51
|
Liu Q, Ren B, Xie K, Yan Y, Liu R, Lv S, He Q, Yang B, Li L. Nitrogen-doped carbon dots for sensitive detection of ferric ions and monohydrogen phosphate by the naked eye and imaging in living cells. NANOSCALE ADVANCES 2021; 3:805-811. [PMID: 36133842 PMCID: PMC9418011 DOI: 10.1039/d0na00769b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/03/2020] [Indexed: 05/11/2023]
Abstract
Nitrogen doped carbon dots (N-CDs) have been prepared via a one-pot hydrothermal method by using formamide and o-phenylenediamine as the carbon precursors. The as-fabricated N-CDs display excellent water dispersibility, good biocompatibility and anti-photobleaching properties. A strong emission band with an emission maximum (λ fl max) of 556 nm is observed under 450 nm excitation, and a large Stokes shift of 106 nm is presented. However, the fluorescence is quenched by the addition of Fe3+; a good linearity is shown in the range of 0-65 μM with a detection limit as low as 0.85 μM. Fortunately, the quenched fluorescence could be recovered rapidly by the addition of monohydrogen phosphate (HPO4 2-) due to the formation of the stable [N-CDs-Fe3+-HPO4 2-] complex, and a good linearity is exhibited in the range of 0-60 μM with a low detection limit of 0.80 μM for HPO4 2-. A novel "on-off-on" fluorescence response is seen with an obvious color change from yellow-crimson-yellow by the naked eye. In addition, the confocal microscopy images suggest that the as-synthesized N-CDs could serve as a sensitive nanosensor for Fe3+ and HPO4 2- detection, implying the diverse potential application of N-CDs in the biomedical field.
Collapse
Affiliation(s)
- Qiaoling Liu
- Department of Chemistry, Taiyuan Normal University 319 University Street, Yuci District Jinzhong 030619 P. R. China +86-351-2886580
| | - Borong Ren
- Department of Chemistry, Taiyuan Normal University 319 University Street, Yuci District Jinzhong 030619 P. R. China +86-351-2886580
| | - Kaixin Xie
- Department of Chemistry, Taiyuan Normal University 319 University Street, Yuci District Jinzhong 030619 P. R. China +86-351-2886580
| | - Yanmei Yan
- Department of Chemistry, Taiyuan Normal University 319 University Street, Yuci District Jinzhong 030619 P. R. China +86-351-2886580
| | - Ruirong Liu
- Department of Chemistry, Taiyuan Normal University 319 University Street, Yuci District Jinzhong 030619 P. R. China +86-351-2886580
| | - Shiyou Lv
- Department of Chemistry, Taiyuan Normal University 319 University Street, Yuci District Jinzhong 030619 P. R. China +86-351-2886580
| | - Qing He
- Department of Chemistry, Taiyuan Normal University 319 University Street, Yuci District Jinzhong 030619 P. R. China +86-351-2886580
| | - Boru Yang
- Department of Chemistry, Taiyuan Normal University 319 University Street, Yuci District Jinzhong 030619 P. R. China +86-351-2886580
| | - Lin Li
- Department of Chemistry, Taiyuan Normal University 319 University Street, Yuci District Jinzhong 030619 P. R. China +86-351-2886580
| |
Collapse
|
52
|
Lee JY, Marian OC, Don AS. Defective Lysosomal Lipid Catabolism as a Common Pathogenic Mechanism for Dementia. Neuromolecular Med 2021; 23:1-24. [PMID: 33550528 DOI: 10.1007/s12017-021-08644-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023]
Abstract
Dementia poses an ever-growing burden to health care and social services as life expectancies have grown across the world and populations age. The most common forms of dementia are Alzheimer's disease (AD), vascular dementia, frontotemporal dementia (FTD), and Lewy body dementia, which includes Parkinson's disease (PD) dementia and dementia with Lewy bodies (DLB). Genomic studies over the past 3 decades have identified variants in genes regulating lipid transporters and endosomal processes as major risk determinants for AD, with the most significant being inheritance of the ε4 allele of the APOE gene, encoding apolipoprotein E. A recent surge in research on lipid handling and metabolism in glia and neurons has established defective lipid clearance from endolysosomes as a central driver of AD pathogenesis. The most prevalent genetic risk factors for DLB are the APOE ε4 allele, and heterozygous loss of function mutations in the GBA gene, encoding the lysosomal catabolic enzyme glucocerebrosidase; whilst heterozygous mutations in the GRN gene, required for lysosomal catabolism of sphingolipids, are responsible for a significant proportion of FTD cases. Homozygous mutations in the GBA or GRN genes produce the lysosomal storage diseases Gaucher disease and neuronal ceroid lipofuscinosis. Research from mouse and cell culture models, and neuropathological evidence from lysosomal storage diseases, has established that impaired cholesterol or sphingolipid catabolism is sufficient to produce the pathological hallmarks of dementia, indicating that defective lipid catabolism is a common mechanism in the etiology of dementia.
Collapse
Affiliation(s)
- Jun Yup Lee
- Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Oana C Marian
- Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Anthony S Don
- Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia. .,NHMRC Clinical Trials Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
53
|
Randez-Gil F, Bojunga L, Estruch F, Winderickx J, Del Poeta M, Prieto JA. Sphingolipids and Inositol Phosphates Regulate the Tau Protein Phosphorylation Status in Humanized Yeast. Front Cell Dev Biol 2020; 8:592159. [PMID: 33282871 PMCID: PMC7705114 DOI: 10.3389/fcell.2020.592159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/21/2020] [Indexed: 01/08/2023] Open
Abstract
Hyperphosphorylation of protein tau is a hallmark of Alzheimer's disease (AD). Changes in energy and lipid metabolism have been correlated with the late onset of this neurological disorder. However, it is uncertain if metabolic dysregulation is a consequence of AD or one of the initiating factors of AD pathophysiology. Also, it is unclear whether variations in lipid metabolism regulate the phosphorylation state of tau. Here, we show that in humanized yeast, tau hyperphosphorylation is stimulated by glucose starvation in coincidence with the downregulation of Pho85, the yeast ortholog of CDK5. Changes in inositol phosphate (IP) signaling, which has a central role in energy metabolism, altered tau phosphorylation. Lack of inositol hexakisphosphate kinases Kcs1 and Vip1 (IP6 and IP7 kinases in mammals) increased tau hyperphosphorylation. Similar effects were found by mutation of IPK2 (inositol polyphosphate multikinase), or PLC1, the yeast phospholipase C gene. These effects may be explained by IP-mediated regulation of Pho85. Indeed, this appeared to be the case for plc1, ipk2, and kcs1. However, the effects of Vip1 on tau phosphorylation were independent of the presence of Pho85, suggesting additional mechanisms. Interestingly, kcs1 and vip1 strains, like pho85, displayed dysregulated sphingolipid (SL) metabolism. Moreover, genetic and pharmacological inhibition of SL biosynthesis stimulated the appearance of hyperphosphorylated forms of tau, while increased flux through the pathway reduced its abundance. Finally, we demonstrated that Sit4, the yeast ortholog of human PP2A protein phosphatase, is a downstream effector of SL signaling in mediating the tau phosphorylation state. Altogether, our results add new knowledge on the molecular effectors involved in tauopathies and identify new targets for pharmacological intervention.
Collapse
Affiliation(s)
- Francisca Randez-Gil
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Lino Bojunga
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Francisco Estruch
- Departament of Biochemistry and Molecular Biology, Universitat de València, Valencia, Spain
| | | | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States
- Veterans Administration Medical Center, Northport, NY, United States
| | - Jose A. Prieto
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
54
|
Chua XY, Ho LTY, Xiang P, Chew WS, Lam BWS, Chen CP, Ong WY, Lai MKP, Herr DR. Preclinical and Clinical Evidence for the Involvement of Sphingosine 1-Phosphate Signaling in the Pathophysiology of Vascular Cognitive Impairment. Neuromolecular Med 2020; 23:47-67. [PMID: 33180310 DOI: 10.1007/s12017-020-08632-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
Abstract
Sphingosine 1-phosphates (S1Ps) are bioactive lipids that mediate a diverse range of effects through the activation of cognate receptors, S1P1-S1P5. Scrutiny of S1P-regulated pathways over the past three decades has identified important and occasionally counteracting functions in the brain and cerebrovascular system. For example, while S1P1 and S1P3 mediate proinflammatory effects on glial cells and directly promote endothelial cell barrier integrity, S1P2 is anti-inflammatory but disrupts barrier integrity. Cumulatively, there is significant preclinical evidence implicating critical roles for this pathway in regulating processes that drive cerebrovascular disease and vascular dementia, both being part of the continuum of vascular cognitive impairment (VCI). This is supported by clinical studies that have identified correlations between alterations of S1P and cognitive deficits. We review studies which proposed and evaluated potential mechanisms by which such alterations contribute to pathological S1P signaling that leads to VCI-associated chronic neuroinflammation and neurodegeneration. Notably, S1P receptors have divergent but overlapping expression patterns and demonstrate complex interactions. Therefore, the net effect produced by S1P represents the cumulative contributions of S1P receptors acting additively, synergistically, or antagonistically on the neural, vascular, and immune cells of the brain. Ultimately, an optimized therapeutic strategy that targets S1P signaling will have to consider these complex interactions.
Collapse
Affiliation(s)
- Xin Ying Chua
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Leona T Y Ho
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore
| | - Ping Xiang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wee Siong Chew
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Brenda Wan Shing Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, 119260, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore.
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Biology, San Diego State University, San Diego, CA, USA.
- American University of Health Sciences, Long Beach, CA, USA.
| |
Collapse
|
55
|
Pedrini S, Chatterjee P, Hone E, Martins RN. High‐density lipoprotein‐related cholesterol metabolism in Alzheimer’s disease. J Neurochem 2020; 159:343-377. [DOI: 10.1111/jnc.15170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Steve Pedrini
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Pratishtha Chatterjee
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
| | - Eugene Hone
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
| | - Ralph N. Martins
- Sarich Neurosciences Research InstituteEdith Cowan University Nedlands WA Australia
- Department of Biomedical Sciences Faculty of Medicine, Health and Human Sciences Macquarie University Sydney NSW Australia
- School of Psychiatry and Clinical Neurosciences University of Western Australia Nedlands WA Australia
| |
Collapse
|
56
|
Spatio-temporal correlates of gene expression and cortical morphology across lifespan and aging. Neuroimage 2020; 224:117426. [PMID: 33035668 DOI: 10.1016/j.neuroimage.2020.117426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 11/23/2022] Open
Abstract
Evidence from neuroimaging and genetic studies supports the concept that brain aging mirrors development. However, it is unclear whether mechanisms linking brain development and aging provide new insights to delay aging and potentially reverse it. This study determined biological mechanisms and phenotypic traits underpinning brain alterations across the lifespan and in aging by examining spatio-temporal correlations between gene expression and cortical volumes using datasets d with the age range from 2 to 82 years. We revealed that a large proportion of genes whose expression was associated with cortical volumes across the lifespan were in astrocytes. These genes, which showed up-regulation during development and down-regulation during aging, contributed to fundamental homeostatic functions of astrocytes. Included among these genes were those encoding components of cAMP, Ras, and retrograde endocannabinoid signaling pathways. Genes associated with cortical volumes in the same data aged above 55 years were also enriched for the sphingolipid, renin-angiotensin system (RAS), proteasome, and TGF-β signaling pathway, which is linked to senescence-associated secretory phenotypes. Neuroticism, drinking, and smoking were the common phenotypic traits in the lifespan and aging, while memory was the unique phenotype associated with aging. These findings provide biological mechanisms mirroring development and aging as well as unique to aging.
Collapse
|
57
|
Neurodegeneration Caused by S1P-Lyase Deficiency Involves Calcium-Dependent Tau Pathology and Abnormal Histone Acetylation. Cells 2020; 9:cells9102189. [PMID: 32998447 PMCID: PMC7599816 DOI: 10.3390/cells9102189] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 01/03/2023] Open
Abstract
We have shown that sphingosine 1-phosphate (S1P) generated by sphingosine kinase 2 (SK2) is toxic in neurons lacking S1P-lyase (SGPL1), the enzyme that catalyzes its irreversible cleavage. Interestingly, patients harboring mutations in the gene encoding this enzyme (SGPL1) often present with neurological pathologies. Studies in a mouse model with a developmental neural-specific ablation of SGPL1 (SGPL1fl/fl/Nes) confirmed the importance of S1P metabolism for the presynaptic architecture and neuronal autophagy, known to be essential for brain health. We now investigated in SGPL1-deficient murine brains two other factors involved in neurodegenerative processes, namely tau phosphorylation and histone acetylation. In hippocampal and cortical slices SGPL1 deficiency and hence S1P accumulation are accompanied by hyperphosphorylation of tau and an elevated acetylation of histone3 (H3) and histone4 (H4). Calcium chelation with BAPTA-AM rescued both tau hyperphosphorylation and histone acetylation, designating calcium as an essential mediator of these (patho)physiological functions of S1P in the brain. Studies in primary cultured neurons and astrocytes derived from SGPL1fl/fl/Nes mice revealed hyperphosphorylated tau only in SGPL1-deficient neurons and increased histone acetylation only in SGPL1-deficient astrocytes. Both could be reversed to control values with BAPTA-AM, indicating the close interdependence of S1P metabolism, calcium homeostasis, and brain health.
Collapse
|
58
|
Baranowska U, Holownia A, Chabowski A, Baranowski M. Pharmacological inhibition of sphingosine-1-phosphate lyase partially reverses spatial memory impairment in streptozotocin-diabetic rats. Mol Cell Neurosci 2020; 107:103526. [PMID: 32622897 DOI: 10.1016/j.mcn.2020.103526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/11/2020] [Accepted: 06/25/2020] [Indexed: 01/10/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid with strong neuroprotective properties that is important for normal excitability and synaptic transmission in the hippocampal neurons. Considering the above, the aim of the present study was to determine whether increasing brain S1P level is able to reverse spatial memory impairment in streptozotocin-diabetic rats. The experiment was carried out on diabetic (n = 22) and nondiabetic (n = 10) male Wistar rats. Diabetes was induced by a single injection of streptozotocin. Eleven weeks later, 11 diabetic animals received injections of THI (S1P lyase inhibitor) for seven days. During the last five days of the experiment spatial reference memory acquisition and retention were tested in the Morris water maze task. The animals were then anaesthetized and samples of the hippocampus, prefrontal cortex, striatum, and cerebellum were excised. The content of S1P and related sphingolipids was measured using a HPLC method. Diabetes induced a depletion of ceramide in the hippocampus and cerebellum that was associated with impaired spatial memory and learning. Administration of THI to the diabetic animals prevented ceramide depletion in the hippocampus and cerebellum, and induced an increase in S1P content in all examined brain structures. These effects were associated with an improvement in spatial memory. We conclude that pharmacological inhibition of S1P lyase partially reverses the impairment in spatial memory induced by chronic hyperglycemia, and that this effect may be related to the prevention of ceramide depletion in the hippocampus and cerebellum, the increase in brain S1P level, or both.
Collapse
Affiliation(s)
| | - Adam Holownia
- Department of Pharmacology, Medical University of Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Poland
| | | |
Collapse
|
59
|
Alaamery M, Albesher N, Aljawini N, Alsuwailm M, Massadeh S, Wheeler MA, Chao CC, Quintana FJ. Role of sphingolipid metabolism in neurodegeneration. J Neurochem 2020; 158:25-35. [PMID: 32402091 DOI: 10.1111/jnc.15044] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 12/21/2022]
Abstract
Sphingolipids are a class of lipids highly enriched in the central nervous system (CNS), which shows great diversity and complexity, and has been implicated in CNS development and function. Alterations in sphingolipid metabolism have been described in multiple diseases, including those affecting the central nervous system (CNS). In this review, we discuss the role of sphingolipid metabolism in neurodegeneration, evaluating its direct roles in neuron development and health, and also in the induction of neurotoxic activities in CNS-resident astrocytes and microglia in the context of neurologic diseases such as multiple sclerosis and Alzheimer's disease. Finally, we focus on the metabolism of gangliosides and sphingosine-1-phosphate, its contribution to the pathogenesis of neurologic diseases, and its potential as a candidate target for the therapeutic modulation of neurodegeneration.
Collapse
Affiliation(s)
- Manal Alaamery
- KACST-BWH Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia.,Developmental Medicine Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Nour Albesher
- KACST-BWH Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia.,Developmental Medicine Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Nora Aljawini
- KACST-BWH Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia.,Developmental Medicine Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Moneera Alsuwailm
- KACST-BWH Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia.,Developmental Medicine Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Salam Massadeh
- KACST-BWH Center of Excellence for Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia.,Developmental Medicine Department, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Chun-Cheih Chao
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
60
|
The S1P-S1PR Axis in Neurological Disorders-Insights into Current and Future Therapeutic Perspectives. Cells 2020; 9:cells9061515. [PMID: 32580348 PMCID: PMC7349054 DOI: 10.3390/cells9061515] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
Sphingosine 1-phosphate (S1P), derived from membrane sphingolipids, is a pleiotropic bioactive lipid mediator capable of evoking complex immune phenomena. Studies have highlighted its importance regarding intracellular signaling cascades as well as membrane-bound S1P receptor (S1PR) engagement in various clinical conditions. In neurological disorders, the S1P–S1PR axis is acknowledged in neurodegenerative, neuroinflammatory, and cerebrovascular disorders. Modulators of S1P signaling have enabled an immense insight into fundamental pathological pathways, which were pivotal in identifying and improving the treatment of human diseases. However, its intricate molecular signaling pathways initiated upon receptor ligation are still poorly elucidated. In this review, the authors highlight the current evidence for S1P signaling in neurodegenerative and neuroinflammatory disorders as well as stroke and present an array of drugs targeting the S1P signaling pathway, which are being tested in clinical trials. Further insights on how the S1P–S1PR axis orchestrates disease initiation, progression, and recovery may hold a remarkable potential regarding therapeutic options in these neurological disorders.
Collapse
|
61
|
Couttas TA, Rustam YH, Song H, Qi Y, Teo JD, Chen J, Reid GE, Don AS. A Novel Function of Sphingosine Kinase 2 in the Metabolism of Sphinga-4,14-Diene Lipids. Metabolites 2020; 10:metabo10060236. [PMID: 32521763 PMCID: PMC7344861 DOI: 10.3390/metabo10060236] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
The number, position, and configuration of double bonds in lipids affect membrane fluidity and the recruitment of signaling proteins. Studies on mammalian sphingolipids have focused on those with a saturated sphinganine or mono-unsaturated sphingosine long chain base. Using high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS), we observed a marked accumulation of lipids containing a di-unsaturated sphingadiene base in the hippocampus of mice lacking the metabolic enzyme sphingosine kinase 2 (SphK2). The double bonds were localized to positions C4–C5 and C14–C15 of sphingadiene using ultraviolet photodissociation-tandem mass spectrometry (UVPD-MS/MS). Phosphorylation of sphingoid bases by sphingosine kinase 1 (SphK1) or SphK2 forms the penultimate step in the lysosomal catabolism of all sphingolipids. Both SphK1 and SphK2 phosphorylated sphinga-4,14-diene as efficiently as sphingosine, however deuterated tracer experiments in an oligodendrocyte cell line demonstrated that ceramides with a sphingosine base are more rapidly metabolized than those with a sphingadiene base. Since SphK2 is the dominant sphingosine kinase in brain, we propose that the accumulation of sphingadiene-based lipids in SphK2-deficient brains results from the slower catabolism of these lipids, combined with a bottleneck in the catabolic pathway created by the absence of SphK2. We have therefore uncovered a previously unappreciated role for SphK2 in lipid quality control.
Collapse
Affiliation(s)
- Timothy Andrew Couttas
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
| | - Yepy Hardi Rustam
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia; (Y.H.R.); (G.E.R.)
| | - Huitong Song
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
| | - Jonathan David Teo
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
| | - Jinbiao Chen
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
| | - Gavin Edmund Reid
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia; (Y.H.R.); (G.E.R.)
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Anthony Simon Don
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Correspondence: ; Tel.: +61-28627-5578
| |
Collapse
|
62
|
Fingolimod Affects Transcription of Genes Encoding Enzymes of Ceramide Metabolism in Animal Model of Alzheimer's Disease. Mol Neurobiol 2020; 57:2799-2811. [PMID: 32356173 PMCID: PMC7253528 DOI: 10.1007/s12035-020-01908-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
The imbalance in sphingolipid signaling may be critically linked to the upstream events in the neurodegenerative cascade of Alzheimer’s disease (AD). We analyzed the influence of mutant (V717I) amyloid β precursor protein (AβPP) transgene on sphingolipid metabolism enzymes in mouse hippocampus. At 3 months of age AβPP/Aβ presence upregulated enzymes of ceramide turnover on the salvage pathway: ceramide synthases (CERS2, CERS4, CERS6) and also ceramidase ACER3. At 6 months, only CERS6 was elevated, and no ceramide synthase was increased at 12 months. However, sphingomyelin synthases, which utilize ceramide on the sphingomyelinase pathway, were reduced (SGMS1 at 12 and SGMS2 at 6 months). mRNAs for sphingomyelin synthases SGMS1 and SGMS2 were also significantly downregulated in human AD hippocampus and neocortex when compared with age-matched controls. Our findings suggest early-phase deregulation of sphingolipid homeostasis in favor of ceramide signaling. Fingolimod (FTY720), a modulator of sphingosine-1-phosphate receptors countered the AβPP-dependent upregulation of hippocampal ceramide synthase CERS2 at 3 months. Moreover, at 12 months, FTY720 increased enzymes of ceramide-sphingosine turnover: CERS4, ASAH1, and ACER3. We also observed influence of fingolimod on the expression of the sphingomyelinase pathway enzymes. FTY720 counteracted the AβPP-linked reduction of sphingomyelin synthases SGMS1/2 (at 12 and 6 months, respectively) and led to elevation of sphingomyelinase SMPD2 (at 6 and 12 months). Therefore, our results demonstrate potentially beneficial, age-specific effects of fingolimod on transcription of sphingolipid metabolism enzymes in an animal model of AD.
Collapse
|
63
|
Cartier A, Hla T. Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science 2020; 366:366/6463/eaar5551. [PMID: 31624181 DOI: 10.1126/science.aar5551] [Citation(s) in RCA: 369] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 07/30/2019] [Indexed: 12/13/2022]
Abstract
Sphingosine 1-phosphate (S1P), a metabolic product of cell membrane sphingolipids, is bound to extracellular chaperones, is enriched in circulatory fluids, and binds to G protein-coupled S1P receptors (S1PRs) to regulate embryonic development, postnatal organ function, and disease. S1PRs regulate essential processes such as adaptive immune cell trafficking, vascular development, and homeostasis. Moreover, S1PR signaling is a driver of multiple diseases. The past decade has witnessed an exponential growth in this field, in part because of multidisciplinary research focused on this lipid mediator and the application of S1PR-targeted drugs in clinical medicine. This has revealed fundamental principles of lysophospholipid mediator signaling that not only clarify the complex and wide ranging actions of S1P but also guide the development of therapeutics and translational directions in immunological, cardiovascular, neurological, inflammatory, and fibrotic diseases.
Collapse
Affiliation(s)
- Andreane Cartier
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
64
|
Abstract
Sphingolipids are ubiquitous building blocks of eukaryotic cell membranes that function as signaling molecules for regulating a diverse range of cellular processes, including cell proliferation, growth, survival, immune-cell trafficking, vascular and epithelial integrity, and inflammation. Recently, several studies have highlighted the pivotal role of sphingolipids in neuroinflammatory regulation. Sphingolipids have multiple functions, including induction of the expression of various inflammatory mediators and regulation of neuroinflammation by directly effecting the cells of the central nervous system. Accumulating evidence points to sphingolipid engagement in neuroinflammatory disorders, including Alzheimer’s and Parkinson’s diseases. Abnormal sphingolipid alterations, which involves an increase in ceramide and a decrease in sphingosine kinase, are observed during neuroinflammatory disease. These trends are observed early during disease development, and thus highlight the potential of sphingolipids as a new therapeutic and diagnostic target for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Ju Youn Lee
- Alzheimer's Disease Research Institute, Kyungpook National University, Daegu 41566, Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
| | - Hee Kyung Jin
- Alzheimer's Disease Research Institute, Kyungpook National University, Daegu 41566, Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Jae-sung Bae
- Alzheimer's Disease Research Institute, Kyungpook National University, Daegu 41566, Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
65
|
Crivelli SM, Giovagnoni C, Visseren L, Scheithauer AL, de Wit N, den Hoedt S, Losen M, Mulder MT, Walter J, de Vries HE, Bieberich E, Martinez-Martinez P. Sphingolipids in Alzheimer's disease, how can we target them? Adv Drug Deliv Rev 2020; 159:214-231. [PMID: 31911096 DOI: 10.1016/j.addr.2019.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/09/2019] [Accepted: 12/31/2019] [Indexed: 01/06/2023]
Abstract
Altered levels of sphingolipids and their metabolites in the brain, and the related downstream effects on neuronal homeostasis and the immune system, provide a framework for understanding mechanisms in neurodegenerative disorders and for developing new intervention strategies. In this review we will discuss: the metabolites of sphingolipids that function as second messengers; and functional aberrations of the pathway resulting in Alzheimer's disease (AD) pathophysiology. Focusing on the central product of the sphingolipid pathway ceramide, we describ approaches to pharmacologically decrease ceramide levels in the brain and we argue on how the sphingolipid pathway may represent a new framework for developing novel intervention strategies in AD. We also highlight the possible use of clinical and non-clinical drugs to modulate the sphingolipid pathway and sphingolipid-related biological cascades.
Collapse
|
66
|
Tran C, Heng B, Teo JD, Humphrey SJ, Qi Y, Couttas TA, Stefen H, Brettle M, Fath T, Guillemin GJ, Don AS. Sphingosine 1-phosphate but not Fingolimod protects neurons against excitotoxic cell death by inducing neurotrophic gene expression in astrocytes. J Neurochem 2019; 153:173-188. [PMID: 31742704 DOI: 10.1111/jnc.14917] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022]
Abstract
Sphingosine 1-phosphate (S1P) is an essential lipid metabolite that signals through a family of five G protein-coupled receptors, S1PR1-S1PR5, to regulate cell physiology. The multiple sclerosis drug Fingolimod (FTY720) is a potent S1P receptor agonist that causes peripheral lymphopenia. Recent research has demonstrated direct neuroprotective properties of FTY720 in several neurodegenerative paradigms; however, neuroprotective properties of the native ligand S1P have not been established. We aimed to establish the significance of neurotrophic factor up-regulation by S1P for neuroprotection, comparing S1P with FTY720. S1P induced brain-derived neurotrophic factor (BDNF), leukemia inhibitory factor (LIF), platelet-derived growth factor B (PDGFB), and heparin-binding EGF-like growth factor (HBEGF) gene expression in primary human and murine astrocytes, but not in neurons, and to a much greater extent than FTY720. Accordingly, S1P but not FTY720 protected cultured neurons against excitotoxic cell death in a primary murine neuron-glia coculture model, and a neutralizing antibody to LIF blocked this S1P-mediated neuroprotection. Antagonists of S1PR1 and S1PR2 both inhibited S1P-mediated neurotrophic gene induction in human astrocytes, indicating that simultaneous activation of both receptors is required. S1PR2 signaling was transduced through Gα13 and the small GTPase Rho, and was necessary for the up-regulation and activation of the transcription factors FOS and JUN, which regulate LIF, BDNF, and HBEGF transcription. In summary, we show that S1P protects hippocampal neurons against excitotoxic cell death through up-regulation of neurotrophic gene expression, particularly LIF, in astrocytes. This up-regulation requires both S1PR1 and S1PR2 signaling. FTY720 does not activate S1PR2, explaining its relative inefficacy compared to S1P.
Collapse
Affiliation(s)
- Collin Tran
- School of Medical Sciences, UNSW Sydney, Kensington, NSW, Australia.,Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Benjamin Heng
- MND Research Centre, Neuroinflammation group, Macquarie University, Sydney, NSW, Australia
| | - Jonathan D Teo
- Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Sean J Humphrey
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Timothy A Couttas
- Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Holly Stefen
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Sciences, Macquarie University, Sydney, NSW, Australia
| | - Merryn Brettle
- School of Medical Sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Thomas Fath
- School of Medical Sciences, UNSW Sydney, Kensington, NSW, Australia.,Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J Guillemin
- MND Research Centre, Neuroinflammation group, Macquarie University, Sydney, NSW, Australia
| | - Anthony S Don
- Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,NHMRC Clinical Trials Centre, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
67
|
Sphingosine Kinase 2 Potentiates Amyloid Deposition but Protects against Hippocampal Volume Loss and Demyelination in a Mouse Model of Alzheimer's Disease. J Neurosci 2019; 39:9645-9659. [PMID: 31641049 DOI: 10.1523/jneurosci.0524-19.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 09/19/2019] [Accepted: 10/10/2019] [Indexed: 01/20/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a potent vasculoprotective and neuroprotective signaling lipid, synthesized primarily by sphingosine kinase 2 (SK2) in the brain. We have reported pronounced loss of S1P and SK2 activity early in Alzheimer's disease (AD) pathogenesis, and an inverse correlation between hippocampal S1P levels and age in females, leading us to speculate that loss of S1P is a sensitizing influence for AD. Paradoxically, SK2 was reported to mediate amyloid β (Aβ) formation from amyloid precursor protein (APP) in vitro To determine whether loss of S1P sensitizes to Aβ-mediated neurodegeneration, we investigated whether SK2 deficiency worsens pathology and memory in male J20 (PDGFB-APPSwInd) mice. SK2 deficiency greatly reduced Aβ content in J20 mice, associated with significant improvements in epileptiform activity and cross-frequency coupling measured by hippocampal electroencephalography. However, several key measures of APPSwInd-dependent neurodegeneration were enhanced on the SK2-null background, despite reduced Aβ burden. These included hippocampal volume loss, oligodendrocyte attrition and myelin loss, and impaired performance in Y-maze and social novelty memory tests. Inhibition of the endosomal cholesterol exporter NPC1 greatly reduced sphingosine phosphorylation in glial cells, linking loss of SK2 activity and S1P in AD to perturbed endosomal lipid metabolism. Our findings establish SK2 as an important endogenous regulator of both APP processing to Aβ, and oligodendrocyte survival, in vivo These results urge greater consideration of the roles played by oligodendrocyte dysfunction and altered membrane lipid metabolic flux as drivers of neurodegeneration in AD.SIGNIFICANCE STATEMENT Genetic, neuropathological, and functional studies implicate both Aβ and altered lipid metabolism and/or signaling as key pathogenic drivers of Alzheimer's disease. In this study, we first demonstrate that the enzyme SK2, which generates the signaling lipid S1P, is required for Aβ formation from APP in vivo Second, we establish a new role for SK2 in the protection of oligodendrocytes and myelin. Loss of SK2 sensitizes to Aβ-mediated neurodegeneration by attenuating oligodendrocyte survival and promoting hippocampal atrophy, despite reduced Aβ burden. Our findings support a model in which Aβ-independent sensitizing influences such as loss of neuroprotective S1P are more important drivers of neurodegeneration than gross Aβ concentration or plaque density.
Collapse
|
68
|
Le Stunff H, Véret J, Kassis N, Denom J, Meneyrol K, Paul JL, Cruciani-Guglielmacci C, Magnan C, Janel N. Deciphering the Link Between Hyperhomocysteinemia and Ceramide Metabolism in Alzheimer-Type Neurodegeneration. Front Neurol 2019; 10:807. [PMID: 31417486 PMCID: PMC6684947 DOI: 10.3389/fneur.2019.00807] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
Aging is one of the strongest risk factor for Alzheimer's disease (AD). However, several data suggest that dyslipidemia can either contribute or serve as co-factors in AD appearance. AD could be examined as a metabolic disorder mediated by peripheral insulin resistance. Insulin resistance is associated with dyslipidemia, which results in increased hepatic ceramide generation. Hepatic steatosis induces pro-inflammatory cytokine activation which is mediated by the increased ceramides production. Ceramides levels increased in cells due to perturbation in sphingolipid metabolism and upregulated expression of enzymes involved in ceramide synthesis. Cytotoxic ceramides and related molecules generated in liver promote insulin resistance, traffic through the circulation due to injury or cell death caused by local liver inflammation, and because of their hydrophobic nature, they can cross the blood-brain barrier and thereby exert neurotoxic responses as reducing insulin signaling and increasing pro-inflammatory cytokines. These abnormalities propagate a cascade of neurodegeneration associated with oxidative stress and ceramide generation, which potentiate brain insulin resistance, apoptosis, myelin degeneration, and neuro-inflammation. Therefore, excess of toxic lipids generated in liver can cause neurodegeneration. Elevated homocysteine level is also a risk factor for AD pathology and is narrowly associated with metabolic diseases and non-alcoholic fatty liver disease. The existence of a homocysteine/ceramides signaling pathway suggests that homocysteine toxicity could be partly mediated by intracellular ceramide accumulation due to stimulation of ceramide synthase. In this article, we briefly examined the role of homocysteine and ceramide metabolism linking metabolic diseases and non-alcoholic fatty liver disease to AD. We therefore analyzed the expression of mainly enzymes implicated in ceramide and sphingolipid metabolism and demonstrated deregulation of de novo ceramide biosynthesis and S1P metabolism in liver and brain of hyperhomocysteinemic mice.
Collapse
Affiliation(s)
- Hervé Le Stunff
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France.,Institut des Neurosciences Paris-Saclay (Neuro-PSI), Université Paris-Sud, CNRS UMR 9197, Orsay, France
| | - Julien Véret
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | - Nadim Kassis
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | - Jessica Denom
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | | | - Jean-Louis Paul
- AP-HP, Hôpital Européen Georges Pompidou, Service de Biochimie, Paris, France
| | | | | | | |
Collapse
|
69
|
Carreras I, Aytan N, Choi JK, Tognoni CM, Kowall NW, Jenkins BG, Dedeoglu A. Dual dose-dependent effects of fingolimod in a mouse model of Alzheimer's disease. Sci Rep 2019; 9:10972. [PMID: 31358793 PMCID: PMC6662857 DOI: 10.1038/s41598-019-47287-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
Lipid metabolism is abnormal in Alzheimer’s disease (AD) brain leading to ceramide and sphingosine accumulation and reduced levels of brain sphingosine-1-phosphate (S1P). We hypothesize that changes in S1P signaling are central to the inflammatory and immune-pathogenesis of AD and the therapeutic benefits of fingolimod, a structural analog of sphingosine that is FDA approved for the treatment of multiple sclerosis. We recently reported that the neuroprotective effects of fingolimod in 5xFAD transgenic AD mice treated from 1–3 months of age were greater at 1 mg/kg/day than at 5 mg/kg/day. Here we performed a dose-response study using fingolimod from 0.03 to 1 mg/kg/day in 5xFAD mice treated from 1–8 months of age. At 1 mg/kg/day, fingolimod decreased both peripheral blood lymphocyte counts and brain Aβ levels, but at the lowest dose tested (0.03 mg/kg/day), we detected improved memory, decreased activation of brain microglia and astrocytes, and restored hippocampal levels of GABA and glycerophosphocholine with no effect on circulating lymphocyte counts. These findings suggests that, unlike the case in multiple sclerosis, fingolimod may potentially have therapeutic benefits in AD at low doses that do not affect peripheral lymphocyte function.
Collapse
Affiliation(s)
- Isabel Carreras
- Department of Veterans Affairs, VA Boston Healthcare System, 150 S Huntington Av, Boston, MA, 02130, USA. .,Department of Neurology, Boston University School of Medicine, 72 E Concord St, Boston, MA, 02118, USA.
| | - Nurgul Aytan
- Department of Veterans Affairs, VA Boston Healthcare System, 150 S Huntington Av, Boston, MA, 02130, USA.,Department of Neurology, Boston University School of Medicine, 72 E Concord St, Boston, MA, 02118, USA
| | - Ji-Kyung Choi
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 73 High St, Boston, MA, 02114, USA
| | - Christina M Tognoni
- Department of Veterans Affairs, VA Boston Healthcare System, 150 S Huntington Av, Boston, MA, 02130, USA.,Department of Neurology, Boston University School of Medicine, 72 E Concord St, Boston, MA, 02118, USA
| | - Neil W Kowall
- Department of Veterans Affairs, VA Boston Healthcare System, 150 S Huntington Av, Boston, MA, 02130, USA.,Department of Neurology, Boston University School of Medicine, 72 E Concord St, Boston, MA, 02118, USA
| | - Bruce G Jenkins
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 73 High St, Boston, MA, 02114, USA
| | - Alpaslan Dedeoglu
- Department of Veterans Affairs, VA Boston Healthcare System, 150 S Huntington Av, Boston, MA, 02130, USA. .,Department of Neurology, Boston University School of Medicine, 72 E Concord St, Boston, MA, 02118, USA. .,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 73 High St, Boston, MA, 02114, USA.
| |
Collapse
|
70
|
Chan P, Saleem M, Herrmann N, Mielke MM, Haughey NJ, Oh PI, Kiss A, Lanctôt KL. Ceramide Accumulation Is Associated with Declining Verbal Memory in Coronary Artery Disease Patients: An Observational Study. J Alzheimers Dis 2019; 64:1235-1246. [PMID: 30010121 PMCID: PMC6087453 DOI: 10.3233/jad-180030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Biomarkers in cognitively vulnerable populations, like those with coronary artery disease (CAD), may inform earlier intervention in vascular neurodegeneration. Circulating ceramide C18:0 (CerC18:0) is associated with changes in verbal memory in early neurodegeneration and CAD progression. Objective: To investigate whether plasma CerC18:0 accumulation is associated with longitudinal declines in verbal memory performance in CAD. Methods: In addition to total CerC18:0, we assessed its relative abundance to its precursors as ratios: CerC18:0 to monohexosylceramide C18:0 (MHxCer18:0), CerC18:0 to sphingomyelin C18:0 (SM18:0), and CerC18:0 to sphingosine-1-phosphate (S1P). Verbal memory was assessed using the California Verbal Learning Test 2nd Ed. Using mixed models in 60 CAD participants, we evaluated associations between baseline CerC18:0 ratios and changes in verbal memory performance, adjusting for age, body mass index, and education. Given that cognitive decline is more rapid following onset of deficits, these associations were compared between those with possible mild vascular neurocognitive disorder (MVND). Results: Increased baseline CerC18:0 concentrations correlated with worse verbal memory performance over time (b[SE] = – 0.91[0.30], p = 0.003). Increased baseline CerC18:0/SM18:0 (b[SE] = – 1.11[`], p = 0.03) were associated with worse verbal memory performance over time. These associations were not mediated by whether or not patients had possible MVND at baseline. Conclusion: These findings support aberrant CerC18:0 metabolism as an early neurobiological change in vascular neurodegeneration. Future studies should measure enzymes responsible for conversion of sphingolipid precursors into CerC18:0 to assess enzymatic activity.
Collapse
Affiliation(s)
- Parco Chan
- Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | | | - Nathan Herrmann
- Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Michelle M Mielke
- Departments of Neurology and Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Norman J Haughey
- Departments of Neurology and Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul I Oh
- Sunnybrook Research Institute, Toronto, ON, Canada.,University Health Network at Toronto Rehabilitation Institute, Toronto, ON, Canada
| | - Alexander Kiss
- Institute for Clinical Evaluative Sciences, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Krista L Lanctôt
- Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,University Health Network at Toronto Rehabilitation Institute, Toronto, ON, Canada
| |
Collapse
|
71
|
Grassi S, Mauri L, Prioni S, Cabitta L, Sonnino S, Prinetti A, Giussani P. Sphingosine 1-Phosphate Receptors and Metabolic Enzymes as Druggable Targets for Brain Diseases. Front Pharmacol 2019; 10:807. [PMID: 31427962 PMCID: PMC6689979 DOI: 10.3389/fphar.2019.00807] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
The central nervous system is characterized by a high content of sphingolipids and by a high diversity in terms of different structures. Stage- and cell-specific sphingolipid metabolism and expression are crucial for brain development and maintenance toward adult age. On the other hand, deep dysregulation of sphingolipid metabolism, leading to altered sphingolipid pattern, is associated with the majority of neurological and neurodegenerative diseases, even those totally lacking a common etiological background. Thus, sphingolipid metabolism has always been regarded as a promising pharmacological target for the treatment of brain disorders. However, any therapeutic hypothesis applied to complex amphipathic sphingolipids, components of cellular membranes, has so far failed probably because of the high regional complexity and specificity of the different biological roles of these structures. Simpler sphingosine-based lipids, including ceramide and sphingosine 1-phosphate, are important regulators of brain homeostasis, and, thanks to the relative simplicity of their metabolic network, they seem a feasible druggable target for the treatment of brain diseases. The enzymes involved in the control of the levels of bioactive sphingoids, as well as the receptors engaged by these molecules, have increasingly allured pharmacologists and clinicians, and eventually fingolimod, a functional antagonist of sphingosine 1-phosphate receptors with immunomodulatory properties, was approved for the therapy of relapsing-remitting multiple sclerosis. Considering the importance of neuroinflammation in many other brain diseases, we would expect an extension of the use of such analogs for the treatment of other ailments in the future. Nevertheless, many aspects other than neuroinflammation are regulated by bioactive sphingoids in healthy brain and dysregulated in brain disease. In this review, we are addressing the multifaceted possibility to address the metabolism and biology of bioactive sphingosine 1-phosphate as novel targets for the development of therapeutic paradigms and the discovery of new drugs.
Collapse
Affiliation(s)
- Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Livia Cabitta
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
72
|
Angelopoulou E, Piperi C. Beneficial Effects of Fingolimod in Alzheimer's Disease: Molecular Mechanisms and Therapeutic Potential. Neuromolecular Med 2019; 21:227-238. [PMID: 31313064 DOI: 10.1007/s12017-019-08558-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD), the most common cause of dementia remains of unclear etiology with current pharmacological therapies failing to halt disease progression. Several pathophysiological mechanisms have been implicated in AD pathogenesis including amyloid-β protein (Aβ) accumulation, tau hyperphosphorylation, neuroinflammation and alterations in bioactive lipid metabolism. Sphingolipids, such as sphingosine-1-phosphate (S1P) and intracellular ceramide/S1P balance are highly implicated in central nervous system physiology as well as in AD pathogenesis. FTY720/Fingolimod, a structural sphingosine analog and S1P receptor (S1PR) modulator that is currently used in the treatment of relapsing-remitting multiple sclerosis (RRMS) has been shown to exert beneficial effects on AD progression. Recent in vitro and in vivo evidence indicate that fingolimod may suppress Aβ secretion and deposition, inhibit apoptosis and enhance brain-derived neurotrophic factor (BDNF) production. Furthermore, it regulates neuroinflammation, protects against N-methyl-D-aspartate (NMDA)-excitotoxicity and modulates receptor for advanced glycation end products signaling axis that is highly implicated in AD pathogenesis. This review discusses the underlying molecular mechanisms of the emerging neuroprotective role of fingolimod in AD and its therapeutic potential, aiming to shed more light on AD pathogenesis as well as direct future treatment strategies.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street - Bldg 16, 11527, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street - Bldg 16, 11527, Athens, Greece.
| |
Collapse
|
73
|
Couttas TA, Kain N, Tran C, Chatterton Z, Kwok JB, Don AS. Age-Dependent Changes to Sphingolipid Balance in the Human Hippocampus are Gender-Specific and May Sensitize to Neurodegeneration. J Alzheimers Dis 2019; 63:503-514. [PMID: 29660940 DOI: 10.3233/jad-171054] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The greatest risk factor for developing Alzheimer's disease (AD) is aging. The major genetic risk factor for AD is the ɛ4 allele of the APOE gene, encoding the brain's major lipid transport protein, apolipoprotein E (ApoE). The research community is yet to decipher why the ApoE4 variant pre-disposes to AD, and how aging causes the disease. Studies have shown deregulated levels of sphingolipids, including decreased levels of the neuroprotective signaling lipid sphingosine 1-phosphate (S1P), and increased ceramide content, in brain tissue and serum of people with pre-clinical or very early AD. In this study we investigated whether sphingolipid levels are affected as a function of age or APOE genotype, in the hippocampus of neurologically normal subjects over the age of 65. Lipids were quantified in 80 postmortem tissue samples using liquid chromatography tandem mass spectrometry (LC-MS/MS). Sphingolipid levels were not significantly affected by the presence of one ɛ4 or ɛ2 allele. However, ceramide, sphingomyelin, and sulfatide content was very significantly correlated with age in the hippocampus of males. On the other hand, S1P, normalized to its non-phosphorylated precursor sphingosine, was inversely correlated with age in females. Our results therefore establish gender-specific differences in sphingolipid metabolism in the aging human brain. Ceramide is a pro-apoptotic lipid, and heavily implicated as a driver of insulin resistance in metabolic tissues. S1P is a neuroprotective lipid that supports glutamatergic neurotransmission. Increasing ceramide and decreasing S1P levels may contribute significantly to a pro-neurodegenerative phenotype in the aging brain.
Collapse
Affiliation(s)
- Timothy A Couttas
- Centenary Institute, University of Sydney, NSW, Australia.,Prince of Wales Clinical School, UNSW Sydney, NSW, Australia
| | - Nupur Kain
- Prince of Wales Clinical School, UNSW Sydney, NSW, Australia
| | - Collin Tran
- Centenary Institute, University of Sydney, NSW, Australia.,Prince of Wales Clinical School, UNSW Sydney, NSW, Australia
| | - Zac Chatterton
- Brain and Mind Centre, Sydney Medical School, University of Sydney, NSW, Australia
| | - John B Kwok
- Brain and Mind Centre, Sydney Medical School, University of Sydney, NSW, Australia
| | - Anthony S Don
- Centenary Institute, University of Sydney, NSW, Australia.,Prince of Wales Clinical School, UNSW Sydney, NSW, Australia.,NHMRC Clinical Trials Centre, Sydney Medical School, University of Sydney, NSW, Australia
| |
Collapse
|
74
|
|
75
|
Jiang ZJ, Delaney TL, Zanin MP, Haberberger RV, Pitson SM, Huang J, Alford S, Cologna SM, Keating DJ, Gong LW. Extracellular and intracellular sphingosine-1-phosphate distinctly regulates exocytosis in chromaffin cells. J Neurochem 2019; 149:729-746. [PMID: 30963576 DOI: 10.1111/jnc.14703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/28/2018] [Accepted: 03/27/2019] [Indexed: 01/18/2023]
Abstract
Sphingosine-1-phosphate (S1P) is an essential bioactive sphingosine lipid involved in many neurological disorders. Sphingosine kinase 1 (SphK1), a key enzyme for S1P production, is concentrated in presynaptic terminals. However, the role of S1P/SphK1 signaling in exocytosis remains elusive. By detecting catecholamine release from single vesicles in chromaffin cells, we show that a dominant negative SphK1 (SphK1DN ) reduces the number of amperometric spikes and increases the duration of foot, which reflects release through a fusion pore, implying critical roles for S1P in regulating the rate of exocytosis and fusion pore expansion. Similar phenotypes were observed in chromaffin cells obtained from SphK1 knockout mice compared to those from wild-type mice. In addition, extracellular S1P treatment increased the number of amperometric spikes, and this increase, in turn, was inhibited by a selective S1P3 receptor blocker, suggesting extracellular S1P may regulate the rate of exocytosis via activation of S1P3. Furthermore, intracellular S1P application induced a decrease in foot duration of amperometric spikes in control cells, indicating intracellular S1P may regulate fusion pore expansion during exocytosis. Taken together, our study represents the first demonstration that S1P regulates exocytosis through distinct mechanisms: extracellular S1P may modulate the rate of exocytosis via activation of S1P receptors while intracellular S1P may directly control fusion pore expansion during exocytosis. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Zhong-Jiao Jiang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Taylor L Delaney
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mark P Zanin
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Rainer V Haberberger
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Jian Huang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Damien J Keating
- College of Medicine and Public Health and Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - Liang-Wei Gong
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
76
|
Jęśko H, Stępień A, Lukiw WJ, Strosznajder RP. The Cross-Talk Between Sphingolipids and Insulin-Like Growth Factor Signaling: Significance for Aging and Neurodegeneration. Mol Neurobiol 2019; 56:3501-3521. [PMID: 30140974 PMCID: PMC6476865 DOI: 10.1007/s12035-018-1286-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022]
Abstract
Bioactive sphingolipids: sphingosine, sphingosine-1-phosphate (S1P), ceramide, and ceramide-1-phosphate (C1P) are increasingly implicated in cell survival, proliferation, differentiation, and in multiple aspects of stress response in the nervous system. The opposite roles of closely related sphingolipid species in cell survival/death signaling is reflected in the concept of tightly controlled sphingolipid rheostat. Aging has a complex influence on sphingolipid metabolism, disturbing signaling pathways and the properties of lipid membranes. A metabolic signature of stress resistance-associated sphingolipids correlates with longevity in humans. Moreover, accumulating evidence suggests extensive links between sphingolipid signaling and the insulin-like growth factor I (IGF-I)-Akt-mTOR pathway (IIS), which is involved in the modulation of aging process and longevity. IIS integrates a wide array of metabolic signals, cross-talks with p53, nuclear factor κB (NF-κB), or reactive oxygen species (ROS) and influences gene expression to shape the cellular metabolic profile and stress resistance. The multiple connections between sphingolipids and IIS signaling suggest possible engagement of these compounds in the aging process itself, which creates a vulnerable background for the majority of neurodegenerative disorders.
Collapse
Affiliation(s)
- Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Pawińskiego, 5, 02-106, Poland
| | - Adam Stępień
- Central Clinical Hospital of the Ministry of National Defense, Department of Neurology, Military Institute of Medicine, Warsaw, Szaserów, 128, 04-141, Poland
| | - Walter J Lukiw
- LSU Neuroscience Center and Departments of Neurology and Ophthalmology, Louisiana State University School of Medicine, New Orleans, USA
| | - Robert P Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Pawińskiego, 5, 02-106, Poland.
| |
Collapse
|
77
|
Abstract
The liver is the central organ involved in lipid metabolism and the gastrointestinal (GI) tract is responsible for nutrient absorption and partitioning. Obesity, dyslipidemia and metabolic disorders are of increasing public health concern worldwide, and novel therapeutics that target both the liver and the GI tract (gut-liver axis) are much needed. In addition to aiding fat digestion, bile acids act as important signaling molecules that regulate lipid, glucose and energy metabolism via activating nuclear receptor, G protein-coupled receptors (GPCRs), Takeda G protein receptor 5 (TGR5) and sphingosine-1-phosphate receptor 2 (S1PR2). Sphingosine-1-phosphate (S1P) is synthesized by two sphingosine kinase isoforms and is a potent signaling molecule that plays a critical role in various diseases such as fatty liver, inflammatory bowel disease (IBD) and colorectal cancer. In this review, we will focus on recent findings related to the role of S1P-mediated signaling pathways in the gut-liver axis.
Collapse
Affiliation(s)
- Eric K. Kwong
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA,McGuire VA Medical Center, Richmond, VA, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA,McGuire VA Medical Center, Richmond, VA, USA,Corresponding author. Department of Microbiology and Immunology, Virginia Commonwealth University, McGuire Veterans Affairs Medical Center, Richmond, VA, USA. (H. Zhou)
| |
Collapse
|
78
|
Baxter AJ, Santiago-Ruiz AN, Yang T, Cremer PS. Modulation of Cu 2+ Binding to Sphingosine-1-Phosphate by Lipid Charge. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:824-830. [PMID: 30638371 DOI: 10.1021/acs.langmuir.8b03718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a sphingolipid metabolite that is thought to participate in the regulation of many physiological processes and may play a key role in several diseases. Herein, we found that Cu2+ binds tightly to supported lipid bilayers (SLBs) containing S1P. Specifically, we demonstrated via fluorescence assays that Cu2+-S1P binding was bivalent and sensitive to the concentration of S1P in the SLB. In fact, the apparent equilibrium dissociation constant, KDApp, tightened by a factor of 132 from 4.5 μM to 34 nM as the S1P density was increased from 5.0 to 20 mol %. A major driving force for this apparent tightening was the more negative surface potential with increasing S1P concentration. This potential remained unaltered upon Cu2+ binding at pH 7.4 because two protons were released for every Cu2+ that bound. At pH 5.4, however, Cu2+ could not outcompete protons for the amine and no binding occurred. Moreover, at pH 9.4, the amine was partially deprotonated before Cu2+ binding and the surface potential became more positive on binding. The results for Cu2+-S1P binding were reminiscent of those for Cu2+-phosphatidylserine binding, where a carboxylate group helped to deprotonate the amine. In the case of S1P, however, the phosphate needed to bear two negative charges to facilitate amine deprotonation in the presence of Cu2+.
Collapse
Affiliation(s)
| | - Adriana N Santiago-Ruiz
- Department of Chemistry , The University of Puerto Rico , Cayey , Puerto Rico 00736 , United States
| | | | | |
Collapse
|
79
|
Hussain G, Anwar H, Rasul A, Imran A, Qasim M, Zafar S, Imran M, Kamran SKS, Aziz N, Razzaq A, Ahmad W, Shabbir A, Iqbal J, Baig SM, Ali M, Gonzalez de Aguilar JL, Sun T, Muhammad A, Muhammad Umair A. Lipids as biomarkers of brain disorders. Crit Rev Food Sci Nutr 2019; 60:351-374. [DOI: 10.1080/10408398.2018.1529653] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ghulam Hussain
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ali Imran
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Shamaila Zafar
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Syed Kashif Shahid Kamran
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Nimra Aziz
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Aroona Razzaq
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Waseem Ahmad
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Asghar Shabbir
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Javed Iqbal
- Department of Neurology, Allied Hospital, Faisalabad, Pakistan
| | - Shahid Mahmood Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, Faisalabad, Pakistan
| | - Muhammad Ali
- Department of Zoology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Jose-Luis Gonzalez de Aguilar
- Université de Strasbourg, Strasbourg, France
- Mécanismes Centraux et Péripheriques de la Neurodégénérescence, INSERM, Strasbourg, France
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian Province, China
| | - Atif Muhammad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | | |
Collapse
|
80
|
The Role of Ceramide and Sphingosine-1-Phosphate in Alzheimer's Disease and Other Neurodegenerative Disorders. Mol Neurobiol 2019; 56:5436-5455. [PMID: 30612333 PMCID: PMC6614129 DOI: 10.1007/s12035-018-1448-3] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022]
Abstract
Bioactive sphingolipids-ceramide, sphingosine, and their respective 1-phosphates (C1P and S1P)-are signaling molecules serving as intracellular second messengers. Moreover, S1P acts through G protein-coupled receptors in the plasma membrane. Accumulating evidence points to sphingolipids' engagement in brain aging and in neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis. Metabolic alterations observed in the course of neurodegeneration favor ceramide-dependent pro-apoptotic signaling, while the levels of the neuroprotective S1P are reduced. These trends are observed early in the diseases' development, suggesting causal relationship. Mechanistic evidence has shown links between altered ceramide/S1P rheostat and the production, secretion, and aggregation of amyloid β/α-synuclein as well as signaling pathways of critical importance for the pathomechanism of protein conformation diseases. Sphingolipids influence multiple aspects of Akt/protein kinase B signaling, a pathway that regulates metabolism, stress response, and Bcl-2 family proteins. The cross-talk between sphingolipids and transcription factors including NF-κB, FOXOs, and AP-1 may be also important for immune regulation and cell survival/death. Sphingolipids regulate exosomes and other secretion mechanisms that can contribute to either the spread of neurotoxic proteins between brain cells, or their clearance. Recent discoveries also suggest the importance of intracellular and exosomal pools of small regulatory RNAs in the creation of disturbed signaling environment in the diseased brain. The identified interactions of bioactive sphingolipids urge for their evaluation as potential therapeutic targets. Moreover, the early disturbances in sphingolipid metabolism may deliver easily accessible biomarkers of neurodegenerative disorders.
Collapse
|
81
|
St-Amour I, Bosoi CR, Paré I, Ignatius Arokia Doss PM, Rangachari M, Hébert SS, Bazin R, Calon F. Peripheral adaptive immunity of the triple transgenic mouse model of Alzheimer's disease. J Neuroinflammation 2019; 16:3. [PMID: 30611289 PMCID: PMC6320637 DOI: 10.1186/s12974-018-1380-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/27/2018] [Indexed: 01/25/2023] Open
Abstract
Background Immunologic abnormalities have been described in peripheral blood and central nervous system of patients suffering from Alzheimer’s disease (AD), yet their role in the pathogenesis still remains poorly defined. Aim and methods We used the triple transgenic mouse model (3xTg-AD) to reproduce Aβ (amyloid plaques) and tau (neurofibrillary tangles) neuropathologies. We analyzed important features of the adaptive immune system in serum, primary (bone marrow) as well as secondary (spleen) lymphoid organs of 12-month-old 3xTg-AD mice using flow cytometry and ELISPOT. We further investigated serum cytokines of 9- and 13-month-old 3xTg-AD mice using multiplex ELISA. Results were compared to age-matched non-transgenic controls (NTg). Results In the bone marrow of 12-month-old 3xTg-AD mice, we detected decreased proportions of short-term reconstituting hematopoietic stem cells (0.58-fold, P = 0.0116), while lymphocyte, granulocyte, and monocyte populations remained unchanged. Our results also point to increased activation of both B and T lymphocytes. Indeed, we report elevated levels of plasma cells in bone marrow (1.3-fold, P = 0.0405) along with a 5.4-fold rise in serum IgG concentration (P < 0.0001) in 3xTg-AD animals. Furthermore, higher levels of interleukin (IL)-2 were detected in serum of 9- and 13-month-old 3xTg-AD mice (P = 0.0018). Along with increased concentrations of IL-17 (P = 0.0115) and granulocyte-macrophage colony-stimulating factor (P = 0.0085), these data support helper T lymphocyte activation with Th17 polarization. Conclusion Collectively, these results suggest that the 3xTg-AD model mimics modifications of the adaptive immunity changes previously observed in human AD patients and underscore the activation of both valuable and harmful pathways of immunity in AD.
Collapse
Affiliation(s)
- Isabelle St-Amour
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, QC, Québec, Canada.,Département de psychiatrie et neurosciences, Faculté de médecine, Université Laval, QC, Canada
| | - Cristina R Bosoi
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, QC, Québec, Canada.,Centre de Recherche de l'IUCPQ-Université Laval, QC, Québec, Canada
| | - Isabelle Paré
- Medical Affairs and Innovation, Héma-Québec, QC, Québec, Canada
| | - Prenitha Mercy Ignatius Arokia Doss
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, QC, Québec, Canada.,Département de psychiatrie et neurosciences, Faculté de médecine, Université Laval, QC, Canada
| | - Manu Rangachari
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, QC, Québec, Canada.,Département de psychiatrie et neurosciences, Faculté de médecine, Université Laval, QC, Canada
| | - Sébastien S Hébert
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, QC, Québec, Canada.,Département de psychiatrie et neurosciences, Faculté de médecine, Université Laval, QC, Canada
| | - Renée Bazin
- Medical Affairs and Innovation, Héma-Québec, QC, Québec, Canada.,Faculté de pharmacie, Université Laval, QC, Québec, Canada
| | - Frédéric Calon
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, QC, Québec, Canada. .,Faculté de pharmacie, Université Laval, QC, Québec, Canada.
| |
Collapse
|
82
|
Letra L, Rodrigues T, Matafome P, Santana I, Seiça R. Adiponectin and sporadic Alzheimer's disease: Clinical and molecular links. Front Neuroendocrinol 2019; 52:1-11. [PMID: 29038028 DOI: 10.1016/j.yfrne.2017.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/05/2017] [Accepted: 10/10/2017] [Indexed: 01/21/2023]
Abstract
Obesity has been consistently associated with Alzheimer's disease (AD) though the exact mechanisms by which it influences cognition are still elusive and subject of current research. Adiponectin, the most abundant adipokine in circulation, is inversely correlated with adipose tissue dysfunction and seems to be a central player in this association. In fact, different signalling pathways are shared by adiponectin and proteins involved in AD pathophysiology and considerable amount of evidence supports its direct and indirect influence on β-amyloid and tau aggregates formation. In this paper we present a critical review of cellular, animal and clinical studies which have contributed to a more thorough understanding of the extent to which adiponectin influences the risk of developing AD as well as its progression. Finally, the effect of acetylcholinesterase inhibitors on circulating adiponectin levels, possible therapeutic applications and future research strategies are also discussed.
Collapse
Affiliation(s)
- Liliana Letra
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Neurology Department, Centro Hospitalar do Baixo Vouga - Aveiro, Av. Artur Ravara, 3814-501 Aveiro, Portugal.
| | - Tiago Rodrigues
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Paulo Matafome
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Praceta Professor Mota Pinto, 3000-075 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; CNC, Center for Neuroscience and Cell Biology, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - Raquel Seiça
- Institute of Physiology, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
83
|
Polis B, Srikanth KD, Gurevich V, Gil-Henn H, Samson AO. L-Norvaline, a new therapeutic agent against Alzheimer's disease. Neural Regen Res 2019; 14:1562-1572. [PMID: 31089055 PMCID: PMC6557086 DOI: 10.4103/1673-5374.255980] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Growing evidence highlights the role of arginase activity in the manifestation of Alzheimer’s disease (AD). Upregulation of arginase was shown to contribute to neurodegeneration. Regulation of arginase activity appears to be a promising approach for interfering with the pathogenesis of AD. Therefore, the enzyme represents a novel therapeutic target. In this study, we administered an arginase inhibitor, L-norvaline (250 mg/L), for 2.5 months to a triple-transgenic model (3×Tg-AD) harboring PS1M146V, APPSwe, and tauP301L transgenes. Then, the neuroprotective effects of L-norvaline were evaluated using immunohistochemistry, proteomics, and quantitative polymerase chain reaction assays. Finally, we identified the biological pathways activated by the treatment. Remarkably, L-norvaline treatment reverses the cognitive decline in AD mice. The treatment is neuroprotective as indicated by reduced beta-amyloidosis, alleviated microgliosis, and reduced tumor necrosis factor transcription levels. Moreover, elevated levels of neuroplasticity related postsynaptic density protein 95 were detected in the hippocampi of mice treated with L-norvaline. Furthermore, we disclosed several biological pathways, which were involved in cell survival and neuroplasticity and were activated by the treatment. Through these modes of action, L-norvaline has the potential to improve the symptoms of AD and even interferes with its pathogenesis. As such, L-norvaline is a promising neuroprotective molecule that might be tailored for the treatment of a range of neurodegenerative disorders. The study was approved by the Bar-Ilan University Animal Care and Use Committee (approval No. 82-10-2017) on October 1, 2017.
Collapse
Affiliation(s)
- Baruh Polis
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine; Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Kolluru D Srikanth
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Vyacheslav Gurevich
- Laboratory of Cancer Personalized Medicine and Diagnostic Genomics, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Hava Gil-Henn
- Laboratory of Cell Migration and Invasion, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Abraham O Samson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
84
|
Wang G, Bieberich E. Sphingolipids in neurodegeneration (with focus on ceramide and S1P). Adv Biol Regul 2018; 70:51-64. [PMID: 30287225 PMCID: PMC6251739 DOI: 10.1016/j.jbior.2018.09.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 04/14/2023]
Abstract
For many decades, research on sphingolipids associated with neurodegenerative disease focused on alterations in glycosphingolipids, particularly glycosylceramides (cerebrosides), sulfatides, and gangliosides. This seemed quite natural since many of these glycolipids are constituents of myelin and accumulated in lipid storage diseases (sphingolipidoses) resulting from enzyme deficiencies in glycolipid metabolism. With the advent of recognizing ceramide and its derivative, sphingosine-1-phosphate (S1P), as key players in lipid cell signaling and regulation of cell death and survival, research focus shifted toward these two sphingolipids. Ceramide and S1P are invoked in a plethora of cell biological processes participating in neurodegeneration such as ER stress, autophagy, dysregulation of protein and lipid transport, exosome secretion and neurotoxic protein spreading, neuroinflammation, and mitochondrial dysfunction. Hence, it is timely to discuss various functions of ceramide and S1P in neurodegenerative disease and to define sphingolipid metabolism and cell signaling pathways as potential targets for therapy.
Collapse
Affiliation(s)
- Guanghu Wang
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
85
|
Zhong L, Jiang X, Zhu Z, Qin H, Dinkins MB, Kong JN, Leanhart S, Wang R, Elsherbini A, Bieberich E, Zhao Y, Wang G. Lipid transporter Spns2 promotes microglia pro-inflammatory activation in response to amyloid-beta peptide. Glia 2018; 67:498-511. [PMID: 30484906 DOI: 10.1002/glia.23558] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/31/2018] [Accepted: 10/22/2018] [Indexed: 12/29/2022]
Abstract
Accumulating evidence indicates that neuroinflammation contributes to the pathogenesis and exacerbation of neurodegenerative disorders, such as Alzheimer's disease (AD). Sphingosine-1-phosphate (S1P) is a pleiotropic bioactive lipid that regulates many pathophysiological processes including inflammation. We present evidence here that the spinster homolog 2 (Spns2), a S1P transporter, promotes microglia pro-inflammatory activation in vitro and in vivo. Spns2 knockout (Spns2KO) in primary cultured microglia resulted in significantly reduced levels of pro-inflammatory cytokines induced by lipopolysaccharide (LPS) and amyloid-beta peptide 1-42 oligomers (Aβ42) when compared with littermate controls. Fingolimod (FTY720), a S1P receptor 1 (S1PR1) functional antagonist and FDA approved drug for relapsing-remitting multiple sclerosis, partially blunted Aβ42-induced pro-inflammatory cytokine generation, suggesting that Spns2 promotes microglia pro-inflammatory activation through S1P-signaling. Spns2KO significantly reduced Aβ42-induced nuclear factor kappa B (NFκB) activity. S1P increased, while FTY720 dampened, Aβ42-induced NFκB activity, suggesting that Spns2 activates microglia inflammation through, at least partially, NFκB pathway. Spns2KO mouse brains showed significantly reduced Aβ42-induced microglia activation/accumulation and reduced levels of pro-inflammatory cytokines when compared with age-matched controls. More interestingly, Spns2KO ameliorated Aβ42-induced working memory deficit detected by Y-Maze. In summary, these results suggest that Spns2 promotes pro-inflammatory polarization of microglia and may play a crucial role in AD pathogenesis.
Collapse
Affiliation(s)
- Liansheng Zhong
- Department of Physiology, University of Kentucky, Lexington, Kentucky.,Department of Bioinformatics, Key Laboratory of Cell Biology of Ministry of Public Health, College of Life Sciences, China Medical University, Shenyang, China
| | - Xue Jiang
- Department of Physiology, University of Kentucky, Lexington, Kentucky.,Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Zhihui Zhu
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Haiyan Qin
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Michael B Dinkins
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Ji-Na Kong
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Silvia Leanhart
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Rebecca Wang
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Ahmed Elsherbini
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky, Lexington, Kentucky.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Yujie Zhao
- Department of Bioinformatics, Key Laboratory of Cell Biology of Ministry of Public Health, College of Life Sciences, China Medical University, Shenyang, China
| | - Guanghu Wang
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
86
|
Motyl J, Strosznajder JB. Sphingosine kinase 1/sphingosine-1-phosphate receptors dependent signalling in neurodegenerative diseases. The promising target for neuroprotection in Parkinson’s disease. Pharmacol Rep 2018; 70:1010-1014. [DOI: 10.1016/j.pharep.2018.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/10/2018] [Accepted: 05/09/2018] [Indexed: 12/14/2022]
|
87
|
Torretta E, Arosio B, Barbacini P, Casati M, Capitanio D, Mancuso R, Mari D, Cesari M, Clerici M, Gelfi C. Particular CSF sphingolipid patterns identify iNPH and AD patients. Sci Rep 2018; 8:13639. [PMID: 30206302 PMCID: PMC6133966 DOI: 10.1038/s41598-018-31756-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022] Open
Abstract
Idiopathic normal pressure hydrocephalus (iNPH) is characterized by reversible neurological symptoms due to an impairment in cerebrospinal fluid (CSF) clearance. In these patients, cognitive functions are severely impaired, with a scenario similar to Alzheimer’s disease (AD), making the differential diagnosis difficult and highlighting the need of new markers. We analyzed the composition of sphingolipids (SLs) in serum, by combining a single phase extraction with a high-performance thin-layer chromatography (HPTLC) primuline-profiling, and, in CSF, by MALDI profiling and LC-MS. Ceramides and sphingomyelins (SMs) were similar in serum of iNPH and AD patients compared to healthy controls, whereas, in CSF, MALDI profiling indicated that: 1) SM C24:1 is significantly decreased in AD compared to iNPH patients and controls (Kruskal-Wallis p-value < 0.00001); 2) phosphatidylcholine (PC) 36:2 is increased in iNPH patients (p-value < 0.001). LC-MS identified an increasing trend of Cer C24:0 and of a set of SMs in patients with AD, a significant decrease of sphingosine-1-phosphate (S1P) (t-test p-value 0.0325) and an increase of glucosylceramide (GlcCer) C24:0 (p-value 0.0037) in AD compared to iNPH patients. In conclusion CSF PC 36:2, SM C24:1, S1P, and GlcCer can contribute to improve the differential diagnosis of patients with iNPH or AD and foster preventive therapeutic strategies in the early phase of the disease.
Collapse
Affiliation(s)
- Enrica Torretta
- Department of Biomedical Sciences for Health, University of Milan, Segrate (Milan), Italy
| | - Beatrice Arosio
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, Segrate (Milan), Italy
| | - Martina Casati
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Milan, Italy
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Segrate (Milan), Italy
| | - Roberta Mancuso
- Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Mari
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Milan, Italy
| | - Matteo Cesari
- Geriatric Unit, Department of Medical Sciences and Community Health, University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Mario Clerici
- Don C Gnocchi Foundation IRCCS, Milan, Italy.,Department of Physiopathology and Transplants, University of Milan, Milan, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Segrate (Milan), Italy. .,Clinical Proteomics Unit, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Policlinico San Donato, San Donato Milanese (Milan), Italy.
| |
Collapse
|
88
|
Pramipexole and Fingolimod exert neuroprotection in a mouse model of Parkinson's disease by activation of sphingosine kinase 1 and Akt kinase. Neuropharmacology 2018; 135:139-150. [DOI: 10.1016/j.neuropharm.2018.02.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022]
|
89
|
de Wit NM, Snkhchyan H, den Hoedt S, Wattimena D, de Vos R, Mulder MT, Walter J, Martinez-Martinez P, Hoozemans JJ, Rozemuller AJ, de Vries HE. Altered Sphingolipid Balance in Capillary Cerebral Amyloid Angiopathy. J Alzheimers Dis 2018; 60:795-807. [PMID: 27662305 DOI: 10.3233/jad-160551] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The majority of patients with Alzheimer's disease (AD) exhibit amyloid-β (Aβ) deposits at the brain vasculature, a process referred to as cerebral amyloid angiopathy (CAA). In over 51% of AD cases, Aβ also accumulates in cortical capillaries, which is termed capillary CAA (capCAA). It has been postulated that the presence of capCAA in AD is a specific subtype of AD, although underlying mechanisms are not yet fully understood. Sphingolipids (SLs) are implicated in neurodegenerative disorders, including AD. However, to date it remains unknown whether alterations in the SL pathway are involved in capCAA pathogenesis and if these differ from AD. OBJECTIVE To determine whether AD cases with capCAA have an altered SL profile compared to AD cases without capCAA. METHODS Immunohistochemistry was performed to assess the expression and localization of ceramide, acid sphingomyelinase (ASM), and sphingosine-1-phosphate receptors (S1P1, S1P3). In addition, we determined the concentrations of S1P as well as different chain-lengths of ceramides using HPLC-MS/MS. RESULTS Immunohistochemical analysis revealed an altered expression of ceramide, ASM, and S1P receptors by reactive astrocytes and microglial cells specifically associated with capCAA. Moreover, a shift in the balance of ceramides with different chain-lengths and S1P content is observed in capCAA. CONCLUSION Here we provide evidence of a deregulated SL balance in capCAA. The increased levels of ASM and ceramide in activated glia cells suggest that the SL pathway is involved in the neuroinflammatory response in capCAA pathogenesis. Future research is needed to elucidate the role of S1P in capCAA.
Collapse
Affiliation(s)
- Nienke M de Wit
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Hripsime Snkhchyan
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Sandra den Hoedt
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Darcos Wattimena
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rob de Vos
- Laboratorium Pathology Oost Nederland, Enschede, The Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jochen Walter
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Pilar Martinez-Martinez
- Department of Neuroscience, School of Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Jeroen J Hoozemans
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Annemieke J Rozemuller
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
90
|
Intracellular S1P Levels Dictate Fate of Different Regions of the Hippocampus following Transient Global Cerebral Ischemia. Neuroscience 2018; 384:188-202. [PMID: 29782904 DOI: 10.1016/j.neuroscience.2018.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 11/21/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a sphingolipid molecule produced by the action of sphingosine kinases (SphK) on sphingosine. It possesses various intracellular functions through its interactions with intracellular proteins or via its action on five G-protein-coupled cell membrane receptors. Following transient global cerebral ischemia (tGCI), only the CA1 subregion of the hippocampus undergoes apoptosis. In this study, we evaluated S1P levels and S1P-processing enzyme expression in different hippocampal areas following tGCI in rats. We found that S1P was upregulated earlier in CA3 than in CA1. This was associated with upregulation of SphK1 in both regions; however, SphK2 was downregulated quickly in CA3. S1P lyase was also downregulated in CA3, but not in CA1. Spinster 2, the S1P exporter, was upregulated early in both regions, but was quickly downregulated in CA3. Together, these effects explain the variable levels of S1P in the CA1 and CA3 areas and indicate that S1P levels play a role in the preferential resistance of the CA3 subregion to tGCI-induced ischemia. FTY720 did not improve neuronal survival in the CA1 subregion, indicating that these effects were due to intracellular S1P accumulation. In conclusion, the findings suggest that intracellular S1P levels affect neuronal cell fate following tGCI.
Collapse
|
91
|
The Dynamics of Neurosteroids and Sex-Related Hormones in the Pathogenesis of Alzheimer’s Disease. Neuromolecular Med 2018; 20:215-224. [DOI: 10.1007/s12017-018-8493-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/28/2018] [Indexed: 12/11/2022]
|
92
|
Modulatory Effects of Fingolimod (FTY720) on the Expression of Sphingolipid Metabolism-Related Genes in an Animal Model of Alzheimer's Disease. Mol Neurobiol 2018; 56:174-185. [PMID: 29687345 PMCID: PMC6334734 DOI: 10.1007/s12035-018-1040-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/27/2018] [Indexed: 01/30/2023]
Abstract
Sphingolipid signaling disturbances correlate with Alzheimer's disease (AD) progression. We examined the influence of FTY720/fingolimod, a sphingosine analog and sphingosine-1-phosphate (S1P) receptor modulator, on the expression of sphingolipid metabolism and signaling genes in a mouse transgenic AD model. Our results demonstrated that AβPP (V717I) transgene led with age to reduced mRNA expression of S1P receptors (S1PRs), sphingosine kinase SPHK2, ceramide kinase CERK, and the anti-apoptotic Bcl2 in the cerebral cortex and hippocampus, suggesting a pro-apoptotic shift in 12-month old mice. These changes largely emulated alterations we observed in the human sporadic AD hippocampus: reduced SPHK1, SPHK2, CERK, S1PR1, and BCL2. We observed that the responses to FTY720 treatment were modified by age and notably differed between control (APP-) and AD transgenic (APP+) animals. AβPP (V717I)-expressing 12-month-old animals reacted to fingolimod with wide changes in the gene expression program in cortex and hippocampus, including increased pro-survival SPHKs and CERK. Moreover, BCL2 was elevated by FTY720 in the cortex at all ages (3, 6, 12 months) while in hippocampus this increase was observed at 12 months only. In APP- mice, fingolimod did not induce any significant mRNA changes at 12 months. Our results indicate significant effect of FTY720 on the age-dependent transcription of genes involved in sphingolipid metabolism and pro-survival signaling, suggesting its neuroprotective role in AD animal model.
Collapse
|
93
|
Chong JR, Xiang P, Wang W, Hind T, Chew WS, Ong WY, Lai MKP, Herr DR. Sphingolipidomics analysis of large clinical cohorts. Part 2: Potential impact and applications. Biochem Biophys Res Commun 2018; 504:602-607. [PMID: 29654757 DOI: 10.1016/j.bbrc.2018.04.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/10/2018] [Indexed: 11/18/2022]
Abstract
It has been known for decades that the regulation of sphingolipids (SLs) is essential for the proper function of many cellular processes. However, a complete understanding of these processes has been complicated by the structural diversity of these lipids. A well-characterized metabolic pathway is responsible for homeostatic maintenance of hundreds of distinct SL species. This pathway is perturbed in a number of pathological processes, resulting in derangement of the "sphingolipidome." Recently, advances in mass spectrometry (MS) techniques have made it possible to characterize the sphingolipidome in large-scale clinical studies, allowing for the identification of specific SL molecules that mediate pathological processes and/or may serve as biomarkers. This manuscript provides an overview of the functions of SLs, and reviews previous studies that have used MS techniques to identify changes to the sphingolipidome in non-metabolic diseases.
Collapse
Affiliation(s)
- Joyce R Chong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Ping Xiang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Wei Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Tatsuma Hind
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Department of Pharmacology, University of British Columbia, Vancouver, BC, Canada
| | - Wee Siong Chew
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 119260, Singapore; Neurobiology and Ageing Research Programme, Life Sciences Institute, National University of Singapore, 119260, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Neurobiology and Ageing Research Programme, Life Sciences Institute, National University of Singapore, 119260, Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Department of Biology, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
94
|
Di Pardo A, Maglione V. Sphingolipid Metabolism: A New Therapeutic Opportunity for Brain Degenerative Disorders. Front Neurosci 2018; 12:249. [PMID: 29719499 PMCID: PMC5913346 DOI: 10.3389/fnins.2018.00249] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 03/29/2018] [Indexed: 01/01/2023] Open
Abstract
Neurodegenerative diseases represent a class of fatal brain disorders for which the number of effective therapeutic options remains limited with only symptomatic treatment accessible. Multiple studies show that defects in sphingolipid pathways are shared among different brain disorders including neurodegenerative diseases and may contribute to their complex pathogenesis. In this mini review, we discuss the hypothesis that modulation of sphingolipid metabolism and their related signaling pathways may represent a potential therapeutic approach for those devastating conditions. The plausible “druggability” of sphingolipid pathways is greatly promising and represent a relevant feature that brings real advantage to the development of new therapeutic options for these conditions. Indeed, several molecules that selectively target sphingolipds are already available and many of them currently in clinical trial for human diseases. A deeper understanding of the “sphingolipid scenario” in neurodegenerative disorders would certainly enhance therapeutic perspectives for these conditions, by taking advantage from the already available molecules and by promoting the development of new ones.
Collapse
|
95
|
Dominguez G, Maddelein ML, Pucelle M, Nicaise Y, Maurage CA, Duyckaerts C, Cuvillier O, Delisle MB. Neuronal sphingosine kinase 2 subcellular localization is altered in Alzheimer's disease brain. Acta Neuropathol Commun 2018; 6:25. [PMID: 29615132 PMCID: PMC5883421 DOI: 10.1186/s40478-018-0527-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/19/2018] [Indexed: 12/27/2022] Open
Abstract
Background Alzheimer’s disease (AD) is characterized by the accumulation of β-amyloid (Aβ) peptides and hyperphosphorylated tau protein accompanied by neuronal loss. Aβ accumulation has been associated with an impaired sphingosine 1-phosphate (S1P) metabolism. S1P is generated by sphingosine kinases (SphKs), of which there are two isoenzymes SphK1 and SphK2, and degraded by the sphingosine 1-phosphate lyase (SPL). We previously reported, that both a decrease in SphK1 expression and an increase in SPL expression, correlated with amyloid deposits in the entorhinal cortex of AD brains, suggesting a global loss of pro-survival S1P in AD neurons. SphK2 contribution has also been examined in AD yielding to conflicting results that may reflect the complexity of SphK2 regulation. The subcellular localization of SphK2, hence the compartmentalization of generated S1P, is recognized to play a crucial role in dictating either its pro-survival or pro-apoptotic functions. We therefore aimed at studying the expression of SphK2 and notably its subcellular localization in brain tissues from patients with AD. Results We report that a decrease in SphK2 protein cytosolic expression correlated with the density of amyloid deposits in a cohort of 25 post-mortem brains. Interestingly, we observed that the equilibrium between cytoplasmic and nuclear SphK2 is disrupted and showed that SphK2 is preferentially localized in the nucleus in AD brain extracts as compared to control extracts, with a marked increase of cleaved SphK2. Conclusions Our results suggest that a shift in the subcellular localization of the S1P generating SphK2 may compromise the well established pro-survival cytosolic S1P by favoring the production of nuclear S1P associated with adverse effects in AD pathogenesis. Electronic supplementary material The online version of this article (10.1186/s40478-018-0527-z) contains supplementary material, which is available to authorized users.
Collapse
|
96
|
Hill RZ, Hoffman BU, Morita T, Campos SM, Lumpkin EA, Brem RB, Bautista DM. The signaling lipid sphingosine 1-phosphate regulates mechanical pain. eLife 2018; 7:e33285. [PMID: 29561262 PMCID: PMC5896955 DOI: 10.7554/elife.33285] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/14/2018] [Indexed: 12/20/2022] Open
Abstract
Somatosensory neurons mediate responses to diverse mechanical stimuli, from innocuous touch to noxious pain. While recent studies have identified distinct populations of A mechanonociceptors (AMs) that are required for mechanical pain, the molecular underpinnings of mechanonociception remain unknown. Here, we show that the bioactive lipid sphingosine 1-phosphate (S1P) and S1P Receptor 3 (S1PR3) are critical regulators of acute mechanonociception. Genetic or pharmacological ablation of S1PR3, or blockade of S1P production, significantly impaired the behavioral response to noxious mechanical stimuli, with no effect on responses to innocuous touch or thermal stimuli. These effects are mediated by fast-conducting A mechanonociceptors, which displayed a significant decrease in mechanosensitivity in S1PR3 mutant mice. We show that S1PR3 signaling tunes mechanonociceptor excitability via modulation of KCNQ2/3 channels. Our findings define a new role for S1PR3 in regulating neuronal excitability and establish the importance of S1P/S1PR3 signaling in the setting of mechanical pain thresholds.
Collapse
Affiliation(s)
- Rose Z Hill
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Benjamin U Hoffman
- Department of Physiology and Cellular BiophysicsColumbia University College of Physicians and SurgeonsNew YorkUnited States
- Medical Scientist Training ProgramColumbia UniversityNew YorkUnited States
| | - Takeshi Morita
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | | | - Ellen A Lumpkin
- Department of Physiology and Cellular BiophysicsColumbia University College of Physicians and SurgeonsNew YorkUnited States
- Neurobiology CourseMarine Biological LaboratoryWoods HoleUnited States
| | - Rachel B Brem
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Buck Institute for Research on AgingNovatoUnited States
| | - Diana M Bautista
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Neurobiology CourseMarine Biological LaboratoryWoods HoleUnited States
- Helen Wills Neuroscience InstituteUniversity of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
97
|
Di Pardo A, Maglione V. The S1P Axis: New Exciting Route for Treating Huntington's Disease. Trends Pharmacol Sci 2018; 39:468-480. [PMID: 29559169 DOI: 10.1016/j.tips.2018.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 11/17/2022]
Abstract
Huntington's disease (HD) is a single-gene inheritable neurodegenerative disorder with an associated complex molecular pathogenic profile that renders it the most 'curable incurable' brain disorder. Continuous effort in the field has contributed to the recent discovery of novel potential pathogenic mechanisms. Findings in preclinical models of the disease as well as in human post-mortem brains from affected patients demonstrate that alteration of the sphingosine-1-phosphate (S1P) axis may represent a possible key player in the pathogenesis of the disease and may act as a potential actionable drug target for the development of more targeted and effective therapeutic approaches. The relevance of the path of this new 'therapeutic route' is underscored by the fact that some drugs targeting the S1P axis are currently in clinical trials for the treatment of other brain disorders.
Collapse
Affiliation(s)
- Alba Di Pardo
- Centre for Neurogenetics and Rare Diseases, IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Vittorio Maglione
- Centre for Neurogenetics and Rare Diseases, IRCCS Neuromed, 86077 Pozzilli (IS), Italy.
| |
Collapse
|
98
|
Identification of metabolite biomarkers for L-DOPA-induced dyskinesia in a rat model of Parkinson's disease by metabolomic technology. Behav Brain Res 2018; 347:175-183. [PMID: 29551735 DOI: 10.1016/j.bbr.2018.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/02/2018] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
Abstract
L-DOPA-induced dyskinesia (LID) is a frequent complication of chronic L-DOPA therapy in the clinical treatment of Parkinson's disease (PD). The pathogenesis of LID involves complex molecular mechanisms in the striatum. Metabolomics can shed light on striatal metabolic alterations in LID. In the present study, we compared metabolomics profiles of striatum tissue from Parkinsonian rats with or without dyskinetic symptoms after chronic L-DOPA administration. A liquid chromatography-mass spectrometry based global metabolomics method combined with multivariate statistical analyses were used to detect candidate metabolites associated with LID. 36 dysregulated metabolites in the striatum of LID rats, including anandamide, 2-arachidonoylglycerol, adenosine, glutamate and sphingosine1-phosphate were identified. Furthermore, IMPaLA metabolite set analysis software was used to identify differentially regulated metabolic pathways. The results showed that the metabolic pathways of "Retrograde endocannabinoid signaling", "Phospholipase D signaling pathway", "Glycerophospholipid metabolism" and "Sphingolipid signaling", etc. were dysregulated in LID rats compared to non-LID controls. Moreover, integrated pathway analysis based on results from the present metabolomics and our previous gene expression data in LID rats further demonstrates that aberrant "Retrograde endocannabinoid signaling" pathway might be involved in the development of LID. The present results provide a new profile for the understanding of the pathological mechanism of LID.
Collapse
|
99
|
Motyl J, Wencel PL, Cieślik M, Strosznajder RP, Strosznajder JB. Alpha-synuclein alters differently gene expression of Sirts, PARPs and other stress response proteins: implications for neurodegenerative disorders. Mol Neurobiol 2018; 55:727-740. [PMID: 28050792 PMCID: PMC5808059 DOI: 10.1007/s12035-016-0317-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/21/2016] [Indexed: 02/06/2023]
Abstract
Alpha-synuclein (ASN) is a presynaptic protein that can easily change its conformation under different types of stress. It's assumed that ASN plays an important role in the pathogenesis of Parkinson's and Alzheimer's disease. However, the molecular mechanism of ASN toxicity has not been elucidated. This study focused on the role of extracellular ASN (eASN) in regulation of transcription of sirtuins (Sirts) and DNA-bound poly(ADP-ribose) polymerases (PARPs) - proteins crucial for cells' survival/death. Our results indicate that eASN enhanced the free radicals level, decreased mitochondria membrane potential, cells viability and activated cells' death. Concomitantly eASN activated expression of antioxidative proteins (Sod2, Gpx4, Gadd45b) and DNA-bound Parp2 and Parp3. Moreover, eASN upregulated expression of Sirt3 and Sirt5, but downregulated of Sirt1, which plays an important role in cell metabolism including Aβ precursor protein (APP) processing. eASN downregulated gene expression of APP alpha secretase (Adam10) and metalloproteinases Mmp2, Mmp10 but upregulated Mmp11. Additionally, expression and activity of pro-survival sphingosine kinase 1 (Sphk1), Akt kinase and anti-apoptotic protein Bcl2 were inhibited. Moreover, higher expression of pro-apoptotic protein Bax and enhancement of apoptotic cells' death were observed. Summarizing, eASN significantly modulates transcription of Sirts and enzymes involved in APP/Aβ metabolism and through these mechanisms eASN toxicity may be enhanced. The inhibition of Sphk1 and Akt by eASN may lead to disturbances of survival pathways. These results suggest that eASN through alteration of transcription and by inhibition of pro-survival kinases may play important pathogenic role in neurodegenerative disorders.
Collapse
Affiliation(s)
- J Motyl
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - P L Wencel
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106, Warsaw, Poland
| | - M Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - R P Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106, Warsaw, Poland.
| | - J B Strosznajder
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| |
Collapse
|
100
|
Di Pardo A, Basit A, Armirotti A, Amico E, Castaldo S, Pepe G, Marracino F, Buttari F, Digilio AF, Maglione V. De novo Synthesis of Sphingolipids Is Defective in Experimental Models of Huntington's Disease. Front Neurosci 2017; 11:698. [PMID: 29311779 PMCID: PMC5742211 DOI: 10.3389/fnins.2017.00698] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/27/2017] [Indexed: 11/23/2022] Open
Abstract
Alterations of lipid metabolism have been frequently associated with Huntington's disease (HD) over the past years. HD is the most common neurodegenerative disorder, with a complex pathogenic profile, typically characterized by progressive striatal and cortical degeneration and associated motor, cognitive and behavioral disturbances. Previous findings from our group support the idea that disturbed sphingolipid metabolism could represent an additional hallmark of the disease. Although such a defect represents a common biological denominator among multiple disease models ranging from cells to humans through mouse models, more efforts are needed to clearly define its clinical significance and the role it may play in the progression of the disease. In this study, we provided the first evidence of a defective de novo biosynthetic pathway of sphingolipids in multiple HD pre-clinical models. qPCR analysis revealed perturbed gene expression of sphingolipid-metabolizing enzymes in both early and late stage of the disease. In particular, reduction in the levels of sptlc1 and cerS1 mRNA in the brain tissues from manifest HD mice resulted in a significant decrease in the content of dihydroSphingosine, dihydroSphingosine-1-phospahte and dihydroCeramide [C18:0] as assessed by mass spectrometry. Moreover, in vitro studies highlighted the relevant role that aberrant sphingolipid metabolism may have in the HD cellular homeostasis. With this study, we consolidate the evidence of disturbed sphingolipid metabolism in HD and demonstrate for the first time that the de novo biosynthesis pathway is also significantly affected in the disease. This finding further supports the hypothesis that perturbed sphingolipid metabolism may represent a crucial factor accounting for the high susceptibility to disease in HD.
Collapse
Affiliation(s)
| | - Abdul Basit
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Andrea Armirotti
- Department of Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | | | | | | | | | | | - Anna F Digilio
- Institute of Biosciences and Bioresources, National Research Council, Naples, Italy
| | | |
Collapse
|