51
|
Schwierzeck V, Hülpüsch C, Reiger M. Microbiome of Barrier Organs in Allergy: Who Runs the World? Germs! Handb Exp Pharmacol 2021; 268:53-65. [PMID: 34228203 DOI: 10.1007/164_2021_478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Over the last few decades, allergic diseases have been steadily increasing worldwide, a phenomenon that is not yet completely understood. Recent evidence, however, suggests that alterations in the microbiome may be a contributing factor. The microbiome refers to all microorganisms in a habitat including bacteria, fungi, and viruses. Using modern sequencing technologies, we are now capable of detecting and analyzing the human microbiome in more detail than ever before. Epidemiological and experimental studies have indicated that a complex intestinal microbiome supports the development of the immune system during childhood, thus providing protection from allergic diseases, including food allergy. The microbiome becomes an important part of human physiology and forms dynamic relationships with our various barrier systems. For example, bacterial dysbiosis is a hallmark of atopic eczema and correlates with disease progression. Similarly, the lung and nasopharyngeal microbiome is altered in patients with asthma and allergic rhinitis. While these results are interesting, the underlying mechanisms are still unclear and need to be investigated with functional studies. This review gives a short overview of the terminology and methods used in microbiome research before highlighting results concerning the lung, skin, and intestinal microbiome in allergic diseases.
Collapse
Affiliation(s)
- Vera Schwierzeck
- Institute of Hygiene, University Hospital Muenster, Munster, Germany
| | - Claudia Hülpüsch
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany.,Institute of Environmental Medicine, Helmholtz Zentrum Muenchen, Augsburg, Germany.,CK CARE - Christine Kuehne Center for Allergy Research and Education, Davos, Switzerland
| | - Matthias Reiger
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany. .,Institute of Environmental Medicine, Helmholtz Zentrum Muenchen, Augsburg, Germany. .,CK CARE - Christine Kuehne Center for Allergy Research and Education, Davos, Switzerland.
| |
Collapse
|
52
|
Raita Y, Pérez-Losada M, Freishtat RJ, Harmon B, Mansbach JM, Piedra PA, Zhu Z, Camargo CA, Hasegawa K. Integrated omics endotyping of infants with respiratory syncytial virus bronchiolitis and risk of childhood asthma. Nat Commun 2021; 12:3601. [PMID: 34127671 PMCID: PMC8203688 DOI: 10.1038/s41467-021-23859-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/17/2021] [Indexed: 02/04/2023] Open
Abstract
Respiratory syncytial virus (RSV) bronchiolitis is not only the leading cause of hospitalization in U.S. infants, but also a major risk factor for asthma development. While emerging evidence suggests clinical heterogeneity within RSV bronchiolitis, little is known about its biologically-distinct endotypes. Here, we integrated clinical, virus, airway microbiome (species-level), transcriptome, and metabolome data of 221 infants hospitalized with RSV bronchiolitis in a multicentre prospective cohort study. We identified four biologically- and clinically-meaningful endotypes: A) clinicalclassicmicrobiomeM. nonliquefaciensinflammationIFN-intermediate, B) clinicalatopicmicrobiomeS. pneumoniae/M. catarrhalisinflammationIFN-high, C) clinicalseveremicrobiomemixedinflammationIFN-low, and D) clinicalnon-atopicmicrobiomeM.catarrhalisinflammationIL-6. Particularly, compared with endotype A infants, endotype B infants-who are characterized by a high proportion of IgE sensitization and rhinovirus coinfection, S. pneumoniae/M. catarrhalis codominance, and high IFN-α and -γ response-had a significantly higher risk for developing asthma (9% vs. 38%; OR, 6.00: 95%CI, 2.08-21.9; P = 0.002). Our findings provide an evidence base for the early identification of high-risk children during a critical period of airway development.
Collapse
Affiliation(s)
- Yoshihiko Raita
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Marcos Pérez-Losada
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, The George Washington University, Washington, DC, USA
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Brennan Harmon
- Center for Genetic Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Jonathan M Mansbach
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pedro A Piedra
- Departments of Molecular Virology and Microbiology and Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Zhaozhong Zhu
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
53
|
Toivonen L, Schuez-Havupalo L, Karppinen S, Waris M, Hoffman KL, Camargo CA, Hasegawa K, Peltola V. Antibiotic Treatments During Infancy, Changes in Nasal Microbiota, and Asthma Development: Population-based Cohort Study. Clin Infect Dis 2021; 72:1546-1554. [PMID: 32170305 PMCID: PMC8096219 DOI: 10.1093/cid/ciaa262] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/10/2020] [Indexed: 12/20/2022] Open
Abstract
Background Early-life exposures to antibiotics may increase the risk of developing childhood asthma. However, little is known about the mechanisms linking antibiotic exposures to asthma. We hypothesized that changes in the nasal airway microbiota serve as a causal mediator in the antibiotics–asthma link. Methods In a population-based birth-cohort study in Finland, we identified longitudinal nasal microbiota profiles during age 2–24 months using 16S rRNA gene sequencing and an unsupervised machine learning approach. We performed a causal mediation analysis to estimate the natural direct effect of systemic antibiotic treatments during age 0–11 months on risks of developing physician-diagnosed asthma by age 7 years and the natural indirect (causal mediation) effect through longitudinal changes in nasal microbiota. Results In our birth cohort of 697 children, 8.0% later developed asthma. Exposure to ≥2 antibiotic treatments during age 0–11 months was associated with a 4.0% increase in the absolute risk of developing asthma (absolute increase, 95% CI, .9–7.2%; P = .006). The unsupervised clustering approach identified 6 longitudinal nasal microbiota profiles. Infants with a larger number of antibiotic treatments had a higher risk of having a profile with early Moraxella sparsity (per each antibiotic treatment, adjusted RRR, 1.38; 95% CI, 1.15–1.66; P < .001). This effect of antibiotics on asthma was partly mediated by longitudinal changes in the nasal microbiota (natural indirect effect, P = .008), accounting for 16% of the total effect. Conclusions Early exposures to antibiotics were associated with increased risk of asthma; the effect was mediated, in part, by longitudinal changes in the nasal airway microbiota.
Collapse
Affiliation(s)
- Laura Toivonen
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Linnea Schuez-Havupalo
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Sinikka Karppinen
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Matti Waris
- Virology Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Kristi L Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ville Peltola
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
54
|
Association of endemic coronaviruses with nasopharyngeal metabolome and microbiota among infants with severe bronchiolitis: a prospective multicenter study. Pediatr Res 2021; 89:1594-1597. [PMID: 32937650 PMCID: PMC7960557 DOI: 10.1038/s41390-020-01154-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/25/2020] [Accepted: 09/04/2020] [Indexed: 01/30/2023]
|
55
|
Linnane B, Walsh AM, Walsh CJ, Crispie F, O’Sullivan O, Cotter PD, McDermott M, Renwick J, McNally P. The Lung Microbiome in Young Children with Cystic Fibrosis: A Prospective Cohort Study. Microorganisms 2021; 9:microorganisms9030492. [PMID: 33652802 PMCID: PMC7996874 DOI: 10.3390/microorganisms9030492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
The cystic fibrosis (CF) lung harbours a diverse microbiome and reduced diversity in the CF lung has been associated with advancing age, increased inflammation and poorer lung function. Data suggest that the window for intervention is early in CF, yet there is a paucity of studies on the lung microbiome in children with CF. The objective of this study was to thoroughly characterise the lower airway microbiome in pre-school children with CF. Bronchoalveolar lavage (BAL) samples were collected annually from children attending the three clinical centres. Clinical and demographic data were collated on all subjects alongside BAL inflammatory markers. 16S rRNA gene sequencing was performed on the Illumina MiSeq platform. Bioinformatics and data analysis were performed using Qiime and R project software. Data on 292 sequenced BALs from 101 children with CF and 51 without CF show the CF lung microbiome, while broadly similar to that in non-CF children, is distinct. Alpha diversity between the two cohorts was indistinguishable at this early age. The CF diagnosis explained only 1.1% of the variation between the cohort microbiomes. However, several key genera were significantly differentially abundant between the groups. While the non-CF lung microbiome diversity increased with age, diversity reduced in CF with age. Pseudomonas and Staphylococcus were more abundant with age, while genera such as Streptococcus, Porphyromonas and Veillonella were less abundant with age. There was a negative correlation between alpha diversity and interleukin-8 and neutrophil elastase in the CF population. Neither current flucloxacillin or azithromycin prophylaxis, nor previous oral or IV antibiotic exposure, was correlated with microbiome diversity. Consecutive annual BAL samples over 5 years from a subgroup of children demonstrated diverse patterns of development in the first years of life.
Collapse
Affiliation(s)
- Barry Linnane
- Centre for Interventions in Infection, Inflammation and Immunity (4i) and Graduate Entry Medical School, University of Limerick, Limerick V94 T9PX, Ireland;
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin D12 N512, Ireland;
| | - Aaron M. Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (A.M.W.); (C.J.W.); (F.C.); (O.O.); (P.D.C.)
- APC Microbiome Ireland, University College Cork, Cork T12 YN60, Ireland
| | - Calum J. Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (A.M.W.); (C.J.W.); (F.C.); (O.O.); (P.D.C.)
- APC Microbiome Ireland, University College Cork, Cork T12 YN60, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (A.M.W.); (C.J.W.); (F.C.); (O.O.); (P.D.C.)
- APC Microbiome Ireland, University College Cork, Cork T12 YN60, Ireland
| | - Orla O’Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (A.M.W.); (C.J.W.); (F.C.); (O.O.); (P.D.C.)
- APC Microbiome Ireland, University College Cork, Cork T12 YN60, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (A.M.W.); (C.J.W.); (F.C.); (O.O.); (P.D.C.)
- APC Microbiome Ireland, University College Cork, Cork T12 YN60, Ireland
| | - Michael McDermott
- Pathology Department, Our Lady’s Children’s Hospital, Crumlin, Dublin D12 N512, Ireland;
| | - Julie Renwick
- Department of Clinical Microbiology, Trinity College Dublin, Trinity Centre for Health Science, Tallaght University Hospital, Dublin 24, Ireland
- Correspondence: ; Tel.: +353-1-896-3791
| | - Paul McNally
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, Dublin D12 N512, Ireland;
- Department of Paediatrics, Royal College of Surgeons in Ireland, Our Lady’s Children’s Hospital Crumlin, Dublin D12 N512, Ireland
| |
Collapse
|
56
|
Gatcliffe C, Rao A, Brigger M, Dimmock D, Hansen C, Montgomery J, Schlaberg R, Coufal NG, Farnaes L. Metagenomic sequencing and evaluation of the host response in the pediatric aerodigestive population. Pediatr Pulmonol 2021; 56:516-524. [PMID: 33270378 DOI: 10.1002/ppul.25198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/30/2020] [Accepted: 11/19/2020] [Indexed: 01/13/2023]
Abstract
OBJECTIVES To assess the diagnostic utility of metagenomic sequencing in pediatric aerodigestive clinic patients being evaluated for chronic aspiration. We hypothesize that using a metagenomics platform will aid in the identification of microbes not found on standard culture. STUDY DESIGN AND METHODS Twenty-four children referred to an aerodigestive clinic were enrolled in a prospective, single-site, cross-sectional cohort study. At the time of clinical evaluation under anesthesia, two samples were obtained: an upper airway sample and a sample from bronchoalveolar lavage (BAL). Samples were sent for routine culture and analyzed using Explify® Respiratory, a CLIA Laboratory Developed Test which identifies respiratory commensals and pathogens through RNA and DNA sequencing. Since RNA was sequenced in the course of the metagenomic analysis to identify organisms (RNA viruses and bacteria), the sequencing approach also captured host derived messenger RNA during sample analysis. This incidentally obtained host transcriptomic data were analyzed to evaluate the host immune response. The results of these studies were correlated with the clinical presentation of the research subjects. RESULTS In 10 patients, organisms primarily associated with oral flora were identified in the BAL. Standard culture was negative in three patients where clinical metagenomics led to a result with potential clinical significance. Transcriptomic data correlated with the presence or absence of dysphagia as identified on prior videofluoroscopic evaluation of swallowing. CONCLUSIONS Clinical metagenomics allows for simultaneous analysis of the microbiota and the host immune response from BAL samples. As the technologies in this field continue to advance, such testing may improve the diagnostic evaluation of patients with suspected chronic aspiration.
Collapse
Affiliation(s)
- Chelsea Gatcliffe
- Department of Pediatrics, Division of Pediatric Respiratory Medicine, Rady Children's Hospital San Diego, University of California San Diego, San Diego, California, USA.,Department of Surgery, Division of Pediatric Otolaryngology, Rady Children's Hospital San Diego, University of California San Diego, San Diego, California, USA
| | - Aparna Rao
- Department of Pediatrics, Division of Pediatric Respiratory Medicine, Rady Children's Hospital San Diego, University of California San Diego, San Diego, California, USA
| | - Matthew Brigger
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital San Diego, San Diego, California, USA
| | - David Dimmock
- Department of Surgery, Division of Pediatric Otolaryngology, Rady Children's Hospital San Diego, University of California San Diego, San Diego, California, USA
| | - Christian Hansen
- Department of Surgery, Division of Pediatric Otolaryngology, Rady Children's Hospital San Diego, University of California San Diego, San Diego, California, USA
| | | | | | - Nicole G Coufal
- Department of Surgery, Division of Pediatric Otolaryngology, Rady Children's Hospital San Diego, University of California San Diego, San Diego, California, USA.,Department of Pediatrics, Pediatric Critical Care, Rady Children's Hospital San Diego, University of California San Diego, San Diego, California, USA
| | - Lauge Farnaes
- Department of Surgery, Division of Pediatric Otolaryngology, Rady Children's Hospital San Diego, University of California San Diego, San Diego, California, USA.,Department of Pediatrics, Division of Pediatric Infectious Diseases, Rady Children's Hospital San Diego, University of California San Diego, San Diego, California, USA
| |
Collapse
|
57
|
Tzani-Tzanopoulou P, Skliros D, Megremis S, Xepapadaki P, Andreakos E, Chanishvili N, Flemetakis E, Kaltsas G, Taka S, Lebessi E, Doudoulakakis A, Papadopoulos NG. Interactions of Bacteriophages and Bacteria at the Airway Mucosa: New Insights Into the Pathophysiology of Asthma. FRONTIERS IN ALLERGY 2021; 1:617240. [PMID: 35386933 PMCID: PMC8974763 DOI: 10.3389/falgy.2020.617240] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
The airway epithelium is the primary site where inhaled and resident microbiota interacts between themselves and the host, potentially playing an important role on allergic asthma development and pathophysiology. With the advent of culture independent molecular techniques and high throughput technologies, the complex composition and diversity of bacterial communities of the airways has been well-documented and the notion of the lungs' sterility definitively rejected. Recent studies indicate that the microbial composition of the asthmatic airways across the spectrum of disease severity, differ significantly compared with healthy individuals. In parallel, a growing body of evidence suggests that bacterial viruses (bacteriophages or simply phages), regulating bacterial populations, are present in almost every niche of the human body and can also interact directly with the eukaryotic cells. The triptych of airway epithelial cells, bacterial symbionts and resident phages should be considered as a functional and interdependent unit with direct implications on the respiratory and overall homeostasis. While the role of epithelial cells in asthma pathophysiology is well-established, the tripartite interactions between epithelial cells, bacteria and phages should be scrutinized, both to better understand asthma as a system disorder and to explore potential interventions.
Collapse
Affiliation(s)
- Panagiota Tzani-Tzanopoulou
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Skliros
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Spyridon Megremis
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| | - Paraskevi Xepapadaki
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Andreakos
- Center for Clinical, Experimental Surgery and Translational Research of the Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Nina Chanishvili
- Laboratory for Genetics of Microorganisms and Bacteriophages, Eliava Institute of Bacteriophage, Microbiology & Virology, Tbilisi, GA, United States
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Grigoris Kaltsas
- Department of Electrical and Electronic Engineering, University of West Attica, Athens, Greece
| | - Styliani Taka
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelia Lebessi
- Department of Microbiology, P. & A. Kyriakou Children's Hospital, Athens, Greece
| | | | - Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Division of Evolution and Genomic Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
58
|
Sun T, Yu H, Fu J. Respiratory Tract Microecology and Bronchopulmonary Dysplasia in Preterm Infants. Front Pediatr 2021; 9:762545. [PMID: 34966701 PMCID: PMC8711720 DOI: 10.3389/fped.2021.762545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe respiratory complication in preterm infants. Although the etiology and pathogenesis of BPD are complex and remain to be clarified, recent studies have reported a certain correlation between the microecological environment of the respiratory tract and BPD. Changes in respiratory tract microecology, such as abnormal microbial diversity and altered evolutional patterns, are observed prior to the development of BPD in premature infants. Therefore, research on the colonization and evolution of neonatal respiratory tract microecology and its relationship with BPD is expected to provide new ideas for its prevention and treatment. In this paper, we review microecological changes in the respiratory tract and the mechanisms by which they can lead to BPD in preterm infants.
Collapse
Affiliation(s)
- Tong Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
59
|
Affiliation(s)
- Melinda M Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Windy Tanner
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Anthony D Harris
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore Maryland, USA
| |
Collapse
|
60
|
de Koff EM, Man WH, van Houten MA, Jansen NJG, Arp K, Hasrat R, Sanders EAM, Bogaert D. The respiratory microbiota during and following mechanical ventilation for respiratory infections in children. Eur Respir J 2020; 57:13993003.02652-2020. [PMID: 33303531 PMCID: PMC8012590 DOI: 10.1183/13993003.02652-2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/14/2020] [Indexed: 11/30/2022]
Abstract
The lower respiratory tract (LRT) harbours distinct, dynamic low-density microbial communities, established through micro-aspiration from the upper respiratory tract (URT) [1–3]. However, during intubation and mechanical ventilation, the endotracheal tube temporarily alters the anatomical continuity between URT and LRT, and may provide a bridge for airborne microbes and a barrier for micro-aspiration. Shortly after intubation for a severe LRT infection (LRTI) in children, the microbiota of the nasopharynx and LRT were shown to be very similar [4]. However, it remains unknown how the respiratory microbial community develops while the child recovers from the infection under treatment with mechanical ventilation and antibiotics. We therefore analysed respiratory microbiota changes in children participating in our study on acute LRTIs and who were admitted to the paediatric intensive care unit (PICU) for mechanical ventilation [4]. During mechanical ventilation for an LRTI in children, the respiratory microbiota shifted from Haemophilus- and Moraxella-dominated profiles to profiles dominated by antibiotic-resistant Enterobacteriaceae, and Staphylococcus and Streptococcus species.https://bit.ly/3pGfvhQ
Collapse
Affiliation(s)
- Emma M de Koff
- Spaarne Academy, Spaarne Gasthuis, Hoofddorp and Haarlem, The Netherlands.,Dept of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Wing Ho Man
- Spaarne Academy, Spaarne Gasthuis, Hoofddorp and Haarlem, The Netherlands.,Dept of Paediatrics, Willem-Alexander Children's Hospital and Leiden University Medical Centre, Leiden, The Netherlands
| | - Marlies A van Houten
- Spaarne Academy, Spaarne Gasthuis, Hoofddorp and Haarlem, The Netherlands.,Dept of Paediatrics, Spaarne Gasthuis, Hoofddorp and Haarlem, The Netherlands
| | - Nicolaas J G Jansen
- Dept of Paediatric Intensive Care, Wilhelmina Children's Hospital and University Medical Centre Utrecht, Utrecht, The Netherlands.,Dept of Paediatrics, Beatrix Children's Hospital, University Medical Centre Groningen, Groningen, The Netherlands
| | - Kayleigh Arp
- Dept of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Raiza Hasrat
- Dept of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Elisabeth A M Sanders
- Dept of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital and University Medical Centre Utrecht, Utrecht, The Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Debby Bogaert
- Dept of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital and University Medical Centre Utrecht, Utrecht, The Netherlands .,Medical Research Council and University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
61
|
Iverson E, Kaler L, Agostino EL, Song D, Duncan GA, Scull MA. Leveraging 3D Model Systems to Understand Viral Interactions with the Respiratory Mucosa. Viruses 2020; 12:E1425. [PMID: 33322395 PMCID: PMC7763686 DOI: 10.3390/v12121425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory viruses remain a significant cause of morbidity and mortality in the human population, underscoring the importance of ongoing basic research into virus-host interactions. However, many critical aspects of infection are difficult, if not impossible, to probe using standard cell lines, 2D culture formats, or even animal models. In vitro systems such as airway epithelial cultures at air-liquid interface, organoids, or 'on-chip' technologies allow interrogation in human cells and recapitulate emergent properties of the airway epithelium-the primary target for respiratory virus infection. While some of these models have been used for over thirty years, ongoing advancements in both culture techniques and analytical tools continue to provide new opportunities to investigate airway epithelial biology and viral infection phenotypes in both normal and diseased host backgrounds. Here we review these models and their application to studying respiratory viruses. Furthermore, given the ability of these systems to recapitulate the extracellular microenvironment, we evaluate their potential to serve as a platform for studies specifically addressing viral interactions at the mucosal surface and detail techniques that can be employed to expand our understanding.
Collapse
Affiliation(s)
- Ethan Iverson
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA; (E.I.); (E.L.A.)
| | - Logan Kaler
- Biophysics Program, University of Maryland, College Park, MD 20742, USA; (L.K.); (G.A.D.)
| | - Eva L. Agostino
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA; (E.I.); (E.L.A.)
| | - Daniel Song
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA;
| | - Gregg A. Duncan
- Biophysics Program, University of Maryland, College Park, MD 20742, USA; (L.K.); (G.A.D.)
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA;
| | - Margaret A. Scull
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA; (E.I.); (E.L.A.)
| |
Collapse
|
62
|
Raita Y, Camargo CA, Bochkov YA, Celedón JC, Gern JE, Mansbach JM, Rhee EP, Freishtat RJ, Hasegawa K. Integrated-omics endotyping of infants with rhinovirus bronchiolitis and risk of childhood asthma. J Allergy Clin Immunol 2020; 147:2108-2117. [PMID: 33197460 DOI: 10.1016/j.jaci.2020.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/24/2020] [Accepted: 11/02/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Young children with rhinovirus (RV) infection-particularly bronchiolitis-are at high risk for developing childhood asthma. Emerging evidence suggests clinical heterogeneity within RV bronchiolitis. However, little is known about these biologically distinct subgroups (endotypes) and their relations with asthma risk. OBJECTIVE We aimed to identify RV bronchiolitis endotypes and examine their longitudinal relations with asthma risk. METHODS As part of a multicenter prospective cohort study of infants (age <12 months) hospitalized for bronchiolitis, we integrated clinical, RV species (RV-A, RV-B, and RV-C), nasopharyngeal microbiome (16S rRNA gene sequencing), cytokine, and metabolome (liquid chromatography tandem mass spectrometry) data collected at hospitalization. We then applied network and clustering approaches to identify bronchiolitis endotypes. We also examined their longitudinal association with risks of developing recurrent wheeze by age 3 years and asthma by age 5 years. RESULTS Of 122 infants hospitalized for RV bronchiolitis (median age, 4 months), we identified 4 distinct endotypes-mainly characterized by RV species, microbiome, and type 2 cytokine (T2) response: endotype A, virusRV-CmicrobiomemixedT2low; endotype B, virusRV-AmicrobiomeHaemophilusT2low; endotype C, virusRSV/RVmicrobiomeStreptococcusT2low; and endotype D, virusRV-CmicrobiomeMoraxellaT2high. Compared with endotype A infants, endotype D infants had a significantly higher rate of recurrent wheeze (33% vs 64%; hazard ratio, 2.23; 95% CI, 1.00-4.96; P = .049) and a higher risk for developing asthma (28% vs 59%; odds ratio, 3.74: 95% CI, 1.21-12.6; P = .03). CONCLUSIONS Integrated-omics analysis identified biologically meaningful RV bronchiolitis endotypes in infants, such as one characterized by RV-C infection, Moraxella-dominant microbiota, and high T2 cytokine response, at higher risk for developing recurrent wheeze and asthma. This study should facilitate further research toward validating our inferences.
Collapse
Affiliation(s)
- Yoshihiko Raita
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass.
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Yury A Bochkov
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Juan C Celedón
- Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pa
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Jonathan M Mansbach
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Eugene P Rhee
- Nephrology Division and Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| | - Robert J Freishtat
- Division of Emergency Medicine, Children's National Hospital, Washington, DC; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC; Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass
| |
Collapse
|
63
|
Flynn S, Reen FJ, Caparrós-Martín JA, Woods DF, Peplies J, Ranganathan SC, Stick SM, O’Gara F. Bile Acid Signal Molecules Associate Temporally with Respiratory Inflammation and Microbiome Signatures in Clinically Stable Cystic Fibrosis Patients. Microorganisms 2020; 8:microorganisms8111741. [PMID: 33172004 PMCID: PMC7694639 DOI: 10.3390/microorganisms8111741] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 02/08/2023] Open
Abstract
Cystic fibrosis (CF) is a congenital disorder resulting in a multisystemic impairment in ion homeostasis. The subsequent alteration of electrochemical gradients severely compromises the function of the airway epithelia. These functional changes are accompanied by recurrent cycles of inflammation–infection that progressively lead to pulmonary insufficiency. Recent developments have pointed to the existence of a gut–lung axis connection, which may modulate the progression of lung disease. Molecular signals governing the interplay between these two organs are therefore candidate molecules requiring further clinical evaluation as potential biomarkers. We demonstrate a temporal association between bile acid (BA) metabolites and inflammatory markers in bronchoalveolar lavage fluid (BALF) from clinically stable children with CF. By modelling the BALF-associated microbial communities, we demonstrate that profiles enriched in operational taxonomic units assigned to supraglottic taxa and opportunistic pathogens are closely associated with inflammatory biomarkers. Applying regression analyses, we also confirmed a linear link between BA concentration and pathogen abundance in BALF. Analysis of the time series data suggests that the continuous detection of BAs in BALF is linked to differential ecological succession trajectories of the lung microbiota. Our data provide further evidence supporting a role for BAs in the early pathogenesis and progression of CF lung disease.
Collapse
Affiliation(s)
- Stephanie Flynn
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (S.F.); (F.J.R.); (D.F.W.)
| | - F. Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (S.F.); (F.J.R.); (D.F.W.)
| | - Jose A. Caparrós-Martín
- Wal-yan Respiratory Research Centre. Telethon Kids Institute, 6009 Perth, Western Australia, Australia; (J.A.C.-M.); (S.M.S.)
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, 6845 Perth, Western Australia, Australia
| | - David F. Woods
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (S.F.); (F.J.R.); (D.F.W.)
| | - Jörg Peplies
- Ribocon GmbH, Fahrenheitstraße. 1, 28359 Bremen, Germany;
| | - Sarath C. Ranganathan
- Department of Respiratory Medicine, The Royal Children’s Hospital, 3052 Melbourne, Australia;
- Infection and Immunity, Murdoch Children’s Research Institute, 3052 Melbourne, Australia
- Department of Paediatrics, University of Melbourne, 3010 Melbourne, Australia
| | - Stephen M. Stick
- Wal-yan Respiratory Research Centre. Telethon Kids Institute, 6009 Perth, Western Australia, Australia; (J.A.C.-M.); (S.M.S.)
- Telethon Kids Institute, The University of Western Australia, 6009 Perth, Western Australia, Australia
- Department of Respiratory Medicine and Sleep Medicine, Perth Children’s Hospital, 6009 Perth, Western Australia, Australia
| | - Fergal O’Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (S.F.); (F.J.R.); (D.F.W.)
- Wal-yan Respiratory Research Centre. Telethon Kids Institute, 6009 Perth, Western Australia, Australia; (J.A.C.-M.); (S.M.S.)
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, 6845 Perth, Western Australia, Australia
- Correspondence:
| |
Collapse
|
64
|
Flores Bueso Y, Walker SP, Tangney M. Characterization of FFPE-induced bacterial DNA damage and development of a repair method. Biol Methods Protoc 2020; 5:bpaa015. [PMID: 33072872 PMCID: PMC7548031 DOI: 10.1093/biomethods/bpaa015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 01/13/2023] Open
Abstract
Formalin-fixed, paraffin-embedded (FFPE) specimens have huge potential as source material in the field of human microbiome research. However, the effects of FFPE processing on bacterial DNA remain uncharacterized. Any effects are relevant for microbiome studies, where DNA template is often minimal and sequences studied are not limited to one genome. As such, we aimed to both characterize this FFPE-induced bacterial DNA damage and develop strategies to reduce and repair this damage. Our analyses indicate that bacterial FFPE DNA is highly fragmented, a poor template for PCR, crosslinked and bears sequence artefacts derived predominantly from oxidative DNA damage. Two strategies to reduce this damage were devised – an optimized decrosslinking procedure reducing sequence artefacts generated by high-temperature incubation, and secondly, an in vitro reconstitution of the base excision repair pathway. As evidenced by whole genome sequencing, treatment with these strategies significantly increased fragment length, reduced the appearance of sequence artefacts and improved the sequencing readability of bacterial and mammalian FFPE DNA. This study provides a new understanding of the condition of bacterial DNA in FFPE specimens and how this impacts downstream analyses, in addition to a strategy to improve the sequencing quality of bacterial and possibly mammalian FFPE DNA.
Collapse
Affiliation(s)
- Yensi Flores Bueso
- CancerResearch@UCC, University College Cork, Cork, T12 XF62, Ireland.,SynBioCentre, University College Cork, Cork, T12 XF62, Ireland.,APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | - Sidney P Walker
- CancerResearch@UCC, University College Cork, Cork, T12 XF62, Ireland.,SynBioCentre, University College Cork, Cork, T12 XF62, Ireland.,APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | - Mark Tangney
- CancerResearch@UCC, University College Cork, Cork, T12 XF62, Ireland.,SynBioCentre, University College Cork, Cork, T12 XF62, Ireland.,APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| |
Collapse
|
65
|
Saladié M, Caparrós-Martín JA, Agudelo-Romero P, Wark PAB, Stick SM, O'Gara F. Microbiomic Analysis on Low Abundant Respiratory Biomass Samples; Improved Recovery of Microbial DNA From Bronchoalveolar Lavage Fluid. Front Microbiol 2020; 11:572504. [PMID: 33123104 PMCID: PMC7573210 DOI: 10.3389/fmicb.2020.572504] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years the study of the commensal microbiota is driving a remarkable paradigm shift in our understanding of human physiology. However, intrinsic technical difficulties associated with investigating the Microbiomics of some body niches are hampering the development of new knowledge. This is particularly the case when investigating the functional role played by the human microbiota in modulating the physiology of key organ systems. A major hurdle in investigating specific Microbiome communities is linked to low bacterial density and susceptibility to bias caused by environmental contamination. To prevent such inaccuracies due to background processing noise, harmonized tools for Microbiomic and bioinformatics practices have been recommended globally. The fact that the impact of this undesirable variability is negatively correlated with the DNA concentration in the sample highlights the necessity to improve existing DNA isolation protocols. In this report, we developed and tested a protocol to more efficiently recover bacterial DNA from low volumes of bronchoalveolar lavage fluid obtained from infants and adults. We have compared the efficiency of the described method with that of a commercially available kit for microbiome analysis in body fluids. We show that this new methodological approach performs better in terms of extraction efficiency. As opposed to commercial kits, the DNA extracts obtained with this new protocol were clearly distinguishable from the negative extraction controls in terms of 16S copy number and Microbiome community profiles. Altogether, we described a cost-efficient protocol that can facilitate microbiome research in low-biomass human niches.
Collapse
Affiliation(s)
- Montserrat Saladié
- Human Microbiome Programme, School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Jose Antonio Caparrós-Martín
- Human Microbiome Programme, School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Patricia Agudelo-Romero
- Telethon Kids Institute, Perth, WA, Australia.,ARC Centre for Plant Energy Biology, Faculty of Science, School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia.,Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Peter A B Wark
- Centre of Excellence in Severe Asthma and Priority Research, Centre for Healthy Lungs, Faculty of Health, University of Newcastle, Newcastle, NSW, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Stephen M Stick
- Telethon Kids Institute, Perth, WA, Australia.,Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia.,Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Perth, WA, Australia
| | - Fergal O'Gara
- Human Microbiome Programme, School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,Telethon Kids Institute, Perth, WA, Australia.,BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
66
|
Toivonen L, Karppinen S, Schuez-Havupalo L, Waris M, He Q, Hoffman KL, Petrosino JF, Dumas O, Camargo CA, Hasegawa K, Peltola V. Longitudinal Changes in Early Nasal Microbiota and the Risk of Childhood Asthma. Pediatrics 2020; 146:peds.2020-0421. [PMID: 32934151 DOI: 10.1542/peds.2020-0421] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2020] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Although the airway microbiota is a highly dynamic ecology, the role of longitudinal changes in airway microbiota during early childhood in asthma development is unclear. We aimed to investigate the association of longitudinal changes in early nasal microbiota with the risk of developing asthma. METHODS In this prospective, population-based birth cohort study, we followed children from birth to age 7 years. The nasal microbiota was tested by using 16S ribosomal RNA gene sequencing at ages 2, 13, and 24 months. We applied an unsupervised machine learning approach to identify longitudinal nasal microbiota profiles during age 2 to 13 months (the primary exposure) and during age 2 to 24 months (the secondary exposure) and examined the association of these profiles with the risk of physician-diagnosed asthma at age 7 years. RESULTS Of the analytic cohort of 704 children, 57 (8%) later developed asthma. We identified 4 distinct longitudinal nasal microbiota profiles during age 2 to 13 months. In the multivariable analysis, compared with the persistent Moraxella dominance profile during age 2 to 13 months, the persistent Moraxella sparsity profile was associated with a significantly higher risk of asthma (adjusted odds ratio, 2.74; 95% confidence interval, 1.20-6.27). Similar associations were observed between the longitudinal changes in nasal microbiota during age 2 to 24 months and risk of asthma. CONCLUSIONS Children with an altered longitudinal pattern in the nasal microbiota during early childhood had a high risk of developing asthma. Our data guide the development of primary prevention strategies (eg, early identification of children at high risk and modification of microbiota) for childhood asthma. These observations present a new avenue for risk modification for asthma (eg, microbiota modification).
Collapse
Affiliation(s)
- Laura Toivonen
- Department of Emergency Medicine, Massachusetts General Hospital and Harvard Medical School, Harvard University, Boston, Massachusetts; .,Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Sinikka Karppinen
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Linnea Schuez-Havupalo
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | | | - Qiushui He
- Department of Microbiology, Virology and Immunology and Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Kristi L Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Orianne Dumas
- INSERM U1168, VIMA: Aging and Chronic Diseases, Epidemiological and Public Health Approaches, Villejuif, France; and.,UMR-S 1168, Université de Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital and Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital and Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Ville Peltola
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
67
|
Clark SE. Commensal bacteria in the upper respiratory tract regulate susceptibility to infection. Curr Opin Immunol 2020; 66:42-49. [PMID: 32416468 PMCID: PMC7665980 DOI: 10.1016/j.coi.2020.03.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022]
Abstract
The human body is host to several distinct microbial communities. Disruption of these communities increases susceptibility to a wide range of diseases, including respiratory tract infections. While commensal bacteria in the gut contribute to this effect, recent studies point to a role for commensals occupying the upper respiratory tract through direct pathogen killing and by modifying nasal and lung immune homeostasis. Clinical trials exploring 'probiotic' respiratory tract commensals are an exciting development in this area. Upper respiratory tract microbiome sequencing has revealed that destabilization of this community precedes infection, indicating that microbiome profiling of individuals has predictive value. Further investigation of respiratory tract commensal-host interactions will be critical to translate bacterial-mediated protection toward new therapeutic approaches for respiratory tract disease.
Collapse
Affiliation(s)
- Sarah E Clark
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, United States.
| |
Collapse
|
68
|
AlKhater SA. Dynamic Interplay Between Microbiota and Mucosal Immunity in Early Shaping of Asthma and its Implication for the COVID-19 Pandemic. J Asthma Allergy 2020; 13:369-383. [PMID: 33061464 PMCID: PMC7532070 DOI: 10.2147/jaa.s272705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/06/2020] [Indexed: 12/11/2022] Open
Abstract
The crosstalk between host immunity and the external environment in the mucous membranes of the gastrointestinal and respiratory tracts in bronchial asthma has recently been scrutinized. There is compelling evidence that the microbiota at these sites may play an important role in the pathogenesis of this chronic airway disease. The appearance of bacteria early in life in the gut before dissemination to the airways plays a pivotal role in shaping mucosal immunity. Loss of microbial diversity or dysbiosis can result in aberrant immune-mediated inflammation and mucosal barrier disruption, which coincides clinically with the successive development of the "allergic march" in asthma. Microbial manipulation may be effective in curbing asthma development by indirectly preserving homeostatic epithelial barrier functions. The protective effects and mechanisms of immunity-microbiome crosstalk at mucosal sites require further investigation to identify therapeutic and preventive measures in asthma. This topical review aims to highlight new evidence that compromised epithelial barrier function, which results in deregulated crosstalk between the microbiome and host mucosal immune system, is an important disease mechanism in asthma. In the light of current COVID-19 pandemic, the collective findings on the impact of mucosal microbiota on the suceptibility to SARS-CoV-2 infection and severity of COVID-19 is explored. The possible therapeutic implications to target these abnormalities are further discussed.
Collapse
Affiliation(s)
- Suzan A AlKhater
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Department of Pediatrics, King Fahad Hospital of the University, Al-Khobar, Saudi Arabia
| |
Collapse
|
69
|
Al Bataineh MT, Hamoudi RA, Dash NR, Ramakrishnan RK, Almasalmeh MA, Sharif HA, Al-Hajjaj MS, Hamid Q. Altered respiratory microbiota composition and functionality associated with asthma early in life. BMC Infect Dis 2020; 20:697. [PMID: 32962658 PMCID: PMC7510324 DOI: 10.1186/s12879-020-05427-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background The microbiota of the respiratory tract has an important role in maintaining respiratory health. However, little is known on the respiratory microbiota in asthmatic patients among Middle Eastern populations. This study investigated the respiratory microbiota composition and functionality associated with asthma in Emirati subjects. Methods We performed 16S rRNA and ITS2-gene based microbial profiling of 40 expectorated sputum samples from adult and pediatric Emirati individuals averaging 52 and 7 years of age, respectively with or without asthma. Results We report bacterial difference belonging to Bacteroidetes, Firmicutes, Fusobacteria and Proteobacteria phyla between asthmatic and non-asthmatic controls. Similarly, fungal difference belonging to Ascomycota, Basidiomycota phyla and other unclassified fungi. Differential abundance testing among asthmatic individuals with relation to Asthma Control Test show a significant depletion of Penicillium aethiopicum and Alternaria spp., among poorly controlled asthmatics. Moreover, data suggest a significant expansion of Malassezia spp. and other unclassified fungi in the airways of those receiving steroids and leukotriene receptor antagonists’ combination therapy, in contrast to those receiving steroids alone. Functional profiling from 16S data showed marked differences between pediatric asthmatic and non-asthmatic controls, with pediatric asthmatic patients showing an increase in amino acid (p-value < 5.03 × 10− 7), carbohydrate (p-value < 4.76 × 10− 7), and fatty acid degradation (p-value < 6.65 × 10− 7) pathways, whereas non-asthmatic controls are associated with increase in amino acid (p-value < 8.34 × 10− 7), carbohydrate (p-value < 3.65 × 10− 7), and fatty acid (p-value < 2.18 × 10− 6) biosynthesis pathways in concordance with enterotype composition. Conclusions These differences provide an insight into respiratory microbiota composition in Emirati population and its possible role in the development of asthma early in life. This study provides important information that may eventually lead to the development of screening biomarkers to predict early asthma development and novel therapeutic approaches.
Collapse
Affiliation(s)
- Mohammad T Al Bataineh
- Clinical Sciences Department, College of Medicine, University of Sharjah, Post Code: 27272, Sharjah, United Arab Emirates. .,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
| | - Rifat A Hamoudi
- Clinical Sciences Department, College of Medicine, University of Sharjah, Post Code: 27272, Sharjah, United Arab Emirates.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Division of Surgery and Interventional Science, University College London, London, UK
| | - Nihar R Dash
- Clinical Sciences Department, College of Medicine, University of Sharjah, Post Code: 27272, Sharjah, United Arab Emirates
| | - Rakhee K Ramakrishnan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Hanan A Sharif
- University Hospital Sharjah, Sharjah, United Arab Emirates
| | - Mohamed S Al-Hajjaj
- Clinical Sciences Department, College of Medicine, University of Sharjah, Post Code: 27272, Sharjah, United Arab Emirates.,University Hospital Sharjah, Sharjah, United Arab Emirates
| | - Qutayba Hamid
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada
| |
Collapse
|
70
|
Durack J, Christophersen CT. Human Respiratory and Gut Microbiomes-Do They Really Contribute to Respiratory Health? Front Pediatr 2020; 8:528. [PMID: 33014929 PMCID: PMC7509439 DOI: 10.3389/fped.2020.00528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022] Open
Abstract
Human gastrointestinal and respiratory tracts are colonized by diverse polymicrobial communities shortly after birth, which are continuously molded by environmental exposure. The development of the resident microbiota in early life is a critical factor in the maturation of a healthy immune system. Disturbances to the intricate relationship between environmental exposure and maturation of the infant microbiome have been increasingly identified as a potential contributor to a range of childhood diseases. This review details recent evidence that implicates the contribution of gut and airway microbiome to pediatric respiratory health.
Collapse
Affiliation(s)
- Juliana Durack
- Symbiome Inc., San Francisco, CA, United States
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Claus T. Christophersen
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- WA Human Microbiome Collaboration Centre, School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
71
|
Flores Bueso Y, Walker SP, Hogan G, Claesson MJ, Tangney M. Protoblock - A biological standard for formalin fixed samples. MICROBIOME 2020; 8:122. [PMID: 32828122 PMCID: PMC7443293 DOI: 10.1186/s40168-020-00901-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/24/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND Formalin-fixed, paraffin-embedded (FFPE) tissue is the gold standard in pathology tissue storage, representing the largest collections of patient material. Their reliable use for DNA analyses could open a trove of potential samples for research and are currently being recognised as a viable source material for bacterial analysis. There are several key features which limit bacterial-related data generation from this material: (i) DNA damage inherent to the fixing process, (ii) low bacterial biomass that increases the vulnerability to contamination and exacerbates the host DNA effects and (iii) lack of suitable DNA extraction methods, leading to data bias. The development and systematic use of reliable standards is a key priority for microbiome research. More than perhaps any other sample type, FFPE material urgently requires the development of standards to ensure the validity of results and to promote reproducibility. RESULTS To address these limitations and concerns, we have developed the Protoblock as a biological standard for FFPE tissue-based research and method optimisation. This is a novel system designed to generate bespoke mock FFPE 'blocks' with a cell content that is user-defined and which undergoes the same treatment conditions as clinical FFPE tissues. The 'Protoblock' features a mix of formalin-fixed cells, of known number, embedded in an agar matrix which is solidified to form a defined shape that is paraffin embedded. The contents of various Protoblocks populated with mammalian and bacterial cells were verified by microscopy. The quantity and condition of DNA purified from blocks was evaluated by qPCR, 16S rRNA gene amplicon sequencing and whole genome sequencing. These analyses validated the capability of the Protoblock system to determine the extent to which each of the three stated confounding features impacts on eventual analysis of cellular DNA present in FFPE samples. CONCLUSION The Protoblock provides a representation of biological material after FFPE treatment. Use of this standard will greatly assist the stratification of biological variations detected into those legitimately resulting from experimental conditions, and those that are artefacts of the processed nature of the samples, thus enabling users to relate the outputs of laboratory analyses to reality. Video Abstract.
Collapse
Affiliation(s)
- Yensi Flores Bueso
- CancerResearch@UCC, University College Cork, Cork, Ireland
- SynBioCentre, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Sidney P Walker
- CancerResearch@UCC, University College Cork, Cork, Ireland
- SynBioCentre, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Glenn Hogan
- CancerResearch@UCC, University College Cork, Cork, Ireland
- SynBioCentre, University College Cork, Cork, Ireland
| | - Marcus J Claesson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Mark Tangney
- CancerResearch@UCC, University College Cork, Cork, Ireland.
- SynBioCentre, University College Cork, Cork, Ireland.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
72
|
Zha H, Lu H, Wu J, Chang K, Wang Q, Zhang H, Li J, Luo Q, Lu Y, Li L. Vital Members in the More Dysbiotic Oropharyngeal Microbiotas in H7N9-Infected Patients. Front Med (Lausanne) 2020; 7:396. [PMID: 32850904 PMCID: PMC7433009 DOI: 10.3389/fmed.2020.00396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/24/2020] [Indexed: 01/09/2023] Open
Abstract
The dysbiosis of oropharyngeal (OP) microbiota is associated with multiple diseases, including H7N9 infection. Different OP microbial colonization states may reflect different severities or stages of disease and affect the effectiveness of the treatments. Current study aims to determine the vital bacteria that could possibly drive the OP microbiota in the H7N9 patients to more severe microbial dysbiosis state. The OP microbiotas of 42 H7N9 patients and 30 healthy subjects were analyzed by a series of bioinformatics and statistical analyses. Two clusters of OP microbiotas in H7N9 patients, i.e., Cluster_1_Diseased and Cluster_2_Diseased, were determined at two microbial colonization states by Partition Around Medoids (PAM) clustering analysis, each characterized by distinct operational taxonomic units (OTUs) and functional metabolites. Cluster_1_Diseased was determined at more severe dysbiosis status compared with Cluster_2_Diseased, while OTU143_Capnocytophaga and OTU269_Treponema acted as gatekeepers for both of the two clustered microbiotas. Nine OTUs assigned to seven taxa, i.e., Alloprevotella, Atopobium, Megasphaera, Oribacterium, Prevotella, Stomatobaculum, and Veillonella, were associated with both H7N9 patients with and without secondary bacterial lung infection in Cluster_1. In addition, two groups of healthy cohorts may have potential different susceptibilities to H7N9 infection. These findings suggest that two OP microbial colonization states of H7N9 patients were at different dysbiosis states, which may help determine the health status of H7N9 patients, as well as the susceptibility of healthy subjects to H7N9 infection.
Collapse
Affiliation(s)
- Hua Zha
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Institute of Marine Science, The University of Auckland, Auckland, New Zealand
| | - Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jieyun Wu
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.,Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland, New Zealand
| | - Kevin Chang
- Department of Statistics, The University of Auckland, Auckland, New Zealand
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jinyou Li
- Department of Geriatrics, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanmeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
73
|
Fujiogi M, Camargo CA, Bernot JP, Freishtat RJ, Harmon B, Mansbach JM, Castro-Nallar E, Perez-Losada M, Hasegawa K. In infants with severe bronchiolitis: dual-transcriptomic profiling of nasopharyngeal microbiome and host response. Pediatr Res 2020; 88:144-146. [PMID: 31905367 PMCID: PMC7335686 DOI: 10.1038/s41390-019-0742-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/11/2019] [Accepted: 12/15/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Michimasa Fujiogi
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Carlos A. Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - James P. Bernot
- Department of Biostatistics and Bioinformatics, Computational Biology Institute, George Washington University, Washington, DC
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC,Division of Emergency Medicine, Children’s National Hospital, Washington, DC,Departments of Pediatrics and Integrative Systems Biology and Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Brennan Harmon
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC
| | - Jonathan M. Mansbach
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Eduardo Castro-Nallar
- Department of Biostatistics and Bioinformatics, Computational Biology Institute, George Washington University, Washington, DC,Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Marcos Perez-Losada
- Department of Biostatistics and Bioinformatics, Computational Biology Institute, George Washington University, Washington, DC,Department of Pediatrics, George Washington University School of Medicine and Health Sciences and the Division of Emergency Medicine, Children’s National Hospital, Washington, DC,CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
74
|
Xu N, Wang L, Li C, Ding C, Li C, Fan W, Cheng C, Gu B. Microbiota dysbiosis in lung cancer: evidence of association and potential mechanisms. Transl Lung Cancer Res 2020; 9:1554-1568. [PMID: 32953527 PMCID: PMC7481604 DOI: 10.21037/tlcr-20-156] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022]
Abstract
Over the past decade, revolution in microbial research has provided valuable insights into the function of microbes that inhabit human body. This complex community of microbes, collectively named as microbiota, displays tremendous interaction with a host to maintain homeostasis of the local environment. Lungs were even previously regarded as sterile for a long time. With the development of high-throughput next-generation sequencing technology, a low-density, diversified microbial ecosystem is found in bronchoalveolar lavage fluid, sputum, and lung tissues. Current research confirms that, compared with healthy people, patients with lung cancer show changes in the relative abundance of multiple genera. Emerging evidence has suggested that dysbiosis of the lung microbiota may play a critical role in lung carcinogenesis by affecting metabolic, inflammatory pathways and immune response. We briefly summarize the relationship between lung microbiome and lung cancer and discuss the potential mechanisms mediating lung microbiota and lung cancer. Thus, we provide innovative strategies for early prevention and personalized treatment of lung cancer.
Collapse
Affiliation(s)
- Nana Xu
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, China
| | - Lei Wang
- Department of Histology and Embryology, Xuzhou Medical University, Xuzhou, China
| | - Chenxi Li
- Medical Technology Institute of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China
| | - Chao Ding
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Cong Li
- Emergency Intensive Care Unit, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wenting Fan
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chen Cheng
- Medical Technology Institute of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China
| | - Bing Gu
- Medical Technology Institute of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
75
|
Berbers RM, Mohamed Hoesein FAA, Ellerbroek PM, van Montfrans JM, Dalm VASH, van Hagen PM, Paganelli FL, Viveen MC, Rogers MRC, de Jong PA, Uh HW, Willems RJL, Leavis HL. Low IgA Associated With Oropharyngeal Microbiota Changes and Lung Disease in Primary Antibody Deficiency. Front Immunol 2020; 11:1245. [PMID: 32636843 PMCID: PMC7318304 DOI: 10.3389/fimmu.2020.01245] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Common Variable Immunodeficiency (CVID) and X-linked agammaglobulinemia (XLA) are primary antibody deficiencies characterized by hypogammaglobulinemia and recurrent infections, which can lead to structural airway disease (AD) and interstitial lung disease (ILD). We investigated associations between serum IgA, oropharyngeal microbiota composition and severity of lung disease in these patients. In this cross-sectional multicentre study we analyzed oropharyngeal microbiota composition of 86 CVID patients, 12 XLA patients and 49 healthy controls (HC) using next-generation sequencing of the 16S rRNA gene. qPCR was used to estimate bacterial load. IgA was measured in serum. High resolution CT scans were scored for severity of AD and ILD. Oropharyngeal bacterial load was increased in CVID patients with low IgA (p = 0.013) and XLA (p = 0.029) compared to HC. IgA status was associated with distinct beta (between-sample) diversity (p = 0.039), enrichment of (Allo)prevotella, and more severe radiographic lung disease (p = 0.003), independently of recent antibiotic use. AD scores were positively associated with Prevotella, Alloprevotella, and Selenomonas, and ILD scores with Streptococcus and negatively with Rothia. In clinically stable patients with CVID and XLA, radiographic lung disease was associated with IgA deficiency and expansion of distinct oropharyngeal bacterial taxa. Our findings highlight IgA as a potential driver of upper respiratory tract microbiota homeostasis.
Collapse
Affiliation(s)
- Roos-Marijn Berbers
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | | | - Pauline M Ellerbroek
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Joris M van Montfrans
- Department of Paediatric Immunology and Infectious Diseases, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Virgil A S H Dalm
- Division of Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.,Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - P Martin van Hagen
- Division of Clinical Immunology, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.,Academic Center for Rare Immunological Diseases (RIDC), Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Fernanda L Paganelli
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Marco C Viveen
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Malbert R C Rogers
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Pim A de Jong
- Department of Radiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Hae-Won Uh
- Department of Biostatistics and Research Support, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Helen L Leavis
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| |
Collapse
|
76
|
McMullen C, Alexander TW, Léguillette R, Workentine M, Timsit E. Topography of the respiratory tract bacterial microbiota in cattle. MICROBIOME 2020; 8:91. [PMID: 32522285 PMCID: PMC7288481 DOI: 10.1186/s40168-020-00869-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Bacterial bronchopneumonia (BP) is the leading cause of morbidity and mortality in cattle. The nasopharynx is generally accepted as the primary source of pathogenic bacteria that cause BP. However, it has recently been shown in humans that the oropharynx may act as the primary reservoir for pathogens that reach the lung. The objective was therefore to describe the bacterial microbiota present along the entire cattle respiratory tract to determine which upper respiratory tract (URT) niches may contribute the most to the composition of the lung microbiota. METHODS Seventeen upper and lower respiratory tract locations were sampled from 15 healthy feedlot steer calves. Samples were collected using a combination of swabs, protected specimen brushes, and saline washes. DNA was extracted from each sample and the 16S rRNA gene (V3-V4) was sequenced. Community composition, alpha-diversity, and beta-diversity were compared among sampling locations. RESULTS Microbiota composition differed across sampling locations, with physiologically and anatomically distinct locations showing different relative abundances of 1137 observed sequence variants (SVs). An analysis of similarities showed that the lung was more similar to the nasopharynx (R-statistic = 0.091) than it was to the oropharynx (R-statistic = 0.709) or any other URT sampling location. Five distinct metacommunities were identified across all samples after clustering at the genus level using Dirichlet multinomial mixtures. This included a metacommunity found primarily in the lung and nasopharynx that was dominated by Mycoplasma. Further clustering at the SV level showed a shared metacommunity between the lung and nasopharynx that was dominated by Mycoplasma dispar. Other metacommunities found in the nostrils, tonsils, and oral microbiotas were dominated by Moraxella, Fusobacterium, and Streptococcus, respectively. CONCLUSIONS The nasopharyngeal bacterial microbiota is most similar to the lung bacterial microbiota in healthy cattle and therefore may serve as the primary source of bacteria to the lung. This finding indicates that the nasopharynx is likely the most important location that should be targeted when doing bovine respiratory microbiota research. Video abstract.
Collapse
Affiliation(s)
| | - Trevor W. Alexander
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, Alberta Canada
| | - Renaud Léguillette
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta Canada
| | - Matthew Workentine
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta Canada
| | - Edouard Timsit
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta Canada
- Simpson Ranch Chair in Beef Cattle Health and Wellness, University of Calgary, Calgary, Alberta Canada
- Ceva Santé Animale, 10 Avenue de la Ballastière, 33500 Libourne, France
| |
Collapse
|
77
|
Maturation of nasal microbiota and antibiotic exposures during early childhood: a population-based cohort study. Clin Microbiol Infect 2020; 27:283.e1-283.e7. [PMID: 32505584 DOI: 10.1016/j.cmi.2020.05.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/15/2020] [Accepted: 05/23/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Little is known about maturation of the airway microbiota during early childhood and the consequences of early-life antibiotic exposure. METHODS In a population-based birth cohort of 902 healthy Finnish children, we applied deep neural network models to investigate the relationship between the nasal microbiota (measured by 16S rRNA gene sequencing at up to three time points) and child age during the first 24 months. We also performed stratified analyses according to antibiotic exposure during the age period 0-2 months. RESULTS The dense deep neural network analysis successfully modelled the relationship between 232 bacterial genera and child age with a mean absolute error of 4.3 (95%CI 4.0-4.7) months. Similarly, the recurrent neural network analysis also successfully modelled the relationship between 215 genera and child age with a mean absolute error of 0.45 (95%CI 0.42-0.47) months. Among the genera, Staphylococcus spp. and members of the Corynebacteriaceae decreased with age, while Dolosigranulum and Moraxella increased with age in the first 2 years of life (all false discovery rate (FDR) = 0.001). In children without early-life antibiotic exposure, Dolosigranulum increased with age (FDR = 0.001). By contrast, in those with early-life antibiotic exposure, Haemophilus increased with age (FDR = 0.002). CONCLUSIONS In this prospective birth cohort of healthy children, we demonstrated the development of the nasal microbiota, with shifts in specific genera constituting maturation, in the first 2 years of life. Antibiotic exposures during early infancy were related to different age-discriminatory bacteria.
Collapse
|
78
|
Hodge S, Macowan M, Liu H, Hamon R, Chen ACH, Marchant JM, Pizzutto SJ, Upham JW, Chang AB. Sphingosine signaling dysfunction in airway cells as a potential contributor to progression from protracted bacterial bronchitis to bronchiectasis in children. Pediatr Pulmonol 2020; 55:1414-1423. [PMID: 32176839 DOI: 10.1002/ppul.24728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/23/2020] [Indexed: 11/11/2022]
Abstract
AIM Protracted bacterial bronchitis (PBB) is considered a potential precursor to bronchiectasis (BE) in some children. We previously showed that alveolar macrophages (AM) from children with PBB or BE have a similar significant defect in phagocytic capacity, with proinflammatory associations. We hypothesized that the mechanisms responsible for this defect involve dysregulation of the sphingosine-1-phosphate (S1P) signaling pathway, as we have found in adult inflammatory lung diseases. METHOD We employed a Custom TaqMan OpenArray to investigate gene expression of S1P-generating enzymes: sphingosine kinases (SPHK) 1/2, S1P phosphatase 2 (SGPP2), S1P lyase 1 (SGPL1), S1P receptors (S1PR) 1/2/4/5; proinflammatory cytokines TNF-α (TNF) and IFNγ (IFNG), the cytotoxic mediator granzyme B (GZMB), and inflammasomes AIM2 and NLRP3, in bronchoalveolar lavage from 15 children with BE, 15 with PBB and 17 age-matched controls, and determined association with clinical/demographic variables and airway inflammation. RESULT Significantly increased expression of S1PR1, S1PR2, and SPHK1 was noted in PBB and BE AM vs controls with increased SGPP2 only in PBB. TNF, IFNG, AIM2, and NLRP3 were significantly increased in both disease groups with increased GZMB only in PBB. There were no significant differences in the expression of any other S1P-related mediator between groups. There were significant positive associations between Haemophilus influenzae growth and expression of S1PR1 and NLRP3; between S1PR1 and S1PR2, NLRP3 and IFNG; between S1PR2 and AIM2, SPHK1, and SPHK2; and between SPHK1 and GZMB, IFNG, AIM2, and NLRP3. CONCLUSION Children with PBB and BE share similar S1P-associated gene expression profiles. AM phagocytic dysfunction and inflammation in these children may occur due to dysregulated S1P signaling.
Collapse
Affiliation(s)
- Sandra Hodge
- Lung Research Unit, Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Faculty of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Matthew Macowan
- Lung Research Unit, Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Faculty of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Hong Liu
- Lung Research Unit, Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Faculty of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Rhys Hamon
- Lung Research Unit, Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Alice C-H Chen
- Faculty of Medicine, The University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Julie M Marchant
- Department of Respiratory Medicine, Queensland Children's Hospital and Queensland University of Technology, Brisbane, Queensland, Australia
| | - Susan J Pizzutto
- Child Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - John W Upham
- Faculty of Medicine, The University of Queensland Diamantina Institute and Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Anne B Chang
- Department of Respiratory Medicine, Queensland Children's Hospital and Queensland University of Technology, Brisbane, Queensland, Australia.,Child Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| |
Collapse
|
79
|
Zhang X, Zhang X, Zhang N, Wang X, Sun L, Chen N, Zhao S, He Q. Airway microbiome, host immune response and recurrent wheezing in infants with severe respiratory syncytial virus bronchiolitis. Pediatr Allergy Immunol 2020; 31:281-289. [PMID: 31788862 DOI: 10.1111/pai.13183] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/03/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Early interactions between respiratory viruses and microbiota might modulate host immune responses and subsequently contribute to later development of recurrent wheezing and asthma in childhood. We aimed to study the possible association between respiratory microbiome, host immune response, and the development of recurrent wheezing in infants with severe respiratory syncytial virus (RSV) bronchiolitis. METHODS Seventy-four infants who were hospitalized at Beijing Children's Hospital during an initial episode of severe RSV bronchiolitis at 6 months of age or less were included and followed up until the age of 3 years. Sputum samples were collected, and their microbiota profiles, LPS, and cytokines were analyzed by 16S rRNA-based sequencing, ELISA, and multiplex immunoassay, respectively. RESULTS Twenty-six (35.1%) infants developed recurrent wheezing by the age of 3 years, and 48 (64.9%) did not. The relative abundance of Haemophilus, Moraxella, and Klebsiella was higher in infants who later developed recurrent wheezing than in those who did not (LDA score >3.5). Airway levels of LPS (P = .003), CXCL8 (P = .004), CCL5 (P = .029), IL-6 (P = .004), and IL-13 (P < .001) were significantly higher in infants who later developed recurrent wheezing than in those who did not. Moreover, high airway abundance of Haemophilus was associated with CXCL8 (r = 0.246, P = .037) level, and that of Moraxella was associated with IL-6 level (r = 0.236, P = .046) and IL-10 level (r = 0.266, P = .024). CONCLUSION Our study suggests that higher abundance of Haemophilus and Moraxella in airway microbiome might modulate airway inflammation during severe RSV bronchiolitis in infancy, potentially contributing to the development of subsequent recurrent wheezing in later childhood.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Medical Microbiology, Capital Medical University, Beijing, China.,Department of Respiratory Medicine, Beijing Children's Hospital, Beijing, China
| | - Xiang Zhang
- Department of Respiratory Medicine, Beijing Children's Hospital, Beijing, China
| | - Nan Zhang
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Xinglan Wang
- Department of Respiratory Medicine, Beijing Children's Hospital, Beijing, China
| | - Lin Sun
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Ning Chen
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Shunying Zhao
- Department of Respiratory Medicine, Beijing Children's Hospital, Beijing, China
| | - Qiushui He
- Department of Medical Microbiology, Capital Medical University, Beijing, China.,Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| |
Collapse
|
80
|
Yang L, Li C, Tang X. The Impact of PM 2.5 on the Host Defense of Respiratory System. Front Cell Dev Biol 2020; 8:91. [PMID: 32195248 PMCID: PMC7064735 DOI: 10.3389/fcell.2020.00091] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
The harm of fine particulate matter (PM2.5) to public health is the focus of attention around the world. The Global Burden of Disease (GBD) Study 2015 (GBD 2015 Risk Factors Collaborators, 2016) ranked PM2.5 as the fifth leading risk factor for death, which caused 4.2 million deaths and 103.1 million disability-adjusted life-years (DALYs) loss, representing 7.6% of total global deaths and 4.2% of global DALYs. Epidemiological studies have confirmed that exposure to PM2.5 increases the incidence and mortality of respiratory infections. The host defense dysfunction caused by PM2.5 exposure may be the key to the susceptibility of respiratory system infection. Thus, this review aims to assess the impact of PM2.5 on the host defense of respiratory system. Firstly, we elaborated the epidemiological evidence that exposure to PM2.5 increases the risk of respiratory infections. Secondly, we summarized the experimental evidence that PM2.5 exposure increases the susceptibility of different pathogens (including bacteria and viruses) in respiratory system. Furthermore, here we discussed the underlying host defense mechanisms by which PM2.5 exposure increases the risk of respiratory infections as well as future perspectives.
Collapse
Affiliation(s)
- Liyao Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Cheng Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoxiao Tang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
81
|
Hufnagl K, Pali-Schöll I, Roth-Walter F, Jensen-Jarolim E. Dysbiosis of the gut and lung microbiome has a role in asthma. Semin Immunopathol 2020; 42:75-93. [PMID: 32072252 PMCID: PMC7066092 DOI: 10.1007/s00281-019-00775-y] [Citation(s) in RCA: 233] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/15/2019] [Indexed: 02/07/2023]
Abstract
Worldwide 300 million children and adults are affected by asthma. The development of asthma is influenced by environmental and other exogenous factors synergizing with genetic predisposition, and shaping the lung microbiome especially during birth and in very early life. The healthy lung microbial composition is characterized by a prevalence of bacteria belonging to the phyla Bacteroidetes, Actinobacteria, and Firmicutes. However, viral respiratory infections are associated with an abundance of Proteobacteria with genera Haemophilus and Moraxella in young children and adult asthmatics. This dysbiosis supports the activation of inflammatory pathways and contributes to bronchoconstriction and bronchial hyperresponsiveness. Exogenous factors can affect the natural lung microbiota composition positively (farming environment) or negatively (allergens, air pollutants). It is evident that also gut microbiota dysbiosis has a high influence on asthma pathogenesis. Antibiotics, antiulcer medications, and other drugs severely impair gut as well as lung microbiota. Resulting dysbiosis and reduced microbial diversity dysregulate the bidirectional crosstalk across the gut-lung axis, resulting in hypersensitivity and hyperreactivity to respiratory and food allergens. Efforts are undertaken to reconstitute the microbiota and immune balance by probiotics and engineered bacteria, but results from human studies do not yet support their efficacy in asthma prevention or treatment. Overall, dysbiosis of gut and lung seem to be critical causes of the increased emergence of asthma.
Collapse
Affiliation(s)
- Karin Hufnagl
- The Interuniversity Messerli Research Institute, Medical University Vienna and University of Veterinary Medicine Vienna, Vienna, Austria
| | - Isabella Pali-Schöll
- The Interuniversity Messerli Research Institute, Medical University Vienna and University of Veterinary Medicine Vienna, Vienna, Austria
| | - Franziska Roth-Walter
- The Interuniversity Messerli Research Institute, Medical University Vienna and University of Veterinary Medicine Vienna, Vienna, Austria
| | - Erika Jensen-Jarolim
- The Interuniversity Messerli Research Institute, Medical University Vienna and University of Veterinary Medicine Vienna, Vienna, Austria.
- Center for Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University Vienna, Währinger G. 18-20, 1090, Vienna, Austria.
| |
Collapse
|
82
|
Gallucci M, Pedretti M, Giannetti A, di Palmo E, Bertelli L, Pession A, Ricci G. When the Cough Does Not Improve: A Review on Protracted Bacterial Bronchitis in Children. Front Pediatr 2020; 8:433. [PMID: 32850546 PMCID: PMC7426454 DOI: 10.3389/fped.2020.00433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic cough is defined as a daily cough that persists longer than 4 weeks. Protracted bacterial bronchitis (PBB) is a common cause of chronic wet cough in preschool children with no symptoms or signs of other specific causes, and resolution usually follows a 2-week course of an appropriate oral antibiotic. The diagnosis is mainly clinical; generally, no instrumental examinations are necessary. The most common bacteria found in the bronchoalveolar lavage (BAL) of subjects with PBB include Haemophilus influenzae, Streptococcus pneumoniae, and Moraxella catarrhalis. Nowadays, there is no certain evidence of the role of viruses in PBB pathogenesis even though different types of viruses have been detected in BAL from children with PBB. Airway malacia is commonly found in children with PBB; conversely, there is no correlation with any type of immunodeficiency. Amoxicillin-clavulanate acid is the most commonly used antibiotic, as first-line, prolonged therapy (longer than 2 weeks) is sometimes required to cough resolution. When the wet cough does not improve despite prolonged antibiotic treatment, an underlying disease should be considered. Moreover, there are several hypotheses of a link between PBB and bronchiectasis, as recent evidences show that recurrent PBB (>3 episodes/years) and the presence of H. influenzae infection in the lower airways seem to be significant risk factors to develop bronchiectasis. This underlines the importance of a close follow-up among children with PBB and the need to consider chest computerized tomography (CT) in patients with risk factors for bronchiectasis. In this brief review, we summarize the main clinical and pathogenetic findings of PBB, a disease that may be related to a relevant morbidity and decreased quality of life during the pediatric age.
Collapse
Affiliation(s)
- Marcella Gallucci
- Department of Paediatrics, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Melissa Pedretti
- Department of Paediatrics, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Arianna Giannetti
- Department of Paediatrics, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Emanuela di Palmo
- Department of Paediatrics, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Luca Bertelli
- Department of Paediatrics, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Andrea Pession
- Department of Paediatrics, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Giampaolo Ricci
- Department of Paediatrics, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
83
|
The upper-airway microbiota and loss of asthma control among asthmatic children. Nat Commun 2019; 10:5714. [PMID: 31844063 PMCID: PMC6915697 DOI: 10.1038/s41467-019-13698-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/13/2019] [Indexed: 12/17/2022] Open
Abstract
The airway microbiome has an important role in asthma pathophysiology. However, little is known on the relationships between the airway microbiome of asthmatic children, loss of asthma control, and severe exacerbations. Here we report that the microbiota’s dynamic patterns and compositions are related to asthma exacerbations. We collected nasal blow samples (n = 319) longitudinally during a clinical trial at 2 time-points within one year: randomization when asthma is under control, and at time of early loss of asthma control (yellow zone (YZ)). We report that participants whose microbiota was dominated by the commensal Corynebacterium + Dolosigranulum cluster at RD experience the lowest rates of YZs (p = 0.005) and have longer time to develop at least 2 episodes of YZ (p = 0.03). The airway microbiota have changed from randomization to YZ. A switch from the Corynebacterium + Dolosigranulum cluster at randomization to the Moraxella- cluster at YZ poses the highest risk of severe asthma exacerbation (p = 0.04). Corynebacterium’s relative abundance at YZ is inversely associated with severe exacerbation (p = 0.002). How the airway microbiome influences asthma pathophysiology remains unclear. Here, the authors analyse nasal samples of cohort of school-age children with persistent asthma and find that the microbiota’s patterns and composition at time of early loss of asthma control associate with severe asthma exacerbations.
Collapse
|
84
|
Espuela-Ortiz A, Lorenzo-Diaz F, Baez-Ortega A, Eng C, Hernandez-Pacheco N, Oh SS, Lenoir M, Burchard EG, Flores C, Pino-Yanes M. Bacterial salivary microbiome associates with asthma among african american children and young adults. Pediatr Pulmonol 2019; 54:1948-1956. [PMID: 31496123 PMCID: PMC6851413 DOI: 10.1002/ppul.24504] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/21/2019] [Indexed: 02/01/2023]
Abstract
Several studies have shown that the airways of asthma patients contain higher diversity of bacteria and are enriched in pathogenic species. However, sampling the airways in children is challenging. Here we aimed to identify differences in the salivary bacterial composition between African Americans children with and without asthma. Saliva samples from 57 asthma cases and 57 healthy controls were analyzed by means of 16S ribosomal RNA amplicon profiling. Measurements of bacterial diversity and genus relative abundance were compared between cases and controls using the nonparametric Wilcoxon test and multivariate regression models. A total of five phyla and a mean of 56 genera were identified. Among them, 15 genera had a relative abundance greater than 1%, being Prevotella, Haemophilus, Streptococcus, and Veillonella the most abundant genera. Differences between cases and controls were found in terms of diversity, as well as in relative abundance for Streptococcus genus (13.0% in cases vs 18.3% in controls; P = .003) and Veillonella genus (11.1% in cases vs 8.0% in controls; P = .002). These differences remained significant after correction for multiple comparisons and when potential confounders were taken into account in logistic regression models. In conclusion, we identified changes in the salivary microbiota associated with asthma among African Americans.
Collapse
Affiliation(s)
- Antonio Espuela-Ortiz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Adrian Baez-Ortega
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| | - Natalia Hernandez-Pacheco
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Sam S. Oh
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| | | | - Esteban G. Burchard
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
85
|
Abstract
RATIONALE The clinical utility of culture-independent testing of pediatric BAL specimens is unknown. In addition, the variability of the pediatric pulmonary microbiome with patient characteristics is not well understood. OBJECTIVES To compare testing with 16S rRNA gene-based sequencing to conventional cultures of BAL specimens in children Methods: Study subjects were not more than 22 years old and underwent BAL from May 2013 to August 2015 as part of clinical care. DNA extracted from BAL specimens was used for 16S rRNA gene-based analysis, and results were compared with routine cultures from the same samples. Indices of microbial diversity and relative taxon abundances were compared on the basis of subject characteristics (diagnosis and antibiotic use). RESULTS From 81 participants (male, 51%; median age, 9 yr), 89 samples were collected. The 16S rRNA genes of 77 samples (86.5%) from 70 subjects were successfully analyzed. These 70 subjects included 23 with cystic fibrosis, 19 who were immunocompromised, and 28 who were nonimmunocompromised. Of 68 organisms identified in culture, 16S rRNA gene-based analyses detected corresponding taxa in 66 (97.1%) and also identified potentially clinically significant organisms missed by cultures (e.g., Staphylococcus, Legionella, and Pseudomonas). Taxa that varied significantly with diagnosis and antibiotic use included Veillonella, Corynebacterium, Haemophilus, and Streptococcus. The microbiota of cystic fibrosis samples was less diverse. A "core" group of 15 taxa present in all three diagnosis groups was identified. CONCLUSIONS Culture-independent analysis was concordant with routine cultures and showed the potential to detect noncultured pathogens. Although culture-independent testing identified relative changes in organism abundance associated with clinical characteristics, distinct microbiome profiles associated with disease states were not identified.
Collapse
|
86
|
McCauley K, Durack J, Valladares R, Fadrosh DW, Lin DL, Calatroni A, LeBeau PK, Tran HT, Fujimura KE, LaMere B, Merana G, Lynch K, Cohen RT, Pongracic J, Khurana Hershey GK, Kercsmar CM, Gill M, Liu AH, Kim H, Kattan M, Teach SJ, Togias A, Boushey HA, Gern JE, Jackson DJ, Lynch SV. Distinct nasal airway bacterial microbiotas differentially relate to exacerbation in pediatric patients with asthma. J Allergy Clin Immunol 2019; 144:1187-1197. [PMID: 31201890 PMCID: PMC6842413 DOI: 10.1016/j.jaci.2019.05.035] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND In infants, distinct nasopharyngeal bacterial microbiotas differentially associate with the incidence and severity of acute respiratory tract infection and childhood asthma development. OBJECTIVE We hypothesized that distinct nasal airway microbiota structures also exist in children with asthma and relate to clinical outcomes. METHODS Nasal secretion samples (n = 3122) collected after randomization during the fall season from children with asthma (6-17 years, n = 413) enrolled in a trial of omalizumab (anti-IgE) underwent 16S rRNA profiling. Statistical analyses with exacerbation as the primary outcome and rhinovirus infection and respiratory illnesses as secondary outcomes were performed. Using A549 epithelial cells, we assessed nasal isolates of Moraxella, Staphylococcus, and Corynebacterium species for their capacity to induce epithelial damage and inflammatory responses. RESULTS Six nasal airway microbiota assemblages, each dominated by Moraxella, Staphylococcus, Corynebacterium, Streptococcus, Alloiococcus, or Haemophilus species, were observed. Moraxella and Staphylococcus species-dominated microbiotas were most frequently detected and exhibited temporal stability. Nasal microbiotas dominated by Moraxella species were associated with increased exacerbation risk and eosinophil activation. Staphylococcus or Corynebacterium species-dominated microbiotas were associated with reduced respiratory illness and exacerbation events, whereas Streptococcus species-dominated assemblages increased the risk of rhinovirus infection. Nasal microbiota composition remained relatively stable despite viral infection or exacerbation; only a few taxa belonging to the dominant genera exhibited relative abundance fluctuations during these events. In vitro, Moraxella catarrhalis induced significantly greater epithelial damage and inflammatory cytokine expression (IL-33 and IL-8) compared with other dominant nasal bacterial isolates tested. CONCLUSION Distinct nasal airway microbiotas of children with asthma relate to the likelihood of exacerbation, rhinovirus infection, and respiratory illnesses during the fall season.
Collapse
Affiliation(s)
- Kathryn McCauley
- Department of Medicine, University of California, San Francisco, Calif
| | - Juliana Durack
- Department of Medicine, University of California, San Francisco, Calif
| | | | - Douglas W Fadrosh
- Department of Medicine, University of California, San Francisco, Calif
| | - Din L Lin
- Department of Medicine, University of California, San Francisco, Calif
| | | | | | | | - Kei E Fujimura
- Department of Medicine, University of California, San Francisco, Calif
| | - Brandon LaMere
- Department of Medicine, University of California, San Francisco, Calif
| | - Geil Merana
- Department of Medicine, University of California, San Francisco, Calif
| | - Kole Lynch
- Department of Medicine, University of California, San Francisco, Calif
| | | | | | | | - Carolyn M Kercsmar
- Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Michelle Gill
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Tex; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Andrew H Liu
- Department of Pedatrics and Pulmonology Medicine, National Jewish Health, Denver, Colo; Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, Colo
| | - Haejin Kim
- Department of Internal Medicine, Division of Allergy and Immunology, Henry Ford Health System, Detroit, Mich
| | - Meyer Kattan
- College of Physicians and Surgeons, Columbia University, New York, NY
| | | | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, Bethesda, Md
| | - Homer A Boushey
- Department of Medicine, University of California, San Francisco, Calif
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis.
| | - Susan V Lynch
- Department of Medicine, University of California, San Francisco, Calif.
| |
Collapse
|
87
|
Schneeberger PHH, Prescod J, Levy L, Hwang D, Martinu T, Coburn B. Microbiota analysis optimization for human bronchoalveolar lavage fluid. MICROBIOME 2019; 7:141. [PMID: 31665066 PMCID: PMC6821041 DOI: 10.1186/s40168-019-0755-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/26/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND It is now possible to comprehensively characterize the microbiota of the lungs using culture-independent, sequencing-based assays. Several sample types have been used to investigate the lung microbiota, each presenting specific challenges for preparation and analysis of microbial communities. Bronchoalveolar lavage fluid (BALF) enables the identification of microbiota specific to the lower lung but commonly has low bacterial density, increasing the risk of false-positive signal from contaminating DNA. The objectives of this study were to investigate the extent of contamination across a range of sample densities representative of BALF and identify features of contaminants that facilitate their removal from sequence data and aid in the interpretation of BALF sample 16S sequencing data. RESULTS Using three mock communities across a range of densities ranging from 8E+ 02 to 8E+ 09 16S copies/ml, we assessed taxonomic accuracy and precision by 16S rRNA gene sequencing and the proportion of reads arising from contaminants. Sequencing accuracy, precision, and the relative abundance of mock community members decreased with sample input density, with a significant drop-off below 8E+ 05 16S copies/ml. Contaminant OTUs were commonly inversely correlated with sample input density or not reproduced between technical replicates. Removal of taxa with these features or physical concentration of samples prior to sequencing improved both sequencing accuracy and precision for samples between 8E+ 04 and 8E+ 06 16S copies/ml. For the lowest densities, below 8E+ 03 16S copies/ml BALF, accuracy and precision could not be significantly improved using these approaches. Using clinical BALF samples across a large density range, we observed that OTUs with features of contaminants identified in mock communities were also evident in low-density BALF samples. CONCLUSION Relative abundance data and community composition generated by 16S sequencing of BALF samples across the range of density commonly observed in this sample type should be interpreted in the context of input sample density and may be improved by simple pre- and post-sequencing steps for densities above 8E+ 04 16S copies/ml.
Collapse
Affiliation(s)
- Pierre H. H. Schneeberger
- Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, M5G 1L7 Canada
- Department of Medicine, Division of Infectious Diseases, University Health Network, Toronto, Canada
| | - Janice Prescod
- Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, M5G 1L7 Canada
- Department of Medicine, Division of Infectious Diseases, University Health Network, Toronto, Canada
| | - Liran Levy
- Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, M5G 1L7 Canada
- Department of Medicine, Division of Infectious Diseases, University Health Network, Toronto, Canada
| | - David Hwang
- Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, M5G 1L7 Canada
- Department of Medicine, Division of Infectious Diseases, University Health Network, Toronto, Canada
| | - Tereza Martinu
- Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, M5G 1L7 Canada
- Department of Medicine, Division of Infectious Diseases, University Health Network, Toronto, Canada
| | - Bryan Coburn
- Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, M5G 1L7 Canada
- Department of Medicine, Division of Infectious Diseases, University Health Network, Toronto, Canada
| |
Collapse
|
88
|
Kirst ME, Baker D, Li E, Abu-Hasan M, Wang GP. Upper versus lower airway microbiome and metagenome in children with cystic fibrosis and their correlation with lung inflammation. PLoS One 2019; 14:e0222323. [PMID: 31536536 PMCID: PMC6752789 DOI: 10.1371/journal.pone.0222323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022] Open
Abstract
Objective Airways of children with cystic fibrosis (CF) harbor complex polymicrobial communities which correlates with pulmonary disease progression and use of antibiotics. Throat swabs are widely used in young CF children as a surrogate to detect potentially pathogenic microorganisms in lower airways. However, the relationship between upper and lower airway microbial communities remains poorly understood. This study aims to determine (1) to what extent oropharyngeal microbiome resembles the lung microbiome in CF children and (2) if lung microbiome composition correlates with airway inflammation. Method Throat swabs and bronchoalveolar lavage (BAL) were obtained concurrently from 21 CF children and 26 disease controls. Oropharyngeal and lung microbiota were analyzed using 16S rRNA deep sequencing and correlated with neutrophil counts in BAL and antibiotic exposure. Results Oropharyngeal microbial communities clustered separately from lung communities and had higher microbial diversity (p < 0.001). CF microbiome differed significantly from non-CF controls, with a higher abundance of Proteobacteria in both upper and lower CF airways. Neutrophil count in the BAL correlated negatively with the diversity but not richness of the lung microbiome. In CF children, microbial genes involved in bacterial motility proteins, two-component system, flagella assembly, and secretion system were enriched in both oropharyngeal and lung microbiome, whereas genes associated with synthesis and metabolism of nucleic acids and protein dominated the non-CF controls. Conclusions This study identified a unique microbial profile with altered microbial diversity and metabolic functions in CF airways which is significantly affected by airway inflammation. These results highlight the limitations of using throat swabs as a surrogate to study lower airway microbiome and metagenome in CF children.
Collapse
Affiliation(s)
- Mariana E. Kirst
- Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Dawn Baker
- Department of Pediatrics, Division of Pediatric Pulmonology, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Eric Li
- Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Mutasim Abu-Hasan
- Department of Pediatrics, Division of Pediatric Pulmonology, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Gary P. Wang
- Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida College of Medicine, Gainesville, FL, United States of America
- Medical Service, Infectious Disease Section, North Florida/South Georgia Veterans Health System, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
89
|
Willis-Owen SAG, Cookson WOC, Moffatt MF. The Genetics and Genomics of Asthma. Annu Rev Genomics Hum Genet 2019; 19:223-246. [PMID: 30169121 DOI: 10.1146/annurev-genom-083117-021651] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Asthma is a common, clinically heterogeneous disease with strong evidence of heritability. Progress in defining the genetic underpinnings of asthma, however, has been slow and hampered by issues of inconsistency. Recent advances in the tools available for analysis-assaying transcription, sequence variation, and epigenetic marks on a genome-wide scale-have substantially altered this landscape. Applications of such approaches are consistent with heterogeneity at the level of causation and specify patterns of commonality with a wide range of alternative disease traits. Looking beyond the individual as the unit of study, advances in technology have also fostered comprehensive analysis of the human microbiome and its varied roles in health and disease. In this article, we consider the implications of these technological advances for our current understanding of the genetics and genomics of asthma.
Collapse
Affiliation(s)
- Saffron A G Willis-Owen
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom; , ,
| | - William O C Cookson
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom; , ,
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom; , ,
| |
Collapse
|
90
|
Hare KM, Chang AB, Smith-Vaughan HC, Bauert PA, Spain B, Beissbarth J, Grimwood K. Do combined upper airway cultures identify lower airway infections in children with chronic cough? Pediatr Pulmonol 2019; 54:907-913. [PMID: 31006971 DOI: 10.1002/ppul.24336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/11/2019] [Accepted: 03/07/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND Obtaining lower airway specimens is important for guiding therapy in chronic lung infection but is difficult in young children unable to expectorate. While culture-based studies have assessed the diagnostic accuracy of nasopharyngeal or oropharyngeal specimens for identifying lower airway infection, none have used both together. We compared respiratory bacterial pathogens cultured from nasopharyngeal and oropharyngeal swabs with bronchoalveolar lavage (BAL) cultures as the "gold standard" to better inform the diagnosis of lower airway infection in children with chronic wet cough. METHODS Nasopharyngeal and oropharyngeal swabs and BAL fluid specimens were collected concurrently from consecutive children undergoing flexible bronchoscopy for chronic cough and cultured for bacterial pathogens. RESULTS In cultures from 309 children (median age, 2.3 years) with chronic endobronchial suppuration, all main pathogens detected (Haemophilus influenzae, Streptococcus pneumoniae, and Moraxella catarrhalis) were more prevalent in nasopharyngeal than oropharyngeal swabs (37%, 34%, and 23% vs 21%, 6.2%, and 3.2%, respectively). Positive and negative predictive values for lower airway infection by any of these three pathogens were 63% (95% confidence interval [95% CI] 55, 70) and 85% (95% CI, 78, 91) for nasopharyngeal swabs, 65% (95% CI, 54, 75), and 66% (95% CI, 59, 72) for oropharyngeal swabs, and 61% (95% CI, 54,68), and 88% (95% CI, 81, 93) for both swabs, respectively. CONCLUSIONS Neither nasopharyngeal nor oropharyngeal swabs, alone or in combination, reliably predicted lower airway infection in children with chronic wet cough. Although upper airway specimens may be useful for bacterial carriage studies and monitoring antimicrobial resistance, their clinical utility in pediatric chronic lung disorders of endobronchial suppuration is limited.
Collapse
Affiliation(s)
- Kim M Hare
- Child Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Anne B Chang
- Child Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia.,Department of Respiratory Medicine, Queensland Children's Hospital, Brisbane, Queensland, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Heidi C Smith-Vaughan
- Child Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia.,School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Paul A Bauert
- Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Brian Spain
- Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Jemima Beissbarth
- Child Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Keith Grimwood
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.,Departments of Infectious Diseases and Paediatrics, Gold Coast Health, Gold Coast, Queensland, Australia
| |
Collapse
|
91
|
Liu J, Chen X, Dou M, He H, Ju M, Ji S, Zhou J, Chen C, Zhang D, Miao C, Song Y. Particulate matter disrupts airway epithelial barrier via oxidative stress to promote Pseudomonas aeruginosa infection. J Thorac Dis 2019; 11:2617-2627. [PMID: 31372298 DOI: 10.21037/jtd.2019.05.77] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Airborne particulate matter (PM) is associated with increasing susceptibility to respiratory bacterial infection. Tight junctions (TJs) are protein complexes that form airway epithelial barrier against infection. This study aimed to investigate the effects of PM on the airway TJs in response to infection. Methods The cytotoxicity of PM to BEAS-2B was evaluated. The reactive oxygen species (ROS) production was measured by the flow cytometry. Colony forming units (CFUs) assay and confocal microscopy were utilized to evaluate the number of bacteria. Immunofluorescence and western blot assay were conducted to detect the expressions of TJs proteins. Animal models were used to investigate the role of TJs in PM-induced lung injury upon bacterial infection. Results In vitro, PM decreased cell viability, increased ROS production, and increased the number of intracellular bacteria accompanying by the degradation of TJs. N-acetylcysteine (NAC) significantly reversed the PM-induced bacterial invasion and PM-induced disruption of TJs. In vivo, PM increases bacteria-infected lung injury, lung bacteria burden and blood bacterial dissemination, which was closely correlated to the degradation of TJs. Conclusions PM disrupts TJs via oxidative stress to promote bacterial infection.
Collapse
Affiliation(s)
- Jinguo Liu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, Shanghai 200032, China
| | - Xiaoyan Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, Shanghai 200032, China
| | - Maosen Dou
- Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hong He
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mohan Ju
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, Shanghai 200032, China
| | - Shimeng Ji
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, Shanghai 200032, China
| | - Jian Zhou
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, Shanghai 200032, China
| | - Cuicui Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, Shanghai 200032, China
| | - Donghui Zhang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, Shanghai 200032, China
| | - Changhong Miao
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University and Shanghai Respiratory Research Institute, Shanghai 200032, China.,Department of Respiratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China.,Department of Pulmonary Medicine, Zhongshan Hospital, Qingpu Branch, Shanghai 200032, China
| |
Collapse
|
92
|
Zeineldin M, Lowe J, Aldridge B. Contribution of the Mucosal Microbiota to Bovine Respiratory Health. Trends Microbiol 2019; 27:753-770. [PMID: 31104970 DOI: 10.1016/j.tim.2019.04.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/09/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
Recognizing the respiratory tract as a dynamic and complex ecosystem has enhanced our understanding of the pathophysiology of bovine respiratory disease (BRD). There is widespread evidence showing that disease-predisposing factors often disrupt the respiratory microbial ecosystem, provoking atypical colonization patterns and a progressive dysbiosis. The ecological factors that shape the respiratory microbiota, and the influence of these complex communities on bovine respiratory health, are a rich area for research exploration. Here, we review the current status of understanding of the bovine respiratory microbiota, the factors that influence its development and stability, its role in maintaining mucosal homeostasis, and ultimately its contribution to bovine health and disease. Finally, we explore the limitations of current research approaches to the microbiome and discuss potential directions for future research that can help us better understand the role of the respiratory microbiota in the health, welfare, and productivity of livestock.
Collapse
Affiliation(s)
- Mohamed Zeineldin
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Animal Medicine, College of Veterinary Medicine, Benha University, Egypt
| | - James Lowe
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Brian Aldridge
- Integrated Food Animal Management Systems, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
93
|
Toivonen L, Hasegawa K, Waris M, Ajami NJ, Petrosino JF, Camargo CA, Peltola V. Early nasal microbiota and acute respiratory infections during the first years of life. Thorax 2019; 74:592-599. [PMID: 31076501 DOI: 10.1136/thoraxjnl-2018-212629] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/16/2019] [Accepted: 04/08/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Emerging evidence shows that airway microbiota may modulate local immune responses, thereby contributing to the susceptibility and severity of acute respiratory infections (ARIs). However, there are little data on the longitudinal relationships between airway microbiota and susceptibility to ARIs in children. OBJECTIVE We aimed to investigate the association of early nasal microbiota and the subsequent risk of ARIs during the first years of life. METHODS In this prospective population-based birth-cohort study in Finland, we followed 839 healthy infants for ARIs from birth to age 24 months. Nasal microbiota was tested using 16S rRNA gene sequencing at age 2 months. We applied an unsupervised clustering approach to identify early nasal microbiota profiles, and examined the association of profiles with the rate of ARIs during age 2-24 months. RESULTS We identified five nasal microbiota profiles dominated by Moraxella, Streptococcus, Dolosigranulum, Staphylococcus and Corynebacteriaceae, respectively. Incidence rate of ARIs was highest in children with an early Moraxella-dominant profile and lowest in those with a Corynebacteriaceae-dominant profile (738 vs 552/100 children years; unadjusted incidence rate ratio (IRR), 1.34; 95% CI 1.16 to 1.54; p < 0.001). After adjusting for nine potential confounders, the Moraxella-dominant profile-ARI association persisted (adjusted IRR (aIRR), 1.19; 95% CI 1.04 to 1.37; p = 0.01). Similarly, the incidence rate of lower respiratory tract infections (a subset of all ARIs) was significantly higher in children with an early Moraxella-dominant profile (aIRR, 2.79; 95% CI 1.04 to 8.09; p = 0.04). CONCLUSION Moraxella-dominant nasal microbiota profile in early infancy was associated with an increased rate of ARIs during the first 2 years of life.
Collapse
Affiliation(s)
- Laura Toivonen
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA .,Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Matti Waris
- Virology Unit, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Nadim J Ajami
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ville Peltola
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
94
|
Ahmed B, Cox MJ, Cuthbertson L. Growing up with your airway microbiota: a risky business. Thorax 2019; 74:525-526. [PMID: 31076500 DOI: 10.1136/thoraxjnl-2019-213162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2019] [Indexed: 11/04/2022]
Affiliation(s)
- Bushra Ahmed
- Department of Respiratory Paediatrics, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Michael J Cox
- National Heart and Lung Institute, Imperial College of Science Technology and Medicine, London, UK
| | - Leah Cuthbertson
- National Heart and Lung Institute, Imperial College of Science Technology and Medicine, London, UK
| |
Collapse
|
95
|
Pillarisetti N, Broderick D, Ainsworth A, Mulholland A, Wagner Mackenzie B, Middleton D, Byrnes CA, Taylor MW. The airway microbiota in children newly diagnosed with bronchiectasis largely retains its diversity. Eur Respir J 2019; 54:13993003.00704-2019. [PMID: 31023855 DOI: 10.1183/13993003.00704-2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/16/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Naveen Pillarisetti
- Dept of Paediatric Respiratory Medicine, Starship Children's Hospital, Auckland, New Zealand .,Dept of Paediatrics and Child Health, University of Auckland, Auckland, New Zealand
| | - David Broderick
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Alana Ainsworth
- Dept of Paediatric Respiratory Medicine, Starship Children's Hospital, Auckland, New Zealand.,Dept of Paediatrics and Child Health, University of Auckland, Auckland, New Zealand
| | - Anna Mulholland
- Dept of Paediatric Respiratory Medicine, Starship Children's Hospital, Auckland, New Zealand.,Dept of Paediatrics and Child Health, University of Auckland, Auckland, New Zealand
| | | | - Danielle Middleton
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Catherine A Byrnes
- Dept of Paediatric Respiratory Medicine, Starship Children's Hospital, Auckland, New Zealand.,Dept of Paediatrics and Child Health, University of Auckland, Auckland, New Zealand
| | - Michael W Taylor
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
96
|
Xiong Y, Hu S, Zhou H, Zeng H, He X, Huang D, Li X. High-throughput 16S rDNA sequencing of the pulmonary microbiome of rats with allergic asthma. Genes Dis 2019; 7:272-282. [PMID: 32215297 PMCID: PMC7083718 DOI: 10.1016/j.gendis.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/20/2019] [Indexed: 02/01/2023] Open
Abstract
A decrease in microbial infection in adolescents is implicated with an increase in the incidence of asthma and allergic diseases in adulthood, indicating that the microbiome plays a critical role in asthma. However, the microbial composition of the lower respiratory tract remains unclear, hindering the further exploration of the pathogenesis of asthma. This study aims to explore the microbial distribution and composition in the lungs of normal rats and rats with allergic asthma via 16S rDNA sequencing. The DNA of the pulmonary microbiome was extracted from the left lungs collected from normal control group (NC), saline control group (SC), and allergic asthma group (AA) under aseptic conditions. After the 16s rDNA V4—V5 region was amplified, the products were sequenced using Illumina high-throughput technology and subjected to operational taxonomic unit (OTU) cluster and taxonomy analysis. The OTU values of AA increased significantly compared with those of NC and SC. Microbiome structure analysis showed that the dominant phylum of the pulmonary microbiome changed from Proteobacteria in NC to Firmicutes in AA. Linear discriminant analysis indicated that the key microbiomes involved in the three groups varied. Numerous microbiomes stably settled in the lungs of the rats in NC and AA. The structure and diversity of the pulmonary microbiome in AA differed from those in NC.
Collapse
Affiliation(s)
- Yang Xiong
- Department of the First Clinical Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Sen Hu
- Department of the First Clinical Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hongyao Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, 401331, China
| | - Hui Zeng
- Department of the Second Clinical Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xuan He
- Department of the Second Clinical Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Dongni Huang
- Department of Obstetrics, First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoyu Li
- Laboratory of Innovation, Basic Medical Experimental Teaching Center, Chongqing Medical University, Chongqing, 401331, China
- Corresponding author.
| |
Collapse
|
97
|
Lawrence KA, Harris TM, Salter SJ, Hall RW, Smith-Vaughan HC, Chang AB, Marsh RL. Method for culturing Candidatus Ornithobacterium hominis. J Microbiol Methods 2019; 159:157-160. [DOI: 10.1016/j.mimet.2019.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
|
98
|
Marsh RL, Smith-Vaughan HC, Chen AC, Marchant JM, Yerkovich ST, Gibson PG, Pizzutto SJ, Hodge S, Upham JW, Chang AB. Multiple Respiratory Microbiota Profiles Are Associated With Lower Airway Inflammation in Children With Protracted Bacterial Bronchitis. Chest 2019; 155:778-786. [DOI: 10.1016/j.chest.2019.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 12/01/2022] Open
|
99
|
Bacterial and viral respiratory tract microbiota and host characteristics in children with lower respiratory tract infections: a matched case-control study. THE LANCET RESPIRATORY MEDICINE 2019; 7:417-426. [PMID: 30885620 PMCID: PMC7172745 DOI: 10.1016/s2213-2600(18)30449-1] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
Abstract
Background Lower respiratory tract infections (LRTIs) are a leading cause of childhood morbidity and mortality. Potentially pathogenic organisms are present in the respiratory tract in both symptomatic and asymptomatic children, but their presence does not necessarily indicate disease. We aimed to assess the concordance between upper and lower respiratory tract microbiota during LRTIs and the use of nasopharyngeal microbiota to discriminate LRTIs from health. Methods First, we did a prospective study of children aged between 4 weeks and 5 years who were admitted to the paediatric intensive care unit (PICU) at Wilhelmina Children's Hospital (Utrecht, Netherlands) for a WHO-defined LRTI requiring mechanical ventilation. We obtained paired nasopharyngeal swabs and deep endotracheal aspirates from these participants (the so-called PICU cohort) between Sept 10, 2013, and Sept 4, 2016. We also did a matched case-control study (1:2) with the same inclusion criteria in children with LRTIs at three Dutch teaching hospitals and in age-matched, sex-matched, and time-matched healthy children recruited from the community. Nasopharyngeal samples were obtained at admission for cases and during home visits for controls. Data for child characteristics were obtained by questionnaires and from pharmacy printouts and medical charts. We used quantitative PCR and 16S rRNA-based sequencing to establish viral and bacterial microbiota profiles, respectively. We did sparse random forest classifier analyses on the bacterial data, viral data, metadata, and the combination of all three datasets to distinguish cases from controls. Findings 29 patients were enrolled in the PICU cohort. Intra-individual concordance in terms of viral microbiota profiles (96% agreement [95% CI 93–99]) and bacterial microbiota profiles (58 taxa with a median Pearson's r 0·93 [IQR 0·62–0·99]; p<0·05 for all 58 taxa) was high between nasopharyngeal and endotracheal aspirate samples, supporting the use of nasopharyngeal samples as proxy for lung microbiota during LRTIs. 154 cases and 307 matched controls were prospectively recruited to our case-control cohort. Individually, bacterial microbiota (area under the curve 0·77), viral microbiota (0·70), and child characteristics (0·80) poorly distinguished health from disease. However, a classification model based on combined bacterial and viral microbiota plus child characteristics distinguished children with LRTIs from their matched controls with a high degree of accuracy (area under the curve 0·92). Interpretation Our data suggest that the nasopharyngeal microbiota can serve as a valid proxy for lower respiratory tract microbiota in childhood LRTIs, that clinical LRTIs in children result from the interplay between microbiota and host characteristics, rather than a single microorganism, and that microbiota-based diagnostics could improve future diagnostic and treatment protocols. Funding Spaarne Gasthuis, University Medical Center Utrecht, and the Netherlands Organization for Scientific Research.
Collapse
|
100
|
Yang B, Zhang Y, Li B, Zou Y, Xiao C. Fine particulate matter alters the microecology of the murine respiratory tract. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8623-8632. [PMID: 30707384 DOI: 10.1007/s11356-019-04372-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Fine particulate matter is a global challenge to human health. We investigated the effects and potential mechanisms of fine particulate matter on respiratory tract microecology in a lung injury mouse model. BALB/c mice were randomized into exposed and control groups. We found that the levels of soluble tumor necrosis factor receptor I was increased following the PM2.5 exposure. 16S rRNA sequencing of respiratory tract lavage fluid confirmed that the composition of the respiratory tract microecology was altered by the exposure. Lactobacillus was the most abundant of bacterial species present. Collectively, these results establish a link between exposure to fine particulate matter and alterations to the respiratory tract microecology. Elucidation of the underlying mechanisms may lead to treatment strategies in lung injury.
Collapse
Affiliation(s)
- Biao Yang
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang, Liao Ning, People's Republic of China
| | - Yu Zhang
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang, Liao Ning, People's Republic of China
| | - Bingyu Li
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang, Liao Ning, People's Republic of China
| | - Yang Zou
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang, Liao Ning, People's Republic of China
| | - Chunling Xiao
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang, Liao Ning, People's Republic of China.
| |
Collapse
|