51
|
Iron metabolism and the innate immune response to infection. Microbes Infect 2011; 14:207-16. [PMID: 22033148 DOI: 10.1016/j.micinf.2011.10.001] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/29/2011] [Accepted: 10/10/2011] [Indexed: 12/15/2022]
Abstract
Host antimicrobial mechanisms reduce iron availability to pathogens. Iron proteins influencing the innate immune response include hepcidin, lactoferrin, siderocalin, haptoglobin, hemopexin, Nramp1, ferroportin and the transferrin receptor. Numerous global health threats are influenced by iron status and provide examples of our growing understanding of the connections between infection and iron metabolism.
Collapse
|
52
|
Mair SM, Nairz M, Bellmann-Weiler R, Muehlbacher T, Schroll A, Theurl I, Moser PL, Talasz H, Fang FC, Weiss G. Nifedipine affects the course of Salmonella enterica serovar Typhimurium infection by modulating macrophage iron homeostasis. J Infect Dis 2011; 204:685-94. [PMID: 21844295 DOI: 10.1093/infdis/jir395] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Iron overload can adversely influence the course of infection by increasing microbial replication and suppressing antimicrobial immune effector pathways. Recently, we have shown that the calcium channel blocker nifedipine can mobilize tissue iron in mouse models of iron overload. We therefore investigated whether nifedipine treatment affects the course of infection with intracellular bacteria via modulation of iron homeostasis. METHODS The effect of nifedipine on intramacrophage replication of bacteria and modulation of cellular iron homeostasis was investigated in the murine macrophage cell line RAW264.7, and the impact of nifedipine treatment on the course of systemic infection was investigated in C57BL/6 mice in vivo. RESULTS In RAW264.7 cells, nifedipine treatment significantly reduced intracellular bacterial survival of Salmonella enterica serovar Typhimurium and Chlamydophila pneumoniae. This could be attributed to the induction of the iron exporter ferroportin 1, which limited the availability of iron for intracellular Salmonella. When C57BL/6 mice were infected intraperitoneally with Salmonella and subsequently injected with nifedipine for 3 consecutive days, bacterial counts in livers and spleens were significantly reduced and survival of the mice significantly was prolonged compared with solvent-treated littermates. Nifedipine treatment increased expression of ferroportin 1 in the spleen, whereas splenic levels of the iron storage protein ferritin and serum iron concentrations were reduced. CONCLUSIONS Our data provide evidence for a novel mechanism whereby nifedipine enhances host resistance to intracellular pathogens via limitation of iron availability.
Collapse
Affiliation(s)
- Sabine M Mair
- Department of Internal Medicine I, Clinical Immunology and Infectious Diseases, Medical University of Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Abstract
PURPOSE OF REVIEW Recent advances in the study of iron metabolism have led to a better understanding of the molecular basis for the interactions between iron and the inflammatory response. We will review this new information in the context of the gastrointestinal tract. RECENT FINDINGS The effects of iron on microbial enteropathogens are well known. Recent work has demonstrated that iron also has potentially important effects on the intestinal microbiota. On the host side, hepcidin, a key regulator of mammalian iron metabolism, has emerged as an important mediator of the cross-talk between iron homeostasis and inflammation. Hepcidin-dependent changes in iron flux can influence the expression of inflammatory cytokines, and conversely, inflammatory cytokines can induce hepcidin expression and alter iron homeostasis. Hepcidin levels have been found to be elevated in some studies of inflammatory bowel disease, while manipulating hepcidin expression in animal models of this condition has beneficial effects on both inflammation and dysregulated iron metabolism. SUMMARY The information on iron metabolism that has become available in recent years has shed new light on the pathogenesis of inflammatory diseases of the gastrointestinal tract, and is also starting to suggest new approaches to treating such diseases.
Collapse
|
54
|
Abstract
My laboratory has been interested for some time in the influence of iron, a nutrient that is essential for both microbial pathogens and their mammalian hosts, on the course of infectious disease. Our studies indicate that alterations in the expression of host molecules that sequester or transport iron can have direct effects on pathogen growth and can also have an impact on the ability to mount normal immune responses. We have elucidated the mechanistic basis for some of these observations, and have started to apply our findings in strategies to control abnormalities of inflammation and iron metabolism. I will review here what we have learned about the interactions between iron and immunity and discuss the implications of the information that we have acquired.
Collapse
Affiliation(s)
- Bobby J Cherayil
- Mucosal Immunology Laboratory, MassGeneral Hospital for Children, Charlestown, MA 02129, USA.
| |
Collapse
|
55
|
Cairo G, Recalcati S, Mantovani A, Locati M. Iron trafficking and metabolism in macrophages: contribution to the polarized phenotype. Trends Immunol 2011; 32:241-7. [PMID: 21514223 DOI: 10.1016/j.it.2011.03.007] [Citation(s) in RCA: 240] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/14/2011] [Accepted: 03/16/2011] [Indexed: 01/25/2023]
Abstract
During inflammation, proinflammatory macrophages sequester iron as a well known bacteriostatic mechanism. Alternative activation of macrophages is linked to tissue repair, and during this process the expression pattern of genes important for iron homeostasis is distinct from that in proinflammatory macrophages. This leads to an increased capacity of the alternatively activated macrophages for heme uptake, via scavenger receptors, and for production of anti-inflammatory mediators via heme-oxygenase-dependent heme catabolism. Alternatively activated macrophages also release non-heme iron into tissues via ferroportin. Here, we propose that the iron-release-associated phenotype of alternatively activated macrophages significantly contributes to their role in various conditions, including tissue repair and tumor growth.
Collapse
Affiliation(s)
- Gaetano Cairo
- Department of Human Morphology and Biomedical Sciences Città Studi, University of Milan, Milan, Italy.
| | | | | | | |
Collapse
|
56
|
Abstract
The induction of the iron-regulatory peptide hepcidin by proinflammatory cytokines is thought to result in the withholding of iron from invading pathogens. Hfe and transferrin receptor 2 (Tfr2) are involved in the homeostatic regulation of hepcidin and their disruption causes hereditary hemochromatosis (HH). To determine whether either Hfe or Tfr2 is involved in the inflammatory pathway regulating hepcidin, we analyzed the effect of inflammation in 3 mouse models of HH. The inflammatory response and indicators of iron homeostasis were measured in wild-type, Hfe(-/-), Tfr2(-/-), and Hfe(-/-)/Tfr2(-/-) mice injected with lipopolysaccharide (LPS). The administration of LPS significantly reduced serum iron in wild-type and Hfe(-/-) mice, with smaller reductions in Tfr2(-/-) and Hfe(-/-)/Tfr2(-/-) mice. Low basal levels of hepcidin in the Hfe(-/-)/Tfr2(-/-) mice were increased in response to LPS, but remained significantly lower than in the other strains of mice. These results suggest that despite the absence of Hfe and Tfr2, hepcidin is responsive to inflammation; however, the low basal expression and subsequent low levels of circulating hepcidin are insufficient to reduce serum iron effectively. This suggests that in HH, the iron-withholding response to invading pathogens may be inadequate, and this is especially the case in the absence of both Hfe and Tfr2.
Collapse
|
57
|
Cherayil BJ. Iron and immunity: immunological consequences of iron deficiency and overload. Arch Immunol Ther Exp (Warsz) 2010; 58:407-15. [PMID: 20878249 PMCID: PMC3173740 DOI: 10.1007/s00005-010-0095-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 07/23/2010] [Indexed: 02/07/2023]
Abstract
The influence of iron on immune function has been long appreciated. However, the molecular basis for this interaction is less well understood. Recently, there have been several important advances that have shed light on the mechanisms that regulate mammalian iron metabolism. The new insights provide a conceptual framework for understanding and manipulating the cross-talk between iron homeostasis and the immune system. This article will review what is currently known about how disturbances of iron metabolism can affect immunity and how activation of the immune system can lead to alterations in iron balance.
Collapse
Affiliation(s)
- Bobby J Cherayil
- Department of Pediatrics, Mucosal Immunology Laboratory, Massachusetts General Hospital, Harvard Medical School, Building 114, 16th Street, Charlestown, Boston, MA 02129, USA.
| |
Collapse
|
58
|
Johnson EE, Sandgren A, Cherayil BJ, Murray M, Wessling-Resnick M. Role of ferroportin in macrophage-mediated immunity. Infect Immun 2010; 78:5099-106. [PMID: 20837712 PMCID: PMC2981308 DOI: 10.1128/iai.00498-10] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/02/2010] [Accepted: 09/02/2010] [Indexed: 12/21/2022] Open
Abstract
Perturbations in iron metabolism have been shown to dramatically impact host response to infection. The most common inherited iron overload disorder results from defects in the HFE gene product, a major histocompatibility complex class I-like protein that interacts with transferrin receptors. HFE-associated hemochromatosis is characterized by abnormally high levels of the iron efflux protein ferroportin. In this study, J774 murine macrophages overexpressing ferroportin were used to investigate the influence of iron metabolism on the release of nitric oxide (NO) in response to infection. Overexpression of ferroportin significantly impaired intracellular Mycobacterium tuberculosis growth during early stages of infection. When challenged with lipopolysaccharide (LPS) or M. tuberculosis infection, control macrophages increased NO synthesis, but macrophages overexpressing ferroportin had significantly impaired NO production in response to LPS or M. tuberculosis. Increased NO synthesis in control cells was accompanied by increased iNOS mRNA and protein, while upregulation of iNOS protein was markedly reduced when J744 cells overexpressing ferroportin were challenged with LPS or M. tuberculosis, thus limiting the bactericidal activity of these macrophages. The proinflammatory cytokine gamma interferon reversed the inhibitory effect of ferroportin overexpression on NO production. These results suggest a novel role for ferroportin in attenuating macrophage-mediated immune responses.
Collapse
Affiliation(s)
- Erin E. Johnson
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, Mucosal Immunology Laboratory, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Andreas Sandgren
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, Mucosal Immunology Laboratory, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Bobby J. Cherayil
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, Mucosal Immunology Laboratory, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Megan Murray
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, Mucosal Immunology Laboratory, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Marianne Wessling-Resnick
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, Mucosal Immunology Laboratory, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| |
Collapse
|
59
|
Iron and the immune system. J Neural Transm (Vienna) 2010; 118:315-28. [PMID: 20878427 DOI: 10.1007/s00702-010-0479-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 08/26/2010] [Indexed: 12/19/2022]
Abstract
Iron and immunity are closely linked: firstly by the fact that many of the genes/proteins involved in iron homoeostasis play a vital role in controlling iron fluxes such that bacteria are prevented from utilising iron for growth; secondly, cells of the innate immune system, monocytes, macrophages, microglia and lymphocytes, are able to combat bacterial insults by carefully controlling their iron fluxes, which are mediated by hepcidin and ferroportin. In addition, lymphocytes play an important role in adaptive immunity. Thirdly, a variety of effector molecules, e.g. toll-like receptors, NF-κB, hypoxia factor-1, haem oxygenase, will orchestrate the inflammatory response by mobilising a variety of cytokines, neurotrophic factors, chemokines, and reactive oxygen and nitrogen species. Pathologies, where iron loading and depletion occur, may adversely affect the ability of the cell to respond to the bacterial insult.
Collapse
|
60
|
Johnson EE, Srikanth CV, Sandgren A, Harrington L, Trebicka E, Wang L, Borregaard N, Murray M, Cherayil BJ. Siderocalin inhibits the intracellular replication of Mycobacterium tuberculosis in macrophages. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2010; 58:138-45. [PMID: 19863663 PMCID: PMC2822896 DOI: 10.1111/j.1574-695x.2009.00622.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Siderocalin is a secreted protein that binds to siderophores to prevent bacterial iron acquisition. While it has been shown to inhibit the growth of Mycobacterium tuberculosis (M.tb) in extracellular cultures, its effect on this pathogen within macrophages is not clear. Here, we show that siderocalin expression is upregulated following M.tb infection of mouse macrophage cell lines and primary murine alveolar macrophages. Furthermore, siderocalin added exogenously as a recombinant protein or overexpressed in the RAW264.7 macrophage cell line inhibited the intracellular growth of the pathogen. A variant form of siderocalin, which is expressed only in the macrophage cytosol, inhibited intracellular M.tb growth as effectively as the normal, secreted form, an observation that provides mechanistic insight into how siderocalin might influence iron acquisition by the bacteria in the phagosome. Our findings are consistent with an important role for siderocalin in protection against M.tb infection and suggest that exogenously administered siderocalin may have therapeutic applications in tuberculosis.
Collapse
Affiliation(s)
- Erin E. Johnson
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Chittur V. Srikanth
- Mucosal Immunology Laboratory, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Andreas Sandgren
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
| | - Lynne Harrington
- Mucosal Immunology Laboratory, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Estela Trebicka
- Mucosal Immunology Laboratory, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Lijian Wang
- Mucosal Immunology Laboratory, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA
| | - Niels Borregaard
- Department of Hematology, University of Copenhagen, Copenhagen, Denmark
| | - Megan Murray
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
| | - Bobby J. Cherayil
- Mucosal Immunology Laboratory, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
61
|
Abstract
Primary iron overload is one of the most common inherited diseases worldwide. Several genetic mutations underlie the various forms of the disease, which have similar pathophysiological profiles but distinct clinical presentations. Patients with hereditary hemochromatosis absorb too much iron from the diet, which accumulates over time within parenchymal cells. This accumulation leads to eventual organ failure as a consequence of iron-mediated formation of free radicals. The mechanism underlying this excessive absorption of iron is a sensing defect caused by the reduced formation of hepcidin, the master regulator of iron homeostasis, as a consequence of mutations in the genes encoding several membrane-bound signaling molecules present on hepatocytes. A considerable number of carriers of these specific genetic mutations, however, do not develop iron overload, indicating that additional genetic and environmental factors modify the severity and clinical penetrance of disease. In affected patients, early initiation of treatment by phlebotomy can prevent organ damage. Genetic screening of first-degree relatives can be also used to identify individuals at risk. Our expanding knowledge of the regulation of iron metabolism and the role of factors that modify the severity of the disease may lead to the design of new and improved treatments.
Collapse
|
62
|
Gallium disrupts iron uptake by intracellular and extracellular Francisella strains and exhibits therapeutic efficacy in a murine pulmonary infection model. Antimicrob Agents Chemother 2009; 54:244-53. [PMID: 19917753 DOI: 10.1128/aac.00655-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Francisella tularensis requires iron (Fe) for growth, but the biologic sources of Fe for this organism are largely unknown. We found that Francisella sp. growing in broth culture or within human macrophages can acquire Fe from the two major host Fe-binding proteins, lactoferrin (Lf) and transferrin (Tf). Fe acquisition is a potential target for novel therapies. Gallium (Ga) is a transition metal that interferes with cellular Fe metabolism by competing with Fe for uptake/utilization. Growth of either F. tularensis live vaccine strain (LVS) or Francisella novicida was inhibited by >or=2 microM Ga chelated to Tf or Lf, with GaLf being somewhat more potent. Francisella spp. express two Fe-containing antioxidant enzymes, catalase (KatG) and Fe cofactored superoxide dismutase (FeSOD). Growth of LVS with 10 muM GaTf or GaLf led to a dramatic decrease in bacterial catalase activity and in FeSOD activity that was associated with an increased susceptibility to H(2)O(2). Ga also protected mice from intranasal challenge with F. novicida. Whereas 100% of the F. novicida-infected mice died by day 9, 75% of the mice receiving Ga continued to survive to at least day 15. Thus, a single intranasal dose of Ga followed by daily intraperitoneal Ga at a dose tolerated by the animals resulted in prolonged survival. These data support the potential utility of Ga as a therapy for F. tularensis infection of the lung.
Collapse
|
63
|
Absence of functional Hfe protects mice from invasive Salmonella enterica serovar Typhimurium infection via induction of lipocalin-2. Blood 2009; 114:3642-51. [PMID: 19700664 DOI: 10.1182/blood-2009-05-223354] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations of HFE are associated with hereditary hemochromatosis, but their influence on host susceptibility to infection is incompletely understood. We report that mice lacking one or both Hfe alleles are protected from septicemia with Salmonella Typhimurium, displaying prolonged survival and improved control of bacterial replication. This increased resistance is paralleled by an enhanced production of the enterochelin-binding peptide lipocalin-2 (Lcn2), which reduces the availability of iron for Salmonella within Hfe-deficient macrophages. Accordingly, Hfe(-/-)Lcn2(-/-) macrophages are unable to efficiently control the infection or to withhold iron from intracellular Salmonella. Correspondingly, the protection conferred by the Hfe defect is abolished in Hfe(-/-) mice infected with enterochelin-deficient Salmonella as well as in Hfe(-/-)Lcn2(-/-) mice infected with wild-type bacteria. Thus, by induction of the iron-capturing peptide Lcn2, absence of functional Hfe confers host resistance to systemic infection with Salmonella, thereby providing an evolutionary advantage which may account for the high prevalence of genetic hemochromatosis.
Collapse
|
64
|
Wang L, Cherayil BJ. Ironing out the wrinkles in host defense: interactions between iron homeostasis and innate immunity. J Innate Immun 2009; 1:455-64. [PMID: 20375603 PMCID: PMC3969595 DOI: 10.1159/000210016] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/16/2009] [Accepted: 01/16/2009] [Indexed: 12/15/2022] Open
Abstract
Iron is an essential micronutrient for both microbial pathogens and their mammalian hosts. Changes in iron availability and distribution have significant effects on pathogen virulence and on the immune response to infection. Recent advances in our understanding of the molecular regulation of iron metabolism have shed new light on how alterations in iron homeostasis both contribute to and influence innate immunity. In this article, we review what is currently known about the role of iron in the response to infection.
Collapse
Affiliation(s)
- Lijian Wang
- Mucosal Immunology Laboratory, Massachusetts General Hospital, Charlestown, Mass., USA
- Department of Nutrition, Harvard School of Public Health, Boston, Mass., USA
| | - Bobby J. Cherayil
- Mucosal Immunology Laboratory, Massachusetts General Hospital, Charlestown, Mass., USA
- Department of Pediatrics, Harvard Medical School, Boston, Mass., USA
| |
Collapse
|
65
|
Goulart LR, Goulart IMB. Leprosy pathogenetic background: a review and lessons from other mycobacterial diseases. Arch Dermatol Res 2008; 301:123-37. [PMID: 19043725 DOI: 10.1007/s00403-008-0917-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 11/06/2008] [Indexed: 11/27/2022]
Abstract
Leprosy is a disease caused by Mycobacterium leprae that initially affects the peripheral nervous system with patients exhibiting contrasting clinical, immunological, and pathological manifestations despite minimal genetic variation among bacilli isolates. Its clinical manifestations are related to M. leprae survival, innate and acquired immune responses, and interactions between host and bacterial proteins, preventing their invasion and infection, or promoting their development and pathogenesis. The complex molecular interactions in affected individuals influenced by the pathogenetic background will be explored in this review. However, the great genetic diversity imposes difficulty for understanding disease development, and it is likely that many factors and metabolic pathways regulating the immense and contrasting symptomatology will yet be revealed. Four pathways may play a central role in leprosy, including the TLR/LIR-7, VDR, TNF-alpha, and TGF-beta1 for which a large amount of gene polymorphisms have been described that could potentially affect the clinical outcome. Cross-talk pathways may significantly change the course of the disease, depending on the specific disequilibrium of genic homeostasis, which is highly dependent on the environment, antigens that are presented to the host cell, and specific polymorphisms that interact with other genes, external factors, and pathogen survival, culminating in leprosy occurrence. Currently, the microarray-based genomic survey of gene polymorphisms, multiple gene expression analyses, and proteomic technologies, such as mass spectrometry and phage display applied in the discovery of antigens, represent a great potential for evaluating individual responses of leprosy patients and contacts to predict the outcome and progression of the disease. At present, none of the genes is good prognostic marker; however, in the near future we may use multiple targets to predict infection and leprosy development.
Collapse
Affiliation(s)
- Luiz Ricardo Goulart
- National Reference Center of Sanitary Dermatology and Leprosy, Clínic's Hospital, School of Medicine, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil.
| | | |
Collapse
|
66
|
Wang L, Johnson EE, Shi HN, Allan Walker W, Wessling-Resnick M, Cherayil BJ. Attenuated inflammatory responses in hemochromatosis reveal a role for iron in the regulation of macrophage cytokine translation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:2723-31. [PMID: 18684963 PMCID: PMC2561261 DOI: 10.4049/jimmunol.181.4.2723] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Disturbances of iron homeostasis are associated with altered susceptibility to infectious disease, but the underlying molecular mechanisms are poorly understood. To study this phenomenon, we examined innate immunity to oral Salmonella infection in Hfe knockout (Hfe(-/-)) mice, a model of the human inherited disorder of iron metabolism type I hemochromatosis. Salmonella- and LPS-induced inflammatory responses were attenuated in the mutant animals, with less severe enterocolitis observed in vivo and reduced macrophage TNF-alpha and IL-6 secretion measured in vitro. The macrophage iron exporter ferroportin (FPN) was up-regulated in the Hfe(-/-) mice, and correspondingly, intramacrophage iron levels were lowered. Consistent with the functional importance of these changes, the abnormal cytokine production of the mutant macrophages could be reproduced in wild-type cells by iron chelation, and in a macrophage cell line by overexpression of FPN. The results of analyzing specific steps in the biosynthesis of TNF-alpha and IL-6, including intracellular concentrations, posttranslational stability and transcript levels, were consistent with reduced translation of cytokine mRNAs in Hfe(-/-) macrophages. Polyribosome profile analysis confirmed that elevated macrophage FPN expression and low intracellular iron impaired the translation of specific inflammatory cytokine transcripts. Our results provide molecular insight into immune function in type I hemochromatosis and other disorders of iron homeostasis, and reveal a novel role for iron in the regulation of the inflammatory response.
Collapse
Affiliation(s)
- Lijian Wang
- Mucosal Immunology Laboratory, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA
| | - Erin E. Johnson
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Hai Ning Shi
- Mucosal Immunology Laboratory, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - W. Allan Walker
- Mucosal Immunology Laboratory, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA
| | - Marianne Wessling-Resnick
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Bobby J. Cherayil
- Mucosal Immunology Laboratory, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
67
|
Increased susceptibility to Mycobacterium avium in hemochromatosis protein HFE-deficient mice. Infect Immun 2008; 76:4713-9. [PMID: 18694968 DOI: 10.1128/iai.00612-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mycobacterium avium is an opportunistic infectious agent in immunocompromised patients, living inside macrophage phagosomes. As for other mycobacterial species, iron availability is a critical factor for M. avium survival and multiplication. Indeed, an association between host secondary iron overload and increased susceptibility to these mycobacteria is generally acknowledged. However, studies on the impact of primary iron overload on M. avium infection have not been performed. In this work, we used animal models of primary iron overload that mimic the human disease hereditary hemochromatosis. This pathology is characterized by increased serum transferrin saturation with iron deposition in parenchymal cells, mainly in the liver, and is most often associated with mutations in the gene encoding the molecule HFE. In this paper, we demonstrate that mice of two genetically determined primary iron overload phenotypes, Hfe(-/-) and beta2m(-/-), show an increased susceptibility to experimental infection with M. avium and that during infection these animals accumulate iron inside granuloma macrophages. beta2m(-/-) mice were found to be more susceptible than Hfe(-/-) mice, but depleting Hfe(-/-) mice of CD8(+) cells had no effect on resistance to infection. Overall, our results suggest that serum iron, rather than total liver iron, levels have a considerable impact on susceptibility to M. avium infection.
Collapse
|
68
|
|
69
|
Basaraba RJ, Bielefeldt-Ohmann H, Eschelbach EK, Reisenhauer C, Tolnay AE, Taraba LC, Shanley CA, Smith EA, Bedwell CL, Chlipala EA, Orme IM. Increased expression of host iron-binding proteins precedes iron accumulation and calcification of primary lung lesions in experimental tuberculosis in the guinea pig. Tuberculosis (Edinb) 2008; 88:69-79. [PMID: 17942369 PMCID: PMC2271031 DOI: 10.1016/j.tube.2007.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/26/2007] [Accepted: 09/09/2007] [Indexed: 11/25/2022]
Abstract
The growth and virulence of Mycobacterium tuberculosis depends on its ability to scavenge host iron, an essential and limited micronutrient in vivo. In this study, we show that ferric iron accumulates both intra- and extra-cellularly in the primary lung lesions of guinea pigs aerosol-infected with the H37Rv strain of M. tuberculosis. Iron accumulated within macrophages at the periphery of the primary granulomatous lesions while extra-cellular ferric iron was concentrated in areas of lesion necrosis. Accumulation of iron within primary lesions was preceded by an increase in expression of heavy chain (H) ferritin, lactoferrin and receptors for transferrin, primarily by macrophages and granulocytes. The increased expression of intra-cellular H ferritin and extra-cellular lactoferrin, more so than transferrin receptor, paralleled the development of necrosis within primary lesions. The deposition of extra-cellular ferric iron within necrotic foci coincided with the accumulation of calcium and phosphorus and other cations in the form of dystrophic calcification. Primary lung lesions from guinea pigs vaccinated with Mycobactrium bovis BCG prior to experimental infection, had reduced iron accumulation as well as H ferritin, lactoferrin and transferrin receptor expression. The amelioration of primary lesion necrosis and dystrophic calcification by BCG vaccination was coincident with the lack of extra-cellular ferric iron and lactoferrin accumulation. These data demonstrate that BCG vaccination ameliorates primary lesion necrosis, dystrophic mineralization and iron accumulation, in part by down-regulating the expression of macrophage H ferritin, lactoferrin and transferrin receptors, in vivo.
Collapse
Affiliation(s)
- Randall J Basaraba
- Department of Microbiology, Immunology and Pathology, 1619 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1619, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
Progress in the characterization of genes involved in the control of iron homeostasis in humans and in mice has improved the definition of iron overload and of the cells affected by it. The cell involved in iron overload with the greatest effect on immunity is the macrophage. Intriguing evidence has emerged, however, in the last 12 years indicating that parenchymal iron overload is linked to genes classically associated with the immune system. This review offers an update of the genes and proteins relevant to iron metabolism expressed in cells of the innate immune system, and addresses the question of how this system is affected in clinical situations of iron overload. The relationship between iron and the major cells of adaptive immunity, the T lymphocytes, will also be reviewed. Most studies addressing this last question in humans were performed in the clinical model of Hereditary Hemochromatosis. Data will also be reviewed demonstrating how the disruption of molecules essentially involved in adaptive immune responses result in the spontaneous development of iron overload and how they act as modifiers of iron overload.
Collapse
Affiliation(s)
- Graça Porto
- Institute of Molecular and Cellular Biology, Rua do Campo Alegre, Porto 8234150, Portugal.
| | | |
Collapse
|
71
|
Khan FA, Fisher MA, Khakoo RA. Association of hemochromatosis with infectious diseases: expanding spectrum. Int J Infect Dis 2007; 11:482-7. [PMID: 17600748 DOI: 10.1016/j.ijid.2007.04.007] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/26/2007] [Accepted: 04/05/2007] [Indexed: 02/06/2023] Open
Abstract
Withholding iron from potential pathogens is a host defense strategy. There is evidence that iron overload per se compromises the ability of phagocytes to kill microorganisms. Several hypotheses exist to explain the association of hemochromatosis with infection. A combination of mechanisms likely contributes to the increase in susceptibility to infection in these patients. A review of the current literature delineating various pathogens to which patients with hemochromatosis are potentially susceptible, and recent advances in the understanding of the association of hemochromatosis with infection, are discussed.
Collapse
Affiliation(s)
- Fida A Khan
- Department of Medicine, Section of Infectious Diseases, Ohio Valley Medical Center, 2000 Eoff Street, Wheeling, WV 26003, USA.
| | | | | |
Collapse
|
72
|
Sahiratmadja E, Wieringa FT, van Crevel R, de Visser AW, Adnan I, Alisjahbana B, Slagboom E, Marzuki S, Ottenhoff THM, van de Vosse E, Marx JJM. Iron deficiency and NRAMP1 polymorphisms (INT4, D543N and 3'UTR) do not contribute to severity of anaemia in tuberculosis in the Indonesian population. Br J Nutr 2007; 98:684-90. [PMID: 17466092 DOI: 10.1017/s0007114507742691] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fe-deficiency anaemia is the most common cause of anaemia in developing countries. In these settings, many chronic infections, including tuberculosis (TB), are highly prevalent. Fe is an essential nutrient for both host and mycobacteria that play a pivotal role in host immunity and mycobacterial growth. A case-control study was performed in a TB-endemic region in Jakarta, Indonesia, among 378 pulmonary TB patients and 436 healthy controls from the same neighbourhood with the same socio-economic status. In a number of these subjects the Fe status could be explored. The distribution of three polymorphisms in the natural resistance-associated macrophage protein gene (NRAMP1) including INT4, D543N and 3'UTR was examined for a possible association with susceptibility to TB. Anaemia (corrected for sex) was present in 63.2 % of active TB compared with 6.8 % of controls, with female patients more often affected. Anaemia was more pronounced in advanced TB as diagnosed by chest radiography. Lower Hb concentrations in TB patients were accompanied by lower plasma Fe concentrations, lower Fe-binding capacity and higher plasma ferritin. After successful TB therapy, Fe parameters improved towards control values and Hb levels normalised, even without Fe supplementation. NRAMP1 gene polymorphisms were not associated with TB susceptibility, TB severity or anaemia. In conclusion, most active TB patients had anaemia, which was probably due to inflammation and not to Fe deficiency since TB treatment without Fe supplementation was sufficient to restore Hb concentration.
Collapse
|