51
|
Imoesi PI, Olarte-Sánchez CM, Croce L, Blaner WS, Morgan PJ, Heisler L, McCaffery P. Control by the brain of vitamin A homeostasis. iScience 2023; 26:107373. [PMID: 37599827 PMCID: PMC10432198 DOI: 10.1016/j.isci.2023.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Vitamin A is a micronutrient essential for vertebrate animals maintained in homeostatic balance in the body; however, little is known about the control of this balance. This study investigated whether the hypothalamus, a key integrative brain region, regulates vitamin A levels in the liver and circulation. Vitamin A in the form of retinol or retinoic acid was stereotactically injected into the 3rd ventricle of the rat brain. Alternatively, retinoids in the mouse hypothalamus were altered through retinol-binding protein 4 (Rbp4) gene knockdown. This led to rapid change in the liver proteins controlling vitamin A homeostasis as well as vitamin A itself in liver and the circulation. Prolonged disruption of Rbp4 in the region of the arcuate nucleus of the mouse hypothalamus altered retinol levels in the liver. This supports the concept that the brain may sense retinoids and influence whole-body vitamin A homeostasis with a possible "vitaminostatic" role.
Collapse
Affiliation(s)
- Peter I. Imoesi
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Cristian M. Olarte-Sánchez
- Rowett Institute, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Lorenzo Croce
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - William S. Blaner
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Peter J. Morgan
- Rowett Institute, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Lora Heisler
- Rowett Institute, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Peter McCaffery
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
52
|
Jackson C, Kolba N, Tako E. Assessing the Interactions between Zinc and Vitamin A on Intestinal Functionality, Morphology, and the Microbiome In Vivo ( Gallus gallus). Nutrients 2023; 15:2754. [PMID: 37375657 PMCID: PMC10302570 DOI: 10.3390/nu15122754] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Dietary deficiencies in zinc (Zn) and vitamin A (VA) are among the leading micronutrient deficiencies globally and previous research has proposed a notable interaction between Zn and VA physiological status. This study aimed to assess the effects of zinc and vitamin A (isolated and combined) on intestinal functionality and morphology, and the gut microbiome (Gallus gallus). The study included nine treatment groups (n~11)-no-injection (NI); H2O; 0.5% oil; normal zinc (40 mg/kg ZnSO4) (ZN); low zinc (20 mg/kg) (ZL); normal retinoid (1500 IU/kg retinyl palmitate) (RN); low retinoid (100 IU/kg) (RL); normal zinc and retinoid (40 mg/kg; 1500 IU/kg) (ZNRN); low zinc and retinoid (ZLRL) (20 mg/kg; 100 IU/kg). Samples were injected into the amniotic fluid of the fertile broiler eggs. Tissue samples were collected upon hatch to target biomarkers. ZLRL reduced ZIP4 gene expression and upregulated ZnT1 gene expression (p < 0.05). Duodenal surface area increased the greatest in RL compared to RN (p < 0.01), and ZLRL compared to ZNRN (p < 0.05). All nutrient treatments yielded shorter crypt depths (p < 0.01). Compared to the oil control, ZLRL and ZNRN reduced (p < 0.05) the cecal abundance of Bifidobacterium and Clostridium genera (p < 0.05). These results suggest a potentially improved intestinal epithelium proceeding with Zn and VA intra-amniotic administration. Intestinal functionality and gut bacteria were modulated. Further research should characterize long-term responses and the microbiome profile.
Collapse
Affiliation(s)
| | | | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (C.J.); (N.K.)
| |
Collapse
|
53
|
Gvozdanović K, Kralik Z, Radišić Ž, Košević M, Kralik G, Djurkin Kušec I. The Interaction between Feed Bioactive Compounds and Chicken Genome. Animals (Basel) 2023; 13:1831. [PMID: 37889707 PMCID: PMC10251886 DOI: 10.3390/ani13111831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 10/29/2023] Open
Abstract
Consumer demand for high quality and safe foods that will have a positive impact on their health has increased in recent years. Today, it is possible to meet those demands by combining the genetic potential of domestic animals and applying different feeding strategies. Nutrigenomics is one of the "omics" sciences that studies the interaction between nutrients and the genome together with their influence on metabolic and physiological processes in the body. While nutrition of domestic animals is solely based on studying the influence of nutrients on animal health and production traits, nutrigenomics integrates the fields of nutrition, genomics, molecular genetics and bioinformatics. By understanding the molecular relationships between different forms and/or concentrations of nutrients in feed and genes, it is possible to answer the question of how small changes in the diet of farm animals can produce a quality product with positive effects on human health. The aim of this article is to describe how the manipulation of adding different nutrients in the feed affects the expression of different genes in chicken and consequently alters their phenotype.
Collapse
Affiliation(s)
- Kristina Gvozdanović
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Zlata Kralik
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Žarko Radišić
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Manuela Košević
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| | - Gordana Kralik
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
- Nutricin j.d.o.o., Đure Đakovića 6, 31326 Darda, Croatia
| | - Ivona Djurkin Kušec
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, 31000 Osijek, Croatia
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, 31000 Osijek, Croatia
| |
Collapse
|
54
|
Jayasekera D, Hartmann P. Noninvasive biomarkers in pediatric nonalcoholic fatty liver disease. World J Hepatol 2023; 15:609-640. [PMID: 37305367 PMCID: PMC10251277 DOI: 10.4254/wjh.v15.i5.609] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/14/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease worldwide among children and adolescents. It encompasses a spectrum of disease, from its mildest form of isolated steatosis, to nonalcoholic steatohepatitis (NASH) to liver fibrosis and cirrhosis, or end-stage liver disease. The early diagnosis of pediatric NAFLD is crucial in preventing disease progression and in improving outcomes. Currently, liver biopsy is the gold standard for diagnosing NAFLD. However, given its invasive nature, there has been significant interest in developing noninvasive methods that can be used as accurate alternatives. Here, we review noninvasive biomarkers in pediatric NAFLD, focusing primarily on the diagnostic accuracy of various biomarkers as measured by their area under the receiver operating characteristic, sensitivity, and specificity. We examine two major approaches to noninvasive biomarkers in children with NAFLD. First, the biological approach that quantifies serological biomarkers. This includes the study of individual circulating molecules as biomarkers as well as the use of composite algorithms derived from combinations of biomarkers. The second is a more physical approach that examines data measured through imaging techniques as noninvasive biomarkers for pediatric NAFLD. Each of these approaches was applied to children with NAFLD, NASH, and NAFLD with fibrosis. Finally, we suggest possible areas for future research based on current gaps in knowledge.
Collapse
Affiliation(s)
- Dulshan Jayasekera
- Department of Internal Medicine and Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, United States
| | - Phillipp Hartmann
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of California San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
55
|
Chen G, Weiskirchen S, Weiskirchen R. Vitamin A: too good to be bad? Front Pharmacol 2023; 14:1186336. [PMID: 37284305 PMCID: PMC10239981 DOI: 10.3389/fphar.2023.1186336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Vitamin A is a micronutrient important for vision, cell growth, reproduction and immunity. Both deficiency and excess consuming of vitamin A cause severe health consequences. Although discovered as the first lipophilic vitamin already more than a century ago and the definition of precise biological roles of vitamin A in the setting of health and disease, there are still many unresolved issues related to that vitamin. Prototypically, the liver that plays a key role in the storage, metabolism and homeostasis of vitamin A critically responds to the vitamin A status. Acute and chronic excess vitamin A is associated with liver damage and fibrosis, while also hypovitaminosis A is associated with alterations in liver morphology and function. Hepatic stellate cells are the main storage site of vitamin A. These cells have multiple physiological roles from balancing retinol content of the body to mediating inflammatory responses in the liver. Strikingly, different animal disease models also respond to vitamin A statuses differently or even opposing. In this review, we discuss some of these controversial issues in understanding vitamin A biology. More studies of the interactions of vitamin A with animal genomes and epigenetic settings are anticipated in the future.
Collapse
Affiliation(s)
- Guoxun Chen
- College of Food Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
56
|
Wuertz S, Orban A, Schaefer FJ, Overton JL, Krüger A. Carotenoids and retinoids in the gonad of brood-stock pikeperch: accumulation during vitellogenesis and influence on egg quality in farmed pikeperch Sander lucioperca. Anim Reprod 2023; 20:e20220103. [PMID: 37228385 PMCID: PMC10205056 DOI: 10.1590/1984-3143-ar2022-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/27/2023] [Indexed: 05/27/2023] Open
Abstract
Carotenoids are determinants of reproductive fitness and egg quality. Here we studied the accumulation of astaxanthin (AX), canthaxanthin (CA) zeaxanthin (ZX), lutein (LU), retinol (RX) and dehydroretinol (DR) during vitellogenesis comparing previtellogenic and vitellogenic pikeperch (Sander lucioperca) eggs (n = 5 each), as well as selected tissues (liver, fat and muscles) in first süawning females (1176-1450 g). Futhermore, we compared egg batches with high (88-99% hatching rate, n = 5) or low (40-67% hatching rate, n= 5) egg quality. Vitellogenic follicles revealed higher concentrations of DR, RX, ZX and LU compared to previtellogenic follicles. Neither CA nor AX was detectable. In parallel, DR and RX were mobilized in the liver. In adipose and muscle tissue, comparing previtellogenic and vitellogenic females, no significant differences in carotenoid/retinoid content were observed. In high quality egg batches, both DR and RX were increased. LU was lower in high quality than in low quality eggs. In a conclusion, the amount of retinoids seems suboptimal in low quality egg batches and increased DR and RX are desirable in pikeperch. Since hypervitaminosis of retinoids can be problematic though, supplementation of the food with carotenoids, which can serve as precursors for retinoids, has to be carried out carefully.
Collapse
Affiliation(s)
- Sven Wuertz
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Axel Orban
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | | | | | - Angela Krüger
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| |
Collapse
|
57
|
Rocha HR, Coelho MC, Gomes AM, Pintado ME. Carotenoids Diet: Digestion, Gut Microbiota Modulation, and Inflammatory Diseases. Nutrients 2023; 15:nu15102265. [PMID: 37242148 DOI: 10.3390/nu15102265] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Several epidemiologic studies have found that consuming fruits and vegetables lowers the risk of getting a variety of chronic illnesses, including several types of cancers, cardiovascular diseases (CVDs), and bowel diseases. Although there is still debate over the bioactive components, various secondary plant metabolites have been linked to these positive health benefits. Many of these features have recently been connected to carotenoids and their metabolites' effects on intracellular signalling cascades, which influence gene expression and protein translation. Carotenoids are the most prevalent lipid-soluble phytochemicals in the human diet, are found in micromolar amounts in human serum, and are very susceptible to multiple oxidation and isomerisation reactions. The gastrointestinal delivery system, digestion processes, stability, and functionality of carotenoids, as well as their impact on the gut microbiota and how carotenoids may be effective modulators of oxidative stress and inflammatory pathways, are still lacking research advances. Although several pathways involved in carotenoids' bioactivity have been identified, future studies should focus on the carotenoids' relationships, related metabolites, and their effects on transcription factors and metabolism.
Collapse
Affiliation(s)
- Helena R Rocha
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Marta C Coelho
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana M Gomes
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela E Pintado
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
58
|
Qiu Z, Khairallah C, Chu TH, Imperato JN, Lei X, Romanov G, Atakilit A, Puddington L, Sheridan BS. Retinoic acid signaling during priming licenses intestinal CD103+ CD8 TRM cell differentiation. J Exp Med 2023; 220:e20210923. [PMID: 36809399 PMCID: PMC9960115 DOI: 10.1084/jem.20210923] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/02/2022] [Accepted: 02/01/2023] [Indexed: 02/23/2023] Open
Abstract
CD8 tissue-resident memory T (TRM) cells provide frontline protection at barrier tissues; however, mechanisms regulating TRM cell development are not completely understood. Priming dictates the migration of effector T cells to the tissue, while factors in the tissue induce in situ TRM cell differentiation. Whether priming also regulates in situ TRM cell differentiation uncoupled from migration is unclear. Here, we demonstrate that T cell priming in the mesenteric lymph nodes (MLN) regulates CD103+ TRM cell differentiation in the intestine. In contrast, T cells primed in the spleen were impaired in the ability to differentiate into CD103+ TRM cells after entry into the intestine. MLN priming initiated a CD103+ TRM cell gene signature and licensed rapid CD103+ TRM cell differentiation in response to factors in the intestine. Licensing was regulated by retinoic acid signaling and primarily driven by factors other than CCR9 expression and CCR9-mediated gut homing. Thus, the MLN is specialized to promote intestinal CD103+ CD8 TRM cell development by licensing in situ differentiation.
Collapse
Affiliation(s)
- Zhijuan Qiu
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Camille Khairallah
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Timothy H. Chu
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jessica N. Imperato
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Xinyuan Lei
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Galina Romanov
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Amha Atakilit
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Lynn Puddington
- Department of Immunology, University of Connecticut Health, Farmington, CT, USA
| | - Brian S. Sheridan
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
59
|
Est CB, Murphy RM. An in vitro model for vitamin A transport across the human blood-brain barrier. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536348. [PMID: 37090623 PMCID: PMC10120720 DOI: 10.1101/2023.04.11.536348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Vitamin A, supplied by the diet, is critical for brain health, but little is known about its delivery across the blood-brain barrier (BBB). Brain microvascular endothelial-like cells (BMECs) differentiated from human-derived induced pluripotent stem cells (iPSC) form a tight barrier that recapitulates many of the properties of the human BBB. We paired iPSC-derived BMECs with recombinant vitamin A serum transport proteins, retinol binding protein (RBP) and transthyretin (TTR), to create an in vitro model for the study of vitamin A (retinol) delivery across the human BBB. iPSC-derived BMECs display a strong barrier phenotype, express key vitamin A metabolism markers and can be used for quantitative modeling of retinol accumulation and permeation. Manipulation of retinol, RBP and TTR concentrations, and the use of mutant RBP and TTR, yielded novel insights into the patterns of retinol accumulation in, and permeation across, the BBB. The results described herein provide a platform for deeper exploration of the regulatory mechanisms of retinol trafficking to the human brain.
Collapse
Affiliation(s)
| | - Regina M. Murphy
- Department of Chemical and Biological Engineering, University of Wisconsin – Madison 1415 Engineering Dr., Madison, WI 53706
| |
Collapse
|
60
|
Boughanem H, Kompella P, Tinahones FJ, Macias-Gonzalez M. An overview of vitamins as epidrugs for colorectal cancer prevention. Nutr Rev 2023; 81:455-479. [PMID: 36018754 DOI: 10.1093/nutrit/nuac065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene expression altering epigenomic modifications such as DNA methylation, histone modification, and chromosome remodeling is crucial to regulating many biological processes. Several lifestyle factors, such as diet and natural, bioactive food compounds, such as vitamins, modify epigenetic patterns. However, epigenetic dysregulation can increase the risk of many diseases, including cancer. Various studies have provided supporting and contrasting evidence on the relationship between vitamins and cancer risk. Though there is a gap in knowledge about whether dietary vitamins can induce epigenetic modifications in the context of colorectal cancer (CRC), the possibility of using them as epidrugs for CRC treatment is being explored. This is promising because such studies might be informative about the most effective way to use vitamins in combination with DNA methyltransferase inhibitors and other approved therapies to prevent and treat CRC. This review summarizes the available epidemiological and observational studies involving dietary, circulating levels, and supplementation of vitamins and their relationship with CRC risk. Additionally, using available in vitro, in vivo, and human observational studies, the role of vitamins as potential epigenetic modifiers in CRC is discussed. This review is focused on the action of vitamins as modifiers of DNA methylation because aberrant DNA methylation, together with genetic alterations, can induce the initiation and progression of CRC. Although this review presents some studies with promising results, studies with better study designs are necessary. A thorough understanding of the underlying molecular mechanisms of vitamin-mediated epigenetic regulation of CRC genes can help identify effective therapeutic targets for CRC prevention and treatment.
Collapse
Affiliation(s)
- Hatim Boughanem
- are with the Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, Spain.,are with the Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Pallavi Kompella
- are with the Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, Spain.,is with the Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Francisco J Tinahones
- are with the Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, Spain.,are with the Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Macias-Gonzalez
- are with the Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, Spain.,are with the Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
61
|
Molenaar MR, Haaker MW, Vaandrager AB, Houweling M, Helms JB. Lipidomic profiling of rat hepatic stellate cells during activation reveals a two-stage process accompanied by increased levels of lysosomal lipids. J Biol Chem 2023; 299:103042. [PMID: 36803964 PMCID: PMC10033282 DOI: 10.1016/j.jbc.2023.103042] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
Hepatic stellate cells (HSCs) are liver-resident cells best known for their role in vitamin A storage under physiological conditions. Upon liver injury, HSCs activate into myofibroblast-like cells, a key process in the onset of liver fibrosis. Lipids play an important role during HSC activation. Here, we provide a comprehensive characterization of the lipidomes of primary rat HSCs during 17 days of activation in vitro. For lipidomic data interpretation, we expanded our previously described Lipid Ontology (LION) and associated web application (LION/Web) with the LION-PCA heatmap module, which generates heatmaps of the most typical LION-signatures in lipidomic datasets. Furthermore, we used LION to perform pathway analysis to determine the significant metabolic conversions in lipid pathways. Together, we identify two distinct stages of HSC activation. In the first stage, we observe a decrease of saturated phosphatidylcholine, sphingomyelin, and phosphatidic acid and an increase in phosphatidylserine and polyunsaturated bis(monoacylglycero)phosphate (BMP), a lipid class typically localized at endosomes and lysosomes. In the second activation stage, BMPs, hexosylceramides, and ether-linked phosphatidylcholines are elevated, resembling a lysosomal lipid storage disease profile. The presence of isomeric structures of BMP in HSCs was confirmed ex vivo in MS-imaging datasets of steatosed liver sections. Finally, treatment with pharmaceuticals targeting the lysosomal integrity led to cell death in primary HSCs but not in HeLa cells. In summary, our combined data suggest that lysosomes play a critical role during a two-stage activation process of HSCs.
Collapse
Affiliation(s)
- Martijn R Molenaar
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Maya W Haaker
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - A Bas Vaandrager
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Martin Houweling
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - J Bernd Helms
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
62
|
Karmakar E, Das N, Mukherjee B, Das P, Mukhopadhyay S, Roy SS. Lipid-induced alteration in retinoic acid signaling leads to mitochondrial dysfunction in HepG2 and Huh7 cells. Biochem Cell Biol 2023. [PMID: 36787544 DOI: 10.1139/bcb-2022-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
A surfeit of mitochondrial reactive oxygen species (ROS) and inflammation serve as obligatory mediators of lipid-associated hepatocellular maladies. While retinoid homeostasis is essential in restoring systemic energy balance, its role in hepatic mitochondrial function remains elusive. The role of lecithin-retinol acyltransferase (LRAT) in maintenance of retinoid homeostasis is appreciated earlier; however, its role in modulating retinoic acid (RA) bioavailability upon lipid-imposition is unexplored. We identified LRAT overexpression in high-fat diet (HFD)-fed rats and palmitate-treated hepatoma cells. Elevation in LRAT expression depletes RA production and deregulates RA signaling. This altered RA metabolism enhances fat accumulation, accompanied by inflammation that leads to impaired mitochondrial function through enhanced ROS generation. Hence, LRAT inhibition could be a novel approach preventing lipid-induced mitochondrial dysfunction in hepatoma cells.
Collapse
Affiliation(s)
- Eshani Karmakar
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Nabanita Das
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.,Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Bijnor-sisendi Road, Lucknow, Uttar Pradesh, 226002, India
| | - Bidisha Mukherjee
- Department of Endocrinology and Metabolism, Institute of Post Graduate Medical Education and Research, 244, A.J.C. Bose Road, Kolkata, 700020, India
| | - Prosenjit Das
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Satinath Mukhopadhyay
- Department of Endocrinology and Metabolism, Institute of Post Graduate Medical Education and Research, 244, A.J.C. Bose Road, Kolkata, 700020, India
| | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.,Academy of Scientific & Innovative Research (AcSIR), India
| |
Collapse
|
63
|
Cellular and Molecular Mechanisms of Pathogenesis Underlying Inherited Retinal Dystrophies. Biomolecules 2023; 13:biom13020271. [PMID: 36830640 PMCID: PMC9953031 DOI: 10.3390/biom13020271] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are congenital retinal degenerative diseases that have various inheritance patterns, including dominant, recessive, X-linked, and mitochondrial. These diseases are most often the result of defects in rod and/or cone photoreceptor and retinal pigment epithelium function, development, or both. The genes associated with these diseases, when mutated, produce altered protein products that have downstream effects in pathways critical to vision, including phototransduction, the visual cycle, photoreceptor development, cellular respiration, and retinal homeostasis. The aim of this manuscript is to provide a comprehensive review of the underlying molecular mechanisms of pathogenesis of IRDs by delving into many of the genes associated with IRD development, their protein products, and the pathways interrupted by genetic mutation.
Collapse
|
64
|
Hu R, Yang X, He X, Song G. The relationship between NAFLD and retinol-binding protein 4 - an updated systematic review and meta-analysis. Lipids Health Dis 2023; 22:8. [PMID: 36670387 PMCID: PMC9862531 DOI: 10.1186/s12944-022-01771-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/31/2022] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Retinol-binding protein 4 (RBP4) has been considered to be related to metabolic related diseases, such as hyperuricemia, obesity, and diabetes mellitus. However, whether nonalcoholic fatty liver disease (NAFLD) is related to RBP4 is unclear. Previous studies on the relationship between NAFLD and RBP4 levels have yielded inconsistent results. Hence, this meta-analysis was aimed to clarify whether circulating RBP4 levels are in relation to the risk of NAFLD. METHODS A meta-analysis was performed by applying observational studies to evaluate circulating RBP4 levels and NAFLD. Eligible studies published up to September 23, 2022, were searched in Embase, PubMed, and Cochrane databases. RESULTS In this study, 17 cross-sectional studies involving 8423 participants were included. Results from a random effects model showed that circulating RBP4 levels were higher in NAFLD patients than non-NAFLD (standardized mean difference (SMD) 0.28; 95% confidence intervals (CI): 0.11-0.46, I2: 89.8%). This association was confirmed in the Yellow race. However, no significant association was noted in the Caucasian race. After excluding the morbidly obese Population from the weight loss study (n = 2), the results of the comparison remained largely unchanged (SMD 0.28; 95% CI: 0.10-0.47, I2: 90.8%). Remarkable publication bias was not found. Although considerable heterogeneity was observed among the studies, no potential sources of heterogeneity were found in the subgroup analysis. Diagnostic methods for NAFLD were determined to be a potential source of statistical heterogeneity in meta-regression. CONCLUSION The findings provide evidence that NAFLD patients exhibit higher levels of circulating RBP4 compared with controls, but high heterogeneity was observed. Thus, a high RBP4 level is probably a potential risk factor for NAFLD. To confirm the causal link between NAFLD and RBP4 level of causality, further prospective cohort studies are needed.
Collapse
Affiliation(s)
- Rui Hu
- grid.256883.20000 0004 1760 8442Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017 Hebei People’s Republic of China ,grid.440208.a0000 0004 1757 9805Endocrinology Department, Hebei General Hospital, Shijiazhuang, 050051 Hebei People’s Republic of China
| | - Xiaoyue Yang
- grid.256883.20000 0004 1760 8442Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017 Hebei People’s Republic of China ,grid.440208.a0000 0004 1757 9805Endocrinology Department, Hebei General Hospital, Shijiazhuang, 050051 Hebei People’s Republic of China
| | - Xiaoyu He
- grid.256883.20000 0004 1760 8442Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017 Hebei People’s Republic of China ,grid.440208.a0000 0004 1757 9805Endocrinology Department, Hebei General Hospital, Shijiazhuang, 050051 Hebei People’s Republic of China
| | - Guangyao Song
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, 050051, Hebei, People's Republic of China.
| |
Collapse
|
65
|
Jansen JWA, Haaker MW, Zaal EA, Helms JB. Retinyl Ester Analysis by Orbitrap Mass Spectrometry. Methods Mol Biol 2023; 2669:67-77. [PMID: 37247055 DOI: 10.1007/978-1-0716-3207-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Retinoids are light-sensitive molecules that are normally detected by UV absorption techniques. Here we describe the identification and quantification of retinyl ester species by high-resolution mass spectrometry. Retinyl esters are extracted by the method of Bligh and Dyer and subsequently separated by HPLC in runs of 40 min. The retinyl esters are identified and quantified by mass spectrometry analysis. This procedure enables the highly sensitive detection and characterization of retinyl esters in biological samples such as hepatic stellate cells.
Collapse
Affiliation(s)
- Jeroen W A Jansen
- Division of Cell Biology, Metabolism & Cancer, Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maya W Haaker
- Division of Cell Biology, Metabolism & Cancer, Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Esther A Zaal
- Division of Cell Biology, Metabolism & Cancer, Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - J Bernd Helms
- Division of Cell Biology, Metabolism & Cancer, Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
66
|
Melo N, Belyaeva OV, Berger WK, Halasz L, Yu J, Pilli N, Yang Z, Klyuyeva AV, Elmets CA, Atigadda V, Muccio DD, Kane MA, Nagy L, Kedishvili NY, Renfrow MB. Next-generation retinoid X receptor agonists increase ATRA signaling in organotypic epithelium cultures and have distinct effects on receptor dynamics. J Biol Chem 2023; 299:102746. [PMID: 36436565 PMCID: PMC9807999 DOI: 10.1016/j.jbc.2022.102746] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022] Open
Abstract
Retinoid X receptors (RXRs) are nuclear transcription factors that partner with other nuclear receptors to regulate numerous physiological processes. Although RXR represents a valid therapeutic target, only a few RXR-specific ligands (rexinoids) have been identified, in part due to the lack of clarity on how rexinoids selectively modulate RXR response. Previously, we showed that rexinoid UAB30 potentiates all-trans-retinoic acid (ATRA) signaling in human keratinocytes, in part by stimulating ATRA biosynthesis. Here, we examined the mechanism of action of next-generation rexinoids UAB110 and UAB111 that are more potent in vitro than UAB30 and the FDA-approved Targretin. Both UAB110 and UAB111 enhanced ATRA signaling in human organotypic epithelium at a 50-fold lower concentration than UAB30. This was consistent with the 2- to 5- fold greater increase in ATRA in organotypic epidermis treated with UAB110/111 versus UAB30. Furthermore, at 0.2 μM, UAB110/111 increased the expression of ATRA genes up to 16-fold stronger than Targretin. The less toxic and more potent UAB110 also induced more changes in differential gene expression than Targretin. Additionally, our hydrogen deuterium exchange mass spectrometry analysis showed that both ligands reduced the dynamics of the ligand-binding pocket but also induced unique dynamic responses that were indicative of higher affinity binding relative to UAB30, especially for Helix 3. UAB110 binding also showed increased dynamics towards the dimer interface through the Helix 8 and Helix 9 regions. These data suggest that UAB110 and UAB111 are potent activators of RXR-RAR signaling pathways but accomplish activation through different molecular responses to ligand binding.
Collapse
Affiliation(s)
- Nathalia Melo
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Olga V Belyaeva
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wilhelm K Berger
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Laszlo Halasz
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Nagesh Pilli
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Zhengrong Yang
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alla V Klyuyeva
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Craig A Elmets
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA; Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Venkatram Atigadda
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Donald D Muccio
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Laszlo Nagy
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, Florida, USA
| | - Natalia Y Kedishvili
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Matthew B Renfrow
- O'Neil Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
67
|
Yokogawa T, Yamazaki C, Hara M, Sakashita Y, Tanikawa T, Suzuki R, Inoue Y, Kitamura M. Effect of Maillard reaction on the quality of clarified butter, ghee. J Nat Med 2023; 77:230-237. [PMID: 36324007 DOI: 10.1007/s11418-022-01661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
In Ayurveda, a traditional Indian medicine system, clarified butter is called ghee and is used for food and medicinal purposes. Since butter is subjected to heat to prepare ghee, the heating process affects the ghee quality, such as oxidation, flavor, nutritional value, and biological activity. Therefore, this study focused on the Maillard reaction progress and free-radical scavenging activity with temperature and time during ghee preparation. First, ghee was prepared at low to high temperatures, and its quality (milk fat content, retinol, α-tocopherol, peroxide value, Maillard reaction progress, and free radical scavenging activity) was evaluated. Maillard reaction progress was enhanced at medium and high temperatures (120-160 ℃), and the free radical-scavenging activity of ghee corresponded to the Maillard reaction progress. Since ghee is often reheated during use, we further evaluated the effect of the reheating process. The reheating process did not alter the Maillard reaction progress or the free radical scavenging activity. Our findings serve as good quality control measures for ghee preparation.
Collapse
Affiliation(s)
- Takami Yokogawa
- Laboratory of Pharmacognosy, School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1, Keyakidai, Sakado, Saitama, 350-0295, Japan.
| | - Chiaki Yamazaki
- Laboratory of Pharmacognosy, School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1, Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Mari Hara
- Laboratory of Pharmacognosy, School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1, Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Yuka Sakashita
- Laboratory of Pharmacognosy, School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1, Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Takashi Tanikawa
- Laboratory of Nutri-Pharmacotherapeutics Management, School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Ryuichiro Suzuki
- Laboratory of Natural Products & Phytochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Yutaka Inoue
- Laboratory of Nutri-Pharmacotherapeutics Management, School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Masashi Kitamura
- Laboratory of Pharmacognosy, School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1, Keyakidai, Sakado, Saitama, 350-0295, Japan.
| |
Collapse
|
68
|
Mak KM, Wu C, Cheng CP. Lipid droplets, the Holy Grail of hepatic stellate cells: In health and hepatic fibrosis. Anat Rec (Hoboken) 2022; 306:983-1010. [PMID: 36516055 DOI: 10.1002/ar.25138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Lipid droplets (LDs) are distinct morphological markers of hepatic stellate cells (HSCs). They are composed of a core of predominantly retinyl esters and triacylglycerols surrounded by a phospholipid layer; the latter harbors perilipins 2, 3, and 5, which help control LD lipolysis. Electron microscopy distinguishes between Types I and II LDs. Type I LDs are surrounded by acid phosphatase-positive lysosomes, which likely digest LDs. LD count and retinoid concentration are modulated by vitamin A intake. Alcohol consumption depletes hepatic retinoids and HSC LDs, with concomitant transformation of HSCs to fibrogenic myofibroblast-like cells. LD loss and accompanying HSC activation occur in HSC cell culture models. Loss of LDs is a consequence of and not a prerequisite for HSC activation. LDs are endowed with enzymes for synthesizing retinyl esters and triacylglycerols as well as neutral lipases and lysosomal acid lipase for breaking down LDs. HSCs have two distinct metabolic LD pools: an "original" pool in quiescent HSCs and a "new" pool emerging in HSC activation; this two-pool model provides a platform for analyzing LD dynamics in HSC activation. Besides lipolysis, LDs are degraded by lipophagy; however, the coordination between and relative contributions of these two pathways to LD removal are unclear. While induction of autophagy accelerates LD loss in quiescent HSCs and promotes HSC activation, blocking autophagy impairs LD degradation and inhibits HSC activation and fibrosis. This article is a critique of five decades of investigations into the morphology, molecular structure, synthesis, and degradation of LDs associated with HSC activation and fibrosis.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Catherine Wu
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christopher P Cheng
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
69
|
Elango J, Zamora-Ledezma C, Negrete-Bolagay D, Aza PND, Gómez-López VM, López-González I, Belén Hernández A, De Val JEMS, Wu W. Retinol-Loaded Poly(vinyl alcohol)-Based Hydrogels as Suitable Biomaterials with Antimicrobial Properties for the Proliferation of Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:ijms232415623. [PMID: 36555266 PMCID: PMC9779207 DOI: 10.3390/ijms232415623] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Polyvinyl alcohol (PVA) hydrogels are well-known biomimetic 3D systems for mammalian cell cultures to mimic native tissues. Recently, several biomolecules were intended for use in PVA hydrogels to improve their biological properties. However, retinol, an important biomolecule, has not been combined with a PVA hydrogel for culturing bone marrow mesenchymal stem (BMMS) cells. Thus, for the first time, the effect of retinol on the physicochemical, antimicrobial, and cell proliferative properties of a PVA hydrogel was investigated. The ability of protein (3.15 nm) and mineral adsorption (4.8 mg/mL) of a PVA hydrogel was improved by 0.5 wt.% retinol. The antimicrobial effect of hydrogel was more significant in S. aureus (39.3 mm) than in E. coli (14.6 mm), and the effect was improved by increasing the retinol concentration. The BMMS cell proliferation was more upregulated in retinol-loaded PVA hydrogel than in the control at 7 days. We demonstrate that the respective in vitro degradation rate of retinol-loaded PVA hydrogels (RPH) (75-78% degradation) may promote both antibacterial and cellular proliferation. Interestingly, the incorporation of retinol did not affect the cell-loading capacity of PVA hydrogel. Accordingly, the fabricated PVA retinol hydrogel proved its compatibility in a stem cell culture and could be a potential biomaterial for tissue regeneration.
Collapse
Affiliation(s)
- Jeevithan Elango
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Correspondence: or (J.E.); (C.Z.-L.)
| | - Camilo Zamora-Ledezma
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
- Correspondence: or (J.E.); (C.Z.-L.)
| | - Daniela Negrete-Bolagay
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Piedad N. De Aza
- Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Vicente M. Gómez-López
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Ivan López-González
- Tissue Regeneration and Repair Group, Biomaterials and Tissue Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Ana Belén Hernández
- Tissue Regeneration and Repair Group, Biomaterials and Tissue Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - José Eduardo Maté Sánchez De Val
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
70
|
Sirohi P, Verma H, Singh SK, Singh VK, Pandey J, Khusharia S, Kumar D, Kaushalendra, Teotia P, Kumar A. Microalgal Carotenoids: Therapeutic Application and Latest Approaches to Enhance the Production. Curr Issues Mol Biol 2022; 44:6257-6279. [PMID: 36547088 PMCID: PMC9777246 DOI: 10.3390/cimb44120427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Microalgae are microscopic photosynthetic organisms frequently found in fresh and marine water ecosystems. Various microalgal species have been considered a reservoir of diverse health-value products, including vitamins, proteins, lipids, and polysaccharides, and are broadly utilized as food and for the treatment of human ailments such as cancer, cardiovascular diseases, allergies, and immunodeficiency. Microalgae-derived carotenoids are the type of accessory pigment that possess light-absorbing potential and play a significant role in metabolic functions. To date, nearly a thousand carotenoids have been reported, but a very less number of microalgae have been used for the commercial production of carotenoids. This review article briefly discussed the carotenoids of microalgal origin and their therapeutic application. In addition, we have briefly compiled the optimization of culture parameters used to enhance microalgal carotenoid production. In addition, the latest biotechnological approaches used to improve the yields of carotenoid has also been discussed.
Collapse
Affiliation(s)
- Priyanka Sirohi
- Department of Biotechnology, Noida International University, Greater Noida 203201, India
| | - Hariom Verma
- Department of Botany, B.R.D. Government Degree College Duddhi, Sonbhadra 231216, India
| | - Sandeep Kumar Singh
- Division of Microbiology, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | | | - Jyoti Pandey
- Department of Biochemistry, Singhania University, Pacheri Barı, Jhunjhunu 333515, India
| | - Saksham Khusharia
- Kuwar SatyaVira College of Engineering and Management, Bijnor 246701, India
| | - Dharmendra Kumar
- Department of Zoology, C.M.B. College, Deorh, Ghoghardiha 847402, India
| | - Kaushalendra
- Department of Zoology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl 796001, India
| | - Pratibha Teotia
- Department of Biotechnology, Noida International University, Greater Noida 203201, India
| | - Ajay Kumar
- Department of Postharvest Science, Agricultural Research Organization (ARO)—Volcani Center, Rishon Lezion 7505101, Israel
| |
Collapse
|
71
|
Naasner L, Froese N, Hofmann W, Galuppo P, Werlein C, Shymotiuk I, Szaroszyk M, Erschow S, Amanakis G, Bähre H, Kühnel MP, Jonigk DD, Geffers R, Seifert R, Ricke-Hoch M, Wende AR, Blaner WS, Abel ED, Bauersachs J, Riehle C. Vitamin A preserves cardiac energetic gene expression in a murine model of diet-induced obesity. Am J Physiol Heart Circ Physiol 2022; 323:H1352-H1364. [PMID: 36399384 PMCID: PMC11687967 DOI: 10.1152/ajpheart.00514.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
Perturbed vitamin-A metabolism is associated with type 2 diabetes and mitochondrial dysfunction that are pathophysiologically linked to the development of diabetic cardiomyopathy (DCM). However, the mechanism, by which vitamin A might regulate mitochondrial energetics in DCM has previously not been explored. To test the hypothesis that vitamin-A deficiency accelerates the onset of cardiomyopathy in diet-induced obesity (DIO), we subjected mice with lecithin retinol acyltransferase (Lrat) germline deletion, which exhibit impaired vitamin-A stores, to vitamin A-deficient high-fat diet (HFD) feeding. Wild-type mice fed with a vitamin A-sufficient HFD served as controls. Cardiac structure, contractile function, and mitochondrial respiratory capacity were preserved despite vitamin-A deficiency following 20 wk of HFD feeding. Gene profiling by RNA sequencing revealed that vitamin A is required for the expression of genes involved in cardiac fatty acid oxidation, glycolysis, tricarboxylic acid cycle, and mitochondrial oxidative phosphorylation in DIO as expression of these genes was relatively preserved under vitamin A-sufficient HFD conditions. Together, these data identify a transcriptional program, by which vitamin A preserves cardiac energetic gene expression in DIO that might attenuate subsequent onset of mitochondrial and contractile dysfunction.NEW & NOTEWORTHY The relationship between vitamin-A status and the pathogenesis of diabetic cardiomyopathy has not been studied in detail. We assessed cardiac mitochondrial respiratory capacity, contractile function, and gene expression by RNA sequencing in a murine model of combined vitamin-A deficiency and diet-induced obesity. Our study identifies a role for vitamin A in preserving cardiac energetic gene expression that might attenuate subsequent development of mitochondrial and contractile dysfunction in diet-induced obesity.
Collapse
Affiliation(s)
- Lea Naasner
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Natali Froese
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Winfried Hofmann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Paolo Galuppo
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | | | - Ivanna Shymotiuk
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Malgorzata Szaroszyk
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Sergej Erschow
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Georgios Amanakis
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Heike Bähre
- Research Core Unit Metabolomics, Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Mark P Kühnel
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), German Lung Research Centre (DZL), Hannover, Germany
| | - Danny D Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany
- Biomedical Research in End-stage and Obstructive Lung Disease Hannover (BREATH), German Lung Research Centre (DZL), Hannover, Germany
| | - Robert Geffers
- Research Group Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Roland Seifert
- Research Core Unit Metabolomics, Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Melanie Ricke-Hoch
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - William S Blaner
- Department of Medicine, Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, New York
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine and UCLA Health, Los Angeles, California
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Christian Riehle
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
72
|
Estrada‐Ortiz N, Starokozhko V, van Steenwijk H, van der Heide C, Permentier H, van Heemskerk L, Prins GH, Heegsma J, Faber KN, Bressers S, Steiblen G, de Groot A, Groome S, van Miert E, Groothuis G, de Graaf IAM. Disruption of vitamin A homeostasis by the biocide tetrakis(hydroxymethyl) phosphonium sulphate in pregnant rabbits. J Appl Toxicol 2022; 42:1921-1936. [PMID: 35857281 PMCID: PMC9804500 DOI: 10.1002/jat.4364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/29/2022] [Accepted: 07/09/2022] [Indexed: 01/05/2023]
Abstract
The biocide tetrakis(hydroxymethyl)phosphonium sulphate (THPS) and other members of the tetrakis(hydroxymethyl) phosphonium salts (THPX) family are associated with liver toxicity in several mammalian species and teratogenicity in rabbits. Malformations include skeletal changes and abnormalities in eye development and are very similar to those seen with vitamin A deficiency or excess. For this reason, it was hypothesized that teratogenicity of THPS(X) might be attributed to disturbances in retinol availability and/or metabolism as a result of maternal toxicity, for example, either due to insufficient dietary intake by the mothers or due to liver toxicity. Therefore, in the present study, liver toxicity and vitamin A homeostasis were studied in pregnant rabbits that were exposed to 13.8 or 46.0 mg/kg THPS during organogenesis and in precision-cut liver slices of rats and rabbits exposed to 0-70 μM THPS. Results show that in vivo exposure to THPS leads to a marked reduction of food intake, increased plasma concentrations of γ-glutamytransferase, degenerative changes in the liver and to changes in retinoid content in liver and plasma in the rabbits during organogenesis. In addition, THPS, both in vivo and ex vivo, caused a change in expression of proteins related to vitamin A metabolism and transport. Together, these observations could explain the birth defects observed in earlier teratogenicity studies.
Collapse
Affiliation(s)
- Natalia Estrada‐Ortiz
- Groningen Research Institute of Pharmacy (GRIP)University of GroningenGroningenThe Netherlands
| | - Viktoriia Starokozhko
- Groningen Research Institute of Pharmacy (GRIP)University of GroningenGroningenThe Netherlands
| | - Hidde van Steenwijk
- Groningen Research Institute of Pharmacy (GRIP)University of GroningenGroningenThe Netherlands
| | - Cor van der Heide
- Groningen Research Institute of Pharmacy (GRIP)University of GroningenGroningenThe Netherlands
| | - Hjalmar Permentier
- Groningen Research Institute of Pharmacy (GRIP)University of GroningenGroningenThe Netherlands
| | - Lisanne van Heemskerk
- Groningen Research Institute of Pharmacy (GRIP)University of GroningenGroningenThe Netherlands
| | - Grietje Harmanna Prins
- Groningen Research Institute of Pharmacy (GRIP)University of GroningenGroningenThe Netherlands
| | - Janette Heegsma
- Department of Gastroenterology and Hepatology, University of GroningenUniversity Medi‐cal Center GroningenGroningenThe Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of GroningenUniversity Medi‐cal Center GroningenGroningenThe Netherlands
| | | | - Guy Steiblen
- Solvay, Toxicological and Environmental Risk Assessment UnitGenasFrance
| | - Antoinette de Groot
- Solvay, Toxicological and Environmental Risk Assessment UnitBruxellesBelgium
| | | | - Erik van Miert
- Solvay, Toxicological and Environmental Risk Assessment UnitBruxellesBelgium
| | - Geny Groothuis
- Groningen Research Institute of Pharmacy (GRIP)University of GroningenGroningenThe Netherlands
| | - Inge Anne Maria de Graaf
- University Medical Center Groningen, Surgical Research LaboratoryUniversity of GroningenGroningenThe Netherlands,School of Science and EngineeringUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
73
|
Coronel J, Yu J, Pilli N, Kane MA, Amengual J. The conversion of β-carotene to vitamin A in adipocytes drives the anti-obesogenic effects of β-carotene in mice. Mol Metab 2022; 66:101640. [PMID: 36400405 PMCID: PMC9707038 DOI: 10.1016/j.molmet.2022.101640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/30/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The β-carotene oxygenase 1 (BCO1) is the enzyme responsible for the cleavage of β-carotene to retinal, the first intermediate in vitamin A formation. Preclinical studies suggest that BCO1 expression is required for dietary β-carotene to affect lipid metabolism. The goal of this study was to generate a gene therapy strategy that over-expresses BCO1 in the adipose tissue and utilizes the β-carotene stored in adipocytes to produce vitamin A and reduce obesity. METHODS We generated a novel adipose-tissue-specific, adeno-associated vector to over-express BCO1 (AT-AAV-BCO1) in murine adipocytes. We tested this vector using a unique model to achieve β-carotene accumulation in the adipose tissue, in which Bco1-/- mice were fed β-carotene. An AT-AAV over-expressing green fluorescent protein was utilized as control. We evaluated the adequate delivery route and optimized cellular and organ specificity, dosage, and exposure of our vectors. We also employed morphometric analyses to evaluate the effect of BCO1 expression in adiposity, as well as HPLC and mass spectrometry to quantify β-carotene and retinoids in tissues, including retinoic acid. RESULTS AT-AAV-BCO1 infusions in the adipose tissue of the mice resulted in the production of retinoic acid, a vitamin A metabolite with strong effects on gene regulation. AT-AAV-BCO1 treatment also reduced adipose tissue size and adipocyte area by 35% and 30%, respectively. These effects were sex-specific, highlighting the complexity of vitamin A metabolism in mammals. CONCLUSIONS The over-expression of BCO1 through delivery of an AT-AAV-BCO1 leads to the conversion of β-carotene to vitamin A in adipocytes, which subsequently results in reduction of adiposity. These studies highlight for the first time the potential of adipose tissue β-carotene as a target for BCO1 over-expression in the reduction of obesity.
Collapse
Affiliation(s)
- Johana Coronel
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jianshi Yu
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA
| | - Nageswara Pilli
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA
| | - Jaume Amengual
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Corresponding author. Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
74
|
Identification of the Diagnostic Biomarker VIPR1 in Hepatocellular Carcinoma Based on Machine Learning Algorithm. JOURNAL OF ONCOLOGY 2022; 2022:2469592. [PMID: 36157238 PMCID: PMC9499748 DOI: 10.1155/2022/2469592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022]
Abstract
The purpose of this study was to identify the potential diagnostic biomarkers in hepatocellular carcinoma (HCC) by machine learning (ML) and to explore the significance of immune cell infiltration in HCC. From GEO datasets, the microarray datasets of HCC patients were obtained and downloaded. Differentially expressed genes (DEGs) were screened from five datasets of GSE57957, GSE84402, GSE112790, GSE113996, and GSE121248, totalling 125 normal liver tissues and 326 HCC tissues. In order to find the diagnostic indicators of HCC, the LASSO regression and the SVM-RFE algorithms were utilized. The prognostic value of VIPR1 was analyzed. Finally, the difference of immune cell infiltration between HCC tissues and normal liver tissues was evaluated by CIBERSORT algorithm. In this study, a total of 232 DEGs were identified in 125 normal liver tissues and 326 HCC tissues. 11 diagnostic markers were identified by LASSO regression and SVM-RFE algorithms. FCN2, ECM1, VIRP1, IGFALS, and ASPG genes with AUC>0.85 were regarded as candidate biomarkers with high diagnostic value, and the above results were verified in GSE36376. Survival analyses showed that VIPR1 and IGFALS were significantly correlated with the OS, while ASPG, ECM1, and FCN2 had no statistical significance with the OS. Multivariate assays indicated that VIPR1 gene could be used as an independent prognostic factor for HCC, while FCN2, ECM1, IGFALS, and ASPG could not be used as independent prognostic factors for HCC. Immune cell infiltration analyses showed that the expression of VIPR1 in HCC was positively correlated with the levels of several immune cells. Overall, VIPR1 gene can be used as a diagnostic feature marker of HCC and may be a potential target for the diagnosis and treatment of liver cancer in the future.
Collapse
|
75
|
Abstract
Lipases are efficient enzymes with promising applications in the nutraceutical and food industry, as they can offer high yields, pure products under achievable reaction conditions, and are an environmentally friendly option. This review addresses the production of high-value-added compounds such as fatty acid esters, with the potential to be used as flavoring agents or antioxidant and antimicrobial agents, as well as structured lipids that offer specific functional properties that do not exist in nature, with important applications in different food products, and pharmaceuticals. In addition, the most recent successful cases of reactions with lipases to produce modified compounds for food and nutraceuticals are reported.
Collapse
|
76
|
Yang M, Luo S, Yang J, Chen W, He L, Liu D, Zhao L, Wang X. Crosstalk between the liver and kidney in diabetic nephropathy. Eur J Pharmacol 2022; 931:175219. [PMID: 35987257 DOI: 10.1016/j.ejphar.2022.175219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 11/26/2022]
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes, and its pathogenesis has not been fully elucidated. Recently, communication between organs has gradually become a new focus in the study of diseases pathogenesis, and abnormal interorgan communication has been proven to be involved in the occurrence and progression of many diseases. As an important metabolic organ in the human body, the liver plays an important role in maintaining homeostasis in humans. The liver secretes a series of proteins called hepatokines that affect adjacent and distal organs through paracrine or endocrine signaling pathways. In this review, we summarize some of the hepatokines identified to date and describe their roles in DN to discuss the possibility that the liver-renal axis is potentially useful as a therapeutic target for DN. We summarize the important hepatokines identified thus far and discuss their relationship with DN. We propose for the first time that the "liver-renal axis" is a potential therapeutic target in individuals with DN.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinfei Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Liyu He
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Di Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Zhao
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, China
| | - Xi Wang
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
77
|
Reconnoitring the Usage of Agroindustrial Waste in Carotenoid Production for Food Fortification: a Sustainable Approach to Tackle Vitamin A Deficiency. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
78
|
Reiterer M, Gilani A, Lo JC. Pancreatic Islets as a Target of Adipokines. Compr Physiol 2022; 12:4039-4065. [PMID: 35950650 DOI: 10.1002/cphy.c210044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Rising rates of obesity are intricately tied to the type 2 diabetes epidemic. The adipose tissues can play a central role in protection against or triggering metabolic diseases through the secretion of adipokines. Many adipokines may improve peripheral insulin sensitivity through a variety of mechanisms, thereby indirectly reducing the strain on beta cells and thus improving their viability and functionality. Such effects will not be the focus of this article. Rather, we will focus on adipocyte-secreted molecules that have a direct effect on pancreatic islets. By their nature, adipokines represent potential druggable targets that can reach the islets and improve beta-cell function or preserve beta cells in the face of metabolic stress. © 2022 American Physiological Society. Compr Physiol 12:1-27, 2022.
Collapse
Affiliation(s)
- Moritz Reiterer
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Ankit Gilani
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - James C Lo
- Division of Cardiology, Department of Medicine, Weill Center for Metabolic Health, Cardiovascular Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
79
|
Bonakdar M, Czuba LC, Han G, Zhong G, Luong H, Isoherranen N, Vaishnava S. Gut commensals expand vitamin A metabolic capacity of the mammalian host. Cell Host Microbe 2022; 30:1084-1092.e5. [PMID: 35863343 PMCID: PMC9378501 DOI: 10.1016/j.chom.2022.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/24/2022] [Accepted: 06/23/2022] [Indexed: 01/28/2023]
Abstract
Conversion of dietary vitamin A (VA) into retinoic acid (RA) is essential for many biological processes and thus far studied largely in mammalian cells. Using targeted metabolomics, we found that commensal bacteria in the mouse gut lumen produced a high concentration of the active retinoids, all-trans-retinoic acid (atRA) and 13-cis-retinoic acid (13cisRA), as well as the principal circulating retinoid, retinol. Ablation of anerobic bacteria significantly reduced retinol, atRA, and 13cisRA, whereas introducing these bacteria into germ-free mice significantly enhanced retinoids. Remarkably, cecal bacterial supplemented with VA produced active retinoids in vitro, establishing that gut bacteria encode metabolic machinery necessary for multistep conversion of dietary VA into its active forms. Finally, gut bacteria Lactobacillus intestinalis metabolized VA and specifically restored RA levels in the gut of vancomycin-treated mice. Our work establishes vitamin A metabolism as an emergent property of the gut microbiome and lays the groundwork for developing probiotic-based retinoid therapy.
Collapse
Affiliation(s)
- Maryam Bonakdar
- Molecular Microbiology & Immunology, Brown University, Providence, RI 02912, USA
| | - Lindsay C Czuba
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - Geongoo Han
- Molecular Microbiology & Immunology, Brown University, Providence, RI 02912, USA
| | - Guo Zhong
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - Hien Luong
- Molecular Microbiology & Immunology, Brown University, Providence, RI 02912, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA.
| | - Shipra Vaishnava
- Molecular Microbiology & Immunology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
80
|
Adil N, Siddiqui AJ, Musharraf SG. Metabolomics‐based Researches in Autoimmune Liver Disease: A
Mini‐Review. Scand J Immunol 2022. [DOI: 10.1111/sji.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Nurmeen Adil
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
| | - Amna Jabbar Siddiqui
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
| | - Syed Ghulam Musharraf
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
| |
Collapse
|
81
|
Correa VA, Portilho AI, De Gaspari E. Vaccines, Adjuvants and Key Factors for Mucosal Immune Response. Immunology 2022; 167:124-138. [PMID: 35751397 DOI: 10.1111/imm.13526] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Vaccines are the most effective tool to control infectious diseases, which provoke significant morbidity and mortality. Most vaccines are administered through the parenteral route and can elicit a robust systemic humoral response, but they induce a weak T-cell-mediated immunity and are poor inducers of mucosal protection. Considering that most pathogens enter the body through mucosal surfaces, a vaccine that elicits protection in the first site of contact between the host and the pathogen is promising. However, despite the advantages of mucosal vaccines as good options to confer protection on the mucosal surface, only a few mucosal vaccines are currently approved. In this review, we discuss the impact of vaccine administration in different mucosal surfaces; how appropriate adjuvants enhance the induction of protective mucosal immunity and other factors that can influence the mucosal immune response to vaccines. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Victor Araujo Correa
- Adolfo Lutz Institute, Immunology Center, Av Dr Arnaldo, 355, 11th floor, room 1116, Cerqueira César, São Paulo, SP, Brazil.,São Paulo University, Biomedical Sciences Institute, Graduate Program Interunits in Biotechnology, Av Prof Lineu Prestes, 2415, ICB III, São Paulo, SP, Brazil
| | - Amanda Izeli Portilho
- Adolfo Lutz Institute, Immunology Center, Av Dr Arnaldo, 355, 11th floor, room 1116, Cerqueira César, São Paulo, SP, Brazil.,São Paulo University, Biomedical Sciences Institute, Graduate Program Interunits in Biotechnology, Av Prof Lineu Prestes, 2415, ICB III, São Paulo, SP, Brazil
| | - Elizabeth De Gaspari
- Adolfo Lutz Institute, Immunology Center, Av Dr Arnaldo, 355, 11th floor, room 1116, Cerqueira César, São Paulo, SP, Brazil.,São Paulo University, Biomedical Sciences Institute, Graduate Program Interunits in Biotechnology, Av Prof Lineu Prestes, 2415, ICB III, São Paulo, SP, Brazil
| |
Collapse
|
82
|
Chien AL, Kim DJ, Cheng N, Shin J, Leung SG, Nelson AM, Zang J, Suh H, Rainer B, Wallis L, Okoye GA, Loss M, Kang S. Biomarkers of Tretinoin Precursors and Tretinoin Efficacy in Patients With Moderate to Severe Facial Photodamage: A Randomized Clinical Trial. JAMA Dermatol 2022; 158:879-886. [PMID: 35675051 DOI: 10.1001/jamadermatol.2022.1891] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Topical formulations of tretinoin precursors (retinol and its ester derivatives) are widely available over the counter and may offer similar clinical benefits to those of tretinoin for treatment of photoaging. However, which of the many purported molecular effects of retinoids most strongly drives clinical improvements in tretinoin-treated skin remains unclear. Objectives To evaluate the clinical efficacy of topical tretinoin precursors (TTP) vs tretinoin (RA) in treating moderate to severe facial photodamage and to identify potential biomarkers that correlate with clinical efficacy. Design, Setting, and Participants This randomized, double-blind, single-center, parallel-arm study of 24 patients with moderate to severe facial photodamage was conducted at an academic referral center from November 2010 to December 2011, with data analysis performed from January 2012 to December 2021. Interventions Daily topical application of 0.02% RA or 1.1% TTP formulation containing retinol, retinyl acetate, and retinyl palmitate for 24 weeks. Main Outcomes and Measures Photoaging and tolerability were assessed by dermatologist evaluations and patient-reported outcomes. Target gene expression was assessed by real-time quantitative polymerase chain reaction of biopsied tissue from treated areas. Results A total of 20 White women were ultimately analyzed (9 randomized to TTP, 11 randomized to RA). At week 24, there was no significant difference in Griffiths photoaging scores among patients receiving TTP vs RA (median, 4 vs 5) (TTP - RA difference: -1; 95% CI, -2 to 1; P = .27). Treatment with TTP was associated with erythema 6 times less frequently than RA (11% vs 64%) (TTP - RA difference: -0.53; 95% CI, -0.88 to -0.17; P = .01). Target gene analysis showed significant CRABP2 messenger RNA (mRNA) induction (confirming retinoic acid receptor signaling) but no significant changes in procollagen I or MMP1/3/9 mRNA in TTP-treated samples. Instead, MMP2 mRNA, which encodes a type IV collagenase, was significantly reduced in TTP-treated samples (week 24 - baseline mRNA difference: -5; 96% CI, -33 to 1.6; P = .02), and changes in MMP2 were strongly correlated with changes in fine wrinkles (r = 0.54; 95% CI, 0.12 to 0.80; P = .01). Interestingly, patients with severe baseline wrinkles exhibited greater improvements (r = -0.74; 95% CI, -0.89 to -0.43; P < .001). This trend was mirrored in MMP2 mRNA, with initial expression strongly predicting subsequent changes (r = -0.78; 95% CI, -0.89 to -0.43; P < .001). Conclusions and Relevance In this randomized clinical trial, there was no significant difference in efficacy between this particular formulation of TTP and tretinoin 0.02%. However, the results of these mechanistic studies highlight MMP2 as a possible mediator of retinoid efficacy in photoaging. Trial Registration ClinicalTrials.gov Identifier: NCT01283464.
Collapse
Affiliation(s)
- Anna L Chien
- Department of Dermatology, Johns Hopkins, Baltimore, Maryland
| | - Daniel J Kim
- Department of Dermatology, Johns Hopkins, Baltimore, Maryland.,Department of Immunology, Yale School of Medicine, New Haven, Connecticut
| | - Nancy Cheng
- Department of Dermatology, Johns Hopkins, Baltimore, Maryland
| | - Jeonghyun Shin
- Department of Dermatology, Johns Hopkins, Baltimore, Maryland.,Department of Dermatology, Inha University, Incheon, South Korea
| | - Sherry G Leung
- Department of Dermatology, Johns Hopkins, Baltimore, Maryland
| | - Amanda M Nelson
- Department of Dermatology, Johns Hopkins, Baltimore, Maryland.,Department of Dermatology, Pennsylvania State University College of Medicine, Hershey
| | - Julie Zang
- Department of Dermatology, Johns Hopkins, Baltimore, Maryland.,Department of Dermatology, Weill Cornell Medicine, New York, New York
| | - Hoseok Suh
- Department of Dermatology, Johns Hopkins, Baltimore, Maryland.,Department of Dermatology, Ulsan University Hospital, Ulsan, South Korea
| | - Barbara Rainer
- Department of Dermatology, Johns Hopkins, Baltimore, Maryland.,Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Luke Wallis
- Department of Dermatology, Johns Hopkins, Baltimore, Maryland
| | - Ginette A Okoye
- Department of Dermatology, Johns Hopkins, Baltimore, Maryland.,Department of Dermatology, Howard University, Washington, DC
| | - Manisha Loss
- Department of Dermatology, Johns Hopkins, Baltimore, Maryland
| | - Sewon Kang
- Department of Dermatology, Johns Hopkins, Baltimore, Maryland
| |
Collapse
|
83
|
Park H, Lee D, Kim JE, Park S, Park JH, Ha CW, Baek M, Yoon SH, Park KH, Lee P, Hahn JS. Efficient production of retinol in Yarrowia lipolytica by increasing stability using antioxidant and detergent extraction. Metab Eng 2022; 73:26-37. [PMID: 35671979 DOI: 10.1016/j.ymben.2022.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
Abstract
The demand for bio-based retinol (vitamin A) is currently increasing, however its instability represents a major bottleneck in microbial production. Here, we developed an efficient method to selectively produce retinol in Yarrowia lipolytica. The β-carotene 15,15'-dioxygenase (BCO) cleaves β-carotene into retinal, which is reduced to retinol by retinol dehydrogenase (RDH). Therefore, to produce retinol, we first generated β-carotene-producing strain based on a high-lipid-producer via overexpressing genes including heterologous β-carotene biosynthetic genes, GGS1F43I mutant of endogenous geranylgeranyl pyrophosphate synthase isolated by directed evolution, and FAD1 encoding flavin adenine dinucleotide synthetase, while deleting several genes previously known to be beneficial for carotenoid production. To produce retinol, 11 copies of BCO gene from marine bacterium 66A03 (Mb.Blh) were integrated into the rDNA sites of the β-carotene overproducer. The resulting strain produced more retinol than retinal, suggesting strong endogenous promiscuous RDH activity in Y. lipolytica. The introduction of Mb.BCO led to a considerable reduction in β-carotene level, but less than 5% of the consumed β-carotene could be detected in the form of retinal or retinol, implying severe degradation of the produced retinoids. However, addition of the antioxidant butylated hydroxytoluene (BHT) led to a >20-fold increase in retinol production, suggesting oxidative damage is the main cause of intracellular retinol degradation. Overexpression of GSH2 encoding glutathione synthetase further improved retinol production. Raman imaging revealed co-localization of retinol with lipid droplets, and extraction of retinol using Tween 80 was effective in improving retinol production. By combining BHT treatment and extraction using Tween 80, the final strain CJ2104 produced 4.86 g/L retinol and 0.26 g/L retinal in fed-batch fermentation in a 5-L bioreactor, which is the highest retinol production titer ever reported. This study demonstrates that Y. lipolytica is a suitable host for the industrial production of bio-based retinol.
Collapse
Affiliation(s)
- Hyemin Park
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Dongpil Lee
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Jae-Eung Kim
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Seonmi Park
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Joo Hyun Park
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Cheol Woong Ha
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Minji Baek
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Seok-Hwan Yoon
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea
| | - Kwang Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Peter Lee
- Bio Research Institutes, CJ CheilJedang, Suwon, 16495, South Korea.
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
84
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming increasingly common as the global economy grows and living standards improve. Timely and effective preventions and treatments for NAFLD are urgently needed. Retinol-binding protein-4 (RBP4), the protein that transports retinol through the circulation, was found to be positively related to diabetes, obesity, cardiovascular disease, and other metabolic diseases. Observational studies on the association between serum RBP4 level and the prevalence of NAFLD found contradictory results. Some of the underlying mechanisms responsible for this association have been revealed, and the possible clinical implications of treating NAFLD by targeting RBP4 have been demonstrated. Future studies should focus on the predictive value of RBP4 on NAFLD development and its potential as a therapeutic target in NAFLD.
Collapse
Affiliation(s)
- Hangkai Huang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | | |
Collapse
|
85
|
Significantly Reduced Retinol Binding Protein 4 (RBP4) Levels in Critically Ill COVID-19 Patients. Nutrients 2022; 14:nu14102007. [PMID: 35631143 PMCID: PMC9147114 DOI: 10.3390/nu14102007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 12/13/2022] Open
Abstract
The SARS-CoV-2 virus is the causative agent of the COVID-19 pandemic. The disease causes respiratory failure in some individuals accompanied by marked hyperinflammation. Vitamin A (syn. retinol) can exist in the body in the storage form as retinyl ester, or in the transcriptionally active form as retinoic acid. The main function of retinol binding protein 4 (RBP4), synthesized in the liver, is to transport hydrophobic vitamin A to various tissues. Vitamin A has an important role in the innate and acquired immune system. In particular, it is involved in the repair of lung tissue after infections. In viral respiratory diseases such as influenza pneumonia, vitamin A supplementation has been shown to reduce mortality in animal models. In critically ill COVID-19 patients, a significant decrease in plasma vitamin A levels and an association with increased mortality have been observed. However, there is no evidence on RBP4 in relation to COVID-19. This prospective, multicenter, observational, cross-sectional study examined RBP4 (enzyme-linked immunosorbent assay) and vitamin A plasma levels (high-performance liquid chromatography) in COVID-19 patients, including 59 hospitalized patients. Of these, 19 developed critical illness (ARDS/ECMO), 20 developed severe illness (oxygenation disorder), and 20 developed moderate illness (no oxygenation disorder). Twenty age-matched convalescent patients following SARS-CoV-2 infection, were used as a control group. Reduced RBP4 plasma levels significantly correlated with impaired liver function and elevated inflammatory markers (CRP, lymphocytopenia). RBP4 levels were decreased in hospitalized patients with critical illness compared to nonpatients (p < 0.01). In comparison, significantly lower vitamin A levels were detected in hospitalized patients regardless of disease severity. Overall, we conclude that RBP4 plasma levels are significantly reduced in critically ill COVID-19 patients during acute inflammation, and vitamin A levels are significantly reduced in patients with moderate/severe/critical illness during the acute phase of illness.
Collapse
|
86
|
Maurya VK, Shakya A, Bashir K, Kushwaha SC, McClements DJ. Vitamin A fortification: Recent advances in encapsulation technologies. Compr Rev Food Sci Food Saf 2022; 21:2772-2819. [PMID: 35384290 DOI: 10.1111/1541-4337.12941] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022]
Abstract
Vitamin A is an essential micronutrient whose deficiency is still a major health concern in many regions of the world. It plays an essential role in human growth and development, immunity, and vision, but may also help prevent several other chronic diseases. The total amount of vitamin A in the human diet often falls below the recommended dietary allowance of approximately 900-1000 μ $ \umu $ g/day for a healthy adult. Moreover, a significant proportion of vitamin A may be degraded during food processing, storage, and distribution, thereby reducing its bioactivity. Finally, the vitamin A in some foods has a relatively low bioavailability, which further reduces its efficacy. The World Health Organization has recommended fortification of foods and beverages as a safe and cost-effective means of addressing vitamin A deficiency. However, there are several factors that must be overcome before effective fortified foods can be developed, including the low solubility, chemical stability, and bioavailability of this oil-soluble vitamin. Consequently, strategies are required to evenly disperse the vitamin throughout food matrices, to inhibit its chemical degradation, to avoid any adverse interactions with any other food components, to ensure the food is palatable, and to increase its bioavailability. In this review article, we discuss the chemical, physical, and nutritional attributes of vitamin A, its main dietary sources, the factors contributing to its current deficiency, and various strategies to address these deficiencies, including diet diversification, biofortification, and food fortification.
Collapse
Affiliation(s)
- Vaibhav Kumar Maurya
- Centre for Food Research and Analysis, National Institute of Food Technology Entrepreneurship and Management, Haryana, India
| | - Amita Shakya
- Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Haryana, India.,Division of Biotechnology, Cytogene Research & Development, Lucknow, India
| | - Khalid Bashir
- Department of Food Technology, Jamia Hamdard, New Delhi, India
| | - Satish Chand Kushwaha
- Centre for Food Research and Analysis, National Institute of Food Technology Entrepreneurship and Management, Haryana, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA.,Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| |
Collapse
|
87
|
Steinhoff JS, Lass A, Schupp M. Retinoid Homeostasis and Beyond: How Retinol Binding Protein 4 Contributes to Health and Disease. Nutrients 2022; 14:1236. [PMID: 35334893 PMCID: PMC8951293 DOI: 10.3390/nu14061236] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
Retinol binding protein 4 (RBP4) is the specific transport protein of the lipophilic vitamin A, retinol, in blood. Circulating RBP4 originates from the liver. It is secreted by hepatocytes after it has been loaded with retinol and binding to transthyretin (TTR). TTR association prevents renal filtration due to the formation of a higher molecular weight complex. In the circulation, RBP4 binds to specific membrane receptors, thereby delivering retinol to target cells, rendering liver-secreted RBP4 the major mechanism to distribute hepatic vitamin A stores to extrahepatic tissues. In particular, binding of RBP4 to 'stimulated by retinoic acid 6' (STRA6) is required to balance tissue retinoid responses in a highly homeostatic manner. Consequently, defects/mutations in RBP4 can cause a variety of conditions and diseases due to dysregulated retinoid homeostasis and cover embryonic development, vision, metabolism, and cardiovascular diseases. Aside from the effects related to retinol transport, non-canonical functions of RBP4 have also been reported. In this review, we summarize the current knowledge on the regulation and function of RBP4 in health and disease derived from murine models and human mutations.
Collapse
Affiliation(s)
- Julia S. Steinhoff
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, 10115 Berlin, Germany;
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Heinrichstraße 31/II, A-8010 Graz, Austria;
- Field of Excellence BioHealth, University of Graz, Heinrichstraße 31/II, A-8010 Graz, Austria
| | - Michael Schupp
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular Metabolic Renal (CMR)-Research Center, 10115 Berlin, Germany;
| |
Collapse
|
88
|
Lima de Carvalho JR, Tsang SH, Sparrow JR. VITAMIN A DEFICIENCY MONITORED BY QUANTITATIVE SHORT WAVELENGTH FUNDUS AUTOFLUORESCENCE IN A CASE OF BARIATRIC SURGERY. Retin Cases Brief Rep 2022; 16:218-221. [PMID: 31599792 PMCID: PMC7182472 DOI: 10.1097/icb.0000000000000931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND/PURPOSE Bariatric surgery is recognized as a treatment option for obesity. However, the cost-efficiency of screening for serum vitamin A and the effectiveness of its oral supplementation in these patients remain unclear. Here, we report a case in which vitamin A and carotenoid deficiency after bariatric surgery were monitored by noninvasive quantitative fundus autofluorescence imaging. METHODS Case report. RESULTS A 62-year-old man presented with a history of progressive night blindness. He had duodenal switch surgery 13 years earlier. One year before the initial visit, he had begun oral supplements of vitamins A. Short wavelength fundus autofluorescence images acquired for quantitative fundus autofluorescence revealed an intensity that was lower than the healthy-eye range. Scotopic rod-specific full-field electroretinograms were extinguished. These findings were consistent with vitamin A deficiency. The patient was given intramuscular vitamin A injections. At follow-up, quantitative fundus autofluorescence improved, ERG increased to normal, but macular pigment was unchanged. CONCLUSION Oral vitamin A supplementation may not be sufficient after mal-absorptive surgery and a quantitative and noninvasive short wavelength fundus autofluorescence imaging technique may be useful to monitor the status of vitamin A and the carotenoids comprising macular pigment in the retina.
Collapse
Affiliation(s)
- Jose Ronaldo Lima de Carvalho
- Department of Ophthalmology, Columbia University, New York, New York
- Department of Ophthalmology, Empresa Brasileira de Servicos Hospitalares (EBSERH)—Hospital das Clinicas de Pernambuco (HCPE), Federal University of Pernambuco (UFPE), Recife, Brazil
- Department of Ophthalmology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil; and
| | - Stephen H. Tsang
- Department of Ophthalmology, Columbia University, New York, New York
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Janet R. Sparrow
- Department of Ophthalmology, Columbia University, New York, New York
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| |
Collapse
|
89
|
Liao PC, Yang EJ, Borgman T, Boldogh IR, Sing CN, Swayne TC, Pon LA. Touch and Go: Membrane Contact Sites Between Lipid Droplets and Other Organelles. Front Cell Dev Biol 2022; 10:852021. [PMID: 35281095 PMCID: PMC8908909 DOI: 10.3389/fcell.2022.852021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/03/2022] [Indexed: 12/26/2022] Open
Abstract
Lipid droplets (LDs) have emerged not just as storage sites for lipids but as central regulators of metabolism and organelle quality control. These critical functions are achieved, in part, at membrane contact sites (MCS) between LDs and other organelles. MCS are sites of transfer of cellular constituents to or from LDs for energy mobilization in response to nutrient limitations, as well as LD biogenesis, expansion and autophagy. Here, we describe recent findings on the mechanisms underlying the formation and function of MCS between LDs and mitochondria, ER and lysosomes/vacuoles and the role of the cytoskeleton in promoting LD MCS through its function in LD movement and distribution in response to environmental cues.
Collapse
Affiliation(s)
- Pin-Chao Liao
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Emily J. Yang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Taylor Borgman
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States
| | - Istvan R. Boldogh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, United States
| | - Cierra N. Sing
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States
| | - Theresa C. Swayne
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, United States
| | - Liza A. Pon
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States
- *Correspondence: Liza A. Pon,
| |
Collapse
|
90
|
Wang J, Hu X, Chen J, Wang T, Huang X, Chen G. The Extraction of β-Carotene from Microalgae for Testing Their Health Benefits. Foods 2022; 11:502. [PMID: 35205979 PMCID: PMC8871089 DOI: 10.3390/foods11040502] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023] Open
Abstract
β-carotene, a member of the carotenoid family, is a provitamin A, and can be converted into vitamin A (retinol), which plays essential roles in the regulation of physiological functions in animal bodies. Microalgae synthesize a variety of carotenoids including β-carotene and are a rich source of natural β-carotene. This has attracted the attention of researchers in academia and the biotech industry. Methods to enrich or purify β-carotene from microalgae have been investigated, and experiments to understand the biological functions of microalgae products containing β-carotene have been conducted. To better understand the use of microalgae to produce β-carotene and other carotenoids, we have searched PubMed in August 2021 for the recent studies that are focused on microalgae carotenoid content, the extraction methods to produce β-carotene from microalgae, and the bioactivities of β-carotene from microalgae. Articles published in peer-reviewed scientific journals were identified, screened, and summarized here. So far, various types and amounts of carotenoids have been identified and extracted in different types of microalgae. Diverse methods have been developed overtime to extract β-carotene efficiently and practically from microalgae for mass production. It appears that methods have been developed to simplify the steps and extract β-carotene directly and efficiently. Multiple studies have shown that extracts or whole organism of microalgae containing β-carotene have activities to promote lifespan in lab animals and reduce oxidative stress in culture cells, etc. Nevertheless, more studies are warranted to study the health benefits and functional mechanisms of β-carotene in these microalgae extracts, which may benefit human and animal health in the future.
Collapse
Affiliation(s)
- Jing Wang
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China; (J.W.); (X.H.)
| | - Xinge Hu
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; (X.H.); (T.W.)
| | - Junbin Chen
- School of Public Health, Southern Medical University, Guangzhou 510515, China;
| | - Tiannan Wang
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; (X.H.); (T.W.)
| | - Xianju Huang
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China; (J.W.); (X.H.)
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA; (X.H.); (T.W.)
| |
Collapse
|
91
|
Del Aguila EM, Tang XH, Gudas LJ. Pancreatic Ductal Adenocarcinoma: New Insights into the Actions of Vitamin A. Oncol Res Treat 2022; 45:291-298. [PMID: 35130553 PMCID: PMC9064920 DOI: 10.1159/000522425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/09/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a gland-forming malignancy arising in the pancreas. It is estimated that in developed countries the incidence of PDAC will continue to rise, and PDAC is now the fourth leading cause of cancer-related deaths in the USA. The mortality of PDAC patients closely parallels the incidence rate, as this malignancy generally remains asymptomatic until it reaches an advanced stage. SUMMARY The poor prognosis results from the aggressive nature of the tumor, late detection, and resistance to chemotherapy and radiotherapy. Retinoids, vitamin A (retinol) and its metabolites, such as retinoic acid (RA), play critical roles in important biological functions, including cell growth and differentiation, development, metabolism, and immunity. The actions of retinoids in maintaining normal pancreatic functions have generated considerable research interest from investigators interested in understanding and treating PDAC. Altered expression of retinoid receptors and other RA signaling pathway genes in human cancers offers opportunities for target discovery, drug design, and personalized medicine for distinct molecular retinoid subtypes. KEY MESSAGES The goals of this review are to explore the potential activities of retinoids in the pancreas, to assess the evidence that retinoid functions become dysregulated in PDAC, and to describe the actions of retinoids in new therapies developed to increase patient survival.
Collapse
Affiliation(s)
- Eduardo Mere Del Aguila
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Ave, New York, New York, 10065, USA
| | - Xiao-Han Tang
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Ave, New York, New York, 10065, USA
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Ave, New York, New York, 10065, USA
| |
Collapse
|
92
|
Pavlík V, Machalová V, Čepa M, Šínová R, Šafránková B, Kulhánek J, Drmota T, Kubala L, Huerta-Ángeles G, Velebný V, Nešporová K. Retinoic Acid Grafted to Hyaluronic Acid Activates Retinoid Gene Expression and Removes Cholesterol from Cellular Membranes. Biomolecules 2022; 12:biom12020200. [PMID: 35204701 PMCID: PMC8961547 DOI: 10.3390/biom12020200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
All-trans-retinoic acid (atRA) is a potent ligand that regulates gene expression and is used to treat several skin disorders. Hyaluronic acid (HA) was previously conjugated with atRA (HA-atRA) to obtain a novel amphiphilic compound. HA-atRA forms micelles that incorporate hydrophobic molecules and facilitate their transport through the skin. The aim of this study was to determine the influence of HA-atRA on gene expression in skin cells and to compare it with that of unbound atRA. Gene expression was investigated using microarrays and a luciferase system with a canonical atRA promoter. HA-atRA upregulated gene expression similarly to atRA. However, HA-atRA activated the expression of cholesterol metabolism genes, unlike atRA. Further investigation using HPLC and filipin III staining suggested that the treated cells induced cholesterol synthesis to replenish the cholesterol removed from the cells by HA-atRA. HA modified with oleate (HA-C18:1) removed cholesterol from the cells similarly to HA-atRA, suggesting that the cholesterol removal stemmed from the amphiphilic nature of the two derivatives. HA-atRA induces retinoid signaling. Thus, HA-atRA could be used to treat skin diseases, such as acne and psoriasis, where the combined action of atRA signaling and anti-inflammatory cholesterol removal may be potentially beneficial.
Collapse
Affiliation(s)
- Vojtěch Pavlík
- R&D Department, Contipro, a.s., 562 04 Dolní Dobrouč, Czech Republic; (V.M.); (M.Č.); (R.Š.); (B.Š.); (J.K.); (T.D.); (G.H.-Á.); (V.V.); (K.N.)
- Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
- Correspondence:
| | - Veronika Machalová
- R&D Department, Contipro, a.s., 562 04 Dolní Dobrouč, Czech Republic; (V.M.); (M.Č.); (R.Š.); (B.Š.); (J.K.); (T.D.); (G.H.-Á.); (V.V.); (K.N.)
| | - Martin Čepa
- R&D Department, Contipro, a.s., 562 04 Dolní Dobrouč, Czech Republic; (V.M.); (M.Č.); (R.Š.); (B.Š.); (J.K.); (T.D.); (G.H.-Á.); (V.V.); (K.N.)
| | - Romana Šínová
- R&D Department, Contipro, a.s., 562 04 Dolní Dobrouč, Czech Republic; (V.M.); (M.Č.); (R.Š.); (B.Š.); (J.K.); (T.D.); (G.H.-Á.); (V.V.); (K.N.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic;
| | - Barbora Šafránková
- R&D Department, Contipro, a.s., 562 04 Dolní Dobrouč, Czech Republic; (V.M.); (M.Č.); (R.Š.); (B.Š.); (J.K.); (T.D.); (G.H.-Á.); (V.V.); (K.N.)
| | - Jaromír Kulhánek
- R&D Department, Contipro, a.s., 562 04 Dolní Dobrouč, Czech Republic; (V.M.); (M.Č.); (R.Š.); (B.Š.); (J.K.); (T.D.); (G.H.-Á.); (V.V.); (K.N.)
| | - Tomáš Drmota
- R&D Department, Contipro, a.s., 562 04 Dolní Dobrouč, Czech Republic; (V.M.); (M.Č.); (R.Š.); (B.Š.); (J.K.); (T.D.); (G.H.-Á.); (V.V.); (K.N.)
| | - Lukáš Kubala
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Gloria Huerta-Ángeles
- R&D Department, Contipro, a.s., 562 04 Dolní Dobrouč, Czech Republic; (V.M.); (M.Č.); (R.Š.); (B.Š.); (J.K.); (T.D.); (G.H.-Á.); (V.V.); (K.N.)
| | - Vladimír Velebný
- R&D Department, Contipro, a.s., 562 04 Dolní Dobrouč, Czech Republic; (V.M.); (M.Č.); (R.Š.); (B.Š.); (J.K.); (T.D.); (G.H.-Á.); (V.V.); (K.N.)
| | - Kristina Nešporová
- R&D Department, Contipro, a.s., 562 04 Dolní Dobrouč, Czech Republic; (V.M.); (M.Č.); (R.Š.); (B.Š.); (J.K.); (T.D.); (G.H.-Á.); (V.V.); (K.N.)
| |
Collapse
|
93
|
Rabie A. Design, Synthesis, and Characterization of Novel Series of Pharmacologically-important Sperm-shaped Amphiphilic Heterocyclic Compounds derived from Natural Palmitic Acid. NATURAL RESOURCES FOR HUMAN HEALTH 2022; 2:287-292. [DOI: 10.53365/nrfhh/144888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 11/02/2023]
Abstract
Natural palmitic acid is a pivotal saturated fatty acid used in many biochemical processes occurring in humans and diverse living creatures, as it is the most common natural long-chain carboxylic acid whose unrivaled amphiphilic sperm-like skeleton with the inert single 15-C aliphatic chain (tail or carrier) and the very active one carboxyl group (head) represent a rich reactive entity and carrier for several organic/medicinal chemistry and pharmaceutics applications with respect to drug design and formulation. Derivatives of 1,3,4-oxadiazoles along with their 1,3,4-thiadiazoles and 1,2,4-triazoles analogs exhibit a broad spectrum of substantial pharmacological activities. Agreeing with the well-known hybridization principles and incorporation norms in hybrid chemistry, if a substituted nitrogenous heterocyclic aromatic nucleus of the three aforementioned kinds is straightway attached to the simple straight palmitic acid backbone at the position of the carboxyl group, the produced molecules are supposed to be very bioactive. This research work reports for the first once the efficient design/synthesis and characterization/elucidation of four one-tailed nitrogen-containing heterocyclic derivatives of palmitic acid constructure, which introduce a novel biologically-important pharmacophore having biocompatible amphiphilic sperm-shaped heteroaromatic structure.
Collapse
|
94
|
Takemoto G, Seki T, Takegami Y, Osawa Y, Makida K, Ochiai S, Ishizuka S, Suzuki K, Hasegawa Y, Imagama S. The development of knee osteoarthritis and serum carotenoid levels among community-dwelling people in Japan. Mod Rheumatol 2022; 32:205-212. [PMID: 33719826 DOI: 10.1080/14397595.2021.1900030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Carotenoids are plant pigments found in many vegetables, functioning as antioxidants scavenging singlet molecular oxygen and peroxyl radicals. No longitudinal study exists on the relationship between carotenoids and knee osteoarthritis (KOA) development. We aimed to determine the incidence of KOA development for 10 years in community-dwelling people in Japan and assess its association with serum carotenoids. METHODS Data of 440 participants (174 men, 266 women) with health-screening records for at least 10 years were analysed. We defined KOA development as advancing from K/L grade 0/1 at the initial check-up to grade ≥2 in a unilateral knee during a 10-year follow-up period. Serum carotenoid levels were measured using high-performance liquid chromatography. We used the Cox hazard model for multivariate analysis and investigated each carotenoid's impact on KOA development. RESULTS KOA developed in 33.4% of patients; the annual KOA development rate was significantly higher among women than among men (p < .01; 3.4% vs. 1.6%). Among the carotenoids measured, only retinol was associated with KOA development in women using multivariable analysis. KOA development was not associated with any carotenoids in men. CONCLUSION The annual rate of KOA development was higher in women, and retinol was associated with KOA development in women.
Collapse
Affiliation(s)
- Genta Takemoto
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taisuke Seki
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiko Takegami
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Osawa
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuya Makida
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Ochiai
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinya Ishizuka
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, Toyoake, Japan
| | - Yukiharu Hasegawa
- Department of Rehabilitation, Kansai University of Welfare Sciences, Kashihara, Japan
| | - Shiro Imagama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
95
|
Feng NN, Du XY, Zhang YS, Jiao ZK, Wu XH, Yang BM. Overweight/obesity-related transcriptomic signature as a correlate of clinical outcome, immune microenvironment, and treatment response in hepatocellular carcinoma. Front Endocrinol (Lausanne) 2022; 13:1061091. [PMID: 36714595 PMCID: PMC9877416 DOI: 10.3389/fendo.2022.1061091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/13/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUNDS The pandemic of overweight and obesity (quantified by body mass index (BMI) ≥ 25) has rapidly raised the patient number of non-alcoholic fatty hepatocellular carcinoma (HCC), and several clinical trials have shown that BMI is associated with the prognosis of HCC. However, whether overweight/obesity is an independent prognostic factor is arguable, and the role of overweight/obesity-related metabolisms in the progression of HCC is scarcely known. MATERIALS AND METHODS In the present study, clinical information, mRNA expression profile, and genomic data were downloaded from The Cancer Genome Atlas (TCGA) as a training cohort (TCGA-HCC) for the identification of overweight/obesity-related transcriptome. Machine learning and the Cox regression analysis were conducted for the construction of the overweight/obesity-associated gene (OAG) signature. The Kaplan-Meier curve, receiver operating characteristic (ROC) curve, and the Cox regression analysis were performed to assess the prognostic value of the OAG signature, which was further validated in two independent retrospective cohorts from the International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO). Subsequently, functional enrichment, genomic profiling, and tumor microenvironment (TME) evaluation were utilized to characterize biological activities associated with the OAG signature. GSE109211 and GSE104580 were retrieved to evaluate the underlying response of sorafenib and transcatheter arterial chemoembolization (TACE) treatment, respectively. The Genomics of Drug Sensitivity in Cancer (GDSC) database was employed for the evaluation of chemotherapeutic response. RESULTS Overweight/obesity-associated transcriptome was mainly involved in metabolic processes and noticeably and markedly correlated with prognosis and TME of HCC. Afterward, a novel established OAG signature (including 17 genes, namely, GAGE2D, PDE6A, GABRR1, DCAF8L1, DPYSL4, SLC6A3, MMP3, RIBC2, KCNH2, HTRA3, PDX1, ATHL1, PRTG, SHC4, C21orf29, SMIM32, and C1orf133) divided patients into high and low OAG score groups with distinct prognosis (median overall survival (OS): 24.87 vs. 83.51 months, p < 0.0001), and the values of area under ROC curve (AUC) in predicting 1-, 2-, 3-, and 4-year OS were 0.81, 0.80, 0.83, and 0.85, respectively. Moreover, the OAG score was independent of clinical features and also exhibited a good ability for prognosis prediction in the ICGC-LIHC-JP cohort and GSE54236 dataset. Expectedly, the OAG score was also highly correlated with metabolic processes, especially oxidative-related signaling pathways. Furthermore, abundant enrichment of chemokines, receptors, MHC molecules, and other immunomodulators as well as PD-L1/PD-1 expression among patients with high OAG scores indicated that they might have better responses to immunotherapy. However, probably exclusion of T cells from infiltrating tumors resulting in lower infiltration of effective T cells would restrict immunotherapeutic effects. In addition, the OAG score was significantly associated with the response of sorafenib and TACE treatment. CONCLUSIONS Overall, this study comprehensively disclosed the relationship between BMI-guided transcriptome and HCC. Moreover, the OAG signature had the potential clinical applications in the future to promote clinical management and precision medicine of HCC.
Collapse
Affiliation(s)
- Ning-Ning Feng
- Department of Hepatobiliary Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xi-Yue Du
- Department of Radiotherapy, Hengshui People’s Hospital, Hengshui, Hebei, China
| | - Yue-Shan Zhang
- Department of Hepatobiliary Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhi-Kai Jiao
- Department of Hepatobiliary Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiao-Hui Wu
- Department of Hepatobiliary Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bao-Ming Yang
- Department of Hepatobiliary Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- *Correspondence: Bao-Ming Yang, ;
| |
Collapse
|
96
|
Vrdoljak N. Carotenoids and Carcinogenesis: Exploring the Antioxidant and Cell Signaling Roles of Carotenoids in the Prevention of Cancer. Crit Rev Oncog 2022; 27:1-13. [PMID: 37183934 DOI: 10.1615/critrevoncog.2022045331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Carotenoids are lipid soluble pigments found in various fruits and vegetables and are naturally produced in photoautotrophic plants. Various studies have investigated the properties of carotenoids to determine how they are able to mitigate numerous diseases, including cancer. Carotenoids present in human serum, including β-carotene, α-carotene, lycopene, β-cryptoxanthin, zeaxanthin, and lutein have demonstrated the ability to act as anticarcinogenic agents. Prevention of disease is often described to be more effective than treatment; as cancer impacts millions of lives globally, the role of carotenoids in the prevention of oncogenesis for numerous types of cancers have been extensively researched. This review provides an in-depth analysis of the structure and properties of carotenoids, as well as the identified and potential mechanisms by which carotenoids can act as a chemopreventative agent.
Collapse
Affiliation(s)
- Nikolina Vrdoljak
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
97
|
Quadro L, Iqbal J, Kim YK, Hussain MM. Microsomal triglyceride transfer protein-mediated transfer of β-carotene from donor to acceptor vesicles in vitro. Methods Enzymol 2022; 674:343-362. [PMID: 36008012 PMCID: PMC9940632 DOI: 10.1016/bs.mie.2022.03.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dietary β-carotene is the most abundant vitamin A precursor. Once absorbed by the enterocytes, the provitamin A carotenoid can either be cleaved into retinoids (vitamin A and its derivatives) or incorporated in its intact form within chylomicrons to be distributed throughout the body for utilization and/or storage by other tissues. From the liver, together with endogenous lipids, intact β-carotene can also be incorporated within very low-density lipoprotein/low-density lipoprotein (VLDL/LDL) for transport to other tissues and organs. Microsomal triglyceride transfer protein (MTP) is a key regulator of lipoprotein biosynthesis in intestine and liver as it facilitates the incorporation of dietary and endogenous lipids into nascent lipoproteins. MTP is also critical for transferring β-carotene into lipoprotein particles for secretion. Here, we present an in vitro method to assess the transfer of β-carotene by MTP from donor to acceptor vesicles. This transfer can be assessed by precipitating donor vesicles and measuring amounts of β-carotene transferred to acceptor vesicles. The levels of transferred β-carotene are quantified by HPLC analysis and intrinsic fluorescence of β-carotene. This chapter demonstrates the feasibility of this method which is also useful to study the role of MTP for incorporation of other carotenoids that are known to be carried within VLDL/LDL and chylomicrons for organ distribution.
Collapse
Affiliation(s)
- Loredana Quadro
- Department of Food Science and Rutgers Center for Lipid Research, and New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States.
| | - Jahangir Iqbal
- King Abdullah International Medical Research Center (KAIMRC)-Eastern Region, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa, Saudi Arabia
| | - Youn-Kyung Kim
- Department of Food Science and Rutgers Center for Lipid Research, and New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA
| | - M. Mahmood Hussain
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY, USA.,Corresponding authors: (LQ); (MMH)
| |
Collapse
|
98
|
Martin Ask N, Leung M, Radhakrishnan R, Lobo GP. Vitamin A Transporters in Visual Function: A Mini Review on Membrane Receptors for Dietary Vitamin A Uptake, Storage, and Transport to the Eye. Nutrients 2021; 13:nu13113987. [PMID: 34836244 PMCID: PMC8620617 DOI: 10.3390/nu13113987] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/04/2021] [Accepted: 11/07/2021] [Indexed: 11/23/2022] Open
Abstract
Vitamins are essential compounds obtained through diet that are necessary for normal development and function in an organism. One of the most important vitamins for human physiology is vitamin A, a group of retinoid compounds and carotenoids, which generally function as a mediator for cell growth, differentiation, immunity, and embryonic development, as well as serving as a key component in the phototransduction cycle in the vertebrate retina. For humans, vitamin A is obtained through the diet, where provitamin A carotenoids such as β-carotene from plants or preformed vitamin A such as retinyl esters from animal sources are absorbed into the body via the small intestine and converted into all-trans retinol within the intestinal enterocytes. Specifically, once absorbed, carotenoids are cleaved by carotenoid cleavage oxygenases (CCOs), such as Beta-carotene 15,15’-monooxygenase (BCO1), to produce all-trans retinal that subsequently gets converted into all-trans retinol. CRBP2 bound retinol is then converted into retinyl esters (REs) by the enzyme lecithin retinol acyltransferase (LRAT) in the endoplasmic reticulum, which is then packaged into chylomicrons and sent into the bloodstream for storage in hepatic stellate cells in the liver or for functional use in peripheral tissues such as the retina. All-trans retinol also travels through the bloodstream bound to retinol binding protein 4 (RBP4), where it enters cells with the assistance of the transmembrane transporters, stimulated by retinoic acid 6 (STRA6) in peripheral tissues or retinol binding protein 4 receptor 2 (RBPR2) in systemic tissues (e.g., in the retina and the liver, respectively). Much is known about the intake, metabolism, storage, and function of vitamin A compounds, especially with regard to its impact on eye development and visual function in the retinoid cycle. However, there is much to learn about the role of vitamin A as a transcription factor in development and cell growth, as well as how peripheral cells signal hepatocytes to secrete all-trans retinol into the blood for peripheral cell use. This article aims to review literature regarding the major known pathways of vitamin A intake from dietary sources into hepatocytes, vitamin A excretion by hepatocytes, as well as vitamin A usage within the retinoid cycle in the RPE and retina to provide insight on future directions of novel membrane transporters for vitamin A in retinal cell physiology and visual function.
Collapse
|
99
|
Biyong EF, Tremblay C, Leclerc M, Caron V, Alfos S, Helbling JC, Rodriguez L, Pernet V, Bennett DA, Pallet V, Calon F. Role of Retinoid X Receptors (RXRs) and dietary vitamin A in Alzheimer's disease: Evidence from clinicopathological and preclinical studies. Neurobiol Dis 2021; 161:105542. [PMID: 34737043 DOI: 10.1016/j.nbd.2021.105542] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Vitamin A (VitA), via its active metabolite retinoic acid (RA), is critical for the maintenance of memory function with advancing age. Although its role in Alzheimer's disease (AD) is not well understood, data suggest that impaired brain VitA signaling is associated with the accumulation of β-amyloid peptides (Aβ), and could thus contribute to the onset of AD. METHODS We evaluated the protective action of a six-month-long dietary VitA-supplementation (20 IU/g), starting at 8 months of age, on the memory and the neuropathology of the 3xTg-AD mouse model of AD (n = 11-14/group; including 4-6 females and 7-8 males). We also measured protein levels of Retinoic Acid Receptor β (RARβ) and Retinoid X Receptor γ (RXRγ) in homogenates from the inferior parietal cortex of 60 participants of the Religious Orders study (ROS) divided in three groups: no cognitive impairment (NCI) (n = 20), mild cognitive impairment (MCI) (n = 20) and AD (n = 20). RESULTS The VitA-enriched diet preserved spatial memory of 3xTg-AD mice in the Y maze. VitA-supplementation affected hippocampal RXR expression in an opposite way according to sex by tending to increase in males and decrease in females their mRNA expression. VitA-enriched diet also reduced the amount of hippocampal Aβ40 and Aβ42, as well as the phosphorylation of tau protein at sites Ser396/Ser404 (PHF-1) in males. VitA-supplementation had no effect on tau phosphorylation in females but worsened their hippocampal Aβ load. However, the expression of Rxr-β in the hippocampus was negatively correlated with the amount of both soluble and insoluble Aβ in both males and females. Western immunoblotting in the human cortical samples of the ROS study did not reveal differences in RARβ levels. However, it evidenced a switch from a 60-kDa-RXRγ to a 55-kDa-RXRγ in AD, correlating with ante mortem cognitive decline and the accumulation of neuritic plaques in the brain cortex. CONCLUSION Our data suggest that (i) an altered expression of RXRs receptors is a contributor to β-amyloid pathology in both humans and 3xTg-AD mice, (ii) a chronic exposure of 3xTg-AD mice to a VitA-enriched diet may be protective in males, but not in females.
Collapse
Affiliation(s)
- Essi F Biyong
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France; Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Centre de recherche du CHU de Québec-Université Laval (CHUL), Axe Neurosciences, 2705 Boulevard Laurier, Québec, Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Québec, Canada; LIA OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada), Canada
| | - Cyntia Tremblay
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Centre de recherche du CHU de Québec-Université Laval (CHUL), Axe Neurosciences, 2705 Boulevard Laurier, Québec, Québec, Canada
| | - Manon Leclerc
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Centre de recherche du CHU de Québec-Université Laval (CHUL), Axe Neurosciences, 2705 Boulevard Laurier, Québec, Québec, Canada
| | - Vicky Caron
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Centre de recherche du CHU de Québec-Université Laval (CHUL), Axe Neurosciences, 2705 Boulevard Laurier, Québec, Québec, Canada
| | - Serge Alfos
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | | | - Léa Rodriguez
- CUO-Recherche, Centre de Recherche du CHU de Québec, Québec, QC, Canada; Département d'ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Vincent Pernet
- CUO-Recherche, Centre de Recherche du CHU de Québec, Québec, QC, Canada; Département d'ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Véronique Pallet
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France; LIA OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada), Canada
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Centre de recherche du CHU de Québec-Université Laval (CHUL), Axe Neurosciences, 2705 Boulevard Laurier, Québec, Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Québec, Canada; LIA OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada), Canada.
| |
Collapse
|
100
|
Study on association of non-alcoholic fatty liver disease and serum vitamin A, E, and selenium levels in high-fat fed diet rats. Int J Diabetes Dev Ctries 2021. [DOI: 10.1007/s13410-021-01008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|