51
|
Choi YS, Jeong BS, Lee YK, Kim YD. Effects of Air Pollution on Chemosensory Dysfunction in COVID-19 Patients. J Korean Med Sci 2022; 37:e290. [PMID: 36217572 PMCID: PMC9550633 DOI: 10.3346/jkms.2022.37.e290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 08/11/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND In some patients, coronavirus disease 2019 (COVID-19) is accompanied by loss of smell and taste, and this has been reportedly associated with exposure to air pollutants. This study investigated the relationship between the occurrence of chemosensory dysfunction in COVID-19 patients and air pollutant concentrations in Korea. METHODS Information on the clinical symptom of chemosensory dysfunction, the date of diagnosis, residential area, age, and sex of 60,194 confirmed COVID-19 cases reported to the Korea Disease Control and Prevention Agency from January 20 to December 31, 2020 was collected. In addition, the daily average concentration of air pollutants for a week in the patients' residential area was collected from the Ministry of Environment based on the date of diagnosis of COVID-19. A binomial logistic regression model, using age and gender, standardized smoking rate, number of outpatient visits, 24-hour mean temperature and relative humidity at the regional level as covariates, was used to determine the effect of air pollution on chemosensory dysfunction. RESULTS Symptoms of chemosensory dysfunction were most frequent among patients in their 20s and 30s, and occurred more frequently in large cities. The logistic analysis showed that the concentration of particulate matter 10 (PM10) and 2.5 (PM2.5) up to 2 days before the diagnosis of COVID-19 and the concentration of sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) at least 7 days before the diagnosis of COVID-19 affected the development of chemosensory dysfunction. In the logistic regression model adjusted for age, sex, standardized smoking rate, number of outpatient visits, and daily average temperature and relative humidity, it was found that an increase in the interquartile range of PM10, PM2.5, SO2, NO2, and CO on the day of diagnosis increased the incidence of chemosensory dysfunction 1.10, 1.10, 1.17, 1.31, and 1.19-fold, respectively. In contrast, the O3 concentration had a negative association with chemosensory dysfunction. CONCLUSION High concentrations of air pollutants such as PM10, PM2.5, SO2, NO2, and CO on the day of diagnosis increased the risk of developing chemosensory dysfunction from COVID-19 infection. This result underscores the need to actively prevent exposure to air pollution and prevent COVID-19 infection. In addition, policies that regulate activities and products that create high amounts of harmful environmental wastes may help in promoting better health for all during COVID-19 pandemic.
Collapse
Affiliation(s)
- Young-Sook Choi
- Compensation & Support Center for COVID-19 Vaccine Injury, Korea Disease Control and Prevention Agency, Cheongju, Korea
| | - Byeong-Su Jeong
- Digital Health Devices Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| | - Yeon-Kyeng Lee
- Division of Healthcare Associated Infection Control, Bureau of Healthcare Safety and Immunization, Korea Disease Control and Prevention Agency, Cheongju, Korea.
| | - Yong-Dae Kim
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju, Korea
- Chungbuk Regional Cancer Center, Chungbuk National University Hospital, Cheongju, Korea.
| |
Collapse
|
52
|
Ergani SY, Dilbaz B, Ergani HM, Tekin ÖM. Effect of intrauterine ozone therapy on Asherman syndrome, an experimental rat model. Eur J Obstet Gynecol Reprod Biol 2022; 277:90-96. [DOI: 10.1016/j.ejogrb.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/24/2022] [Accepted: 08/21/2022] [Indexed: 11/04/2022]
|
53
|
Mahdiani S, Omidkhoda N, Rezaee R, Heidari S, Karimi G. Induction of JAK2/STAT3 pathway contributes to protective effects of different therapeutics against myocardial ischemia/reperfusion. Biomed Pharmacother 2022; 155:113751. [PMID: 36162372 DOI: 10.1016/j.biopha.2022.113751] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
Insufficiency in coronary blood supply results in myocardial ischemia and consequently, various clinical syndromes and irreversible injuries. Myocardial damage occurs as a result of two processes during acute myocardial infarction (MI): ischemia and subsequent reperfusion. According to the available evidence, oxidative stress, excessive inflammation reaction, reactive oxygen species (ROS) generation, and apoptosis are crucial players in the pathogenesis of myocardial ischemia/reperfusion (IR) injury. There is emerging evidence that Janus tyrosine kinase 2 (JAK2) signal transducer and activator of the transcription 3 (STAT3) pathway offers cardioprotection against myocardial IR injury. This article reviews therapeutics that exert cardioprotective effects against myocardial IR injury through induction of JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Sina Mahdiani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Omidkhoda
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadi Heidari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
54
|
Azmy AM, Abd Elbaki BT, Ali MA, Mahmoud AA. Effect of ozone versus naringin on testicular injury in experimentally induced ulcerative colitis in adult male albino rats. Ultrastruct Pathol 2022; 46:439-461. [DOI: 10.1080/01913123.2022.2132337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Abeer M. Azmy
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Bassant T. Abd Elbaki
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohammed A. Ali
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Abeer A Mahmoud
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
55
|
Mortazavi M, Bains A, Afsah-Hejri L, Ehsani R, LiWang PJ. SARS-CoV-2 pseudotyped virus persists on the surface of multiple produce but can be inactivated with gaseous ozone. Heliyon 2022; 8:e10280. [PMID: 35991981 PMCID: PMC9376980 DOI: 10.1016/j.heliyon.2022.e10280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/05/2022] [Accepted: 08/09/2022] [Indexed: 11/27/2022] Open
Abstract
Due to the immense societal and economic impact that the COVID-19 pandemic has caused, limiting the spread of SARS-CoV-2 is one of the most important priorities at this time. The global interconnectedness of the food industry makes it one of the biggest concerns for SARS-CoV-2 outbreaks. Although fomites are currently considered a low-risk route of transmission for SARS-CoV-2, new variants of the virus can potentially alter the transmission dynamics. In this study, we compared the survival rate of pseudotyped SARS-CoV-2 on plastic with some commonly used food samples (i.e., apple, strawberry, grapes, tomato, cucumber, lettuce, parsley, Brazil nut, almond, cashew, and hazelnut). The porosity level and the chemical composition of different food products affect the virus's stability and infectivity. Our results showed that tomato, cucumber, and apple offer a higher survival rate for the pseudotyped viruses. Next, we explored the effectiveness of ozone in deactivating the SARS-CoV-2 pseudotyped virus on the surface of tomato, cucumber, and apple. We found that the virus was effectively inactivated after being exposed to 15 ppm of ozone for 1 h under ambient conditions. SEM imaging revealed that while ozone exposure altered the wax layer on the surface of produce, it did not seem to damage the cells and their biological structures. The results of our study indicate that ozonated air can likely provide a convenient method of effectively disinfecting bulk food shipments that may harbour the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Mehrad Mortazavi
- Department of Mechanical Engineering, University of California, Merced, CA, USA
| | - Arjan Bains
- Department of Chemistry and Biochemistry, University of California, Merced, CA, USA
| | - Leili Afsah-Hejri
- Department of Mechanical Engineering, University of California, Merced, CA, USA
| | - Reza Ehsani
- Department of Mechanical Engineering, University of California, Merced, CA, USA
| | - Patricia J LiWang
- Department of Molecular and Cell Biology, University of California, Merced, CA, USA
| |
Collapse
|
56
|
Sun P, Xu W, Zhao X, Zhang C, Lin X, Gong M, Fu Z. Ozone induces autophagy by activating PPARγ/mTOR in rat chondrocytes treated with IL-1β. J Orthop Surg Res 2022; 17:351. [PMID: 35842709 PMCID: PMC9287877 DOI: 10.1186/s13018-022-03233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
Background Osteoarthritis (OA) is the main cause of older pain and disability. Intra-articular injections of ozone (O3) commonly have been found to have antioxidative and anti-inflammatory effects to reduce pain and improve function in knee osteoarthritis. It has been reported that reduced autophagy in chondrocytes plays an important role in the development of OA. This study aimed to probe the role of O3 on the autophagy in chondrocytes treated with IL-1β. Methods Primary chondrocytes were isolated from Wistar rats cartilage within 3 days. The OA chondrocytes model was induced via treatment with IL-1β for 24 h. Then the cells were treated with O3 and GW9662, the inhibitor of PPARγ. Cell viability was assessed by CCK-8. Further, the cells subjected to Western blot analysis, qRT-PCR and immunofluorescence assay. The numbers of autophagosomes were observed via transmission electron microscopy. Results 30 μg/ml O3 improved the viability of chondrocytes treated with IL-1β. The decreased level of autophagy proteins and the numbers of autophagosomes improved in IL-1β-treated chondrocytes with O3 via activating PPARγ/mTOR. In addition, the qRT-PCR results showed that O3 decreased the levels of IL-6, TNF-α and MMP-3, MMP-13 in chondrocytes treated with IL-1β. Conclusions 30 μg/ml O3 improved autophagy via activating PPARγ/mTOR signaling and suppressing inflammation in chondrocytes treated with IL-1β.
Collapse
Affiliation(s)
- Panpan Sun
- Department of Pain Management, The Second Hospital of Shandong University, Jinan, 250033, People's Republic of China.,Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, People's Republic of China
| | - Weicheng Xu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Xu Zhao
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Cong Zhang
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, People's Republic of China
| | - Xiaowen Lin
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Moxuan Gong
- Department of Anesthesiology, The Second Hospital of Shandong University, Jinan, 250033, People's Republic of China
| | - Zhijian Fu
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, People's Republic of China. .,Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China.
| |
Collapse
|
57
|
Suzen S, Tucci P, Profumo E, Buttari B, Saso L. A Pivotal Role of Nrf2 in Neurodegenerative Disorders: A New Way for Therapeutic Strategies. Pharmaceuticals (Basel) 2022; 15:ph15060692. [PMID: 35745610 PMCID: PMC9227112 DOI: 10.3390/ph15060692] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Clinical and preclinical research indicates that neurodegenerative diseases are characterized by excess levels of oxidative stress (OS) biomarkers and by lower levels of antioxidant protection in the brain and peripheral tissues. Dysregulations in the oxidant/antioxidant balance are known to be a major factor in the pathogenesis of neurodegenerative diseases and involve mitochondrial dysfunction, protein misfolding, and neuroinflammation, all events that lead to the proteostatic collapse of neuronal cells and their loss. Nuclear factor-E2-related factor 2 (Nrf2) is a short-lived protein that works as a transcription factor and is related to the expression of many cytoprotective genes involved in xenobiotic metabolism and antioxidant responses. A major emerging function of Nrf2 from studies over the past decade is its role in resistance to OS. Nrf2 is a key regulator of OS defense and research supports a protective and defending role of Nrf2 against neurodegenerative conditions. This review describes the influence of Nrf2 on OS and in what way Nrf2 regulates antioxidant defense for neurodegenerative conditions. Furthermore, we evaluate recent research and evidence for a beneficial and potential role of specific Nrf2 activator compounds as therapeutic agents.
Collapse
Affiliation(s)
- Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandogan, 06100 Ankara, Turkey
- Correspondence: ; Tel.: +90-533-391-5844
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli, 20, 71122 Foggia, Italy;
| | - Elisabetta Profumo
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (E.P.); (B.B.)
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (E.P.); (B.B.)
| | - Luciano Saso
- Department of Physiology and Pharmacology ‘‘Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
58
|
Pasek J, Szajkowski S, Cieślar G. Local Ozone Therapy in Complex Treatment of Venous Leg Ulcers: Ozone therapy for venous leg ulcers. INT J LOW EXTR WOUND 2022:15347346221104611. [PMID: 35637162 DOI: 10.1177/15347346221104611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A significant health problem in many countries of the world is the occurrence of hard to heal leg ulcers. In recent years modern methods of physical medicine in comprehensive treatment have been used often including ozone therapy. The study included 54 patients, 25 male and 29 female in age between 39 and 87 years (mean age: 66.7 ± 11.9 years) with venous leg ulcers who underwent a cycle of local ozone therapy. The progress in wound healing was evaluated by computerized planimetry and pain intensity was assessed with use a visual analog scale (VAS) . As a result of the applied local ozone therapy a statistically significant reduction of the ulcer area was achieved from median 7.1 (5.6-9.4) cm2 to 4.4 (3-7) cm2 (P = .000001), which was on median 38.74 (27.27-51.42)% compared to the baseline values before the start of the therapy. In 2 patients (3.7%) the ulcers were completely healed. 18 patients (33.3%) achieved a reduction in ulcer area of more than 50% of the baseline value and the remaining 34 patients (63%) also achieved a reduction in ulcer area. A statistically significant in the percentage of surface area was observed in the group of 19 patients suffering from > 5 years of age compared to the group of 35 patients suffering from ≤5 years (median 50 (32.03-67.16)% versus 33.96 (23.71-45); P = .033178), while percentage changes in ulcer surface area did not differ significantly between all other subgroups of patients. There was also a statistically significant reduction in the intensity of pain in VAS scale in all patients, median 6 (5-7) points before treatment versus 4.4 (3-7) points after treatment, P = .000001). Local ozone therapy of venous leg ulcers accelerate the healing process of ulcers in objective planimetric assessment and reduce the intensity of pain ailments.
Collapse
Affiliation(s)
- Jarosław Pasek
- Faculty of Health Sciences, Jan Długosz University in Częstochowa, Częstochowa, Poland
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Bytom, Poland
| | - Sebastian Szajkowski
- Department of Osteopathic Medicine, Department of Physiotherapy, Medical University of Mazovia in Warsaw, Warszawa, Poland
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Bytom, Poland
| |
Collapse
|
59
|
Cenci A, Macchia I, La Sorsa V, Sbarigia C, Di Donna V, Pietraforte D. Mechanisms of Action of Ozone Therapy in Emerging Viral Diseases: Immunomodulatory Effects and Therapeutic Advantages With Reference to SARS-CoV-2. Front Microbiol 2022; 13:871645. [PMID: 35531273 PMCID: PMC9069003 DOI: 10.3389/fmicb.2022.871645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
Medical oxygen-ozone (O2-O3) is a successful therapeutic approach accounting on the assessed beneficial action of ozone in the range 30–45 μg/ml (expanded range 10–80 μg/ml according to different protocols), as in this dosage range ozone is able to trigger a cellular hormetic response via the modulating activity of reactive oxygen species (ROS), as signaling molecules. The ozone-dependent ROS-mediated fatty acid oxidation leads to the formation of lipid ozonization products (LOPs), which act as signal transducers by triggering ROS signaling and therefore mitohormetic processes. These processes ultimately activate survival mechanisms at a cellular level, such as the Nrf2/Keap1/ARE system activation, the AMPK/FOXO/mTOR/Sir1 pathway and the Nrf2/NF-kB cross talk. Furthermore, indirectly, via these pathways, LOPs trigger the HIF-1α pathway, the HO-1 signaling and the NO/iNOS biochemical machinery. Ozone-driven shift of cytokine activation pathways, from pro-inflammatory to anti-inflammatory immediately afterwards, also exert direct immunoregulatory effects on regulatory T lymphocytes as well as on the intestinal microbiota, which in turn can affect immune response thus influencing the progression of the disease. In this review, we will describe the biological and biochemical mechanisms of action of ozone therapy with the aim of evaluating both positive and critical aspects of ozone use as a therapeutic adjuvant in the light of emerging viral infections, such as SARS-CoV-2 and microbiome-associated disorders related to SARS-CoV-2.
Collapse
Affiliation(s)
- Alessandra Cenci
- Core Facilities, Italian National Institute of Health, Rome, Italy
- *Correspondence: Alessandra Cenci,
| | - Iole Macchia
- Department of Oncology and Molecular Medicine, Italian National Institute of Health, Rome, Italy
| | - Valentina La Sorsa
- Research Coordination and Support Service, Italian National Institute of Health, Rome, Italy
| | | | | | | |
Collapse
|
60
|
Yousefi B, Banihashemian SZ, Feyzabadi ZK, Hasanpour S, Kokhaei P, Abdolshahi A, Emadi A, Eslami M. Potential therapeutic effect of oxygen-ozone in controlling of COVID-19 disease. Med Gas Res 2022; 12:33-40. [PMID: 34677149 PMCID: PMC8562402 DOI: 10.4103/2045-9912.325989] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/29/2021] [Accepted: 06/20/2021] [Indexed: 12/24/2022] Open
Abstract
Atmospheric ozone is produced when nitrogen oxides react with volatile organic compounds. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome contains a unique N-terminal fragment in the Spike protein, which allows it to bind to air pollutants in the environment. 'Our approach in this review is to study ozone and its effect on the SARS-CoV-2 virus and patients with coronavirus disease 2019 (COVID-19). Article data were collected from PubMed, Scopus, and Google Scholar databases. Ozone therapy has antiviral properties, improves blood flow, facilitates the transfer of oxygen in hypoxemic tissues, and reduces blood coagulation phenomena in COVID-19 patients. Ozone has immunomodulatory effects by modulating cytokines (reduction of interleukin-1, interleukin-6, tumor necrosis factor-α, and interleukin-10), induction of interferon-γ, anti-inflammatory properties by modulating NOD-, LRR- and pyrin domain-containing protein 3, inhibition of cytokine storm (blocking nuclear factor-κB and stimulating nuclear factor erythroid 2-related factor 2 pathway), stimulates cellular/humoral immunity/phagocytic function and blocks angiotensin-converting enzyme 2. In direct oxygen-ozone injection, oxygen reacts with several biological molecules such as thiol groups in albumin to form ozonoids. Intravenous injection of ozonated saline significantly increases the length of time a person can remain hypoxic. The rectal ozone protocol is rectal ozone insufflation, resulting in clinical improvement in oxygen saturation and biochemical improvement (fibrinogen, D-dimer, urea, ferritin, LDH, interleukin-6, and C-reactive protein). In general, many studies have shown the positive effect of ozone therapy as a complementary therapy in the recovery of COVID-19 patients. All the findings indicate that systemic ozone therapy is nontoxic and has no side effects in these patients.
Collapse
Affiliation(s)
- Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | | | | | - Sahar Hasanpour
- Department of Microbiology and Mycology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parviz Kokhaei
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Anna Abdolshahi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Alireza Emadi
- Deputy of Research and Technology, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Eslami
- Department of Bacteriology and Virology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
61
|
Karagulle OO, Yurttas AG. Ozone combined with doxorubicin exerts cytotoxic and anticancer effects on Luminal-A subtype human breast cancer cell line. REVISTA DA ASSOCIAÇÃO MÉDICA BRASILEIRA 2022; 68:507-513. [DOI: 10.1590/1806-9282.20211193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 11/22/2022]
|
62
|
Bette M, Cors E, Kresse C, Schütz B. Therapeutic Treatment of Superoxide Dismutase 1 (G93A) Amyotrophic Lateral Sclerosis Model Mice with Medical Ozone Decelerates Trigeminal Motor Neuron Degeneration, Attenuates Microglial Proliferation, and Preserves Monocyte Levels in Mesenteric Lymph Nodes. Int J Mol Sci 2022; 23:ijms23063403. [PMID: 35328829 PMCID: PMC8950555 DOI: 10.3390/ijms23063403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable and lethal neurodegenerative disease in which progressive motor neuron loss and associated inflammation represent major pathology hallmarks. Both the prevention of neuronal loss and neuro-destructive inflammation are still unmet challenges. Medical ozone, an ozonized oxygen mixture (O3/O2), has been shown to elicit profound immunomodulatory effects in peripheral organs, and beneficial effects in the aging brain. We investigated, in a preclinical drug testing approach, the therapeutic potential of a five-day O3/O2i.p. treatment regime at the beginning of the symptomatic disease phase in the superoxide dismutase (SOD1G93A) ALS mouse model. Clinical assessment of SOD1G93A mice revealed no benefit of medical ozone treatment over sham with respect to gross body weight, motor performance, disease duration, or survival. In the brainstem of end stage SOD1G93A mice, however, neurodegeneration was found decelerated, and SOD1-related vacuolization was reduced in the motor trigeminal nucleus in the O3/O2 treatment group when compared to sham-treated mice. In addition, microglia proliferation was less pronounced in the brainstem, while the hypertrophy of astroglia remained largely unaffected. Finally, monocyte numbers were reduced in the blood, spleen, and mesenteric lymph nodes at postnatal day 60 in SOD1G93A mice. A further decrease in monocyte numbers seen in mesenteric lymph nodes from sham-treated SOD1G93A mice at an advanced disease stage, however, was prevented by medical ozone treatment. Collectively, our study revealed a select neuroprotective and possibly anti-inflammatory capacity for medical ozone when applied as a therapeutic agent in SOD1G93A ALS mice.
Collapse
Affiliation(s)
- Michael Bette
- Institute of Anatomy and Cell Biology, Philipps-University, 35037 Marburg, Germany; (E.C.); (C.K.)
- Correspondence: (M.B.); (B.S.); Tel.: +49-6421-286-6780 (M.B.); +49-6421-286-4040 (B.S.)
| | - Eileen Cors
- Institute of Anatomy and Cell Biology, Philipps-University, 35037 Marburg, Germany; (E.C.); (C.K.)
- Department of Mitochondrial Proteostasis, Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Carolin Kresse
- Institute of Anatomy and Cell Biology, Philipps-University, 35037 Marburg, Germany; (E.C.); (C.K.)
| | - Burkhard Schütz
- Institute of Anatomy and Cell Biology, Philipps-University, 35037 Marburg, Germany; (E.C.); (C.K.)
- Correspondence: (M.B.); (B.S.); Tel.: +49-6421-286-6780 (M.B.); +49-6421-286-4040 (B.S.)
| |
Collapse
|
63
|
Abstract
Notwithstanding the use of ozone in medicine has become widespread in many countries of the world, its real pharmacological action remains not completely clarified. We know that other than its uses as disinfectant, well documented by the literature since the beginning of the past century, the more recent medical use of ozone in several pathologies as described by the international literature is still poor investigated. Furthermore, following its clinical uses with excellent clinical responses on several heterogeneous diseases and pain, it is now clear that the biological activity of this gas is mediated by graded responses to the mild oxidative stress induced after its application. Thus, the ancestral environment of our cells, whose energy production is strictly bind to oxygen burn, may be mediated by common defenses probably linked to the ubiquitous signaling pathway mediated by Nrf2. Moreover, after the first description of the oxidative stress in the 1970s and the discovery of Nrf2 as transcription factor in 1994, we could observe a rapid growth of the literatures regarding its function as master regulator of a myriad of cellular processes and its association to a multiple pattern of diseases including aging. In conclusion, to our opinion, the Systems Medicine approach could finally give to us the real key to better understand the wide reported efficacy of ozone treatment.
Collapse
Affiliation(s)
- Lamberto Re
- Former Researcher Clinical Pharmacology Department, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
64
|
Prajoko YW, Silalahi DRP, Priharsanti CHN, Supit T. The Effect of Topical Ozonated Aloe vera on VEGF Expression and Microvascular Density in Radiation Dermatitis. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Radiation dermatitis is one of the most common side effects of external radiation therapy. Ozonated Aloe vera oil is a novel topical intervention with immunomodulatory properties that have been proven to improve wound healing by promoting fibroblast proliferation and collagen synthesis.
AIM: The purpose of this study was to investigate the effect of topical ozonated A. vera oil application on the vascularization aspect of wound healing in a radiation dermatitis animal model.
METHODS: Thirty-six adult male Sprague Dawley rats were randomized into six groups of equal size (n = 6/group): two control and four intervention groups: Positive control (C1) rats were not given any therapy, and comparative control (C2) rats were given topical hydrocortisone cream 2.5%. Subjects in the P1 group were given non-ozonated A. vera therapy, P2 group was given 300 mg/mL ozonated A. vera, P3 group was given 600 mg/mL ozonated A. vera, and P4 was given 1200 mg/mL ozonated A. vera therapy. Subject termination and histopathological analyses of vascular endothelial growth factor (VEGF) and microvascular density were carried out after 7 treatment days.
RESULTS: Based on Weidner microvascular density scoring system, the least microvascular density was observed in C2, P3, and P4 (2.0 ± 0.0), followed by P1 (2.1 ± 0.1), P2 (2.9 ± 1.5), and C1 (3.0 ± 0.7). Based on immunoreactive immunoreactive score (IRS) VEGF scoring system, the lowest expression of VEGF was observed in group P3 (4.1 ± 1.1), followed by P4 (4.3 ± 0.8), C2 (4.3 ± 1.3), P1 (5.1 ± 1.0), P2 (5.4 ± 0.6), and C1 (6.5 ±1.0). There was a strong positive correlation of VEGF and microvascular density.
CONCLUSION: Topical application of ozonated A. vera to the radiated skin of Sprague Dawley rats reduced VEGF expression and microvascular density. This anti-inflammatory effect may suggest its potential clinical application.
Collapse
|
65
|
de Sire A, Marotta N, Ferrillo M, Agostini F, Sconza C, Lippi L, Respizzi S, Giudice A, Invernizzi M, Ammendolia A. Oxygen-Ozone Therapy for Reducing Pro-Inflammatory Cytokines Serum Levels in Musculoskeletal and Temporomandibular Disorders: A Comprehensive Review. Int J Mol Sci 2022; 23:ijms23052528. [PMID: 35269681 PMCID: PMC8910188 DOI: 10.3390/ijms23052528] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023] Open
Abstract
To date, the application of oxygen-ozone (O2O3) therapy has significantly increased in the common clinical practice in several pathological conditions. However, beyond the favorable clinical effects, the biochemical effects of O2O3 are still far from being understood. This comprehensive review aimed at investigating the state of the art about the effects of O2O3 therapy on pro-inflammatory cytokines serum levels as a modulator of oxidative stress in patients with musculoskeletal and temporomandibular disorders (TMD). The efficacy of O2O3 therapy could be related to the moderate oxidative stress modulation produced by the interaction of ozone with biological components. More in detail, O2O3 therapy is widely used as an adjuvant therapeutic option in several pathological conditions characterized by chronic inflammatory processes and immune overactivation. In this context, most musculoskeletal and temporomandibular disorders (TMD) share these two pathophysiological processes. Despite the paucity of in vivo studies, this comprehensive review suggests that O2O3 therapy might reduce serum levels of interleukin 6 in patients with TMD, low back pain, knee osteoarthritis and rheumatic diseases with a concrete and measurable interaction with the inflammatory pathway. However, to date, further studies are needed to clarify the effects of this promising therapy on inflammatory mediators and their clinical implications.
Collapse
Affiliation(s)
- Alessandro de Sire
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy; (N.M.); (A.A.)
- Correspondence: ; Tel.: +39-0961712819
| | - Nicola Marotta
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy; (N.M.); (A.A.)
| | - Martina Ferrillo
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy; (M.F.); (A.G.)
| | - Francesco Agostini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, 00185 Rome, Italy;
| | - Cristiano Sconza
- IRCCS Humanitas Research Center, Via Manzoni 56, 20089 Rozzano, Italy; (C.S.); (S.R.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Italy
| | - Lorenzo Lippi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy; (L.L.); (M.I.)
| | - Stefano Respizzi
- IRCCS Humanitas Research Center, Via Manzoni 56, 20089 Rozzano, Italy; (C.S.); (S.R.)
| | - Amerigo Giudice
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy; (M.F.); (A.G.)
| | - Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont “A. Avogadro”, 28100 Novara, Italy; (L.L.); (M.I.)
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Antonio Ammendolia
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy; (N.M.); (A.A.)
| |
Collapse
|
66
|
Effectiveness of ozone therapy in the treatment of endometritis in mares. J Equine Vet Sci 2022; 112:103900. [DOI: 10.1016/j.jevs.2022.103900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 01/02/2023]
|
67
|
Luiz RDS, Rampaso RR, Dos Santos AAC, Convento MB, Barbosa DA, da Fonseca CD, de Oliveira AS, Caires A, Furlan A, Schor N, Borges FT. BM-MSC-derived small extracellular vesicles (sEV) from trained animals presented nephroprotective potential in unilateralureteral obstruction model. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200187. [PMID: 34925478 PMCID: PMC8650265 DOI: 10.1590/1678-9199-jvatitd-2020-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/21/2021] [Indexed: 12/03/2022] Open
Abstract
Background: The efficacy of bone marrow mesenchymal stromal cells (BM-MSC) and its extracellular vesicles has been demonstrated for a broad spectrum of indications, including kidney diseases. However, BM-MSC donor characteristics and their potential are not usually considered. Therefore, the present work aims to evaluate the nephroprotective capacity of sEV secreted by BM-MSC from trained rats inunilateral ureteral obstruction (UUO) model. Methods: BM-MSC was characterized by their differentiation potential and immunophenotypic markers. The sEV were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis and western blot. Its miRNA cargo was examined by quantitative PCR analysis for miR-26a, 126a, and 296. Wistar rats were submitted to UUO procedure and concomitantly treated with sEV secreted by BM-MSC from the untrained andtrained rats. The kidney tissue from all groups was evaluated for fibrosis mediators (transforming growth factor beta1 and collagen), CD34-angiogenesis marker, and hypoxia-inducible factor 1 alpha (HIF-1α). Results: Treadmill training stimulated in BM-MSC the production of sEV loaded with pro-angiogenic miR-296. The treatment with this sEVin UUO-rats was able to attenuate collagen accumulation and increase CD34 and HIF-1α in the kidney tissue when compared to untrained ones. Tubular proximal cells under hypoxia and exposed to BM-MSC sEV demonstrate accumulation in HIF-1α and NFR-2 (nuclear factor erythroid 2-related factor 2), possibly to mediate the response to hypoxia and oxidative stress, under these conditions. Conclusion: The BM-MSC sEV from trained animals presented an increased nephroprotective potential compared to untrained vesicles by carrying 296-angiomiR and contributing to angiogenesis in UUO model.
Collapse
Affiliation(s)
- Rafael da Silva Luiz
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Rodolfo Rosseto Rampaso
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Alef Aragão Carneiro Dos Santos
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Marcia Bastos Convento
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Dulce Aparecida Barbosa
- Paulista School of Nursing, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Andréia Silva de Oliveira
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Agnaldo Caires
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Andrei Furlan
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Nestor Schor
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Fernanda Teixeira Borges
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil.,Interdisciplinary Program in Health Sciences, Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil
| |
Collapse
|
68
|
The Relationship between Ozone and Human Blood in the Course of a Well-Controlled, Mild, and Transitory Oxidative Eustress. Antioxidants (Basel) 2021; 10:antiox10121946. [PMID: 34943049 PMCID: PMC8750071 DOI: 10.3390/antiox10121946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
In the last twenty years there has been a proliferation of articles on the therapeutic use of ozone. As it is well-known, the term ozone therapy is very broad. It ranges from either systemic or loco-regional administration of unstable gaseous oxygen/ozone mixtures to the topical application of stable ozonated derivatives. Anyway, in relation to the absence of specific receptors and the extreme reactivity with the biological liquids with which it comes into contact, gaseous ozone cannot be classified as either a drug or a pro-drug. When the gaseous ozone impacts a biological matrix, both reactive oxygen species (ROS) and lipid oxidation products (LOPs) are formed. They represent the effector molecules responsible for modulating the therapeutic activity in the body. Apart from the merits of the action mechanisms resulting from the use of ozone, this article seeks to validate the practice of ozone therapy as an adjuvant treatment in full compliance with the physiology of the whole organism.
Collapse
|
69
|
Abstract
Knee osteoarthritis is a degenerative arthritis that mainly affects older adults. Over time, osteoarthritis can result in significant and sustained discomfort, pain, and disability. Current treatment focuses on the alleviation of pain and functional impairment. While arthroplasty is the definitive management option, it subjects patients to surgical complications, and the possibility of surgical revisions. In addition, many patients are not surgical candidates. Instead, pharmacological therapy is recommended first-line for most patients. On top of pharmacological therapy, there are a range of non-operative procedural options available. However, leading professional guidelines vary in their recommendations for these agents. Therefore, we present a review of recent randomized controlled trials and meta-analyses on injectable corticosteroids, hyaluronic acid (HA), platelet-rich plasma (PRP), mesenchymal stem cell injections, and ozone therapy. The preliminary data reveal the strongest evidence in favour of corticosteroid injections, although there are promising findings regarding the long-term efficacy of HA and PRP.
Collapse
|
70
|
Cokyaman T, Oztopuz O, Coskun O, Buyuk B, Kiraz HA, Elmas S. The effect of medical ozone on oxidative stress and neuroinflammation in the early stage after experimental status epilepticus. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
71
|
Cho KH, Kang DJ, Nam HS, Kim JH, Kim SY, Lee JO, Kim BJ. Ozonated Sunflower Oil Exerted Protective Effect for Embryo and Cell Survival via Potent Reduction Power and Antioxidant Activity in HDL with Strong Antimicrobial Activity. Antioxidants (Basel) 2021; 10:antiox10111651. [PMID: 34829522 PMCID: PMC8614758 DOI: 10.3390/antiox10111651] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 01/23/2023] Open
Abstract
Ozonated sunflower oil (OSO) has potent antimicrobial effects, making it useful for topical applications to treat various skin diseases. On the other hand, regarding mechanistic insight, the antioxidant activity and cytoprotective effects of OSO are relatively less known. The current study compared the antioxidant ability and protective ability of OSO on cells and embryos against oxidative stress, such as H2O2 and oxidized low-density lipoproteins (oxLDL), to investigate its potential applications for wound-healing and anti-infection. OSO showed potent radical scavenging activity and ferric ion reduction ability that was up to 35% and 42% stronger than sunflower oil (SO) as a control in a dose-dependent manner. Measurement of the wavelength-maximum fluorescence (WMF) of high-density lipoproteins (HDL) revealed different behavior between OSO and SO treatment (final 1–16%). The OSO treatment caused a 12 nm red shift of Trp movement from 345 nm (at 0%) to 357 nm (at 16%), while SO caused a 12 nm blue shift of Trp movement from 345 nm (at 0%) to 333 nm (at 16%). The fluorescence intensity of HDL3 was diminished remarkably by the OSO treatment by up to 80% from the initial level, while SO-treated HDL did not. OSO-treated HDL3 showed slower electromobility with stronger band intensity and bigger HDL particle sizes than those of SO-treated HDL3. The paraoxonase-1 (PON-1) activity of HDL3 was enhanced by a co-treatment of OSO that was up to 2.3 times higher than HDL3 alone in a dose-dependent manner, whereas the co-treatment of SO even inhibited the PON activity. The cell viability of RAW264.7 by the OSO treatment was 3.3 times higher than the SO treatment at a high dose range (from 10% to 50%, final). The OSO also exhibited more cytoprotective effects than SO in brain microglial cells in the presence of H2O2 (final 0.03%); treatment with OSO impeded apoptosis and reduced ROS production more than an SO treatment did. In the presence of H2O2 alone, 86 ± 5% of the embryos were killed by cell explosion after 24 h, but a co-treatment of OSO (final 4%) resulted in almost no embryo death (98% survivability). Injection of oxLDL (15 ng of protein) into zebrafish embryos caused acute death, while the co-injection of OSO (final 2%) resulted in 2.8 times higher survivability than oxLDL alone. These results suggest new effects of ozonated oil, such as enhanced antioxidant activity, more cytoprotective ability, and higher embryo protection against oxidative stress. These results may be useful in developing new methods for the quality control of ozonated oil and an assessment of its efficacy.
Collapse
Affiliation(s)
- Kyung-Hyun Cho
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Korea; (D.-J.K.); (H.-S.N.); (J.-H.K.)
- LipoLab, Yeungnam University, Gyeongsan 712-749, Korea
- Correspondence: ; Tel.: +82-53-964-1990; Fax: +82-53-965-1992
| | - Dae-Jin Kang
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Korea; (D.-J.K.); (H.-S.N.); (J.-H.K.)
| | - Hyo-Seon Nam
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Korea; (D.-J.K.); (H.-S.N.); (J.-H.K.)
| | - Ju-Hyun Kim
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Korea; (D.-J.K.); (H.-S.N.); (J.-H.K.)
| | - Su-Young Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Korea; (S.-Y.K.); (J.-O.L.); (B.-J.K.)
| | - Jung-Ok Lee
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Korea; (S.-Y.K.); (J.-O.L.); (B.-J.K.)
| | - Beom-Joon Kim
- Department of Dermatology, College of Medicine, Chung-Ang University, Seoul 06974, Korea; (S.-Y.K.); (J.-O.L.); (B.-J.K.)
| |
Collapse
|
72
|
Re L, Rutledge DK, Erario A, Baeza-Noci J, Travagli V, Menendez S, Mollica PJ. Correcting Misinformation about the Science and Practice of Evidence-Based, Safe and Effective Ozone Therapy. J Emerg Med 2021; 61:799-800. [PMID: 34625324 DOI: 10.1016/j.jemermed.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022]
Affiliation(s)
- Lamberto Re
- Pharmacology and Neurophysiology, Medinat and University of Ancona, Ancona, Italy
| | | | | | - Jose Baeza-Noci
- Spanish Association of Ozone Therapy, Medical Faculty, University of Valencia, Valencia, Spain
| | - Valter Travagli
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | | | - Phil J Mollica
- American College of Integrative Medicine and Dentistry, Saddle Brook, New Jersey
| |
Collapse
|
73
|
Cisterna B, Costanzo M, Lacavalla MA, Galiè M, Angelini O, Tabaracci G, Malatesta M. Low Ozone Concentrations Differentially Affect the Structural and Functional Features of Non-Activated and Activated Fibroblasts In Vitro. Int J Mol Sci 2021; 22:10133. [PMID: 34576295 PMCID: PMC8466365 DOI: 10.3390/ijms221810133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
Oxygen-ozone (O2-O3) therapy is increasingly applied as a complementary/adjuvant treatment for several diseases; however, the biological mechanisms accounting for the efficacy of low O3 concentrations need further investigations to understand the possibly multiple effects on the different cell types. In this work, we focused our attention on fibroblasts as ubiquitous connective cells playing roles in the body architecture, in the homeostasis of tissue-resident cells, and in many physiological and pathological processes. Using an established human fibroblast cell line as an in vitro model, we adopted a multimodal approach to explore a panel of cell structural and functional features, combining light and electron microscopy, Western blot analysis, real-time quantitative polymerase chain reaction, and multiplex assays for cytokines. The administration of O2-O3 gas mixtures induced multiple effects on fibroblasts, depending on their activation state: in non-activated fibroblasts, O3 stimulated proliferation, formation of cell surface protrusions, antioxidant response, and IL-6 and TGF-β1 secretion, while in LPS-activated fibroblasts, O3 stimulated only antioxidant response and cytokines secretion. Therefore, the low O3 concentrations used in this study induced activation-like responses in non-activated fibroblasts, whereas in already activated fibroblasts, the cell protective capability was potentiated.
Collapse
Affiliation(s)
- Barbara Cisterna
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (B.C.); (M.C.); (M.A.L.); (M.G.)
| | - Manuela Costanzo
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (B.C.); (M.C.); (M.A.L.); (M.G.)
| | - Maria Assunta Lacavalla
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (B.C.); (M.C.); (M.A.L.); (M.G.)
| | - Mirco Galiè
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (B.C.); (M.C.); (M.A.L.); (M.G.)
| | - Osvaldo Angelini
- San Rocco Clinic, Via Monsignor G.V. Moreni 95, I-25018 Montichari, Italy; (O.A.); (G.T.)
| | - Gabriele Tabaracci
- San Rocco Clinic, Via Monsignor G.V. Moreni 95, I-25018 Montichari, Italy; (O.A.); (G.T.)
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (B.C.); (M.C.); (M.A.L.); (M.G.)
| |
Collapse
|
74
|
Yu S, Guo H, Luo Y, Chen H. Ozone protects cardiomyocytes against ischemia/reperfusion injury: Regulating the heat shock protein 70 (HPS70) expression through activating the JAK2/STAT3 Pathway. Bioengineered 2021; 12:6606-6616. [PMID: 34516361 PMCID: PMC8806608 DOI: 10.1080/21655979.2021.1974760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury causes complications in early coronary artery reperfusion for acute myocardial infarction (AMI). Ozone (O3) has been reported to be applied for protecting I/R injury, but its detailed mechanism remains unclear. Our study focused on the protective effect of O3 pretreatment on myocardial I/R injury and JAK2/STAT3 signaling and HSP70 regulation involving in the mediation. The rat hearts which were perfused and isolated as well as the cultured cardiomyocytes of neonatal rat were exposed to hypoxia/reoxygenation (H/R) and different concentrations of O3 followed by heat shock protein 70 (HSP70) siRNA treatment. The results showed O3 attenuated the suppression of cell viability induced by H/R and decreased the release of activity of creatine kinase (CK), lactate dehydrogenase (LDH) and apoptosis of cardiomyocytes in vitro. Moreover, O3 also activated the JAK2/STAT3 signaling, upregulated the expression of HSP70 both in vitro and vivo, and decreased the index of apoptosis of cardiomyocytes caused by I/R as well as myocardial infarct area in vivo. In addition, HSP70 siRNA and JAK2 inhibitor AG490 inhibited the cardioprotective effect of O3. And the expression of HSP70 increased by ozone was reduced by AG-490. In conclusion, our results demonstrated that ozone protects cardiomyocytes in I/R injury through regulation of the expression of HSP70 by activating the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Shenglong Yu
- The first clinical college of Jinan University, Guangzhou, China.,Department of Cardiovascular, Panyu Central Hospital, (Cardiovascular Institute of Panyu District), Guangzhou, China
| | - Huizhuang Guo
- Department of Radiology, Panyu Central Hospital, (Medical Imaging Institute of Panyu District), Guangzhou, China
| | - Yi Luo
- The first clinical college of Jinan University, Guangzhou, China.,Department of Cardiovascular Medicine, First People's Hospital, Guangzhou, China
| | - Hanwei Chen
- The first clinical college of Jinan University, Guangzhou, China.,Department of Radiology, Panyu Central Hospital, (Medical Imaging Institute of Panyu District), Guangzhou, China
| |
Collapse
|
75
|
Erario MDLÁ, Croce E, Moviglia Brandolino MT, Moviglia G, Grangeat AM. Ozone as Modulator of Resorption and Inflammatory Response in Extruded Nucleus Pulposus Herniation. Revising Concepts. Int J Mol Sci 2021; 22:ijms22189946. [PMID: 34576108 PMCID: PMC8469341 DOI: 10.3390/ijms22189946] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 12/21/2022] Open
Abstract
Ozone therapy has been used to treat disc herniation for more than four decades. There are several papers describing results and mechanism of action. However, it is very important to define the characteristics of extruded disc herniation. Although ozone therapy showed excellent results in the majority of spinal diseases, it is not yet fully accepted within the medical community. Perhaps it is partly due to the fact that, sometimes, indications are not appropriately made. The objective of our work is to explain the mechanisms of action of ozone therapy on the extruded disc herniation. Indeed, these mechanisms are quite different from those exerted by ozone on the protruded disc herniation and on the degenerative disc disease because the inflammatory response is very different between the various cases. Extruded disc herniation occurs when the nucleus squeezes through a weakness or tear in the annulus. Host immune system considers the nucleus material to be a foreign invader, which triggers an immune response and inflammation. We think ozone therapy modulates this immune response, activating macrophages, which produce phagocytosis of extruded nucleus pulposus. Ozone would also facilitate the passage from the M1 to M2 phase of macrophages, going from an inflammatory phase to a reparative phase. Further studies are needed to verify the switch of macrophages.
Collapse
Affiliation(s)
| | - Eduardo Croce
- Instituto Argentino de Ozonoterapia (IAOT), Buenos Aires C1425ASG, Argentina; (M.d.l.Á.E.); (E.C.)
| | - Maria Teresita Moviglia Brandolino
- Research Center for Tissue Engineering and Cell Therapy (CIITT), Civil Association for Research and Development of Advanced Therapies (ACIDTA), Buenos Aires C1425DKA, Argentina; (M.T.M.B.); (G.M.)
| | - Gustavo Moviglia
- Research Center for Tissue Engineering and Cell Therapy (CIITT), Civil Association for Research and Development of Advanced Therapies (ACIDTA), Buenos Aires C1425DKA, Argentina; (M.T.M.B.); (G.M.)
| | - Aníbal M. Grangeat
- Instituto Argentino de Ozonoterapia (IAOT), Buenos Aires C1425ASG, Argentina; (M.d.l.Á.E.); (E.C.)
- Correspondence: ; Tel.: +54-11-4809-3110
| |
Collapse
|
76
|
Heo YJ, Kim HS. Ambient air pollution and endocrinologic disorders in childhood. Ann Pediatr Endocrinol Metab 2021; 26:158-170. [PMID: 34610703 PMCID: PMC8505042 DOI: 10.6065/apem.2142132.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/23/2021] [Indexed: 02/01/2023] Open
Abstract
Ambient air pollution has been proposed as an important environmental risk factor that increases global mortality and morbidity. Over the past decade, several human and animal studies have reported an association between exposure to air pollution and altered metabolic and endocrine systems in children. However, the results for these studies were mixed and inconclusive and did not demonstrate causality because different outcomes were observed due to different study designs, exposure periods, and methodologies for exposure measurements. Current proposed mechanisms include altered immune response, oxidative stress, neuroinflammation, inadequate placental development, and epigenetic modulation. In this review, we summarized the results of previous pediatric studies that reported effects of prenatal and postnatal air pollution exposure on childhood type 1 diabetes mellitus, obesity, insulin resistance, thyroid dysfunction, and timing of pubertal onset, along with underlying related mechanisms.
Collapse
Affiliation(s)
- You Joung Heo
- Department of Pediatrics, Ewha Women’s University College of Medicine, Seoul, Korea
| | - Hae Soon Kim
- Department of Pediatrics, Ewha Women’s University College of Medicine, Seoul, Korea,Address for correspondence: Hae Soon Kim Department of Pediatrics, Ewha Women’s University College of Medicine, 260, Gonghang-daero, Gangseo-gu, Seoul 07804, Korea
| |
Collapse
|
77
|
Scassellati C, Galoforo AC, Esposito C, Ciani M, Ricevuti G, Bonvicini C. Promising Intervention Approaches to Potentially Resolve Neuroinflammation And Steroid Hormones Alterations in Alzheimer's Disease and Its Neuropsychiatric Symptoms. Aging Dis 2021; 12:1337-1357. [PMID: 34341712 PMCID: PMC8279527 DOI: 10.14336/ad.2021.0122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is a biological process by which the central nervous system responds to stimuli/injuries affecting its homeostasis. So far as this reactive response becomes exacerbated and uncontrolled, it can lead to neurodegeneration, compromising the cognitive and neuropsychiatric domains. Parallelly, modifications in the hypothalamic signaling of neuroprotective hormones linked also to the inflammatory responses of microglia and astrocytes can exacerbate these processes. To complicate the picture, modulations in the gut microbiota (GM) can induce changes in neuroinflammation, altering cognitive and neuropsychiatric functioning. We conducted a web-based search on PubMed. We described studies regarding the cross-talk among microglia and astrocytes in the neuroinflammation processes, along with the role played by the steroid hormones, and how this can reflect on cognitive decline/neurodegeneration, in particular on Alzheimer's Disease (AD) and its neuropsychiatric manifestations. We propose and support the huge literature showing the potentiality of complementary/alternative therapeutic approaches (nutraceuticals) targeting the sustained inflammatory response, the dysregulation of hypothalamic system and the GM composition. NF-κB and Keap1/Nrf2 are the main molecular targets on which a list of nutraceuticals can modulate the altered processes. Since there are some limitations, we propose a new intervention natural treatment in terms of Oxygen-ozone (O2-O3) therapy that could be potentially used for AD pathology. Through a meta-analytic approach, we found a significant modulation of O3 on inflammation-NF-κB/NLRP3 inflammasome/Toll-Like Receptor 4 (TLR4)/Interleukin IL-17α signalling, reducing mRNA (p<0.00001 Odd Ratio (OR)=-5.25 95% CI:-7.04/-3.46) and protein (p<0.00001 OR=-4.85 95%CI:-6.89/-2.81) levels, as well as on Keap1/Nrf2 pathway. Through anti-inflammatory, immune, and steroid hormones modulation and anti-microbial activities, O3 at mild therapeutic concentrations potentiated with nutraceuticals and GM regulators could determine combinatorial effects impacting on cognitive and neurodegenerative domains, neuroinflammation and neuroendocrine signalling, directly or indirectly through the mediation of GM.
Collapse
Affiliation(s)
- Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Antonio Carlo Galoforo
- Oxygen-Ozone Therapy Scientific Society (SIOOT), Gorle, Italy.
- University of Pavia, Pavia, Italy.
| | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy.
- Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy.
- P.D. High School in Geriatrics, University of Pavia, Italy.
| | - Miriam Ciani
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| | - Giovanni Ricevuti
- P.D. High School in Geriatrics, University of Pavia, Italy.
- Department of Drug Sciences, University of Pavia, Italy.
- St. Camillus Medical University, Rome, Italy.
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
78
|
Viebahn-Haensler R, León Fernández OS. Ozone in Medicine. The Low-Dose Ozone Concept and Its Basic Biochemical Mechanisms of Action in Chronic Inflammatory Diseases. Int J Mol Sci 2021; 22:ijms22157890. [PMID: 34360655 PMCID: PMC8346137 DOI: 10.3390/ijms22157890] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022] Open
Abstract
Low-dose ozone acts as a bioregulator in chronic inflammatory diseases, biochemically characterized by high oxidative stress and a blocked regulation. During systemic applications, “Ozone peroxides” are able to replace H2O2 in its specific function of regulation, restore redox signaling, and improve the antioxidant capacity. Two different mechanisms have to be understood. Firstly, there is the direct mechanism, used in topical treatments, mostly via radical reactions. In systemic treatments, the indirect, ionic mechanism is to be discussed: “ozone peroxide” will be directly reduced by the glutathione system, informing the nuclear factors to start the regulation. The GSH/GSSG balance outlines the ozone dose and concentration limiting factor. Antioxidants are regulated, and in the case of inflammatory diseases up-regulated; cytokines are modulated, here downregulated. Rheumatoid arthritis RA as a model for chronic inflammation: RA, in preclinical and clinical trials, reflects the pharmacology of ozone in a typical manner: SOD (superoxide dismutase), CAT (catalase) and finally GSH (reduced glutathione) increase, followed by a significant reduction of oxidative stress. Inflammatory cytokines are downregulated. Accordingly, the clinical status improves. The pharmacological background investigated in a remarkable number of cell experiments, preclinical and clinical trials is well documented and published in internationally peer reviewed journals. This should encourage clinicians to set up clinical trials with chronic inflammatory diseases integrating medical ozone as a complement.
Collapse
Affiliation(s)
- Renate Viebahn-Haensler
- Medical Society for the Use of Ozone in Prevention and Therapy, Iffezheim, D-76473 Baden-Baden, Germany
- Correspondence: (R.V.-H.); (O.S.L.F.)
| | - Olga Sonia León Fernández
- Pharmacy and Food Institute, University of Havana, Coronela, Lisa, Havana 10 400, Cuba
- Correspondence: (R.V.-H.); (O.S.L.F.)
| |
Collapse
|
79
|
Chirumbolo S, Valdenassi L, Simonetti V, Bertossi D, Ricevuti G, Franzini M, Pandolfi S. Insights on the mechanisms of action of ozone in the medical therapy against COVID-19. Int Immunopharmacol 2021; 96:107777. [PMID: 34020394 PMCID: PMC8112288 DOI: 10.1016/j.intimp.2021.107777] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
An increasing amount of reports in the literature is showing that medical ozone (O3) is used, with encouraging results, in treating COVID-19 patients, optimizing pain and symptoms relief, respiratory parameters, inflammatory and coagulation markers and the overall health status, so reducing significantly how much time patients underwent hospitalization and intensive care. To date, aside from mechanisms taking into account the ability of O3 to activate a rapid oxidative stress response, by up-regulating antioxidant and scavenging enzymes, no sound hypothesis was addressed to attempt a synopsis of how O3 should act on COVID-19. The knowledge on how O3 works on inflammation and thrombosis mechanisms is of the utmost importance to make physicians endowed with new guns against SARS-CoV2 pandemic. This review tries to address this issue, so to expand the debate in the scientific community.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Luigi Valdenassi
- SIOOT, High School in Oxygen Ozone Therapy, University of Pavia, Italy; SIOOT INTERNATIONAL, Communian Clinic, Gorle Bergamo, Italy
| | - Vincenzo Simonetti
- SIOOT, High School in Oxygen Ozone Therapy, University of Pavia, Italy; SIOOT INTERNATIONAL, Communian Clinic, Gorle Bergamo, Italy
| | - Dario Bertossi
- Department of Surgery, Dentistry, Paediatrics and Gynaecology Unit of Maxillo-Facial Surgery University of Verona, Verona, Italy
| | | | - Marianno Franzini
- SIOOT, High School in Oxygen Ozone Therapy, University of Pavia, Italy; SIOOT INTERNATIONAL, Communian Clinic, Gorle Bergamo, Italy
| | - Sergio Pandolfi
- SIOOT, High School in Oxygen Ozone Therapy, University of Pavia, Italy; SIOOT INTERNATIONAL, Communian Clinic, Gorle Bergamo, Italy; Villa Mafalda Clinics via Monte delle Gioie, Rome, Italy
| |
Collapse
|
80
|
Ozone induces tolerance against cardiomyocytes oxygen-glucose deprivation/reperfusion through inhibition of autophagy pathway. Exp Ther Med 2021; 22:869. [PMID: 34194547 PMCID: PMC8237385 DOI: 10.3892/etm.2021.10301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/01/2021] [Indexed: 11/18/2022] Open
Abstract
Previous studies have reported that excess activation of autophagy in cardiomyocytes is associated with an increase in myocardial oxygen-glucose deprivation/reperfusion (OGD/R) injury. Ozone therapy affords significant cardio-protection against myocardial OGD/R injury. The present study was designed to determine whether ozone-induced tolerance to myocardial OGD/R injury was mediated by inhibiting autophagy. Subsequently, the rat cardio myoblast H9C2 cell line was used in the present study. A model of H9C2 cells under OGD/R was established. The cells were incubated with different concentrations of ozone (10-60 µg/ml) during reperfusion. Furthermore, to investigate the role of autophagy in OGD/R-induced injury, the autophagy inducer and inhibitor were applied. Cell viability was detected by Cell Counting kit-8 assay. Cell apoptosis was evaluated by flow cytometry. Oxidative stress was examined by superoxide dismutase, lactate dehydrogenase and malondialdehyde levels. The expressions of apoptosis regulator B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (BAX), cleaved caspase-3, markers of autophagy microtuble-associated protein 1 light chain 3 (LC3), autophagy-related protein 5 (Atg5) and Beclin-1 were measured by western blot analysis. As a result, OGD/R notably decreased cell viability and induced apoptosis in H9C2 cells, while ozone (10-40 µg/ml) reversed the noxious effects of OGD/R on H9C2 cells, and 20 µg/ml ozone was the most effective. Ozone inhibited the decrease in the ratio of Bcl-2/BAX and the expression of cleaved caspase-3, and inhibited the increase in the ratio of LC3-II/LC3-I and the expression of Atg5 and Beclin-1 elicited by OGD/R, as well as dose-dependently preventing OGD/R-induced oxidative stress. Furthermore, rapamycin markedly reversed the effects of ozone (20 µg/ml) on OGD/R-induced expression of autophagy marker proteins and 3-methyladenine further improved the effect of ozone. Taken together, the results of the present study provided a credible mechanism by which ozone treatment at low concentrations could protect the myocardium from OGD/R-induced injury by inhibiting autophagy.
Collapse
|
81
|
Low Ozone Concentrations Affect the Structural and Functional Features of Jurkat T Cells. Processes (Basel) 2021. [DOI: 10.3390/pr9061030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Autohemotherapy is the most used method to administer O2-O3 systemically. It consists in exposing a limited amount of blood to a gaseous O2-O3 and reinfusing it, thus activating a cascade of biochemical pathways involving plasma and blood cells that gives rise to antioxidant and anti-inflammatory responses. The therapeutic effects strictly depend on the O3 dose; it is therefore necessary to understand the relationship between the O3 concentration and the effects on blood cells involved in antioxidant and immune response. Here we performed a basic study on the effects of the low O3 concentrations used for autohemotherapy on the structural and functional features of the human T-lymphocyte-derived Jurkat cells. Ultrastructural, biomolecular, and bioanalytic techniques were used. Our findings showed that 10, 20, and 30 µg O3 concentrations were able to trigger Nrf2-induced antioxidant response and increase IL-2 secretion. However, viability and proliferation tests as well as ultrastructural observations revealed stress signs after treatment with 20 and 30 µg O3, thus designating 10 µg O3 as the optimal concentration in combining cell safety and efficient antioxidant and immune response in our in vitro system. These data offer novel evidence of the fine regulatory role played by the oxidative stress level in the hormetic response of T lymphocytes to O2-O3 administration.
Collapse
|
82
|
Sharma A, Shah M, Lakshmi S, Sane H, Captain J, Gokulchandran N, Khubchandani P, Pradeep MK, Gote P, Tuppekar B, Kulkarni P, Paranjape A, Pradhan R, Varghese R, Kasekar S, Nair V, Khanbande U. A pilot study for treatment of COVID-19 patients in moderate stage using intravenous administration of ozonized saline as an adjuvant treatment-registered clinical trial. Int Immunopharmacol 2021; 96:107743. [PMID: 33984718 PMCID: PMC8084612 DOI: 10.1016/j.intimp.2021.107743] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022]
Abstract
Objective Ozone therapy has tremendous therapeutic potential owing to its antiviral, anti-inflammatory and antioxidant properties, and potential to improve oxygenation. A pilot clinical trial was conducted to evaluate the safety and efficacy of intravenous ozonised saline treatment in patients with moderate COVID-19 pneumonia. Patients and Methods 10 patients were administered 200 ml freshly prepared ozonised saline intravenously over 1 h once a day for 8 days along with standard medical treatment. Clinical symptoms were monitored everyday and laboratory biomarkers, radiological findings at 1,3,6,10 days. Telephonic follow up was done for all after discharge till Day 14. 7 out of 10 patients required oxygen supplementation at recruitment. Results There was severe adverse event recorded in the study group. All patients improved from moderate to mild category in average 8 days and were discharged in average 9.7 days. None deteriorated to severe stage. All clinical symptoms resolved within 6 days and oxygen supplementation requirement reduced to none within 4.1 days. There was statistically significant reduction in CRP (p = 0.003), D-Dimer (p = 0.049), IL6 (p = 0.002) and statistically significant improvement (p = 0.001) in SpO2/FiO2 ratio. Change in LDH was borderline statistically not significant (p = 0.058). All patients showed significant resolution of bilateral interstitial infiltrates at the end of 10 days. Conclusion Resolved clinical symptoms, improved oxygenation, clearance of infiltrates on Chest X-ray and improvement in biomarkers in a short period with non-progression of the disease showed that IV ozonised saline therapy was safe and effective to prevent disease progression in COVID-19, making it an effective novel therapeutic tool.
Collapse
Affiliation(s)
- Alok Sharma
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | - Mili Shah
- Training and Education, Ozone Forum of India, Mumbai, India
| | - Satya Lakshmi
- National Institute of Naturopathy, Ministry of AYUSH, Pune, India
| | - Hemangi Sane
- Department of Research & Development, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | | | - Nandini Gokulchandran
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | - Pallavi Khubchandani
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | | | - Prakash Gote
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | - Balaji Tuppekar
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | - Pooja Kulkarni
- Department of Research & Development, NeuroGen Brain & Spine Institute, Navi Mumbai, India.
| | - Amruta Paranjape
- Department of Research & Development, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | - Radhika Pradhan
- Department of Research & Development, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | - Ritu Varghese
- Department of Research & Development, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | - Sushil Kasekar
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | - Vivek Nair
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | - Ummeammara Khanbande
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| |
Collapse
|
83
|
Moghadam MT, Dadfar R, Khorsandi L. The effects of ozone and melatonin on busulfan-induced testicular damage in mice. JBRA Assist Reprod 2021; 25:176-184. [PMID: 33507719 PMCID: PMC8083863 DOI: 10.5935/1518-0557.20200081] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Objective: Busulfan is one of the most common chemotherapeutic drugs and has the ability to induce apoptosis in testicular germ cells, which leads to infertility. In this study, the effects of ozone therapy and melatonin were evaluated on testicular disorders induced by busulfan. Methods: In this study, we divided 24 male mice into four groups: control group, groups treated with busulfan, busulfan/melatonin, and busulfan/ozone. At the end of a 35-day period, blood samples were taken from the mice and their testosterone levels were measured. Both of the mice’s testes were removed and weighed, afterwards, each one of them was used for evaluation of morphology by Johnson’s score, as well as for measuring the diameter and thickness of seminiferous tubules. The other testis was homogenized for measuring Malondialdehyde (MDA) and antioxidant status using Catalase (CAT), Super Oxide Dismutase (SOD), and Total Antioxidant Capacity (TAC) levels. Epididymis spermatozoa were also used to evaluate motility, morphology, and sperm count. Results: Busulfan significantly reduced the testis quality (weight, sperm parameters, testosterone, CAT, SOD, and TAC levels) and increased MDA and destruction of seminiferous tubules compared to the control group. Ozone and melatonin treatments significantly increased testis quality, sperm parameters, MDA, and antioxidant status, but they did not affect the TAC level. Conclusions: This study showed that similar to melatonin, ozone can reduce the effect of busulfan toxicity on mice testis. However, further studies are needed to understand the precise mechanism of ozone function on testis.
Collapse
Affiliation(s)
- Mahin Taheri Moghadam
- Cellular and Molecular Research center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Dadfar
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
84
|
Zhang C, Ma S, Zhao X, Wen B, Sun P, Fu Z. Upregulation of antioxidant and autophagy pathways via NRF2 activation protects spinal cord neurons from ozone damage. Mol Med Rep 2021; 23:428. [PMID: 33846774 PMCID: PMC8047762 DOI: 10.3892/mmr.2021.12067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/09/2021] [Indexed: 01/11/2023] Open
Abstract
Ozone therapy can relieve multiple types of pain but exhibits potential neurotoxicity, the mechanism of which is unclear. The present study aimed to identify the role of nuclear factor (erythroid-derived-2)-related 2 (NRF2) in preventing spinal cord injury caused by ozone overdose. Primary neuronal cells were extracted from newborn Wistar rats and authenticated by immunofluorescence using anti-microtubule-associated protein 2 as a cell type-specific marker. Cell viability assay with different ozone concentrations (0, 10, 20, 30 and 40 µg/ml) was used to determine the concentration that caused primary neuron injury; 30 min of 40 µg/ml ozone therapy notably decreased cell viability to 71%. In order to test the effects of ozone, the cells were divided into five treatment groups [0-, 30- and 40 µg/ml ozone, tert-butylhydroquinone (tBHQ) + 40 µg/ml ozone (T40) and tBHQ (T0)]. Cells in the T40 and T0 groups received 40 µmol/l tBHQ on the fifth day of SCN cultivation. Reverse transcription-quantitative PCR and western blotting showed that protein expression levels of heme oxygenase-1 (HO-1) and mRNA expression levels of HO-1 and NRF2 were decreased. NRF2, ubiquitin-binding protein p62 and microtubule-associated proteins 1A/1B light chain 3B expression levels were decreased following treatment with 40 µg/ml ozone. Immunofluorescence showed that NRF2 nuclear expression levels also decreased following 40 µg/ml ozone treatment. However, cells in the T40 group did not display decreased NRF2 nuclear expression levels. Normal/Apoptotic/Necrotic Cell Detection kit revealed that necrosis rate increased following treatment with 40 µg/ml ozone; however, the T40 group did not exhibit this increased necrosis. At 40 µg/ml, ozone increased spinal cord neuron (SCN) death in vitro. Moreover, treatment with 40 µg/ml ozone damaged SCNs. The p62/NRF2/antioxidant response element pathway prevented such injury. tBHQ activated this pathway, upregulated autophagy and increased local nuclear NRF2 concentration, thus enhancing the antioxidant system to protect SCNs from injury caused by high concentrations of ozone.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Shulin Ma
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xu Zhao
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Bei Wen
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Panpan Sun
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhijian Fu
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
85
|
Almeida BFMD, Amatti LZ, de Souza GG, Garcia LV, Montechiesi DF, Ignácio FS, de Oliveira PL, Costa LR, Floriano BP, Bosculo MRM, Joaquim JGF, Rubio CP. Effect of uterine ozone therapy and anticoagulant sampling on oxidative stress parameters in mares. Res Vet Sci 2021; 136:503-511. [PMID: 33878612 DOI: 10.1016/j.rvsc.2021.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/05/2021] [Accepted: 04/12/2021] [Indexed: 01/12/2023]
Abstract
With the purpose of assessing the effects of uterine ozone therapy and anticoagulant sampling on oxidative stress (OS) parameters in mares, ten mares underwent three consecutive days of uterine ozone therapy by flushing the uterus with ozonated lactated Ringer's solution followed by insufflation with ozone‑oxygen gas. Serum samples were obtained at baseline and days 3, 6, 10 and 17 to determine the effect of ozone therapy on OS markers. Plasma obtained with anticoagulants citrate, ethylenediaminetetraacetic acid (EDTA) and heparin were at baseline and 6 days following therapy to determine the effect of anticoagulant on OS parameters. Antioxidants albumin and uric acid, total antioxidant capacity (TAC) using four different methods, total oxidant capacity (TOC) and lipid peroxidation were determined through photocolorimetry. Statistical analyses comprised repeated measures ANOVA followed by Dunnett's test or Friedman followed by Dunn's post-hoc test. Differences were considered significant when p < 0.05. Uterine ozone therapy significantly decreased uric acid, TAC in all four different methods, concomitantly with an increase on TOC at days 3 and 6 following therapy. No changes were observed on albumin and lipid peroxidation levels. Anticoagulants prevented the detection of oxidative stress induced by uterine ozone therapy depending on the method of analysis. In conclusion, uterine ozone therapy causes systemic oxidative stress in mares and the choice of anticoagulant sampling interferes with laboratory tests.
Collapse
Affiliation(s)
- Breno Fernando Martins de Almeida
- Department of Veterinary Medicine, University Center of the Integrated Faculties of Ourinhos (Unifio), Ourinhos, São Paulo State, Brazil.
| | - Lidiana Zanetti Amatti
- Department of Veterinary Medicine, University Center of the Integrated Faculties of Ourinhos (Unifio), Ourinhos, São Paulo State, Brazil
| | - Giovanna Gati de Souza
- Department of Veterinary Medicine, University Center of the Integrated Faculties of Ourinhos (Unifio), Ourinhos, São Paulo State, Brazil
| | - Luana Venâncio Garcia
- Department of Veterinary Medicine, University Center of the Integrated Faculties of Ourinhos (Unifio), Ourinhos, São Paulo State, Brazil
| | - Daniela Fernandez Montechiesi
- Department of Veterinary Medicine, University Center of the Integrated Faculties of Ourinhos (Unifio), Ourinhos, São Paulo State, Brazil
| | | | - Paula Lima de Oliveira
- Veterinary Teaching Hospital Roque Quagliato, University Center of the Integrated Faculties of Ourinhos (Unifio), Ourinhos, São Paulo State, Brazil
| | - Letícia Ramos Costa
- Veterinary Teaching Hospital Roque Quagliato, University Center of the Integrated Faculties of Ourinhos (Unifio), Ourinhos, São Paulo State, Brazil
| | - Beatriz Perez Floriano
- Department of Veterinary Medicine, University Center of the Integrated Faculties of Ourinhos (Unifio), Ourinhos, São Paulo State, Brazil
| | - Maria Rachel Melo Bosculo
- Veterinary Teaching Hospital Roque Quagliato, University Center of the Integrated Faculties of Ourinhos (Unifio), Ourinhos, São Paulo State, Brazil
| | | | - Camila Peres Rubio
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Espinardo, Murcia, Spain
| |
Collapse
|
86
|
Xiao WR, Wu M, Bi XR. Ozone oil promotes wound healing via increasing miR-21-5p-mediated inhibition of RASA1. Wound Repair Regen 2021; 29:406-416. [PMID: 33783943 DOI: 10.1111/wrr.12907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/19/2021] [Accepted: 02/07/2021] [Indexed: 10/21/2022]
Abstract
Skin wound is a very common type of injury and the healing process greatly affects the life quality of individuals. Ozone has been shown beneficial to wound healing with unclear mechanisms. Here, we tested the effect of ozone oil (OZ) on wound healing and investigated the underlying mechanisms. Mouse skin wound model and Masson staining were used to evaluate the effect of OZ on wound healing. Primary fibroblast culture was employed to assess the functions of OZ, miR-21-5p, and RASA1. QRT-PCR and western blot were used to determine expression levels of miR-21-5p, RASA1, α-SMA, and collagen I. CCK-8 assay and scratch wound healing assay were used to measure viability and migration of fibroblasts. Dual luciferase activity assay was performed to validate miR-21-5p/RASA1 interaction. OZ accelerated wound healing in mice and promoted proliferation and migration abilities of fibroblasts. miR-21-5p was increased while RASA1 was reduced during the wound healing and OZ treatment augmented those changes, as well as increased levels of α-SMA and collagen I. Knockdown of miR-21-5p suppressed those effects of OZ on fibroblasts. Furthermore, miR-21-5p directly targeted RASA1 mRNA and negatively regulated its expression. Overexpression of RASA1 inhibited fibroblast proliferation and migration as well as diminished α-SMA and collagen I protein expression. Additionally, RASA1 overexpression blocked the promotion of miR-21-5p overexpression on fibroblast viability and migration. In vivo, miR-21-5p facilitated wound healing while overexpression of RASA1 reversed the effect. OZ promoted wound healing by enhancing miR-21-5p-mediated RASA1 inhibition to increase fibroblast proliferation and migration.
Collapse
Affiliation(s)
- Wei-Rong Xiao
- The 2nd Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Meng Wu
- The 2nd Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Xiang-Rong Bi
- The 2nd Operation Room Department, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| |
Collapse
|
87
|
Zhuang ZG, Lu LJ, Peng BG, Ma K, Cai ZY, Fu ZJ, Liu GZ, Liu JF, Liu WT, Li XH, Song T, Wu DS, Yao J, Yao P, Yu JS, Liu YQ. Expert consensus of Chinese Association for the Study of Pain on the application of ozone therapy in pain medicine. World J Clin Cases 2021; 9:2037-2046. [PMID: 33850923 PMCID: PMC8017497 DOI: 10.12998/wjcc.v9.i9.2037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/15/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
This consensus was compiled by first-line clinical experts in the field of pain medicine and was organized by the Chinese Association for the Study of Pain. To reach this consensus, we consulted a wide range of opinions and conducted in-depth discussions on the mechanism, indications, contraindications, operational specifications and adverse reactions of ozone iatrotechnique in the treatment of pain disorders. We also referred to related previous preclinical and clinical studies published in recent years worldwide. The purpose of this consensus is to standardize the rational application of ozone iatrotechnique in pain treatment, to improve its efficacy and safety and to reduce and prevent adverse reactions and complications in this process.
Collapse
Affiliation(s)
- Zhi-Gang Zhuang
- Department of Algology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan Province, China
| | - Li-Juan Lu
- Department of Algology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Bao-Gan Peng
- Department of Orthopedics, The Third Medical Center, General Hospital of the Chinese People’s Liberation Army, Beijing 100039, China
| | - Ke Ma
- Department of Algology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Zhen-Yu Cai
- Department of Algology, The First Affiliated Hospital of Xiamen University, Xiamen 361005, Fujian Province, China
| | - Zhi-Jian Fu
- Department of Algology, Shandong Provincial Hospital, Jinan 250021, Shandong Province, China
| | - Guang-Zhao Liu
- Department of Algology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Jin-Feng Liu
- Department of Algology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Wen-Tao Liu
- Department of Pharmacology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xiao-Hong Li
- Department of Algology, Foshan First People’s Hospital, Foshan 528000, Guangdong Province, China
| | - Tao Song
- Department of Algology, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Da-Sheng Wu
- Department of Algology, Jilin Provincial People's Hospital, Changchun 130499, Jilin Province, China
| | - Jing Yao
- Department of Algology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Peng Yao
- Department of Algology, Sheng Jing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Jian-She Yu
- Department of Algology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China
| | - Yan-Qing Liu
- Department of Algology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
88
|
Lacerda AC, Grillo R, de Barros TEP, Martins CB, de Carvalho Luposeli F. Efficacy of biostimulatory ozone therapy: Case report and literature review. J Cosmet Dermatol 2021; 21:130-133. [PMID: 33738907 DOI: 10.1111/jocd.14079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND The search for ever more lasting and safe aesthetic modalities is a constant. For this reason, biostimulation is finding more and more space in clinics; relatively simple, effective, and safe procedures, a procedure that delivers what it promises. Biostimulation is nothing more than an increase in collagen production, primarily type I, with the aim of facial or body rejuvenation. AIMS Evaluated some years ago as remarkable antimicrobial therapy, today it gains notoriety for its versatility in other areas, one of which is biostimulation, which has been growing. This paper aims to report a case of biostimulation through ozone therapy, as well as the protocol used, its indications, and contraindications. PATIENTS/METHODS A case report of rejuvenation with ozone therapy and a literature review. RESULTS Among biostimulatory treatments available, one has been gaining space among professionals and scientific recognition, ozone therapy. CONCLUSION It is a promising aesthetic therapeutic modality with efficient and safe results and high patient compliance and satisfaction.
Collapse
Affiliation(s)
| | - Ricardo Grillo
- Department of Oral & Maxillofacial Surgery - Faculdade São Leopoldo Mandic, Campinas, Brazil
| | | | | | | |
Collapse
|
89
|
Izadi M, Cegolon L, Javanbakht M, Sarafzadeh A, Abolghasemi H, Alishiri G, Zhao S, Einollahi B, Kashaki M, Jonaidi-Jafari N, Asadi M, Jafari R, Fathi S, Nikoueinejad H, Ebrahimi M, Imanizadeh S, Ghazale AH. Ozone therapy for the treatment of COVID-19 pneumonia: A scoping review. Int Immunopharmacol 2021; 92:107307. [PMID: 33476982 PMCID: PMC7752030 DOI: 10.1016/j.intimp.2020.107307] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 01/25/2023]
Abstract
Severe forms of COVID-19 can evolve into pneumonia, featured by acute respiratory failure due to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In viral diseases, the replication of viruses is seemingly stimulated by an imbalance between pro-oxidant and antioxidant activity as well as by the deprivation of antioxidant mechanisms. In COVID-19 pneumonia, oxidative stress also appears to be highly detrimental to lung tissues. Although inhaling ozone (O3) gas has been shown to be toxic to the lungs, recent evidence suggests that its administration via appropriate routes and at small doses can paradoxically induce an adaptive reaction capable of decreasing the endogenous oxidative stress. Ozone therapy is recommended to counter the disruptive effects of severe COVID-19 on lung tissues, especially if administered in early stages of the disease, thereby preventing the progression to ARDS.
Collapse
Affiliation(s)
- Morteza Izadi
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Luca Cegolon
- Local Health Unit N. 2 "Marca Trevigiana", Public Health Department, Treviso, Italy
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ali Sarafzadeh
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hassan Abolghasemi
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gholamhossein Alishiri
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shi Zhao
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mandana Kashaki
- Shahid Akbarabadi Clinical Research Development, Unit (ShACRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | - Mosa Asadi
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramezan Jafari
- Department of Radiology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Hassan Nikoueinejad
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Ebrahimi
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sina Imanizadeh
- Student Research Committee (SRC), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Hosein Ghazale
- Student Research Committee (SRC), Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
90
|
de Sire A, Agostini F, Lippi L, Mangone M, Marchese S, Cisari C, Bernetti A, Invernizzi M. Oxygen-Ozone Therapy in the Rehabilitation Field: State of the Art on Mechanisms of Action, Safety and Effectiveness in Patients with Musculoskeletal Disorders. Biomolecules 2021; 11:biom11030356. [PMID: 33652804 PMCID: PMC7996934 DOI: 10.3390/biom11030356] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
In recent years, the interest in oxygen–ozone (O2O3) therapy application has considerably increased in the field of rehabilitation. Despite its widespread use in common clinical practice, the biochemical effects of O2O3 are still far from being understood, although its chemical properties seem to play a pivotal role in exerting its positive effects on different pathological conditions. Indeed, the effectiveness of O2O3 therapy might be partly due to the moderate oxidative stress produced by O3 interactions with biological components. O2O3 therapy is widely used as an adjuvant therapeutic option in several pathological conditions characterized by chronic inflammatory processes and immune over-activation, and most musculoskeletal disorders share these pathophysiological processes. The present comprehensive review depicts the state-of-the-art on the mechanisms of action, safety and effectiveness of O2O3 therapy in the complex scenario of the management of musculoskeletal disorders. Taken together, our findings suggest that O2O3 therapy seems to reduce pain and improve functioning in patients affected by low back pain and knee osteoarthritis, as reported by several studies in the literature. However, to date, further studies are warranted to clearly investigate the therapeutic effects of this promising therapy on other musculoskeletal disorders in the field of rehabilitation.
Collapse
Affiliation(s)
- Alessandro de Sire
- Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-096-136-9768
| | - Francesco Agostini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, 00185 Rome, Italy; (F.A.); (M.M.); (S.M.); (A.B.)
| | - Lorenzo Lippi
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy; (L.L.); (C.C.); (M.I.)
| | - Massimiliano Mangone
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, 00185 Rome, Italy; (F.A.); (M.M.); (S.M.); (A.B.)
| | - Simone Marchese
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, 00185 Rome, Italy; (F.A.); (M.M.); (S.M.); (A.B.)
| | - Carlo Cisari
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy; (L.L.); (C.C.); (M.I.)
| | - Andrea Bernetti
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University, 00185 Rome, Italy; (F.A.); (M.M.); (S.M.); (A.B.)
| | - Marco Invernizzi
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy; (L.L.); (C.C.); (M.I.)
- Infrastruttura Ricerca Formazione Innovazione (IRFI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| |
Collapse
|
91
|
Manjunath SN, Sakar M, Katapadi M, Geetha Balakrishna R. Recent case studies on the use of ozone to combat coronavirus: Problems and perspectives. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2021; 21:101313. [PMID: 33344687 PMCID: PMC7733684 DOI: 10.1016/j.eti.2020.101313] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 05/04/2023]
Abstract
Coronavirus pandemic has created havoc in the world. COVID-19 is now officially labeled as Severe Acute Respiratory Syndrome-related Coronavirus-SARS-CoV-2. Therefore, it is equally important to combat the virus both inside the human body as well as in the environment. These viruses, being RNA viruses, are found to be susceptible to ozone. Ozone being an unstable molecule can breakup into its split products namely reactive oxygen species and ozonides creating a toxic environment for these viruses. Ozone mainly prevents the membrane fusion with the host cell, thus interfering with their replication. With vast applications of the gas, it has created a new spark in the field of medicine in combating these viruses and many other organisms. In this context, this article provides insights from recent clinical and research studies on the problems and possibilities in employing the ozone to combat the coronaviruses.
Collapse
Affiliation(s)
| | - M Sakar
- Centre for Nano and Material Sciences, Jain University, Bangalore 562112, Karnataka, India
| | - Manmohan Katapadi
- Ohio Heart Group, 800 East Broad Street, Columbus, OH 43205, USA
- Ohio University, Ohio Heart Group, Ohio Health systems and Mount Carmel Health systems, 800 East Broad Street, Columbus, OH 43205, USA
| | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, Jain University, Bangalore 562112, Karnataka, India
| |
Collapse
|
92
|
de Souza AKL, Colares RR, de Souza ACL. The main uses of ozone therapy in diseases of large animals: A review. Res Vet Sci 2021; 136:51-56. [PMID: 33582314 DOI: 10.1016/j.rvsc.2021.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/04/2021] [Accepted: 01/24/2021] [Indexed: 11/25/2022]
Abstract
Ozone (O3) is a molecule composed of three oxygen atoms, highly unstable, capable of reacting with various substances of the human and animal organism, giving rise to by-products that will participate in biochemical reactions. Thus, O3 has a wide mechanism of action and can be used in different diseases of large animals. In those animals, the therapy is used mainly in reproductive diseases and wound healing.
Collapse
Affiliation(s)
- Ana Karine Lima de Souza
- Veterinary Hospital Wild Animals Sector, Veterinary Institute Medicine, State University of Pará, UFPA-Castanhal, km 61 BR-316, Campus IFPA, Castanhal, PA 68740970, Brazil.
| | - Raquel Ribeiro Colares
- Veterinary Hospital Wild Animals Sector, Veterinary Institute Medicine, State University of Pará, UFPA-Castanhal, km 61 BR-316, Campus IFPA, Castanhal, PA 68740970, Brazil
| | - Ana Clara Lima de Souza
- Veterinary Hospital Wild Animals Sector, Veterinary Institute Medicine, State University of Pará, UFPA-Castanhal, km 61 BR-316, Campus IFPA, Castanhal, PA 68740970, Brazil
| |
Collapse
|
93
|
Süslü H, Tatarlı N, Ceylan D, Süslü H, Bozkurt S, Avsar T, Güçlü B. The effects of ozone oxidative preconditioning on subarachnoid hemorrhage via rat cerebral vasospasm model. NEUROL SCI NEUROPHYS 2021. [DOI: 10.4103/nsn.nsn_74_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
94
|
Lee Y, Ricky S, Lim TH, Jang KS, Kim H, Song Y, Kim SY, Chung KS. Wound Healing Effect of Nonthermal Atmospheric Pressure Plasma Jet on a Rat Burn Wound Model: A Preliminary Study. J Burn Care Res 2020; 40:923-929. [PMID: 31299070 PMCID: PMC6797227 DOI: 10.1093/jbcr/irz120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, an estimated 6 million patients seek medical attention for burns annually. Various treatment methods and materials have been investigated and developed to enhance burn wound healing. Recently, a new technology, plasma medicine, has emerged to offer new solutions in wound care. As the development of plasma medicine has shown benefit in wound healing, we aimed to assess the effects of plasma medicine on burn wounds. To investigate the effectiveness of a nonthermal atmospheric pressure plasma jet (NAPPJ) for burn wound treatment on a brass comb burn wound rat model. Burn wounds were made by applying a preheated brass comb (100°C) for 2 minutes, which resulted in four full-thickness burn wounds separated by three interspaces. Interspaces were exposed to NAPPJ treatment for 2 minutes and morphological changes and neutrophil infiltration were monitored at 0, 4, and 7 days post-wounding. The percentage of necrotic interspace was higher in the control group than in the plasma-treated group (51.8 ± 20.5% vs 31.5 ± 19.0%, P < .001). Moreover, the exposure of interspace to NAPPJ greatly reduced the number of infiltrating neutrophils. In addition, the percentage of interspace that underwent full-thickness necrosis in the plasma-treated group was smaller than that in the control group (28% vs 67%). NAPPJ exposure on interspaces has a positive effect on burn wounds leading to wound healing by reducing burn injury progression.
Collapse
Affiliation(s)
- Yoonje Lee
- Department of Emergency Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Sanjaya Ricky
- Department of Translational Medicine, College of Medicine, Hanyang University, Seoul, Korea
| | - Tae Ho Lim
- Department of Emergency Medicine, College of Medicine, Hanyang University, Seoul, Korea.,Convergence Technology Center for Disaster Preparedness, Hanyang University, Seoul, Korea
| | - Ki-Seok Jang
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Korea
| | - Hongjung Kim
- Department of Emergency Medicine, College of Medicine, Hanyang University, Seoul, Korea
| | - Yeongtak Song
- Convergence Technology Center for Disaster Preparedness, Hanyang University, Seoul, Korea
| | - Sang-You Kim
- Department of Engineering, College of Engineering, Hanyang University, Seoul, Korea
| | - Kyu-Sun Chung
- Department of Engineering, College of Engineering, Hanyang University, Seoul, Korea
| |
Collapse
|
95
|
Hernández A, Viñals M, Pablos A, Vilás F, Papadakos PJ, Wijeysundera DN, Bergese SD, Vives M. Ozone therapy for patients with COVID-19 pneumonia: Preliminary report of a prospective case-control study. Int Immunopharmacol 2020; 90:107261. [PMID: 33310665 PMCID: PMC7833586 DOI: 10.1016/j.intimp.2020.107261] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 01/08/2023]
Abstract
Ozonated blood was associated with shorter time to clinical improvement. Ozonated blood was associated with higher rates of clinical improvement at day 14. Ozonated blood was associated with shorter time to decrease of inflammatory markers.
Background There is still no specific treatment strategies for COVID-19 other than supportive management. Design A prospective case-control study determined by admittance to the hospital based on bed availability. Participants Eighteen patients with COVID-19 infection (laboratory confirmed) severe pneumonia admitted to hospital between 20th March and 19th April 2020. Patients admitted to the hospital during the study period were assigned to different beds based on bed availability. Depending on the bed the patient was admitted, the treatment was ozone autohemotherapy or standard treatment. Patients in the case group received ozonated blood twice daily starting on the day of admission for a median of four days. Each treatment involved administration of 200 mL autologous whole blood enriched with 200 mL of oxygen-ozone mixture with a 40 μg/mL ozone concentration. Main outcomes The primary outcome was time from hospital admission to clinical improvement. Results Nine patients (50%) received ozonated autohemotherapy beginning on the day of admission. Ozonated autohemotherapy was associated with shorter time to clinical improvement (median [IQR]), 7 days [6–10] vs 28 days [8–31], p = 0.04) and better outcomes at 14-days (88.8% vs 33.3%, p = 0.01). In risk-adjusted analyses, ozonated autohemotherapy was associated with a shorter mean time to clinical improvement (−11.3 days, p = 0.04, 95% CI –22.25 to −0.42). Conclusion Ozonated autohemotherapy was associated with a significantly shorter time to clinical improvement in this prospective case-control study. Given the small sample size and study design, these results require evaluation in larger randomized controlled trials. Clinical trial registration number: NCT04444531.
Collapse
Affiliation(s)
- Alberto Hernández
- Department of Anesthesiology & Perioperative Medicine, Policlinica Ibiza Hospital, Ibiza, Spain
| | - Montserrat Viñals
- Department of Internal Medicine, Policlinica Ibiza Hospital, Ibiza, Spain
| | - Asunción Pablos
- Department of Internal Medicine, Policlinica Ibiza Hospital, Ibiza, Spain
| | - Francisco Vilás
- Department of General Surgery, Policlinica Ibiza Hospital, Ibiza, Spain
| | - Peter J Papadakos
- Department of Intensive Care Medicine, University of Rochester, Rochester, NY, USA
| | - Duminda N Wijeysundera
- Department of Anesthesiology & Perioperative Medicine, St Michael Hospital, Toronto, Canada
| | - Sergio D Bergese
- Departments of Anesthesiology & Neurological Surgery, Stony Brook University, Stony Brook, NY, USA
| | - Marc Vives
- Department of Anesthesiology & Perioperative Medicine, Hospital Universitari de Girona Dr J Trueta, Girona, Spain.
| |
Collapse
|
96
|
Haghighat S, Oshaghi S. Effectiveness of Ozone Injection Therapy in Temporomandibular Disorders. Adv Biomed Res 2020; 9:73. [PMID: 33816392 PMCID: PMC8012860 DOI: 10.4103/abr.abr_105_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/31/2020] [Accepted: 06/28/2020] [Indexed: 11/23/2022] Open
Abstract
Temporomandibular disorder is a multifactorial disease that causes pain in the jaw and face area with nondental origin, which frequently limits talking, chewing, and other jaw activities. Various factors such as malocclusion, trauma, stress, parafunctional habits (clenching and bruxing), osteoarthritis, and synovitis play a role in its occurrence, although the etiology of these disorders is little understood. Several treatments are being used to treat these disorders. Ozone therapy has been recently introduced as one of these treatments. Considering that no extensive study has been found in this field so far, this study is aiming to report the studies that have been conducted to determine the efficacy of ozone injection therapy in temporomandibular joint disorders. This report addresses the studies which are conducted clinically, experimentally, and semi-experimentally over the past 10 years (2009-2019). The prepared articles are screened according to the inclusion criteria. In this study, total six related articles are addressed. One study was pre- and postintervention, and five studies were clinical trials. Studies show that although more studies are needed in contrast with occlusal splint, ozone therapy is generally more effective treatment for pain reduction compared to medication.
Collapse
Affiliation(s)
- Sheila Haghighat
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samira Oshaghi
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
97
|
Ozone influences migration and proliferation of neural stem cells in vitro. Neurosci Lett 2020; 739:135390. [PMID: 32947004 DOI: 10.1016/j.neulet.2020.135390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 11/23/2022]
Abstract
Ozone (O3) is a short-lived molecule which can be produced in a controlled reaction when oxygen is exposed to electric discharge. In the last few decades, many publications dealing both with animals and humans reported beneficial effects of ozone administration linked to its immunomodulatory and protective role against cellular damage. This is the first work which brings insight into how ozone influences cells of neural lineage in vitro and hypothesizes the potential molecular and novel electromagnetic mechanisms behind its action. By using neural stem cells, we show that ozone, especially in concentrations of around 11 μg/mL, significantly increases the speed of neural cell migration. With much lower effects, it also increases cell proliferation and cytokine production. Results of this study, at least partly, explain the observed beneficial effects of ozone in diseases of the nervous system tested on animal models and in human clinical trials. Therefore, here described effects of ozone on cellular level represent a firm basis for further investigation of possible applications of ozone in regeneration of the nervous system.
Collapse
|
98
|
Mehraban F, Rayati S, Mirzaaghaei V, Seyedarabi A. Highlighting the Importance of Water Alkalinity Using Phosphate Buffer Diluted With Deionized, Double Distilled and Tap Water, in Lowering Oxidation Effects on Human Hemoglobin Ozonated at High Ozone Concentrations in vitro. Front Mol Biosci 2020; 7:543960. [PMID: 33195405 PMCID: PMC7580503 DOI: 10.3389/fmolb.2020.543960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/14/2020] [Indexed: 12/01/2022] Open
Abstract
In autohemotherapy, it is important to find a way to lower the effects of oxidation, especially at high concentrations of ozone. One of the parameters, other than ozone concentration, which can have a significant effect on the stability and rate of decomposition of ozone at high concentrations, is the presence of ions in water. A number of spectroscopic techniques including intrinsic fluorescence, circular dichroism and UV–VIS were used as well as SDS-PAGE, Native-PAGE dynamic light scattering and water ion analysis, in order to investigate the effects of two relatively high concentrations of ozone on purified human hemoglobin (Hb) in phosphate buffer and diluted versions with deionized, double distilled and tap water in vitro. Purified human Hb and not whole blood human Hb was used in this study, since the addition of water to the whole blood would have caused the RBCs to lyse, affecting the purification of Hb for further analysis. Therefore, using purified Hb, it was possible to investigate the effects of dilution of 50 mM phosphate buffer to 10 mM phosphate buffer with different water types including non-ion containing deionized and double distilled water as well as ion-containing tap water, when ozonated at 55 and 80 μg/ml ozone. The fundamental changes in the secondary and tertiary structures of Hb were seen to be related to non-ozonated Hb samples diluted with deionized and double distilled waters, respectively. Generally, Hb oligomerization was more likely to occur at the higher concentration of ozone (80 μg/ml) and in samples where phosphate buffer was diluted with non-ion containing deionized and double distilled waters and not the ion-containing tap water. This could be explained by the presence of water alkalinity or bicarbonate ions in tap water, which can scavenge free radicals and reduce Hb oxidation/oligomerization. Therefore, it was concluded that Hb could best withstand high concentrations of ozone in the presence of the undiluted 50 mM phosphate buffer followed by phosphate buffer diluted with tap water, containing bicarbonate ions.
Collapse
Affiliation(s)
- Fouad Mehraban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Saeed Rayati
- Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| | - Vahid Mirzaaghaei
- The Founder of Gardina Corporation and Manufacturer of Ozone Therapy Devices in Tehran, Tehran, Iran
| | - Arefeh Seyedarabi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
99
|
Cattel F, Giordano S, Bertiond C, Lupia T, Corcione S, Scaldaferri M, Angelone L, De Rosa FG. Ozone therapy in COVID-19: A narrative review. Virus Res 2020; 291:198207. [PMID: 33115670 PMCID: PMC7585733 DOI: 10.1016/j.virusres.2020.198207] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
Ozone therapy seems to have an immunological role within SARS-CoV-2 regimens, because of the modulation of cytokines and interferons, including the induction of gamma interferon. Ozone exerts antiviral activity through the inhibition of viral replication and direct inactivation of viruses. Ozone is an antiviral drug enhancer and is not an alternative to antiviral drugs. The routes of ozone administration are direct intravenous, major autohaemotherapy and extravascular blood oxygenation-ozonation. Combined treatment with involving ozone and antivirals demonstrated a reduction in inflammation and lung damage.
The main objective of this narrative review is to describe the available evidence on the possible antiviral activity of ozone in patients with COVID-19 and its therapeutic applicability through hospital protocols. Amongst different possible therapies for SARS-CoV-2 pneumonia, ozone therapy seems to have an immunological role because of the modulation of cytokines and interferons, including the induction of gamma interferon. Some data suggest the possible role of ozone therapy in SARS, either as a monotherapy or, more realistically, as an adjunct to standard treatment regimens; therefore, there is increasing interest in the role of ozone therapy in COVID-19 treatment The PubMed and Scopus databases and the Italian Scientific Society of Oxygen Ozone Therapy website were used to identify articles focused on ozone therapy. The search was limited to articles published from January 2011 to July 2020. Of 280 articles found on ozone therapy, 13 were selected and narratively reviewed. Ozone exerts antiviral activity through the inhibition of viral replication and direct inactivation of viruses. Ozone is an antiviral drug enhancer and is not an alternative to antiviral drugs. Combined treatment with involving ozone and antivirals demonstrated a reduction in inflammation and lung damage. The routes of ozone administration are direct intravenous, major autohaemotherapy and extravascular blood oxygenation-ozonation. Systemic ozone therapy seems useful in controlling inflammation, stimulating immunity and as antiviral activity and providing protection from acute coronary syndromes and ischaemia reperfusion damage, thus suggesting a new methodology of immune therapy. Systemic ozone therapy in combination with antivirals in COVID-19-positive patients may be justified, helpful and synergic.
Collapse
Affiliation(s)
- Francesco Cattel
- S.C. Farmacia Ospedaliera, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Susanna Giordano
- S.C. Farmacia Ospedaliera, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Cecilia Bertiond
- S.C. Farmacia Ospedaliera, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Tommaso Lupia
- Department of Medical Sciences, Infectious Diseases, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy.
| | - Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy; Tufts University School of Medicine, Boston, MA, USA
| | - Matilde Scaldaferri
- S.C. Farmacia Ospedaliera, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Lorenzo Angelone
- Direzione Sanitaria d'Azienda, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Francesco Giuseppe De Rosa
- Department of Medical Sciences, Infectious Diseases, University of Turin, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| |
Collapse
|
100
|
Dietary Iron Overload Differentially Modulates Chemically-Induced Liver Injury in Rats. Nutrients 2020; 12:nu12092784. [PMID: 32932999 PMCID: PMC7551424 DOI: 10.3390/nu12092784] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatic iron overload is well known as an important risk factor for progression of liver diseases; however, it is unknown whether it can alter the susceptibility to drug-induced hepatotoxicity. Here we investigate the pathological roles of iron overload in two single-dose models of chemically-induced liver injury. Rats were fed a high-iron (Fe) or standard diet (Cont) for four weeks and were then administered with allyl alcohol (AA) or carbon tetrachloride (CCl4). Twenty-four hours after administration mild mononuclear cell infiltration was seen in the periportal/portal area (Zone 1) in Cont-AA group, whereas extensive hepatocellular necrosis was seen in Fe-AA group. Centrilobular (Zone 3) hepatocellular necrosis was prominent in Cont-CCl4 group, which was attenuated in Fe-CCl4 group. Hepatic lipid peroxidation and hepatocellular DNA damage increased in Fe-AA group compared with Cont-AA group. Hepatic caspase-3 cleavage increased in Cont-CCl4 group, which was suppressed in Fe-CCl4 group. Our results showed that dietary iron overload exacerbates AA-induced Zone-1 liver injury via enhanced oxidative stress while it attenuates CCl4-induced Zone-3 liver injury, partly via the suppression of apoptosis pathway. This study suggested that susceptibility to drugs or chemical compounds can be differentially altered in iron-overloaded livers.
Collapse
|