum, we see a mechanistic temporal chain of processes that provides the neurophysiological basis for how the brain partitions and structures continuously evolving scenes and points to an integrated system that organizes the various subprocesses of event segmentation. This study thus integrates neurophysiology and cognitive theory to better understand how the human brain operates in rather variable and unpredictable situations. Therefore, it represents an important step toward studying neurophysiological dynamics in ecologically valid and naturalistic settings and, in doing so, addresses a critical gap in knowledge regarding the temporal dynamics of how the brain structures natural scenes.
Collapse
Affiliation(s)
- Astrid Prochnow
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany.
| | - Xianzhen Zhou
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany
| | - Foroogh Ghorbani
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany
| | - Paul Wendiggensen
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany
| | - Bernhard Hommel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany; School of Psychology, Shandong Normal University, Jinan, China
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 03107 Dresden, Germany; School of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
77
|
Kaposzta Z, Czoch A, Mukli P, Stylianou O, Liu DH, Eke A, Racz FS. Fingerprints of decreased cognitive performance on fractal connectivity dynamics in healthy aging. GeroScience 2024; 46:713-736. [PMID: 38117421 PMCID: PMC10828149 DOI: 10.1007/s11357-023-01022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/19/2023] [Indexed: 12/21/2023] Open
Abstract
Analysis of brain functional connectivity (FC) could provide insight in how and why cognitive functions decline even in healthy aging (HA). Despite FC being established as fluctuating over time even in the resting state (RS), dynamic functional connectivity (DFC) studies involving healthy elderly individuals and assessing how these patterns relate to cognitive performance are yet scarce. In our recent study we showed that fractal temporal scaling of functional connections in RS is not only reduced in HA, but also predicts increased response latency and reduced task solving accuracy. However, in that work we did not address changes in the dynamics of fractal connectivity (FrC) strength itself and its plausible relationship with mental capabilities. Therefore, here we analyzed RS electroencephalography recordings of the same subject cohort as previously, consisting of 24 young and 19 healthy elderly individuals, who also completed 7 different cognitive tasks after data collection. Dynamic fractal connectivity (dFrC) analysis was carried out via sliding-window detrended cross-correlation analysis (DCCA). A machine learning method based on recursive feature elimination was employed to select the subset of connections most discriminative between the two age groups, identifying 56 connections that allowed for classifying participants with an accuracy surpassing 92%. Mean of DCCA was found generally increased, while temporal variability of FrC decreased in the elderly when compared to the young group. Finally, dFrC indices expressed an elaborate pattern of associations-assessed via Spearman correlation-with cognitive performance scores in both groups, linking fractal connectivity strength and variance to increased response latency and reduced accuracy in the elderly population. Our results provide further support for the relevance of FrC dynamics in understanding age-related cognitive decline and might help to identify potential targets for future intervention strategies.
Collapse
Affiliation(s)
- Zalan Kaposzta
- Department of Physiology, Semmelweis University, 37-47 Tuzolto Street, Budapest, 1094, Hungary
| | - Akos Czoch
- Department of Physiology, Semmelweis University, 37-47 Tuzolto Street, Budapest, 1094, Hungary
| | - Peter Mukli
- Department of Physiology, Semmelweis University, 37-47 Tuzolto Street, Budapest, 1094, Hungary
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Orestis Stylianou
- Department of Physiology, Semmelweis University, 37-47 Tuzolto Street, Budapest, 1094, Hungary
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Berlin Institute of Health at Charité, University Hospital Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité-University Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Deland Hu Liu
- Chandra Department of Electrical and Computer Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Andras Eke
- Department of Physiology, Semmelweis University, 37-47 Tuzolto Street, Budapest, 1094, Hungary
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Frigyes Samuel Racz
- Department of Physiology, Semmelweis University, 37-47 Tuzolto Street, Budapest, 1094, Hungary.
- Department of Neurology, Dell Medical School, The University of Texas at Austin, 1601 Trinity St, Austin, TX, 78712, USA.
- Mulva Clinic for the Neurosciences, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
78
|
Ille N, Nakao Y, Yano S, Taura T, Ebert A, Bornfleth H, Asagi S, Kozawa K, Itabashi I, Sato T, Sakuraba R, Tsuda R, Kakisaka Y, Jin K, Nakasato N. Ongoing EEG artifact correction using blind source separation. Clin Neurophysiol 2024; 158:149-158. [PMID: 38219404 DOI: 10.1016/j.clinph.2023.12.133] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024]
Abstract
OBJECTIVE Analysis of the electroencephalogram (EEG) for epileptic spike and seizure detection or brain-computer interfaces can be severely hampered by the presence of artifacts. The aim of this study is to describe and evaluate a fast automatic algorithm for ongoing correction of artifacts in continuous EEG recordings, which can be applied offline and online. METHODS The automatic algorithm for ongoing correction of artifacts is based on fast blind source separation. It uses a sliding window technique with overlapping epochs and features in the spatial, temporal and frequency domain to detect and correct ocular, cardiac, muscle and powerline artifacts. RESULTS The approach was validated in an independent evaluation study on publicly available continuous EEG data with 2035 marked artifacts. Validation confirmed that 88% of the artifacts could be removed successfully (ocular: 81%, cardiac: 84%, muscle: 98%, powerline: 100%). It outperformed state-of-the-art algorithms both in terms of artifact reduction rates and computation time. CONCLUSIONS Fast ongoing artifact correction successfully removed a good proportion of artifacts, while preserving most of the EEG signals. SIGNIFICANCE The presented algorithm may be useful for ongoing correction of artifacts, e.g., in online systems for epileptic spike and seizure detection or brain-computer interfaces.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Suguru Asagi
- Clinical Physiological Center, Tohoku University Hospital, Sendai, Japan
| | - Kanoko Kozawa
- Clinical Physiological Center, Tohoku University Hospital, Sendai, Japan
| | - Izumi Itabashi
- Clinical Physiological Center, Tohoku University Hospital, Sendai, Japan
| | - Takafumi Sato
- Clinical Physiological Center, Tohoku University Hospital, Sendai, Japan
| | - Rie Sakuraba
- Clinical Physiological Center, Tohoku University Hospital, Sendai, Japan
| | - Rie Tsuda
- Clinical Physiological Center, Tohoku University Hospital, Sendai, Japan
| | - Yosuke Kakisaka
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazutaka Jin
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobukazu Nakasato
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
79
|
Chung H, Wilkinson CL, Job Said A, Tager-Flusberg H, Nelson CA. Evaluating early EEG correlates of restricted and repetitive behaviors for toddlers with or without autism. RESEARCH SQUARE 2024:rs.3.rs-3871138. [PMID: 38313269 PMCID: PMC10836096 DOI: 10.21203/rs.3.rs-3871138/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Background Restricted and repetitive behaviors (RRB) are among the primary characteristics of autism spectrum disorder (ASD). Despite the potential impact on later developmental outcomes, our understanding of the neural underpinnings of RRBs is limited. Alterations in EEG alpha activity have been observed in ASD and implicated in RRBs, however, developmental changes within the alpha band requires careful methodological considerations when studying its role in brain-behavior relationships during infancy and early childhood. Novel approaches now enable the parameterization of the power spectrum into periodic and aperiodic components. This study aimed to characterize the neural correlates of RRBs in infancy by (1) comparing infant resting-state measures (periodic alpha and aperiodic activity) between infants who develop ASD, elevated likelihood infants without ASD, and low likelihood infants without ASD, and (2) evaluate whether these infant EEG measures are associated with frequency of RRBs measured at 24 months. Methods Baseline non-task related EEG data were collected from 12-to-14-month-old infants with and without elevated likelihood of autism (N=160), and periodic alpha activity (periodic alpha power, individual peak alpha frequency and amplitude), and aperiodic activity measures (aperiodic exponent) were calculated. Parent-reported RRBs were obtained at 24 months using the Repetitive Behavior Scale-Revised questionnaire. Group differences in EEG measures were evaluated using ANCOVA, and multiple linear regressions were conducted to assess relationships between EEG and RRB measures. Results No group-level differences in infant EEG measures were observed. Marginal effects analysis of linear regressions revealed significant associations within the ASD group, such that higher periodic alpha power, lower peak alpha frequency, and lower aperiodic exponent, were associated with elevated RRBs at 24 months. No significant associations were observed for non-ASD outcome groups. Limitations The sample size for ASD (N=19) was modest for examining brain-behavior relations. Larger sample sizes are needed to increase statistical power. Conclusion For infants with later ASD diagnoses, measures of alpha and aperiodic activity measured at 1-year of age were associated with later manifestation of RRBs at 2-years. Longitudinal studies are needed to elucidate whether the early trajectory of these EEG measures and their dynamic relations in development influence manifestations of RRBs in ASD.
Collapse
|
80
|
Zito GA, de Sousa Ribeiro R, Kamal E, Ledergerber D, Imbach L, Polania R. Self-modulation of the sense of agency via neurofeedback enhances sensory-guided behavioral control. Cereb Cortex 2023; 33:11447-11455. [PMID: 37750349 DOI: 10.1093/cercor/bhad360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
The sense of agency is a fundamental aspect of human self-consciousness, whose neural correlates encompass widespread brain networks. Research has explored the neuromodulatory properties of the sense of agency with noninvasive brain stimulation, which induces exogenous manipulations of brain activity; however, it is unknown whether endogenous modulation of the sense of agency is also achievable. We investigated whether the sense of agency can be self-regulated with electroencephalography-based neurofeedback. We conducted 2 experiments in which healthy humans performed a motor task while their motor control was artificially disrupted, and gave agency statements on their perceived control. We first identified the electrophysiological response to agency processing, and then applied neurofeedback in a parallel, sham-controlled design, where participants learnt to self-modulate their sense of agency. We found that behavioral measures of agency and performance on the task decreased with the increasing disruption of control. This was negatively correlated with power spectral density in the theta band, and positively correlated in the alpha and beta bands, at central and parietal electrodes. After neurofeedback training of central theta rhythms, participants improved their actual control over the task, and this was associated with a significant decrease in the frequency band trained via neurofeedback. Thus, self-regulation of theta rhythms can improve sensory-guided behavior.
Collapse
Affiliation(s)
- Giuseppe A Zito
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, CH, Switzerland
- Swiss Paraplegic Research, 6207 Nottwil, CH, Switzerland
| | - Ricardo de Sousa Ribeiro
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, CH, Switzerland
| | - Eshita Kamal
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, CH, Switzerland
| | | | - Lukas Imbach
- Swiss Epilepsy Center, Clinic Lengg, 8008 Zurich, CH, Switzerland
| | - Rafael Polania
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, CH, Switzerland
| |
Collapse
|
81
|
Xu J, Wainio-Theberge S, Wolff A, Qin P, Zhang Y, She X, Wang Y, Wolman A, Smith D, Ignaszewski J, Choueiry J, Knott V, Scalabrini A, Northoff G. Culture shapes spontaneous brain dynamics - Shared versus idiosyncratic neural features among Chinese versus Canadian subjects. Soc Neurosci 2023; 18:312-330. [PMID: 37909114 DOI: 10.1080/17470919.2023.2278199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
Environmental factors, such as culture, are known to shape individual variation in brain activity including spontaneous activity, but less is known about their population-level effects. Eastern and Western cultures differ strongly in their cultural norms about relationships between individuals. For example, the collectivism, interdependence and tightness of Eastern cultures relative to the individualism, independence and looseness of Western cultures, promote interpersonal connectedness and coordination. Do such cultural contexts therefore influence the group-level variability of their cultural members' spontaneous brain activity? Using novel methods adapted from studies of inter-subject neural synchrony, we compare the group-level variability of resting state EEG dynamics in Chinese and Canadian samples. We observe that Chinese subjects show significantly higher inter-subject correlation and lower inter-subject distance in their EEG power spectra than Canadian subjects, as well as lower variability in theta power and alpha peak frequency. We demonstrate, for the first time, different relationships among subjects' resting state brain dynamics in Chinese and Canadian samples. These results point to more idiosyncratic neural dynamics among Canadian participants, compared with more shared neural features in Chinese participants.
Collapse
Affiliation(s)
- Jiawei Xu
- Department of Philosophy, Xiamen University, Xiamen, Fujian, China
| | - Soren Wainio-Theberge
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Annemarie Wolff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Pengmin Qin
- Centre for Studies of Psychological Applications, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, Guangdong, China
| | - Yihui Zhang
- Centre for Studies of Psychological Applications, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, Guangdong, China
| | - Xuan She
- Centre for Studies of Psychological Applications, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou, Guangdong, China
| | - Yingying Wang
- Institute of Psychological Sciences, College of Education, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Angelika Wolman
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - David Smith
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Julia Ignaszewski
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
| | - Joelle Choueiry
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Verner Knott
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Andrea Scalabrini
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- Mental Health Center, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
82
|
Zhang Y, Wang Y, Cheng H, Yan F, Li D, Song D, Wang Q, Huang L. EEG spectral slope: A reliable indicator for continuous evaluation of consciousness levels during propofol anesthesia. Neuroimage 2023; 283:120426. [PMID: 37898378 DOI: 10.1016/j.neuroimage.2023.120426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023] Open
Abstract
The level of consciousness undergoes continuous alterations during anesthesia. Prior to the onset of propofol-induced complete unconsciousness, degraded levels of behavioral responsiveness can be observed. However, a reliable index to monitor altered consciousness levels during anesthesia has not been sufficiently investigated. In this study, we obtained 60-channel EEG data from 24 healthy participants during an ultra-slow propofol infusion protocol starting with an initial concentration of 1 μg/ml and a stepwise increase of 0.2 μg/ml in concentration. Consecutive auditory stimuli were delivered every 5 to 6 s, and the response time to the stimuli was used to assess the responsiveness levels. We calculated the spectral slope in a time-resolved manner by extracting 5-second EEG segments at each auditory stimulus and estimated their correlation with the corresponding response time. Our results demonstrated that during slow propofol infusion, the response time to external stimuli increased, while the EEG spectral slope, fitted at 15-45 Hz, became steeper, and a significant negative correlation was observed between them. Moreover, the spectral slope further steepened at deeper anesthetic levels and became flatter during anesthesia recovery. We verified these findings using an external dataset. Additionally, we found that the spectral slope of frontal electrodes over the prefrontal lobe had the best performance in predicting the response time. Overall, this study used a time-resolved analysis to suggest that the EEG spectral slope could reliably track continuously altered consciousness levels during propofol anesthesia. Furthermore, the frontal spectral slope may be a promising index for clinical monitoring of anesthesia depth.
Collapse
Affiliation(s)
- Yun Zhang
- School of Life Science and Technology, Xidian University, No.2 TaiBai South Road, Xi'an 710061, China
| | - Yubo Wang
- School of Life Science and Technology, Xidian University, No.2 TaiBai South Road, Xi'an 710061, China
| | - Huanhuan Cheng
- School of Life Science and Technology, Xidian University, No.2 TaiBai South Road, Xi'an 710061, China
| | - Fei Yan
- Department of Anesthesiology & Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Dingning Li
- School of Life Science and Technology, Xidian University, No.2 TaiBai South Road, Xi'an 710061, China
| | - Dawei Song
- Department of Anesthesiology & Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China.
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, No.2 TaiBai South Road, Xi'an 710061, China.
| |
Collapse
|
83
|
Behboudi MH, Castro S, Chalamalasetty P, Maguire MJ. Development of Gamma Oscillation during Sentence Processing in Early Adolescence: Insights into the Maturation of Semantic Processing. Brain Sci 2023; 13:1639. [PMID: 38137087 PMCID: PMC10741943 DOI: 10.3390/brainsci13121639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Children's ability to retrieve word meanings and incorporate them into sentences, along with the neural structures that support these skills, continues to evolve throughout adolescence. Theta (4-8 Hz) activity that corresponds to word retrieval in children decreases in power and becomes more localized with age. This bottom-up word retrieval is often paired with changes in gamma (31-70 Hz), which are thought to reflect semantic unification in adults. Here, we studied gamma engagement during sentence processing using EEG time-frequency in children (ages 8-15) to unravel the developmental trajectory of the gamma network during sentence processing. Children heavily rely on semantic integration for sentence comprehension, but as they mature, semantic and syntactic processing units become distinct and localized. We observed a similar developmental shift in gamma oscillation around age 11, with younger groups (8-9 and 10-11) exhibiting broadly distributed gamma activity with higher amplitudes, while older groups (12-13 and 14-15) exhibited smaller and more localized gamma activity, especially over the left central and posterior regions. We interpret these findings as support for the argument that younger children rely more heavily on semantic processes for sentence comprehension than older children. And like adults, semantic processing in children is associated with gamma activity.
Collapse
Affiliation(s)
- Mohammad Hossein Behboudi
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (M.H.B.)
- Callier Center for Communication Disorders, The University of Texas at Dallas, Dallas, TX 75235, USA
| | - Stephanie Castro
- Department of Human Development and Family Sciences, The University of Texas at Austin, Austin, TX 78705, USA
| | - Prasanth Chalamalasetty
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (M.H.B.)
| | - Mandy J. Maguire
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (M.H.B.)
- Callier Center for Communication Disorders, The University of Texas at Dallas, Dallas, TX 75235, USA
| |
Collapse
|
84
|
Sáringer S, Fehér Á, Sáry G, Kaposvári P. Gamma oscillations in visual statistical learning correlate with individual behavioral differences. Front Behav Neurosci 2023; 17:1285773. [PMID: 38025386 PMCID: PMC10663268 DOI: 10.3389/fnbeh.2023.1285773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Statistical learning is assumed to be a fundamentally general sensory process across modalities, age, other cognitive functions, and even species. Despite this general role, behavioral testing on regularity acquisition shows great variance among individuals. The current study aimed to find neural correlates of visual statistical learning showing a correlation with behavioral results. Based on a pilot study, we conducted an EEG study where participants were exposed to associated stimulus pairs; the acquisition was tested through a familiarity test. We identified an oscillation in the gamma range (40-70 Hz, 0.5-0.75 s post-stimulus), which showed a positive correlation with the behavioral results. This change in activity was located in a left frontoparietal cluster. Based on its latency and location, this difference was identified as a late gamma activity, a correlate of model-based learning. Such learning is a summary of several top-down mechanisms that modulate the recollection of statistical relationships such as the capacity of working memory or attention. These results suggest that, during acquisition, individual behavioral variance is influenced by dominant learning processes which affect the recall of previously gained information.
Collapse
Affiliation(s)
| | | | | | - Péter Kaposvári
- Department of Physiology, Albert Szent-Gyögyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
85
|
Rodionov A, Ozdemir RA, Benwell CSY, Fried PJ, Boucher P, Momi D, Ross JM, Santarnecchi E, Pascual-Leone A, Shafi MM. Reliability of resting-state EEG modulation by continuous and intermittent theta burst stimulation of the primary motor cortex: a sham-controlled study. Sci Rep 2023; 13:18898. [PMID: 37919322 PMCID: PMC10622440 DOI: 10.1038/s41598-023-45512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023] Open
Abstract
Theta burst stimulation (TBS) is a form of repetitive transcranial magnetic stimulation designed to induce changes of cortical excitability that outlast the period of TBS application. In this study, we explored the effects of continuous TBS (cTBS) and intermittent TBS (iTBS) versus sham TBS stimulation, applied to the left primary motor cortex, on modulation of resting state electroencephalography (rsEEG) power. We first conducted hypothesis-driven region-of-interest (ROI) analyses examining changes in alpha (8-12 Hz) and beta (13-21 Hz) bands over the left and right motor cortex. Additionally, we performed data-driven whole-brain analyses across a wide range of frequencies (1-50 Hz) and all electrodes. Finally, we assessed the reliability of TBS effects across two sessions approximately 1 month apart. None of the protocols produced significant group-level effects in the ROI. Whole-brain analysis revealed that cTBS significantly enhanced relative power between 19 and 43 Hz over multiple sites in both hemispheres. However, these results were not reliable across visits. There were no significant differences between EEG modulation by active and sham TBS protocols. Between-visit reliability of TBS-induced neuromodulatory effects was generally low-to-moderate. We discuss confounding factors and potential approaches for improving the reliability of TBS-induced rsEEG modulation.
Collapse
Affiliation(s)
- Andrei Rodionov
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Recep A Ozdemir
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Christopher S Y Benwell
- Division of Psychology, School of Humanities, Social Sciences and Law, University of Dundee, Dundee, UK
| | - Peter J Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Pierre Boucher
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Davide Momi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Canada
| | - Jessica M Ross
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Research, Education, and Clinical Center, Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford Medical School, Stanford, CA, USA
| | - Emiliano Santarnecchi
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Deanna and Sidney Wolk Center for Memory Health, Hebrew Senior Life, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA, USA
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
86
|
Larsen BA, Klinedinst BS, Wolf T, McLimans KE, Wang Q, Pollpeter A, Li T, Mohammadiarvejeh P, Fili M, Grundy JG, Willette AA. Adiposity and insulin resistance moderate the links between neuroelectrophysiology and working and episodic memory functions in young adult males but not females. Physiol Behav 2023; 271:114321. [PMID: 37567373 PMCID: PMC10592072 DOI: 10.1016/j.physbeh.2023.114321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
INTRODUCTION Obesity and insulin resistance negatively influence neural activity and cognitive function, but electrophysiological mechanisms underlying these interrelationships remain unclear. This study investigated whether adiposity and insulin resistance moderated neural activity and underlying cognitive functions in young adults. METHODS Real-time electroencephalography (EEG) was recorded in 38 lean (n = 12) and obese (n = 26) young adults with (n = 15) and without (n = 23) insulin resistance (18-38 years, 55.3% female) as participants completed three neurocognitive tasks in working memory (Operation Span), inhibitory control (Stroop), and episodic memory (Visual Association Test). Body fat percentage was quantified by a dual-energy X-ray absorptiometry scan (DEXA/DXA). Fasting serum insulin and glucose were quantified to calculate Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) values, for which a higher value indicates more insulin resistance. Hierarchical moderated regression analysis tested these interrelationships. RESULTS In males, greater frontal negative slow wave (fNSW) and positive slow wave (PSW) amplitudes were linked to higher working memory accuracy in participants with low, but not high, body fat percentage and HOMA-IR levels. In contrast, body fat percentage and HOMA-IR did not moderate these associations in females. Furthermore, body fat percentage and HOMA-IR values moderated the relationship between greater fNSW amplitudes and better episodic memory accuracy in males, but not females. Finally, body fat percentage and insulin resistance did not moderate the link between neural activity and inhibitory control for either sex. CONCLUSION Young adult males, but not females, with higher body adiposity and insulin resistance showed reduced neural activity and worse underlying working and episodic memory functions.
Collapse
Affiliation(s)
- Brittany A Larsen
- Department of Behavioral Science, MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States of America
| | - Brandon S Klinedinst
- Department of Medicine, University of Washington, RR-512, Health Sciences Building, Box 356420, 1959 NE Pacific St., Seattle, Washington, 98195, United States of America
| | - Tovah Wolf
- Lifecare Alliance, 1699 W Mound St., Columbus, Ohio, 43223, United States of America
| | - Kelsey E McLimans
- Nutrition and Dietetics Department, Viterbo University, 900 Viterbo Dr., La Crosse, Wisconsin, 54601, United States of America
| | - Qian Wang
- Department of Food Science and Human Nutrition, College of Human Sciences, Iowa State University, 2312 Food Sciences Building, 536 Farm House Ln., Ames, Iowa, 50011, United States of America
| | - Amy Pollpeter
- Bioinformatics and Computational Biology Graduate Program, Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, 1800 Christensen Dr., Ames, Iowa, 50011, United States of America
| | - Tianqi Li
- Genetics and Genomics Graduate Program, Department of Food Science and Human Nutrition, College of Human Sciences, Iowa State University, 2312 Food Sciences Building, 536 Farm House Ln., Ames, Iowa, 50011, United States of America
| | - Parvin Mohammadiarvejeh
- Department of Industrial and Manufacturing Systems Engineering, College of Engineering, Iowa State University, 3004 Black Engineering, 2529 Union Dr., Ames, Iowa, 50011, United States of America
| | - Mohammad Fili
- Department of Industrial and Manufacturing Systems Engineering, College of Engineering, Iowa State University, 3004 Black Engineering, 2529 Union Dr., Ames, Iowa, 50011, United States of America
| | - John G Grundy
- Department of Psychology, College of Liberal Arts and Sciences, Iowa State University, 901 Stange Rd., Ames, Iowa, 50011, United States of America
| | - Auriel A Willette
- Department of Food Science and Human Nutrition, College of Human Sciences, Iowa State University, 2312 Food Sciences Building, 536 Farm House Ln., Ames, Iowa, 50011, United States of America; Department of Psychology, College of Liberal Arts and Sciences, Iowa State University, 901 Stange Rd., Ames, Iowa, 50011, United States of America; Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 200 Hawkins Dr., 2007 Roy Carver Pavilion, Iowa City, Iowa, 52242, United States of America.
| |
Collapse
|
87
|
Simmatis L, Russo EE, Geraci J, Harmsen IE, Samuel N. Technical and clinical considerations for electroencephalography-based biomarkers for major depressive disorder. NPJ MENTAL HEALTH RESEARCH 2023; 2:18. [PMID: 38609518 PMCID: PMC10955915 DOI: 10.1038/s44184-023-00038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/21/2023] [Indexed: 04/14/2024]
Abstract
Major depressive disorder (MDD) is a prevalent and debilitating psychiatric disease that leads to substantial loss of quality of life. There has been little progress in developing new MDD therapeutics due to a poor understanding of disease heterogeneity and individuals' responses to treatments. Electroencephalography (EEG) is poised to improve this, owing to the ease of large-scale data collection and the advancement of computational methods to address artifacts. This review summarizes the viability of EEG for developing brain-based biomarkers in MDD. We examine the properties of well-established EEG preprocessing pipelines and consider factors leading to the discovery of sensitive and reliable biomarkers.
Collapse
Affiliation(s)
- Leif Simmatis
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cove Neurosciences Inc., Toronto, ON, Canada
| | - Emma E Russo
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cove Neurosciences Inc., Toronto, ON, Canada
| | - Joseph Geraci
- Cove Neurosciences Inc., Toronto, ON, Canada
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Irene E Harmsen
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Cove Neurosciences Inc., Toronto, ON, Canada
| | - Nardin Samuel
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Cove Neurosciences Inc., Toronto, ON, Canada.
| |
Collapse
|
88
|
Schmoigl-Tonis M, Schranz C, Müller-Putz GR. Methods for motion artifact reduction in online brain-computer interface experiments: a systematic review. Front Hum Neurosci 2023; 17:1251690. [PMID: 37920561 PMCID: PMC10619676 DOI: 10.3389/fnhum.2023.1251690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023] Open
Abstract
Brain-computer interfaces (BCIs) have emerged as a promising technology for enhancing communication between the human brain and external devices. Electroencephalography (EEG) is particularly promising in this regard because it has high temporal resolution and can be easily worn on the head in everyday life. However, motion artifacts caused by muscle activity, fasciculation, cable swings, or magnetic induction pose significant challenges in real-world BCI applications. In this paper, we present a systematic review of methods for motion artifact reduction in online BCI experiments. Using the PRISMA filter method, we conducted a comprehensive literature search on PubMed, focusing on open access publications from 1966 to 2022. We evaluated 2,333 publications based on predefined filtering rules to identify existing methods and pipelines for motion artifact reduction in EEG data. We present a lookup table of all papers that passed the defined filters, all used methods, and pipelines and compare their overall performance and suitability for online BCI experiments. We summarize suitable methods, algorithms, and concepts for motion artifact reduction in online BCI applications, highlight potential research gaps, and discuss existing community consensus. This review aims to provide a comprehensive overview of the current state of the field and guide researchers in selecting appropriate methods for motion artifact reduction in online BCI experiments.
Collapse
Affiliation(s)
- Mathias Schmoigl-Tonis
- Laboratory of Collaborative Robotics, Department of Human Motion Analytics, Salzburg Research GmbH, Salzburg, Austria
- Institute of Neural Engineering, Laboratory of Brain-Computer Interfaces, Graz University of Technology, Graz, Austria
| | - Christoph Schranz
- Laboratory of Collaborative Robotics, Department of Human Motion Analytics, Salzburg Research GmbH, Salzburg, Austria
| | - Gernot R. Müller-Putz
- Institute of Neural Engineering, Laboratory of Brain-Computer Interfaces, Graz University of Technology, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
89
|
Abbasi S, Wolff A, Çatal Y, Northoff G. Increased noise relates to abnormal excitation-inhibition balance in schizophrenia: a combined empirical and computational study. Cereb Cortex 2023; 33:10477-10491. [PMID: 37562844 PMCID: PMC10560578 DOI: 10.1093/cercor/bhad297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Electroencephalography studies link sensory processing issues in schizophrenia to increased noise level-noise here is background spontaneous activity-as measured by the signal-to-noise ratio. The mechanism, however, of such increased noise is unknown. We investigate if this relates to changes in cortical excitation-inhibition balance, which has been observed to be atypical in schizophrenia, by combining electroencephalography and computational modeling. Our electroencephalography task results, for which the local field potentials can be used as a proxy, show lower signal-to-noise ratio due to higher noise in schizophrenia. Both electroencephalography rest and task states exhibit higher levels of excitation in the functional excitation-inhibition (as a proxy of excitation-inhibition balance). This suggests a relationship between increased noise and atypical excitation in schizophrenia, which was addressed by using computational modeling. A Leaky Integrate-and-Fire model was used to simulate the effects of varying degrees of noise on excitation-inhibition balance, local field potential, NMDA current, and . Results show a noise-related increase in the local field potential, excitation in excitation-inhibition balance, pyramidal NMDA current, and spike rate. Mutual information and mediation analysis were used to explore a cross-level relationship, showing that the cortical local field potential plays a key role in transferring the effect of noise to the cellular population level of NMDA.
Collapse
Affiliation(s)
- Samira Abbasi
- University of Ottawa, Institute of Mental Health Research, Ottawa ON K1Z 7K4, Canada
- Department of Biomedical Engineering, Hamedan University of Technology, Hamedan 65169-13733, Iran
| | - Annemarie Wolff
- University of Ottawa, Institute of Mental Health Research, Ottawa ON K1Z 7K4, Canada
| | - Yasir Çatal
- University of Ottawa, Institute of Mental Health Research, Ottawa ON K1Z 7K4, Canada
| | - Georg Northoff
- University of Ottawa, Institute of Mental Health Research, Ottawa ON K1Z 7K4, Canada
| |
Collapse
|
90
|
Marzoratti A, Liu ME, Krol KM, Sjobeck GR, Lipscomb DJ, Hofkens TL, Boker SM, Pelphrey KA, Connelly JJ, Evans TM. Epigenetic modification of the oxytocin receptor gene is associated with child-parent neural synchrony during competition. Dev Cogn Neurosci 2023; 63:101302. [PMID: 37734257 PMCID: PMC10518595 DOI: 10.1016/j.dcn.2023.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Interpersonal neural synchrony (INS) occurs when neural electrical activity temporally aligns between individuals during social interactions. It has been used as a metric for interpersonal closeness, often during naturalistic child-parent interactions. This study evaluated whether other biological correlates of social processing predicted the prevalence of INS during child-parent interactions, and whether their observed cooperativity modulated this association. Child-parent dyads (n = 27) performed a visuospatial tower-building task in cooperative and competitive conditions. Neural activity was recorded using mobile electroencephalogram (EEG) headsets, and experimenters coded video-recordings post-hoc for behavioral attunement. DNA methylation of the oxytocin receptor gene (OXTRm) was measured, an epigenetic modification associated with reduced oxytocin activity and socioemotional functioning. Greater INS during competition was associated with lower child OXTRm, while greater behavioral attunement during competition and cooperation was associated with higher parent OXTRm. These differential relationships suggest that interpersonal dynamics as measured by INS may be similarly reflected by other biological markers of social functioning, irrespective of observed behavior. Children's self-perceived communication skill also showed opposite associations with parent and child OXTRm, suggesting complex relationships between children's and their parents' social functioning. Our findings have implications for ongoing developmental research, supporting the utility of biological metrics in characterizing interpersonal relationships.
Collapse
Affiliation(s)
- Analia Marzoratti
- School of Education and Human Development, University of Virginia, Charlottesville, VA, USA
| | - Megan E Liu
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Kathleen M Krol
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Gus R Sjobeck
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Daniel J Lipscomb
- School of Education and Human Development, University of Virginia, Charlottesville, VA, USA
| | - Tara L Hofkens
- School of Education and Human Development, University of Virginia, Charlottesville, VA, USA
| | - Steven M Boker
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Kevin A Pelphrey
- School of Education and Human Development, University of Virginia, Charlottesville, VA, USA; Department of Psychology, University of Virginia, Charlottesville, VA, USA; Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Jessica J Connelly
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Tanya M Evans
- School of Education and Human Development, University of Virginia, Charlottesville, VA, USA; Department of Psychology, University of Virginia, Charlottesville, VA, USA; Department of Neurology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
91
|
Murphy N, Tamman AJF, Lijffijt M, Amarneh D, Iqbal S, Swann A, Averill LA, O'Brien B, Mathew SJ. Neural complexity EEG biomarkers of rapid and post-rapid ketamine effects in late-life treatment-resistant depression: a randomized control trial. Neuropsychopharmacology 2023; 48:1586-1593. [PMID: 37076582 PMCID: PMC10516885 DOI: 10.1038/s41386-023-01586-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/21/2023]
Abstract
Ketamine is an effective intervention for treatment-resistant depression (TRD), including late-in-life (LL-TRD). The proposed mechanism of antidepressant effects of ketamine is a glutamatergic surge, which can be measured by electroencephalogram (EEG) gamma oscillations. Yet, non-linear EEG biomarkers of ketamine effects such as neural complexity are needed to capture broader systemic effects, represent the level of organization of synaptic communication, and elucidate mechanisms of action for treatment responders. In a secondary analysis of a randomized control trial, we investigated two EEG neural complexity markers (Lempel-Ziv complexity [LZC] and multiscale entropy [MSE]) of rapid (baseline to 240 min) and post-rapid ketamine (24 h and 7 days) effects after one 40-min infusion of IV ketamine or midazolam (active control) in 33 military veterans with LL-TRD. We also studied the relationship between complexity and Montgomery-Åsberg Depression Rating Scale score change at 7 days post-infusion. We found that LZC and MSE both increased 30 min post-infusion, with effects not localized to a single timescale for MSE. Post-rapid effects of reduced complexity with ketamine were observed for MSE. No relationship was observed between complexity and reduction in depressive symptoms. Our findings support the hypothesis that a single sub-anesthetic ketamine infusion has time-varying effects on system-wide contributions to the evoked glutamatergic surge in LL-TRD. Further, changes to complexity were observable outside the time-window previously shown for effects on gamma oscillations. These preliminary results have clinical implications in providing a functional marker of ketamine that is non-linear, amplitude-independent, and represents larger dynamic properties, providing strong advantages over linear measures in highlighting ketamine's effects.
Collapse
Affiliation(s)
- Nicholas Murphy
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- The Menninger Clinic, Houston, TX, USA
| | - Amanda J F Tamman
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA.
| | - Marijn Lijffijt
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Dania Amarneh
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
| | - Sidra Iqbal
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Alan Swann
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Lynnette A Averill
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Brittany O'Brien
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- The Menninger Clinic, Houston, TX, USA
| | - Sanjay J Mathew
- Baylor College of Medicine, Menninger Department of Psychiatry and Behavioral Sciences, Houston, TX, USA
- The Menninger Clinic, Houston, TX, USA
- Michael E. DeBakey VA Medical Center, Houston, TX, USA
| |
Collapse
|
92
|
Zammit N, Muscat R. Alpha/beta-gamma decoupling in methylphenidate medicated ADHD patients. Front Neurosci 2023; 17:1267901. [PMID: 37841679 PMCID: PMC10570420 DOI: 10.3389/fnins.2023.1267901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
There is much interest to understand how different neural rhythms function, interact and are regulated. Here, we focus on WM delay gamma to investigate its coupling with alpha/beta rhythms and its neuromodulation by methylphenidate. We address this through the use of human EEG conducted in healthy and ADHD subjects which revealed ADHD-specific electrophysiological deficits and MPH-induced normalization of gamma amplitude and its coupling with alpha/beta rhythms. Decreased alpha/beta-gamma coupling is known to facilitate memory representations via disinhibition of gamma ensembles coding the maintained stimuli. Here, we present EEG evidence which suggests that these dynamics are sensitive to catecholaminergic neuromodulation. MPH decreased alpha/beta-gamma coupling and this was related to the increase in delay-relevant gamma activity evoked by the same drug. These results add further to the neuromodulatory findings that reflect an electrophysiological dimension to the well-known link between WM delay and catecholaminergic transmission.
Collapse
Affiliation(s)
- Nowell Zammit
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Richard Muscat
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Department of Physiology and Biochemistry, University of Malta, Msida, Malta
| |
Collapse
|
93
|
Vidaurre C, Irastorza-Landa N, Sarasola-Sanz A, Insausti-Delgado A, Ray AM, Bibián C, Helmhold F, Mahmoud WJ, Ortego-Isasa I, López-Larraz E, Lozano Peiteado H, Ramos-Murguialday A. Challenges of neural interfaces for stroke motor rehabilitation. Front Hum Neurosci 2023; 17:1070404. [PMID: 37789905 PMCID: PMC10543821 DOI: 10.3389/fnhum.2023.1070404] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
More than 85% of stroke survivors suffer from different degrees of disability for the rest of their lives. They will require support that can vary from occasional to full time assistance. These conditions are also associated to an enormous economic impact for their families and health care systems. Current rehabilitation treatments have limited efficacy and their long-term effect is controversial. Here we review different challenges related to the design and development of neural interfaces for rehabilitative purposes. We analyze current bibliographic evidence of the effect of neuro-feedback in functional motor rehabilitation of stroke patients. We highlight the potential of these systems to reconnect brain and muscles. We also describe all aspects that should be taken into account to restore motor control. Our aim with this work is to help researchers designing interfaces that demonstrate and validate neuromodulation strategies to enforce a contingent and functional neural linkage between the central and the peripheral nervous system. We thus give clues to design systems that can improve or/and re-activate neuroplastic mechanisms and open a new recovery window for stroke patients.
Collapse
Affiliation(s)
- Carmen Vidaurre
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Ikerbasque Science Foundation, Bilbao, Spain
| | | | | | | | - Andreas M. Ray
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Carlos Bibián
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Florian Helmhold
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Wala J. Mahmoud
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Iñaki Ortego-Isasa
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
| | - Eduardo López-Larraz
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Bitbrain, Zaragoza, Spain
| | | | - Ander Ramos-Murguialday
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
94
|
Langiulli N, Calbi M, Sbravatti V, Umiltà MA, Gallese V. The effect of Surround sound on embodiment and sense of presence in cinematic experience: a behavioral and HD-EEG study. Front Neurosci 2023; 17:1222472. [PMID: 37746143 PMCID: PMC10513788 DOI: 10.3389/fnins.2023.1222472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Although many studies have investigated spectators' cinematic experience, only a few of them explored the neurophysiological correlates of the sense of presence evoked by the spatial characteristics of audio delivery devices. Nevertheless, nowadays both the industrial and the consumer markets have been saturated by some forms of spatial audio format that enrich the audio-visual cinematic experience, reducing the gap between the real and the digitally mediated world. The increase in the immersive capabilities corresponds to the instauration of both the sense of presence and the psychological sense of being in the virtual environment and also embodied simulation mechanisms. While it is well-known that these mechanisms can be activated in the real world, it is hypothesized that they may be elicited even in a virtual acoustic spatial environment and could be modulated by the acoustic spatialization cues reproduced by sound systems. Hence, the present study aims to investigate the neural basis of the sense of presence evoked by different forms of mediation by testing different acoustic space sound delivery (Presentation modes: Monophonic, Stereo, and Surround). To these aims, a behavioral investigation and a high-density electroencephalographic (HD-EEG) study have been developed. A large set of ecological and heterogeneous stimuli extracted from feature films were used. Furthermore, participants were selected following the generalized listener selection procedure. We found a significantly higher event-related desynchronization (ERD) in the Surround Presentation mode when compared to the Monophonic Presentation mode both in Alpha and Low-Beta centro-parietal clusters. We discuss this result as an index of embodied simulation mechanisms that could be considered as a possible neurophysiological correlation of the instauration of the sense of presence.
Collapse
Affiliation(s)
- Nunzio Langiulli
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marta Calbi
- Department of Philosophy “Piero Martinetti”, State University of Milan, Milan, Italy
| | - Valerio Sbravatti
- Department of History, Anthropology, Religions, Arts and Performing Arts, Sapienza University of Rome, Rome, Italy
| | - Maria Alessandra Umiltà
- Department of Food and Drug, University of Parma, Parma, Italy
- Italian Academy for Advanced Studies in America at Columbia University, New York, NY, United States
| | - Vittorio Gallese
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Parma, Italy
- Italian Academy for Advanced Studies in America at Columbia University, New York, NY, United States
| |
Collapse
|
95
|
Plueckebaum H, Meyer L, Beck AK, Menn KH. The developmental trajectory of functional excitation-inhibition balance relates to language abilities in autistic and allistic children. Autism Res 2023; 16:1681-1692. [PMID: 37493078 DOI: 10.1002/aur.2992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023]
Abstract
Autism is a neurodevelopmental condition that has been related to an overall imbalance between the brain's excitatory (E) and inhibitory (I) systems. Such an EI imbalance can lead to structural and functional cortical deviances and thus alter information processing in the brain, ultimately giving rise to autism traits. However, the developmental trajectory of EI imbalances across childhood and adolescence has not been investigated yet. Therefore, its relationship to autism traits is not well understood. In the present study, we determined a functional measure of the EI balance (f-EIB) from resting-state electrophysiological recordings for a final sample of 92 autistic children from 6 to 17 years of age and 100 allistic (i.e., non-autistic) children matched by age, sex, and nonverbal-IQ. We related the developmental trajectory of f-EIB to behavioral assessments of autism traits as well as language ability. Our results revealed differential EI trajectories for autistic compared to allistic children. Importantly, the developmental trajectory of f-EIB values related to individual language ability. In particular, elevated excitability in late childhood and early adolescence was linked to decreased listening comprehension. Our findings provide evidence against a general EI imbalance in autistic children when correcting for non-verbal IQ. Instead, we show that the developmental trajectory of EI balance shares variance with autism trait development at a specific age range. This is consistent with the proposal that the late development of inhibitory brain activity is a key substrate of autism traits.
Collapse
Affiliation(s)
- Hannah Plueckebaum
- Research Group Language Cycles, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Center for Cognitive Science, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Lars Meyer
- Research Group Language Cycles, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic for Phoniatrics and Pedaudiology, University Hospital Münster, Münster, Germany
| | - Ann-Kathrin Beck
- Center for Cognitive Science, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Katharina H Menn
- Research Group Language Cycles, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany
| |
Collapse
|
96
|
Forster A, Rodrigues J, Ziebell P, Sanguinetti JL, Allen JJ, Hewig J. Investigating the role of the right inferior frontal gyrus in control perception: A double-blind cross-over study using ultrasonic neuromodulation. Neuropsychologia 2023; 187:108589. [PMID: 37302753 DOI: 10.1016/j.neuropsychologia.2023.108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/23/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023]
Abstract
Being able to control inner and environmental states is a basic need of living creatures. The perception of such control is based on the perceived ratio of outcome probabilities given the presence and the absence of agentic behavior. If an organism believes that options exist to change the probability of a given outcome, control perception (CP) may emerge. Nonetheless, regarding this model, not much is known about how the brain processes CP from this information. This study uses low-intensity transcranial focused ultrasound neuromodulation in a randomized-controlled double blind cross-over design to investigate the impact of the right inferior frontal gyrus of the lateral prefrontal cortex (lPFC) on this process. 39 healthy participants visited the laboratory twice (once in a sham, once in a neuromodulation condition) and rated their control perception regarding a classical control illusion task. EEG alpha and theta power density were analyzed in a hierarchical single trial-based mixed modeling approach. Results indicate that the litFUS neuromodulation changed the processing of stimulus probability without changing CP. Furthermore, neuromodulation of the right lPFC was found to modulate mid-frontal theta by altering its relationship with self-reported effort and worrying. While these data indicate lateral prefrontal sensitivity to stimulus probability, no evidence emerged for the dependency of CP on this processing.
Collapse
Affiliation(s)
- André Forster
- Julius Maximilians Univeristy of Würzburg, Marcusstraße 9-11, 97070, Würzburg, Germany.
| | - Johannes Rodrigues
- Julius Maximilians Univeristy of Würzburg, Marcusstraße 9-11, 97070, Würzburg, Germany.
| | - Philipp Ziebell
- Julius Maximilians Univeristy of Würzburg, Marcusstraße 9-11, 97070, Würzburg, Germany.
| | | | | | - Johannes Hewig
- Julius Maximilians Univeristy of Würzburg, Marcusstraße 9-11, 97070, Würzburg, Germany.
| |
Collapse
|
97
|
Nebe S, Reutter M, Baker DH, Bölte J, Domes G, Gamer M, Gärtner A, Gießing C, Gurr C, Hilger K, Jawinski P, Kulke L, Lischke A, Markett S, Meier M, Merz CJ, Popov T, Puhlmann LMC, Quintana DS, Schäfer T, Schubert AL, Sperl MFJ, Vehlen A, Lonsdorf TB, Feld GB. Enhancing precision in human neuroscience. eLife 2023; 12:e85980. [PMID: 37555830 PMCID: PMC10411974 DOI: 10.7554/elife.85980] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/23/2023] [Indexed: 08/10/2023] Open
Abstract
Human neuroscience has always been pushing the boundary of what is measurable. During the last decade, concerns about statistical power and replicability - in science in general, but also specifically in human neuroscience - have fueled an extensive debate. One important insight from this discourse is the need for larger samples, which naturally increases statistical power. An alternative is to increase the precision of measurements, which is the focus of this review. This option is often overlooked, even though statistical power benefits from increasing precision as much as from increasing sample size. Nonetheless, precision has always been at the heart of good scientific practice in human neuroscience, with researchers relying on lab traditions or rules of thumb to ensure sufficient precision for their studies. In this review, we encourage a more systematic approach to precision. We start by introducing measurement precision and its importance for well-powered studies in human neuroscience. Then, determinants for precision in a range of neuroscientific methods (MRI, M/EEG, EDA, Eye-Tracking, and Endocrinology) are elaborated. We end by discussing how a more systematic evaluation of precision and the application of respective insights can lead to an increase in reproducibility in human neuroscience.
Collapse
Affiliation(s)
- Stephan Nebe
- Zurich Center for Neuroeconomics, Department of Economics, University of ZurichZurichSwitzerland
| | - Mario Reutter
- Department of Psychology, Julius-Maximilians-UniversityWürzburgGermany
| | - Daniel H Baker
- Department of Psychology and York Biomedical Research Institute, University of YorkYorkUnited Kingdom
| | - Jens Bölte
- Institute for Psychology, University of Münster, Otto-Creuzfeldt Center for Cognitive and Behavioral NeuroscienceMünsterGermany
| | - Gregor Domes
- Department of Biological and Clinical Psychology, University of TrierTrierGermany
- Institute for Cognitive and Affective NeuroscienceTrierGermany
| | - Matthias Gamer
- Department of Psychology, Julius-Maximilians-UniversityWürzburgGermany
| | - Anne Gärtner
- Faculty of Psychology, Technische Universität DresdenDresdenGermany
| | - Carsten Gießing
- Biological Psychology, Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University of OldenburgOldenburgGermany
| | - Caroline Gurr
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe UniversityFrankfurtGermany
- Brain Imaging Center, Goethe UniversityFrankfurtGermany
| | - Kirsten Hilger
- Department of Psychology, Julius-Maximilians-UniversityWürzburgGermany
- Department of Psychology, Psychological Diagnostics and Intervention, Catholic University of Eichstätt-IngolstadtEichstättGermany
| | - Philippe Jawinski
- Department of Psychology, Humboldt-Universität zu BerlinBerlinGermany
| | - Louisa Kulke
- Department of Developmental with Educational Psychology, University of BremenBremenGermany
| | - Alexander Lischke
- Department of Psychology, Medical School HamburgHamburgGermany
- Institute of Clinical Psychology and Psychotherapy, Medical School HamburgHamburgGermany
| | - Sebastian Markett
- Department of Psychology, Humboldt-Universität zu BerlinBerlinGermany
| | - Maria Meier
- Department of Psychology, University of KonstanzKonstanzGermany
- University Psychiatric Hospitals, Child and Adolescent Psychiatric Research Department (UPKKJ), University of BaselBaselSwitzerland
| | - Christian J Merz
- Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University BochumBochumGermany
| | - Tzvetan Popov
- Department of Psychology, Methods of Plasticity Research, University of ZurichZurichSwitzerland
| | - Lara MC Puhlmann
- Leibniz Institute for Resilience ResearchMainzGermany
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Daniel S Quintana
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- NevSom, Department of Rare Disorders & Disabilities, Oslo University HospitalOsloNorway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), University of OsloOsloNorway
| | - Tim Schäfer
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe UniversityFrankfurtGermany
- Brain Imaging Center, Goethe UniversityFrankfurtGermany
| | | | - Matthias FJ Sperl
- Department of Clinical Psychology and Psychotherapy, University of GiessenGiessenGermany
- Center for Mind, Brain and Behavior, Universities of Marburg and GiessenGiessenGermany
| | - Antonia Vehlen
- Department of Biological and Clinical Psychology, University of TrierTrierGermany
| | - Tina B Lonsdorf
- Department of Systems Neuroscience, University Medical Center Hamburg-EppendorfHamburgGermany
- Department of Psychology, Biological Psychology and Cognitive Neuroscience, University of BielefeldBielefeldGermany
| | - Gordon B Feld
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
- Department of Psychology, Heidelberg UniversityHeidelbergGermany
- Department of Addiction Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
| |
Collapse
|
98
|
Wutzl B, Leibnitz K, Kominami D, Ohsita Y, Kaihotsu M, Murata M. Analysis of the Correlation between Frontal Alpha Asymmetry of Electroencephalography and Short-Term Subjective Well-Being Changes. SENSORS (BASEL, SWITZERLAND) 2023; 23:7006. [PMID: 37571789 PMCID: PMC10422288 DOI: 10.3390/s23157006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Subjective well-being (SWB) describes how well people experience and evaluate their current condition. Previous studies with electroencephalography (EEG) have shown that SWB can be related to frontal alpha asymmetry (FAA). While those studies only considered a single SWB score for each experimental session, our goal is to investigate such a correlation for individuals with a possibly different SWB every 60 or 30 s. Therefore, we conducted two experiments with 30 participants each. We used different temperature and humidity settings and asked the participants to periodically rate their SWB. We computed the FAA from EEG over different time intervals and associated the given SWB, leading to pairs of (FAA, SWB) values. After correcting the imbalance in the data with the Synthetic Minority Over-sampling Technique (SMOTE), we performed a linear regression and found a positive linear correlation between FAA and SWB. We also studied the best time interval sizes for determining FAA around each SWB score. We found that using an interval of 10 s before recording the SWB score yields the best results.
Collapse
Affiliation(s)
- Betty Wutzl
- Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Japan
| | - Kenji Leibnitz
- Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Suita 565-0871, Japan
| | - Daichi Kominami
- Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Japan
| | - Yuichi Ohsita
- Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan
| | - Michiko Kaihotsu
- Technology Innovation Center, Daikin Industries, Ltd., Settsu 566-8585, Japan
| | - Masayuki Murata
- Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, Suita 565-0871, Japan
| |
Collapse
|
99
|
Owens CD, Bonin Pinto C, Mukli P, Szarvas Z, Peterfi A, Detwiler S, Olay L, Olson AL, Li G, Galvan V, Kirkpatrick AC, Balasubramanian P, Tarantini S, Csiszar A, Ungvari Z, Prodan CI, Yabluchanskiy A. Vascular mechanisms leading to progression of mild cognitive impairment to dementia after COVID-19: Protocol and methodology of a prospective longitudinal observational study. PLoS One 2023; 18:e0289508. [PMID: 37535668 PMCID: PMC10399897 DOI: 10.1371/journal.pone.0289508] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023] Open
Abstract
INTRODUCTION Mild cognitive impairment (MCI) is a prodromal stage to dementia, affecting up to 20% of the aging population worldwide. Patients with MCI have an annual conversion rate to dementia of 15-20%. Thus, conditions that increase the conversion from MCI to dementia are of the utmost public health concern. The COVID-19 pandemic poses a significant impact on our aging population with cognitive decline as one of the leading complications following recovery from acute infection. Recent findings suggest that COVID-19 increases the conversion rate from MCI to dementia in older adults. Hence, we aim to uncover a mechanism for COVID-19 induced cognitive impairment and progression to dementia to pave the way for future therapeutic targets that may mitigate COVID-19 induced cognitive decline. METHODOLOGY A prospective longitudinal study is conducted at the University of Oklahoma Health Sciences Center. Patients are screened in the Department of Neurology and must have a formal diagnosis of MCI, and MRI imaging prior to study enrollment. Patients who meet the inclusion criteria are enrolled and followed-up at 18-months after their first visit. Visit one and 18-month follow-up will include an integrated and cohesive battery of vascular and cognitive measurements, including peripheral endothelial function (flow-mediated dilation, laser speckle contrast imaging), retinal and cerebrovascular hemodynamics (dynamic vessel retinal analysis, functional near-infrared spectroscopy), and fluid and crystalized intelligence (NIH-Toolbox, n-back). Multiple logistic regression will be used for primary longitudinal data analysis to determine whether COVID-19 related impairment in neurovascular coupling and increases in white matter hyperintensity burden contribute to progression to dementia.
Collapse
Affiliation(s)
- Cameron D. Owens
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Camila Bonin Pinto
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Peter Mukli
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Doctoral School of Basic and Translational Medicine/Departments of Public Health, International Training Program in Geroscience, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
| | - Zsofia Szarvas
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Doctoral School of Basic and Translational Medicine/Departments of Public Health, International Training Program in Geroscience, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
| | - Anna Peterfi
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Doctoral School of Basic and Translational Medicine/Departments of Public Health, International Training Program in Geroscience, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
| | - Sam Detwiler
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Lauren Olay
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Ann L. Olson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Veronica Galvan
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Veterans Affairs Medical Center, Oklahoma City, OK, United States of America
| | - Angelia C. Kirkpatrick
- Veterans Affairs Medical Center, Oklahoma City, OK, United States of America
- Department of Medicine, Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Priya Balasubramanian
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Medicine, Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Stefano Tarantini
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Doctoral School of Basic and Translational Medicine/Departments of Public Health, International Training Program in Geroscience, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Anna Csiszar
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Doctoral School of Basic and Translational Medicine/Departments of Public Health, International Training Program in Geroscience, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Doctoral School of Basic and Translational Medicine/Departments of Public Health, International Training Program in Geroscience, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Calin I. Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, United States of America
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Andriy Yabluchanskiy
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Neurosurgery, Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| |
Collapse
|
100
|
Pei L, Northoff G, Ouyang G. Comparative analysis of multifaceted neural effects associated with varying endogenous cognitive load. Commun Biol 2023; 6:795. [PMID: 37524883 PMCID: PMC10390511 DOI: 10.1038/s42003-023-05168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 07/24/2023] [Indexed: 08/02/2023] Open
Abstract
Contemporary neuroscience has firmly established that mental state variation concurs with changes in neural dynamic activity in a complex way that a one-to-one mapping cannot describe. To explore the scenario of the multifaceted changes in neural dynamics associated with simple mental state variation, we took cognitive load - a common cognitive manipulation in psychology - as a venue to characterize how multiple neural dynamic features are simultaneously altered by the manipulation and how their sensitivity differs. Electroencephalogram was collected from 152 participants performing stimulus-free tasks with different demands. The results show that task demand alters wide-ranging neural dynamic features, including band-specific oscillations across broad frequency bands, scale-free dynamics, and cross-frequency phase-amplitude coupling. The scale-free dynamics outperformed others in indexing cognitive load variation. This study demonstrates a complex relationship between cognitive dynamics and neural dynamics, which points to a necessity to integrate multifaceted neural dynamic features when studying mind-brain relationship in the future.
Collapse
Affiliation(s)
- Leisi Pei
- Faculty of Education, The University of Hong Kong, Hong Kong, China
| | - Georg Northoff
- Institute of Mental Health Research, Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa, Ottawa, Canada
| | - Guang Ouyang
- Faculty of Education, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|