51
|
Ehrhardt N, Doche ME, Chen S, Mao HZ, Walsh MT, Bedoya C, Guindi M, Xiong W, Ignatius Irudayam J, Iqbal J, Fuchs S, French SW, Mahmood Hussain M, Arditi M, Arumugaswami V, Péterfy M. Hepatic Tm6sf2 overexpression affects cellular ApoB-trafficking, plasma lipid levels, hepatic steatosis and atherosclerosis. Hum Mol Genet 2018; 26:2719-2731. [PMID: 28449094 DOI: 10.1093/hmg/ddx159] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 04/21/2017] [Indexed: 12/15/2022] Open
Abstract
The human transmembrane 6 superfamily member 2 (TM6SF2) gene has been implicated in plasma lipoprotein metabolism, alcoholic and non-alcoholic fatty liver disease and myocardial infarction in multiple genome-wide association studies. To investigate the role of Tm6sf2 in metabolic homeostasis, we generated mice with elevated expression using adeno-associated virus (AAV)-mediated gene delivery. Hepatic overexpression of mouse Tm6sf2 resulted in phenotypes previously observed in Tm6sf2-deficient mice including reduced plasma lipid levels, diminished hepatic triglycerides secretion and increased hepatosteatosis. Furthermore, increased hepatic Tm6sf2 expression protected against the development of atherosclerosis in LDL-receptor/ApoB48-deficient mice. In cultured human hepatocytes, Tm6sf2 overexpression reduced apolipoprotein B secretion and resulted in its accumulation within the endoplasmic reticulum (ER) suggesting impaired ER-to-Golgi trafficking of pre-very low-density lipoprotein (VLDL) particles. Analysis of two metabolic trait-associated coding polymorphisms in the human TM6SF2 gene (rs58542926 and rs187429064) revealed that both variants impact TM6SF2 expression by affecting the rate of protein turnover. These data demonstrate that rs58542926 (E167K) and rs187429064 (L156P) are functional variants and suggest that they influence metabolic traits through altered TM6SF2 protein stability. Taken together, our results indicate that cellular Tm6sf2 level is an important determinant of VLDL metabolism and further implicate TM6SF2 as a causative gene underlying metabolic disease and trait associations at the 19p13.11 locus.
Collapse
Affiliation(s)
- Nicole Ehrhardt
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | | | - Shuang Chen
- Department of Biomedical Sciences.,Department of Pediatrics.,Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Hui Z Mao
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Meghan T Walsh
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Candy Bedoya
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Maha Guindi
- Department of Pathology and Laboratory Medicine
| | - Weidong Xiong
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joseph Ignatius Irudayam
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jahangir Iqbal
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Sebastien Fuchs
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Samuel W French
- Department of Pathology and Laboratory Medicine.,Jonsson Comprehensive Cancer Center.,UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - M Mahmood Hussain
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.,Winthrop-University Hospital, Mineola, NY 11501, USA
| | - Moshe Arditi
- Department of Biomedical Sciences.,Department of Pediatrics.,Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Pediatrics
| | - Vaithilingaraja Arumugaswami
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Department of Surgery
| | - Miklós Péterfy
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.,Department of Biomedical Sciences.,Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
52
|
Amengual J, Guo L, Strong A, Madrigal-Matute J, Wang H, Kaushik S, Brodsky JL, Rader DJ, Cuervo AM, Fisher EA. Autophagy Is Required for Sortilin-Mediated Degradation of Apolipoprotein B100. Circ Res 2018; 122:568-582. [PMID: 29301854 DOI: 10.1161/circresaha.117.311240] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/30/2022]
Abstract
RATIONALE Genome-wide association studies identified single-nucleotide polymorphisms near the SORT1 locus strongly associated with decreased plasma LDL-C (low-density lipoprotein cholesterol) levels and protection from atherosclerotic cardiovascular disease and myocardial infarction. The minor allele of the causal SORT1 single-nucleotide polymorphism locus creates a putative C/EBPα (CCAAT/enhancer-binding protein α)-binding site in the SORT1 promoter, thereby increasing in homozygotes sortilin expression by 12-fold in liver, which is rich in this transcription factor. Our previous studies in mice have showed reductions in plasma LDL-C and its principal protein component, apoB (apolipoprotein B) with increased SORT1 expression, and in vitro studies suggested that sortilin promoted the presecretory lysosomal degradation of apoB associated with the LDL precursor, VLDL (very-low-density lipoprotein). OBJECTIVE To determine directly that SORT1 overexpression results in apoB degradation and to identify the mechanisms by which this reduces apoB and VLDL secretion by the liver, thereby contributing to understanding the clinical phenotype of lower LDL-C levels. METHODS AND RESULTS Pulse-chase studies directly established that SORT1 overexpression results in apoB degradation. As noted above, previous work implicated a role for lysosomes in this degradation. Through in vitro and in vivo studies, we now demonstrate that the sortilin-mediated route of apoB to lysosomes is unconventional and intersects with autophagy. Increased expression of sortilin diverts more apoB away from secretion, with both proteins trafficking to the endosomal compartment in vesicles that fuse with autophagosomes to form amphisomes. The amphisomes then merge with lysosomes. Furthermore, we show that sortilin itself is a regulator of autophagy and that its activity is scaled to the level of apoB synthesis. CONCLUSIONS These results strongly suggest that an unconventional lysosomal targeting process dependent on autophagy degrades apoB that was diverted from the secretory pathway by sortilin and provides a mechanism contributing to the reduced LDL-C found in individuals with SORT1 overexpression.
Collapse
Affiliation(s)
- Jaume Amengual
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.)
| | - Liang Guo
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.)
| | - Alanna Strong
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.)
| | - Julio Madrigal-Matute
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.)
| | - Haizhen Wang
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.)
| | - Susmita Kaushik
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.)
| | - Jeffrey L Brodsky
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.)
| | - Daniel J Rader
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.)
| | - Ana Maria Cuervo
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.)
| | - Edward A Fisher
- From the Division of Cardiology (J.A., L.G., H.W., E.A.F.), Department of Medicine (J.A., L.G., H.W., E.A.F.), and Marc and Ruti Bell Program in Vascular Biology (J.A., E.A.F., L.G, H.W.), NYU School of Medicine; Institute for Translational Medicine and Therapeutics, Cardiovascular Institute, and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (A.S., D.J.R.); Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York (J.M.-M., S.K., A.M.C.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.).
| |
Collapse
|
53
|
Thibeaux S, Siddiqi S, Zhelyabovska O, Moinuddin F, Masternak MM, Siddiqi SA. Cathepsin B regulates hepatic lipid metabolism by cleaving liver fatty acid-binding protein. J Biol Chem 2017; 293:1910-1923. [PMID: 29259130 DOI: 10.1074/jbc.m117.778365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 11/15/2017] [Indexed: 12/30/2022] Open
Abstract
Synthesis and secretion of hepatic triglycerides (TAG) associated with very-low-density lipoprotein (VLDL) play a major role in maintaining overall lipid homeostasis. This study aims to identify factors affecting synthesis and secretion of VLDL-TAG using the growth hormone-deficient Ames dwarf mouse model, which has reduced serum TAG. Proteomic analysis coupled with a bioinformatics-driven approach revealed that these mice express greater amounts of hepatic cathepsin B and lower amounts of liver fatty acid-binding protein (LFABP) than their wildtype littermates. siRNA-mediated knockdown of cathepsin B in McA-RH7777 cells resulted in a 39% increase in [3H]TAG associated with VLDL secretion. Cathepsin B knockdown was accompanied by a 74% increase in cellular LFABP protein levels, but only when cells were exposed to 0.4 mm oleic acid (OA) complexed to BSA. The cathepsin B knockdown and 24-h treatment with OA resulted in increased CD36 expression alone and additively. Co-localization of LFABP and cathepsin B was observed in a distinct Golgi apparatus-like pattern, which required a 1-h OA treatment. Moreover, we observed co-localization of LFABP and apoB, independent of the OA treatment. Overexpression of cathepsin B resulted in decreased OA uptake and VLDL secretion. Co-expression of cathepsin B and cathepsin B-resistant mutant LFABP in McA-RH7777 cells resulted in an increased TAG secretion as compared with cells co-expressing cathepsin B and wildtype LFABP. Together, these data indicate that cathepsin B regulates VLDL secretion and free fatty acid uptake via cleavage of LFABP, which occurs in response to oleic acid exposure.
Collapse
Affiliation(s)
- Simeon Thibeaux
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Shaila Siddiqi
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Olga Zhelyabovska
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Faisal Moinuddin
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Michal M Masternak
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| | - Shadab A Siddiqi
- From the Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827
| |
Collapse
|
54
|
Geidl-Flueck B, Gerber PA. Insights into the Hexose Liver Metabolism-Glucose versus Fructose. Nutrients 2017; 9:E1026. [PMID: 28926951 PMCID: PMC5622786 DOI: 10.3390/nu9091026] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 12/15/2022] Open
Abstract
High-fructose intake in healthy men is associated with characteristics of metabolic syndrome. Extensive knowledge exists about the differences between hepatic fructose and glucose metabolism and fructose-specific mechanisms favoring the development of metabolic disturbances. Nevertheless, the causal relationship between fructose consumption and metabolic alterations is still debated. Multiple effects of fructose on hepatic metabolism are attributed to the fact that the liver represents the major sink of fructose. Fructose, as a lipogenic substrate and potent inducer of lipogenic enzyme expression, enhances fatty acid synthesis. Consequently, increased hepatic diacylglycerols (DAG) are thought to directly interfere with insulin signaling. However, independently of this effect, fructose may also counteract insulin-mediated effects on liver metabolism by a range of mechanisms. It may drive gluconeogenesis not only as a gluconeogenic substrate, but also as a potent inducer of carbohydrate responsive element binding protein (ChREBP), which induces the expression of lipogenic enzymes as well as gluconeogenic enzymes. It remains a challenge to determine the relative contributions of the impact of fructose on hepatic transcriptome, proteome and allosterome changes and consequently on the regulation of plasma glucose metabolism/homeostasis. Mathematical models exist modeling hepatic glucose metabolism. Future models should not only consider the hepatic adjustments of enzyme abundances and activities in response to changing plasma glucose and insulin/glucagon concentrations, but also to varying fructose concentrations for defining the role of fructose in the hepatic control of plasma glucose homeostasis.
Collapse
Affiliation(s)
- Bettina Geidl-Flueck
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital Zurich, 8091 Zurich, Switzerland.
| | - Philipp A Gerber
- Division of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
55
|
Kim S, Yang L, Kim S, Lee RG, Graham MJ, Berliner JA, Lusis AJ, Cai L, Temel RE, Rateri DL, Lee S. Targeting hepatic heparin-binding EGF-like growth factor (HB-EGF) induces anti-hyperlipidemia leading to reduction of angiotensin II-induced aneurysm development. PLoS One 2017; 12:e0182566. [PMID: 28792970 PMCID: PMC5549937 DOI: 10.1371/journal.pone.0182566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/20/2017] [Indexed: 01/02/2023] Open
Abstract
Objective The upregulated expression of heparin binding EGF-like growth factor (HB-EGF) in the vessel and circulation is associated with risk of cardiovascular disease. In this study, we tested the effects of HB-EGF targeting using HB-EGF-specific antisense oligonucleotide (ASO) on the development of aortic aneurysm in a mouse aneurysm model. Approach and results Low-density lipoprotein receptor (LDLR) deficient mice (male, 16 weeks of age) were injected with control and HB-EGF ASOs for 10 weeks. To induce aneurysm, the mice were fed a high fat diet (22% fat, 0.2% cholesterol; w/w) at 5 week point of ASO administration and infused with angiotensin II (AngII, 1,000ng/kg/min) for the last 4 weeks of ASO administration. We confirmed that the HB-EGF ASO administration significantly downregulated HB-EGF expression in multiple tissues including the liver. Importantly, the HB-EGF ASO administration significantly suppressed development of aortic aneurysms including thoracic and abdominal types. Interestingly, the HB-EGF ASO administration induced a remarkable anti-hyperlipidemic effect by suppressing very low density lipoprotein (VLDL) level in the blood. Mechanistically, the HB-EGF targeting suppressed hepatic VLDL secretion rate without changing heparin-releasable plasma triglyceride (TG) hydrolytic activity or fecal neutral cholesterol excretion rate. Conclusion This result suggested that the HB-EGF targeting induced protection against aneurysm development through anti-hyperlipidemic effects. Suppression of hepatic VLDL production process appears to be a key mechanism for the anti-hyperlipidemic effects by the HB-EGF targeting.
Collapse
Affiliation(s)
- Seonwook Kim
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Lihua Yang
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Seongu Kim
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Richard G. Lee
- Cardiovascular Antisense Drug Discovery Group at the Ionis Pharmaceuticals, Inc., Carlsbad, California, United States of America
| | - Mark J. Graham
- Cardiovascular Antisense Drug Discovery Group at the Ionis Pharmaceuticals, Inc., Carlsbad, California, United States of America
| | - Judith A. Berliner
- Department of Medicine-Cardiology, University of California-Los Angeles School of Medicine, Los Angeles, California, United States of America
| | - Aldons J. Lusis
- Department of Medicine-Cardiology, University of California-Los Angeles School of Medicine, Los Angeles, California, United States of America
| | - Lei Cai
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Ryan E. Temel
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Department of Pharmacology & Nutritional Sciences at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Debra L. Rateri
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Sangderk Lee
- Saha Cardiovascular Research Center at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Department of Pharmacology & Nutritional Sciences at the University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
56
|
Printsev I, Curiel D, Carraway KL. Membrane Protein Quantity Control at the Endoplasmic Reticulum. J Membr Biol 2017; 250:379-392. [PMID: 27743014 PMCID: PMC5392169 DOI: 10.1007/s00232-016-9931-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023]
Abstract
The canonical function of the endoplasmic reticulum-associated degradation (ERAD) system is to enforce quality control among membrane-associated proteins by targeting misfolded secreted, intra-organellar, and intramembrane proteins for degradation. However, increasing evidence suggests that ERAD additionally functions in maintaining appropriate levels of a subset of membrane-associated proteins. In this 'quantity control' capacity, ERAD responds to environmental cues to regulate the proteasomal degradation of specific ERAD substrates according to cellular need. In this review, we discuss in detail seven proteins that are targeted by the ERAD quantity control system. Not surprisingly, ERAD-mediated protein degradation is a key regulatory feature of a variety of ER-resident proteins, including HMG-CoA reductase, cytochrome P450 3A4, IP3 receptor, and type II iodothyronine deiodinase. In addition, the ERAD quantity control system plays roles in maintaining the proper stoichiometry of multi-protein complexes by mediating the degradation of components that are produced in excess of the limiting subunit. Perhaps somewhat unexpectedly, recent evidence suggests that the ERAD quantity control system also contributes to the regulation of plasma membrane-localized signaling receptors, including the ErbB3 receptor tyrosine kinase and the GABA neurotransmitter receptors. For these substrates, a proportion of the newly synthesized yet properly folded receptors are diverted for degradation at the ER, and are unable to traffic to the plasma membrane. Given that receptor abundance or concentration within the plasma membrane plays key roles in determining signaling efficiency, these observations may point to a novel mechanism for modulating receptor-mediated cellular signaling.
Collapse
Affiliation(s)
- Ignat Printsev
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA, 95817, USA
| | - Daniel Curiel
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA, 95817, USA
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer Center, UC Davis School of Medicine, Research Building III, Room 1100B, 4645 2nd Avenue, Sacramento, CA, 95817, USA.
| |
Collapse
|
57
|
Cayo MA, Mallanna SK, Di Furio F, Jing R, Tolliver LB, Bures M, Urick A, Noto FK, Pashos EE, Greseth MD, Czarnecki M, Traktman P, Yang W, Morrisey EE, Grompe M, Rader DJ, Duncan SA. A Drug Screen using Human iPSC-Derived Hepatocyte-like Cells Reveals Cardiac Glycosides as a Potential Treatment for Hypercholesterolemia. Cell Stem Cell 2017; 20:478-489.e5. [PMID: 28388428 DOI: 10.1016/j.stem.2017.01.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/22/2016] [Accepted: 01/27/2017] [Indexed: 12/17/2022]
Abstract
Efforts to identify pharmaceuticals to treat heritable metabolic liver diseases have been hampered by the lack of models. However, cells with hepatocyte characteristics can be produced from induced pluripotent stem cells (iPSCs). Here, we have used hepatocyte-like cells generated from homozygous familial hypercholesterolemia (hoFH) iPSCs to identify drugs that can potentially be repurposed to lower serum LDL-C. We found that cardiac glycosides reduce the production of apolipoprotein B (apoB) from human hepatocytes in culture and the serum of avatar mice harboring humanized livers. The drugs act by increasing the turnover of apoB protein. Analyses of patient medical records revealed that the treatment of patients with cardiac glycosides reduced serum LDL-C levels. These studies highlight the effectiveness of using iPSCs to screen for potential treatments for inborn errors of hepatic metabolism and suggest that cardiac glycosides could provide an approach for reducing hepatocyte production of apoB and treating hypercholesterolemia.
Collapse
Affiliation(s)
- Max A Cayo
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Sunil K Mallanna
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Francesca Di Furio
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Ran Jing
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Lauren B Tolliver
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Matthew Bures
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Amanda Urick
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Fallon K Noto
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Evanthia E Pashos
- Departments of Medicine and Genetics and the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew D Greseth
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Maciej Czarnecki
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Paula Traktman
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, MSC 955, Charleston, SC 29425, USA
| | - Wenli Yang
- Department of Medicine and Penn Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Medicine and Penn Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Markus Grompe
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 South West Sam Jackson Park Road/L321, Portland, OR 97239, USA
| | - Daniel J Rader
- Departments of Medicine and Genetics and the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen A Duncan
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, MSC 955, Charleston, SC 29425, USA.
| |
Collapse
|
58
|
Andreo U, de Jong YP, Scull MA, Xiao JW, Vercauteren K, Quirk C, Mommersteeg MC, Bergaya S, Menon A, Fisher EA, Rice CM. Analysis of Hepatitis C Virus Particle Heterogeneity in Immunodeficient Human Liver Chimeric fah-/- Mice. Cell Mol Gastroenterol Hepatol 2017; 4:405-417. [PMID: 28936471 PMCID: PMC5602752 DOI: 10.1016/j.jcmgh.2017.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 07/10/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) is a leading cause of chronic liver diseases and the most common indication for liver transplantation in the United States. HCV particles in the blood of infected patients are characterized by heterogeneous buoyant densities, likely owing to HCV association with lipoproteins. However, clinical isolates are not infectious in vitro and the relative infectivity of the particles with respect to their buoyant density therefore cannot be determined, pointing to the need for better in vivo model systems. METHODS To analyze the evolution of the buoyant density of in vivo-derived infectious HCV particles over time, we infected immunodeficient human liver chimeric fumaryl acetoacetate hydrolase-/- mice with J6/JFH1 and performed ultracentrifugation of infectious mouse sera on isopicnic iodixanol gradients. We also evaluated the impact of a high sucrose diet, which has been shown to increase very-low-density lipoprotein secretion by the liver in rodents, on lipoprotein and HCV particle characteristics. RESULTS Similar to the severe combined immunodeficiency disease/Albumin-urokinase plasminogen activator human liver chimeric mouse model, density fractionation of infectious mouse serum showed higher infectivity in the low-density fractions early after infection. However, over the course of the infection, viral particle heterogeneity increased and the overall in vitro infectivity diminished without loss of the human liver graft over time. In mice provided with a sucrose-rich diet we observed a minor shift in HCV infectivity toward lower density that correlated with a redistribution of triglycerides and cholesterol among lipoproteins. CONCLUSIONS Our work indicates that the heterogeneity in buoyant density of infectious HCV particles evolves over the course of infection and can be influenced by diet.
Collapse
Key Words
- Alb-uPA, Albumin-urokinase plasminogen activator
- CETP, cholesterol ester transfer protein
- FAH, fumaryl acetoacetate hydrolase
- FNRG, absence of fumaryl acetoacetate hydrolase on a immunodeficient NOD Rag gamma IL2 deficient mouse background
- FPLC, fast-performance liquid chromatography
- HCV
- HCV, hepatitis C virus
- HCVcc, cell culture–derived hepatitis C virus
- HDL, high-density lipoprotein
- Human Liver Chimeric Mice
- LVP, lipoviroparticle
- Lipoprotein
- Mouse Model
- NRG, nod rag γ
- NTBC, nitisinone
- PBS, phosphate-buffered saline
- SCID, severe combined immunodeficiency disease
- VLDL, very low density lipoprotein
- apo, apolipoprotein
Collapse
Affiliation(s)
- Ursula Andreo
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
- Correspondence Address correspondence to: Ursula Andreo, PhD, Center for the Study of Hepatitis C, The Rockefeller University, 1230 York Avenue, Box 64, New York, New York 10065. fax: (212) 327-7048.Center for the Study of Hepatitis CThe Rockefeller University1230 York AvenueBox 64New YorkNew York 10065
| | - Ype P. de Jong
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
- Division of Gastroenterology and Hepatology, Center for the Study of Hepatitis C, Weill Cornell Medical College, New York, New York
| | - Margaret A. Scull
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
| | - Jing W. Xiao
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
| | - Koen Vercauteren
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
| | - Corrine Quirk
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
| | | | - Sonia Bergaya
- Division of Cardiology, Department of Medicine, New York University Langone Medical Center, New York, New York
| | - Arjun Menon
- Division of Cardiology, Department of Medicine, New York University Langone Medical Center, New York, New York
| | - Edward A. Fisher
- Division of Cardiology, Department of Medicine, New York University Langone Medical Center, New York, New York
| | - Charles M. Rice
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
| |
Collapse
|
59
|
Gluchowski NL, Becuwe M, Walther TC, Farese RV. Lipid droplets and liver disease: from basic biology to clinical implications. Nat Rev Gastroenterol Hepatol 2017; 14:343-355. [PMID: 28428634 PMCID: PMC6319657 DOI: 10.1038/nrgastro.2017.32] [Citation(s) in RCA: 448] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lipid droplets are dynamic organelles that store neutral lipids during times of energy excess and serve as an energy reservoir during deprivation. Many prevalent metabolic diseases, such as the metabolic syndrome or obesity, often result in abnormal lipid accumulation in lipid droplets in the liver, also called hepatic steatosis. Obesity-related steatosis, or NAFLD in particular, is a major public health concern worldwide and is frequently associated with insulin resistance and type 2 diabetes mellitus. Here, we review the latest insights into the biology of lipid droplets and their role in maintaining lipid homeostasis in the liver. We also offer a perspective of liver diseases that feature lipid accumulation in these lipid storage organelles, which include NAFLD and viral hepatitis. Although clinical applications of this knowledge are just beginning, we highlight new opportunities for identifying molecular targets for treating hepatic steatosis and steatohepatitis.
Collapse
Affiliation(s)
- Nina L. Gluchowski
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue, Boston, Massachusetts 02115, USA.,Boston Children’s Hospital Department of Gastroenterology, Hepatology and Nutrition, 300 Longwood Avenue Boston, Massachusetts 02115, USA
| | - Michel Becuwe
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue, Boston, Massachusetts 02115, USA
| | - Tobias C. Walther
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue, Boston, Massachusetts 02115, USA.,Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue, Boston, Massachusetts 02115, USA
| | - Robert V. Farese
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, 655 Huntington Avenue, Boston, Massachusetts 02115, USA.,Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue Boston, Massachusetts 02115, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur Boston, Massachusetts 02115, USA
| |
Collapse
|
60
|
Song Y, Zhao M, Cheng X, Shen J, Khound R, Zhang K, Su Q. CREBH mediates metabolic inflammation to hepatic VLDL overproduction and hyperlipoproteinemia. J Mol Med (Berl) 2017; 95:839-849. [PMID: 28455595 DOI: 10.1007/s00109-017-1534-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/13/2017] [Accepted: 04/11/2017] [Indexed: 12/19/2022]
Abstract
Metabolic inflammation is closely associated with hyperlipidemia and cardiovascular disease. However, the underlying mechanisms are not fully understood. The current study established that cAMP-responsive-element-binding protein H (CREBH), an acute-phase transcription factor, enhances very-low-density lipoprotein (VLDL) assembly and secretion by upregulating apolipoprotein B (apoB) expression and contributes to metabolic inflammation-associated hyperlipoproteinemia induced by TNFα, lipopolysaccharides (LPS), and high-fat diet (HFD) in mice. Specifically, overexpression of CREBH significantly induced mRNA and protein expression of apoB in McA-7777 cells. Luciferase assay further revealed that the presence of CREBH could significantly increase the activity of the apoB gene promoter. In contrast, genetic depletion of CREBH in mice resulted in significant reduction in expression of hepatic apoB mRNA. Challenging mice with an acute fat load led to upregulation of triglyceride (TG)-rich lipoprotein secretion in wild type mice, but not in CREBH-null mice. TNFα treatment activated hepatic CREBH expression, which in turn enhanced hepatic apoB biosynthesis and VLDL secretion. Metabolic inflammation induced by LPS or HFD also resulted in overproduction of apoB and hyperlipoproteinemia in wild type mice, but not in CREBH-null mice. This study demonstrates that CREBH could be a mediator between metabolic inflammation and hepatic VLDL overproduction in chronic metabolic disorders. This novel finding establishes CREBH as the first transcription factor that regulates apoB expression on the transcriptional level and the subsequent VLDL biosynthesis in response to metabolic inflammation. The study also provides novel insight into the pathogenesis of hyperlipidemia in metabolic syndrome. KEY MESSAGES CREBH mediates inflammatory signaling to VLDL overproduction in metabolic stress. Activation of CREBH in inflammation enhances mRNA and protein expression of apoB. CREBH presents a potential novel therapeutic target for hyperlipoproteinemia.
Collapse
Affiliation(s)
- Yongyan Song
- The Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316F Leverton Hall, Lincoln, NE, 68583-0806, USA
| | - Miaoyun Zhao
- The Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316F Leverton Hall, Lincoln, NE, 68583-0806, USA
| | - Xiao Cheng
- The Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316F Leverton Hall, Lincoln, NE, 68583-0806, USA
| | - Jing Shen
- The Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316F Leverton Hall, Lincoln, NE, 68583-0806, USA
| | - Rituraj Khound
- The Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316F Leverton Hall, Lincoln, NE, 68583-0806, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, MI, 48201, USA
| | - Qiaozhu Su
- The Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 316F Leverton Hall, Lincoln, NE, 68583-0806, USA.
| |
Collapse
|
61
|
Cheng X, Yamauchi J, Lee S, Zhang T, Gong Z, Muzumdar R, Qu S, Dong HH. APOC3 Protein Is Not a Predisposing Factor for Fat-induced Nonalcoholic Fatty Liver Disease in Mice. J Biol Chem 2017; 292:3692-3705. [PMID: 28115523 DOI: 10.1074/jbc.m116.765917] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/06/2017] [Indexed: 12/23/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), characterized by excessive fat accumulation in liver, is prevalent in obesity. Genetic factors that link obesity to NAFLD remain obscure. Apolipoprotein C3 (APOC3) is a lipid-binding protein with a pivotal role in triglyceride metabolism. Humans with APOC3 gain-of-function mutations and mice with APOC3 overproduction are associated with hypertriglyceridemia. Nonetheless, it remains controversial whether APOC3 is culpable for diet-induced NAFLD. To address this fundamental issue, we fed APOC3-transgenic and wild-type littermates a high fructose diet or high fat diet, followed by determination of the effect of APOC3 on hepatic lipid metabolism and inflammation and the progression of NAFLD. To gain mechanistic insight into NAFLD, we determined the impact of APOC3 on hepatic triglyceride synthesis and secretion versus fatty acid oxidation. APOC3-transgenic mice were hypertriglyceridemic, culminating in marked elevation of triglycerides, cholesterols, and non-esterified fatty acids in plasma. Despite the prevailing hypertriglyceridemia, APOC3-transgenic mice, relative to wild-type littermates, had similar weight gain and hepatic lipid content without alterations in hepatic expression of key genes involved in triglyceride synthesis and secretion and fatty acid oxidation. APOC3-transgenic and wild-type mice had similar Kupffer cell content without alterations in hepatic expression of pro- and anti-inflammatory cytokines. APOC3 neither exacerbated diet-induced adiposity nor aggravated the degree of steatosis in high fructose or high fat-fed APOC3-transgenic mice. These effects ensued independently of weight gain even after 10-month high fat feeding. We concluded that APOC3, whose dysregulation is liable for hypertriglyceridemia, is not a predisposing factor for linking overnutrition to NAFLD in obesity.
Collapse
Affiliation(s)
- Xiaoyun Cheng
- From the Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China and.,the Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Jun Yamauchi
- the Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Sojin Lee
- the Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Ting Zhang
- the Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Zhenwei Gong
- the Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Radhika Muzumdar
- the Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Shen Qu
- From the Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China and
| | - H Henry Dong
- the Division of Endocrinology and Diabetes, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| |
Collapse
|
62
|
Khavandi M, Duarte F, Ginsberg HN, Reyes-Soffer G. Treatment of Dyslipidemias to Prevent Cardiovascular Disease in Patients with Type 2 Diabetes. Curr Cardiol Rep 2017; 19:7. [PMID: 28132397 PMCID: PMC5503120 DOI: 10.1007/s11886-017-0818-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Current preventive and treatment guidelines for type 2 diabetes have failed to decrease the incidence of comorbidities, such as dyslipidemia and ultimately heart disease. The goal of this review is to describe the physiological and metabolic lipid alterations that develop in patients with type 2 diabetes mellitus. Questions addressed include the differences in lipid and lipoprotein metabolism that characterize the dyslipidemia of insulin resistance and type 2 diabetes mellitus. We also examine the relevance of the new AHA/ADA treatment guidelines to dyslipidemic individuals. RECENT FINDINGS In this review, we provide an update on the pathophysiology of diabetic dyslipidemia, including the role of several apolipoproteins such as apoC-III. We also point to new studies and new agents for the treatment of individuals with type 2 diabetes mellitus who need lipid therapies. Type 2 diabetes mellitus causes cardiovascular disease via several pathways, including dyslipidemia characterized by increased plasma levels of apoB-lipoproteins and triglycerides, and low plasma concentrations of HDL cholesterol. Treatments to normalize the dyslipidemia and reduce the risk for cardiovascular events include the following: lifestyle and medication, particularly statins, and if necessary, ezetimibe, to significantly lower LDL cholesterol. Other treatments, more focused on triglycerides and HDL cholesterol, are less well supported by randomized clinical trials and should be used on an individual basis. Newer agents, particularly the PCSK9 inhibitors, show a great promise for even greater lowering of LDL cholesterol, but we await the results of ongoing clinical trials.
Collapse
Affiliation(s)
- Maryam Khavandi
- College of Physicians and Surgeons, Department of Medicine, Division of Preventive Medicine and Nutrition, Columbia University Medical Center, 622 West 168th Street, PH-10-305, New York, NY, 10032, USA
| | - Francisco Duarte
- College of Physicians and Surgeons, Department of Medicine, Division of Preventive Medicine and Nutrition, Columbia University Medical Center, 622 West 168th Street, PH-10-305, New York, NY, 10032, USA
| | - Henry N Ginsberg
- College of Physicians and Surgeons, Department of Medicine, Division of Preventive Medicine and Nutrition, Columbia University Medical Center, 622 West 168th Street, PH-10-305, New York, NY, 10032, USA
| | - Gissette Reyes-Soffer
- College of Physicians and Surgeons, Department of Medicine, Division of Preventive Medicine and Nutrition, Columbia University Medical Center, 622 West 168th Street, PH-10-305, New York, NY, 10032, USA.
| |
Collapse
|
63
|
Ito J, Ishii N, Akihara R, Lee J, Kurahashi T, Homma T, Kawasaki R, Fujii J. A high-fat diet temporarily renders Sod1-deficient mice resistant to an oxidative insult. J Nutr Biochem 2016; 40:44-52. [PMID: 27855316 DOI: 10.1016/j.jnutbio.2016.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 12/12/2022]
Abstract
Patients with nonalcoholic fatty liver disease may subsequently develop nonalcoholic steatohepatitis after suffering from a second insult, such as oxidative stress. Aim of this study was to investigate the pathogenesis of the liver injury caused when lipids accumulate under conditions of intrinsic oxidative stress using mice that are deficient in superoxide dismutase 1 (SOD1) and the leptin receptor (Lepr). We established Sod1-/-::Leprdb/db mice and carried out analyses of four groups of genetically modified mice, namely, wild type, Sod1-/-, Leprdb/db and Sod1-/-::Leprdb/db mice. Mice with defects in the SOD1 or Lepr gene are vulnerable to developing fatty livers, even when fed a normal diet. Feeding a high-fat diet (HFD) caused an increase in the number of lipid droplets in the liver to different extents in each genotypic mouse. an HFD caused the accelerated death of db/db mice, but contradictory to our expectations, the death rates for the Sod1-deficient mice were decreased by feeding HFD. Consistent with the improved probability of survival, liver damage was significantly ameliorated by feeding an HFD compared to a normal diet in the mice with an Sod1-deficient background. Oxidative stress markers, hyperoxidized peroxiredoxin and lipid peroxidation products, were decreased somewhat in Sod1-/- mice by feeding HFD. We conclude that lipids reacted with reactive oxygen species and eliminated them in the livers of the young mice, which resulted in the alleviation of oxidative stress, but in advanced age oxidized products accumulated, leading to the aggravation of the liver injury and an increase in fatality rate.
Collapse
Affiliation(s)
- Junitsu Ito
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Naoki Ishii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Ryusuke Akihara
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Jaeyong Lee
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Toshihiro Kurahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Ryo Kawasaki
- Department of Public Health, Yamagata University Graduate School of Medical Science, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan.
| |
Collapse
|
64
|
Reyes-Soffer G, Moon B, Hernandez-Ono A, Dionizovik-Dimanovski M, Dionizovick-Dimanovski M, Jimenez J, Obunike J, Thomas T, Ngai C, Fontanez N, Donovan DS, Karmally W, Holleran S, Ramakrishnan R, Mittleman RS, Ginsberg HN. Complex effects of inhibiting hepatic apolipoprotein B100 synthesis in humans. Sci Transl Med 2016; 8:323ra12. [PMID: 26819195 DOI: 10.1126/scitranslmed.aad2195] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mipomersen is a 20mer antisense oligonucleotide (ASO) that inhibits apolipoprotein B (apoB) synthesis; its low-density lipoprotein (LDL)-lowering effects should therefore result from reduced secretion of very-low-density lipoprotein (VLDL). We enrolled 17 healthy volunteers who received placebo injections weekly for 3 weeks followed by mipomersen weekly for 7 to 9 weeks. Stable isotopes were used after each treatment to determine fractional catabolic rates and production rates of apoB in VLDL, IDL (intermediate-density lipoprotein), and LDL, and of triglycerides in VLDL. Mipomersen significantly reduced apoB in VLDL, IDL, and LDL, which was associated with increases in fractional catabolic rates of VLDL and LDL apoB and reductions in production rates of IDL and LDL apoB. Unexpectedly, the production rates of VLDL apoB and VLDL triglycerides were unaffected. Small interfering RNA-mediated knockdown of apoB expression in human liver cells demonstrated preservation of apoB secretion across a range of apoB synthesis. Titrated ASO knockdown of apoB mRNA in chow-fed mice preserved both apoB and triglyceride secretion. In contrast, titrated ASO knockdown of apoB mRNA in high-fat-fed mice resulted in stepwise reductions in both apoB and triglyceride secretion. Mipomersen lowered all apoB lipoproteins without reducing the production rate of either VLDL apoB or triglyceride. Our human data are consistent with long-standing models of posttranscriptional and posttranslational regulation of apoB secretion and are supported by in vitro and in vivo experiments. Targeting apoB synthesis may lower levels of apoB lipoproteins without necessarily reducing VLDL secretion, thereby lowering the risk of steatosis associated with this therapeutic strategy.
Collapse
Affiliation(s)
- Gissette Reyes-Soffer
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA.
| | - Byoung Moon
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Antonio Hernandez-Ono
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | | | | | - Jhonsua Jimenez
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Joseph Obunike
- Biological Sciences Department, New York City College of Technology, 300 Jay Street, Brooklyn, NY 11201, USA
| | - Tiffany Thomas
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Colleen Ngai
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Nelson Fontanez
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Daniel S Donovan
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Wahida Karmally
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Stephen Holleran
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | - Rajasekhar Ramakrishnan
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| | | | - Henry N Ginsberg
- Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
65
|
Conlon DM, Thomas T, Fedotova T, Hernandez-Ono A, Di Paolo G, Chan RB, Ruggles K, Gibeley S, Liu J, Ginsberg HN. Inhibition of apolipoprotein B synthesis stimulates endoplasmic reticulum autophagy that prevents steatosis. J Clin Invest 2016; 126:3852-3867. [PMID: 27599291 DOI: 10.1172/jci86028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 08/01/2016] [Indexed: 01/09/2023] Open
Abstract
Inhibition of VLDL secretion reduces plasma levels of atherogenic apolipoprotein B (apoB) lipoproteins but can also cause hepatic steatosis. Approaches targeting apoB synthesis, which lies upstream of VLDL secretion, have potential to effectively reduce dyslipidemia but can also lead to hepatic accumulation of unsecreted triglycerides (TG). Here, we found that treating mice with apoB antisense oligonucleotides (ASOs) for 6 weeks decreased VLDL secretion and plasma cholesterol without causing steatosis. The absence of steatosis was linked to an increase in ER stress in the first 3 weeks of ASO treatment, followed by development of ER autophagy at the end of 6 weeks of treatment. The latter resulted in increased fatty acid (FA) oxidation that was inhibited by both chloroquine and 3-methyl adenine, consistent with trafficking of ER TG through the autophagic pathway before oxidation. These findings support the concept that inhibition of apoB synthesis traps lipids that have been transferred to the ER by microsomal TG transfer protein (MTP), inducing ER stress. ER stress then triggers ER autophagy and subsequent lysosomal lipolysis of TG, followed by mitochondrial oxidation of released FA, leading to prevention of steatosis. The identification of this pathway indicates that inhibition of VLDL secretion remains a viable target for therapies aiming to reduce circulating levels of atherogenic apoB lipoproteins.
Collapse
|
66
|
Roberts JL, He B, Erickson A, Moreau R. Improvement of mTORC1-driven overproduction of apoB-containing triacylglyceride-rich lipoproteins by short-chain fatty acids, 4-phenylbutyric acid and (R)-α-lipoic acid, in human hepatocellular carcinoma cells. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:166-76. [DOI: 10.1016/j.bbalip.2015.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/24/2015] [Accepted: 12/07/2015] [Indexed: 01/22/2023]
|
67
|
Fisher EA. Regression of Atherosclerosis: The Journey From the Liver to the Plaque and Back. Arterioscler Thromb Vasc Biol 2016; 36:226-35. [PMID: 26681754 PMCID: PMC4732981 DOI: 10.1161/atvbaha.115.301926] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/18/2015] [Indexed: 11/16/2022]
Abstract
Cardinal events in atherogenesis are the retention of apolipoprotein B-containing lipoproteins in the arterial wall and the reaction of macrophages to these particles. My laboratory has been interested in both the cell biological events producing apolipoprotein B-containing lipoproteins, as well as in the reversal of the damage they cause in the plaques formed in the arterial wall. In the 2013 George Lyman Duff Memorial Lecture, as summarized in this review, I covered 3 areas of my past, present, and future interests, namely, the regulation of hepatic very low density lipoprotein production by the degradation of apolipoprotein B100, the dynamic changes in macrophages in the regression of atherosclerosis, and the application of nanoparticles to both image and treat atherosclerotic plaques.
Collapse
Affiliation(s)
- Edward A Fisher
- From the Department of Medicine (Cardiology), the Marc and Ruti Bell Program in Vascular Biology and the Center for the Prevention of Cardiovascular Disease, New York University School of Medicine.
| |
Collapse
|
68
|
Abstract
The metabolic syndrome (MetS) is comprised of a cluster of closely related risk factors, including visceral adiposity, insulin resistance, hypertension, high triglyceride, and low high-density lipoprotein cholesterol; all of which increase the risk for the development of type 2 diabetes and cardiovascular disease. A chronic state of inflammation appears to be a central mechanism underlying the pathophysiology of insulin resistance and MetS. In this review, we summarize recent research which has provided insight into the mechanisms by which inflammation underlies the pathophysiology of the individual components of MetS including visceral adiposity, hyperglycemia and insulin resistance, dyslipidemia, and hypertension. On the basis of these mechanisms, we summarize therapeutic modalities to target inflammation in the MetS and its individual components. Current therapeutic modalities can modulate the individual components of MetS and have a direct anti-inflammatory effect. Lifestyle modifications including exercise, weight loss, and diets high in fruits, vegetables, fiber, whole grains, and low-fat dairy and low in saturated fat and glucose are recommended as a first line therapy. The Mediterranean and dietary approaches to stop hypertension diets are especially beneficial and have been shown to prevent development of MetS. Moreover, the Mediterranean diet has been associated with reductions in total and cardiovascular mortality. Omega-3 fatty acids and peroxisome proliferator-activated receptor α agonists lower high levels of triglyceride; their role in targeting inflammation is reviewed. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and aldosterone blockers comprise pharmacologic therapies for hypertension but also target other aspects of MetS including inflammation. Statin drugs target many of the underlying inflammatory pathways involved in MetS.
Collapse
Affiliation(s)
- Francine K Welty
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass.
| | - Abdulhamied Alfaddagh
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass
| | - Tarec K Elajami
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass
| |
Collapse
|
69
|
Molecular mechanisms of fatty liver in obesity. Front Med 2015; 9:275-87. [PMID: 26290284 DOI: 10.1007/s11684-015-0410-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 05/25/2015] [Indexed: 12/17/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) covers a spectrum of liver disorders ranging from simple steatosis to advanced pathologies, including nonalcoholic steatohepatitis and cirrhosis. NAFLD significantly contributes to morbidity and mortality in developed societies. Insulin resistance associated with central obesity is the major cause of hepatic steatosis, which is characterized by excessive accumulation of triglyceride-rich lipid droplets in the liver. Accumulating evidence supports that dysregulation of adipose lipolysis and liver de novo lipogenesis (DNL) plays a key role in driving hepatic steatosis. In this work, we reviewed the molecular mechanisms responsible for enhanced adipose lipolysis and increased hepatic DNL that lead to hepatic lipid accumulation in the context of obesity. Delineation of these mechanisms holds promise for developing novel avenues against NAFLD.
Collapse
|
70
|
Gadi R, Figueredo VM. Low-density lipoprotein cholesterol lowering therapies: what is on the horizon? J Cardiovasc Med (Hagerstown) 2015; 16:1-10. [PMID: 25379719 DOI: 10.2459/jcm.0000000000000193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Elevated low-density lipoprotein cholesterol (LDL-C) levels are associated with an increased risk for cardiovascular disease (CVD). Statins have been the cornerstone of lipid therapy to lower LDL-C for the past two decades, but despite significant clinical efficacy in a majority of patients, a large residual risk remains for the development of initial or recurrent atherosclerotic CVD. In addition, owing to the side-effects, a significant percentage of patients cannot tolerate any statin dose or a high enough statin dose. Thus, novel therapeutic agents are currently being developed to lower LDL-C levels further. This review will highlight these novel therapeutic agents including antisense oligonucleotides focused on apolipoprotein B, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, and microsomal triglyceride transfer protein inhibitors. For each therapeutic class, an overview of mechanism of action, pharmacokinetic data, and efficacy/safety evidence will be discussed.
Collapse
Affiliation(s)
- Ramprasad Gadi
- aEinstein Institute for Heart and Vascular Health, Einstein Medical Center bJefferson Medical College, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
71
|
Ramasamy I. Recent advances in physiological lipoprotein metabolism. Clin Chem Lab Med 2015; 52:1695-727. [PMID: 23940067 DOI: 10.1515/cclm-2013-0358] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/08/2013] [Indexed: 01/21/2023]
Abstract
Research into lipoprotein metabolism has developed because understanding lipoprotein metabolism has important clinical indications. Lipoproteins are risk factors for cardiovascular disease. Recent advances include the identification of factors in the synthesis and secretion of triglyceride rich lipoproteins, chylomicrons (CM) and very low density lipoproteins (VLDL). These included the identification of microsomal transfer protein, the cotranslational targeting of apoproteinB (apoB) for degradation regulated by the availability of lipids, and the characterization of transport vesicles transporting primordial apoB containing particles to the Golgi. The lipase maturation factor 1, glycosylphosphatidylinositol-anchored high density lipoprotein binding protein 1 and an angiopoietin-like protein play a role in lipoprotein lipase (LPL)-mediated hydrolysis of secreted CMs and VLDL so that the right amount of fatty acid is delivered to the right tissue at the right time. Expression of the low density lipoprotein (LDL) receptor is regulated at both transcriptional and post-transcriptional level. Proprotein convertase subtilisin/kexin type 9 (PCSK9) has a pivotal role in the degradation of LDL receptor. Plasma remnant lipoproteins bind to specific receptors in the liver, the LDL receptor, VLDL receptor and LDL receptor-like proteins prior to removal from the plasma. Reverse cholesterol transport occurs when lipid free apoAI recruits cholesterol and phospholipid to assemble high density lipoprotein (HDL) particles. The discovery of ABC transporters (ABCA1 and ABCG1) and scavenger receptor class B type I (SR-BI) provided further information on the biogenesis of HDL. In humans HDL-cholesterol can be returned to the liver either by direct uptake by SR-BI or through cholesteryl ester transfer protein exchange of cholesteryl ester for triglycerides in apoB lipoproteins, followed by hepatic uptake of apoB containing particles. Cholesterol content in cells is regulated by several transcription factors, including the liver X receptor and sterol regulatory element binding protein. This review summarizes recent advances in knowledge of the molecular mechanisms regulating lipoprotein metabolism.
Collapse
|
72
|
Soyal SM, Nofziger C, Dossena S, Paulmichl M, Patsch W. Targeting SREBPs for treatment of the metabolic syndrome. Trends Pharmacol Sci 2015; 36:406-16. [PMID: 26005080 DOI: 10.1016/j.tips.2015.04.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 12/11/2022]
Abstract
Over the past few decades, mortality resulting from cardiovascular disease (CVD) steadily decreased in western countries; however, in recent years, the decline has become offset by the increase in obesity. Obesity is strongly associated with the metabolic syndrome and its atherogenic dyslipidemia resulting from insulin resistance. While lifestyle treatment would be effective, drugs targeting individual risk factors are often required. Such treatment may result in polypharmacy. Novel approaches are directed towards the treatment of several risk factors with one drug. Studies in animal models and humans suggest a central role for sterol regulatory-element binding proteins (SREBPs) in the pathophysiology of the metabolic syndrome. Four recent studies targeting the maturation or transcriptional activities of SREBPs provide proof of concept for the efficacy of SREBP inhibition in this syndrome.
Collapse
Affiliation(s)
- Selma M Soyal
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Charity Nofziger
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Markus Paulmichl
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Patsch
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
73
|
|
74
|
Manchekar M, Liu Y, Sun Z, Richardson PE, Dashti N. Phospholipid transfer protein plays a major role in the initiation of apolipoprotein B-containing lipoprotein assembly in mouse primary hepatocytes. J Biol Chem 2015; 290:8196-205. [PMID: 25638820 DOI: 10.1074/jbc.m114.602748] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this study, we tested the hypothesis that phospholipid transfer protein (PLTP) is a plausible mediator of phospholipid (PL) transfer to the N-terminal 1000 residues of apoB (apoB:1000) leading to the initiation of apoB-containing lipoprotein assembly. To this end, primary hepatocytes from wild type (WT) and PLTP knock-out (KO) mice were transduced with adenovirus-apoB:1000 with or without co-transduction with adenovirus-PLTP, and the assembly and secretion of apoB:1000-containing lipoproteins were assessed. PLTP deficiency resulted in a 65 and 72% reduction in the protein and lipid content, respectively, of secreted apoB:1000-containing lipoproteins. Particles secreted by WT hepatocytes contained 69% PL, 9% diacylglycerol (DAG), and 23% triacylglycerol (TAG) with a stoichiometry of 46 PL, 6 DAG, and 15 TAG molecules per apoB:1000. PLTP absence drastically altered the lipid composition of apoB:1000 lipoproteins; these particles contained 46% PL, 13% DAG, and 41% TAG with a stoichiometry of 27 PL, 10 DAG, and 23 TAG molecules per apoB:1000. Reintroduction of Pltp gene into PLTP-KO hepatocytes stimulated the lipidation and secretion of apoB:1000-containing lipoproteins by ∼3-fold; the lipid composition and stoichiometry of these particles were identical to those secreted by WT hepatocytes. In contrast to the WT, apoB:1000 in PLTP-KO hepatocytes was susceptible to intracellular degradation predominantly in the post-endoplasmic reticulum, presecretory compartment. Reintroduction of Pltp gene into PLTP-KO hepatocytes restored the stability of apoB:1000. These results provide compelling evidence that in hepatocytes initial recruitment of PL by apoB:1000 leading to the formation of the PL-rich apoB-containing initiation complex is mediated to a large extent by PLTP.
Collapse
Affiliation(s)
- Medha Manchekar
- From the Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, Basic Sciences Section, University of Alabama, Birmingham, Alabama 35294 and
| | - Yanwen Liu
- From the Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, Basic Sciences Section, University of Alabama, Birmingham, Alabama 35294 and
| | - Zhihuan Sun
- From the Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, Basic Sciences Section, University of Alabama, Birmingham, Alabama 35294 and
| | - Paul E Richardson
- the Department of Chemistry and Physics, Coastal Carolina University, Conway, South Carolina 29528
| | - Nassrin Dashti
- From the Department of Medicine, Division of Gerontology, Geriatrics, and Palliative Care, Basic Sciences Section, University of Alabama, Birmingham, Alabama 35294 and
| |
Collapse
|
75
|
Abstract
Autophagy is an essential cellular pathway by which protein aggregates, long-lived proteins, or defective organelles are sequestered in double membrane vesicles and then degraded upon fusion of those vesicles with lysosomes. Although autophagy plays a critical role in maintaining intracellular homeostasis and keeping the cell in a healthy state, this key pathway can become dysregulated in various cardiometabolic disorders, such as; obesity, dyslipidemia, inflammation, and insulin resistance. In these conditions, autophagy may actually worsen the pathological state instead of protecting the cell or organism. In this review, we discuss how dysregulated autophagy may be linked to increases in cardiovascular risk factors, and how manipulation of the autophagic machinery might reduce those risks.
Collapse
Affiliation(s)
- Juan G. Juárez-Rojas
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY USA
- Endocrinolgy Department, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico
| | - Gissette Reyes-Soffer
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY USA
| | - Donna Conlon
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY USA
| | - Henry N. Ginsberg
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY USA
- PH10-305, Irving Institute for Clinical and Translational Research, 630 West 168 Street, New York, NY 10032 USA
| |
Collapse
|
76
|
Levy E. Insights from human congenital disorders of intestinal lipid metabolism. J Lipid Res 2014; 56:945-62. [PMID: 25387865 DOI: 10.1194/jlr.r052415] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Indexed: 12/24/2022] Open
Abstract
The intestine must challenge the profuse daily flux of dietary fat that serves as a vital source of energy and as an essential component of cell membranes. The fat absorption process takes place in a series of orderly and interrelated steps, including the uptake and translocation of lipolytic products from the brush border membrane to the endoplasmic reticulum, lipid esterification, Apo synthesis, and ultimately the packaging of lipid and Apo components into chylomicrons (CMs). Deciphering inherited disorders of intracellular CM elaboration afforded new insight into the key functions of crucial intracellular proteins, such as Apo B, microsomal TG transfer protein, and Sar1b GTPase, the defects of which lead to hypobetalipoproteinemia, abetalipoproteinemia, and CM retention disease, respectively. These "experiments of nature" are characterized by fat malabsorption, steatorrhea, failure to thrive, low plasma levels of TGs and cholesterol, and deficiency of liposoluble vitamins and essential FAs. After summarizing and discussing the functions and regulation of these proteins for reader's comprehension, the current review focuses on their specific roles in malabsorptions and dyslipidemia-related intestinal fat hyperabsorption while dissecting the spectrum of clinical manifestations and managements. The influence of newly discovered proteins (proprotein convertase subtilisin/kexin type 9 and angiopoietin-like 3 protein) on fat absorption has also been provided. Finally, it is stressed how the overexpression or polymorphism status of the critical intracellular proteins promotes dyslipidemia and cardiometabolic disorders.
Collapse
Affiliation(s)
- Emile Levy
- Research Centre, CHU Sainte-Justine and Department of Nutrition, Université de Montréal, Montreal, Quebec H3T 1C5, Canada
| |
Collapse
|
77
|
Affiliation(s)
- Xinghui Sun
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Mark W Feinberg
- From the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
78
|
Su Q, Baker C, Christian P, Naples M, Tong X, Zhang K, Santha M, Adeli K. Hepatic mitochondrial and ER stress induced by defective PPARα signaling in the pathogenesis of hepatic steatosis. Am J Physiol Endocrinol Metab 2014; 306:E1264-73. [PMID: 24735884 PMCID: PMC4280162 DOI: 10.1152/ajpendo.00438.2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Emerging evidence demonstrates a close interplay between disturbances in mitochondrial function and ER homeostasis in the development of the metabolic syndrome. The present investigation sought to advance our understanding of the communication between mitochondrial dysfunction and ER stress in the onset of hepatic steatosis in male rodents with defective peroxisome proliferator-activated receptor-α (PPARα) signaling. Genetic depletion of PPARα or perturbation of PPARα signaling by high-fructose diet compromised the functional activity of metabolic enzymes involved in mitochondrial fatty acid β-oxidation and induced hepatic mitochondrial stress in rats and mice. Inhibition of PPARα activity further enhanced the expression of apolipoprotein B (apoB) mRNA and protein, which was associated with reduced mRNA expression of the sarco/endoplasmic reticulum calcium ATPase (SERCA), the induction of hepatic ER stress, and hepatic steatosis. Restoration of PPARα activity recovered the metabolic function of the mitochondria and ER, alleviated systemic hypertriglyceridemia, and improved hepatic steatosis. These findings unveil novel roles for PPARα in mediating stress signals between hepatic subcellular stress-responding machinery and in the onset of hepatic steatosis under conditions of metabolic stress.
Collapse
Affiliation(s)
- Qiaozhu Su
- Program of Molecular Structure and Function, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada; Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Chris Baker
- Program of Molecular Structure and Function, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Patricia Christian
- Program of Molecular Structure and Function, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Mark Naples
- Program of Molecular Structure and Function, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Xuedong Tong
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | | | - Miklos Santha
- Institute of Biochemistry and Biological Research Center, Hungarian Academy of Sciences, Temesvari, Szeged, Hungary
| | - Khosrow Adeli
- Program of Molecular Structure and Function, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada;
| |
Collapse
|
79
|
Rader DJ, Kastelein JJP. Lomitapide and mipomersen: two first-in-class drugs for reducing low-density lipoprotein cholesterol in patients with homozygous familial hypercholesterolemia. Circulation 2014; 129:1022-32. [PMID: 24589695 DOI: 10.1161/circulationaha.113.001292] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Daniel J Rader
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (D.J.R); and Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (J.J.P.K.)
| | | |
Collapse
|
80
|
Nassir F, Ibdah JA. Role of mitochondria in nonalcoholic fatty liver disease. Int J Mol Sci 2014; 15:8713-42. [PMID: 24837835 PMCID: PMC4057755 DOI: 10.3390/ijms15058713] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/04/2014] [Accepted: 05/07/2014] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects about 30% of the general population in the United States and includes a spectrum of disease that includes simple steatosis, non-alcoholic steatohepatitis (NASH), fibrosis and cirrhosis. Significant insight has been gained into our understanding of the pathogenesis of NALFD; however the key metabolic aberrations underlying lipid accumulation in hepatocytes and the progression of NAFLD remain to be elucidated. Accumulating and emerging evidence indicate that hepatic mitochondria play a critical role in the development and pathogenesis of steatosis and NAFLD. Here, we review studies that document a link between the pathogenesis of NAFLD and hepatic mitochondrial dysfunction with particular focus on new insights into the role of impaired fatty acid oxidation, the transcription factor peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), and sirtuins in development and progression of NAFLD.
Collapse
Affiliation(s)
- Fatiha Nassir
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Missouri, Columbia, MO 65212, USA.
| | - Jamal A Ibdah
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
81
|
Sips FLP, Tiemann CA, Oosterveer MH, Groen AK, Hilbers PAJ, van Riel NAW. A computational model for the analysis of lipoprotein distributions in the mouse: translating FPLC profiles to lipoprotein metabolism. PLoS Comput Biol 2014; 10:e1003579. [PMID: 24784354 PMCID: PMC4006703 DOI: 10.1371/journal.pcbi.1003579] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 03/11/2014] [Indexed: 12/27/2022] Open
Abstract
Disturbances of lipoprotein metabolism are recognized as indicators of cardiometabolic disease risk. Lipoprotein size and composition, measured in a lipoprotein profile, are considered to be disease risk markers. However, the measured profile is a collective result of complex metabolic interactions, which complicates the identification of changes in metabolism. In this study we aim to develop a method which quantitatively relates murine lipoprotein size, composition and concentration to the molecular mechanisms underlying lipoprotein metabolism. We introduce a computational framework which incorporates a novel kinetic model of murine lipoprotein metabolism. The model is applied to compute a distribution of plasma lipoproteins, which is then related to experimental lipoprotein profiles through the generation of an in silico lipoprotein profile. The model was first applied to profiles obtained from wild-type C57Bl/6J mice. The results provided insight into the interplay of lipoprotein production, remodelling and catabolism. Moreover, the concentration and metabolism of unmeasured lipoprotein components could be determined. The model was validated through the prediction of lipoprotein profiles of several transgenic mouse models commonly used in cardiovascular research. Finally, the framework was employed for longitudinal analysis of the profiles of C57Bl/6J mice following a pharmaceutical intervention with a liver X receptor (LXR) agonist. The multifaceted regulatory response to the administration of the compound is incompletely understood. The results explain the characteristic changes of the observed lipoprotein profile in terms of the underlying metabolic perturbation and resultant modifications of lipid fluxes in the body. The Murine Lipoprotein Profiler (MuLiP) presented here is thus a valuable tool to assess the metabolic origin of altered murine lipoprotein profiles and can be applied in preclinical research performed in mice for analysis of lipid fluxes and lipoprotein composition.
Collapse
Affiliation(s)
- Fianne L P Sips
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands
| | - Christian A Tiemann
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands
| | - Maaike H Oosterveer
- Department of Pediatrics, University Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Albert K Groen
- Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands; Department of Pediatrics, University Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Laboratory Medicine, University Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter A J Hilbers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands
| | - Natal A W van Riel
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; Netherlands Consortium for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
82
|
Cyphert HA, Alonge KM, Ippagunta SM, Hillgartner FB. Glucagon stimulates hepatic FGF21 secretion through a PKA- and EPAC-dependent posttranscriptional mechanism. PLoS One 2014; 9:e94996. [PMID: 24733293 PMCID: PMC3986400 DOI: 10.1371/journal.pone.0094996] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/21/2014] [Indexed: 12/14/2022] Open
Abstract
Previous studies have shown that whole body deletion of the glucagon receptor suppresses the ability of starvation to increase hepatic fibroblast growth factor 21 (FGF21) expression and plasma FGF21 concentration. Here, we investigate the mechanism by which glucagon receptor activation increases hepatic FGF21 production. Incubating primary rat hepatocyte cultures with glucagon, dibutyryl cAMP or forskolin stimulated a 3-4-fold increase in FGF21 secretion. The effect of these agents on FGF21 secretion was not associated with an increase in FGF21 mRNA abundance. Glucagon induction of FGF21 secretion was additive with the stimulatory effect of a PPARα activator (GW7647) on FGF21 secretion. Inhibition of protein kinase A (PKA) and downstream components of the PKA pathway [i.e. AMP-activated protein kinase and p38 MAPK] suppressed glucagon activation of FGF21 secretion. Incubating hepatocytes with an exchange protein directly activated by cAMP (EPAC)-selective cAMP analog [i.e. 8-(4-chlorophenylthio)-2'-O-methyladenosine-3', 5'-cyclic monophosphate (cpTOME)], stimulated a 3.9-fold increase FGF21 secretion, whereas inhibition of the EPAC effector, Rap1, suppressed glucagon activation of FGF21 secretion. Treatment of hepatocytes with insulin also increased FGF21 secretion. In contrast to glucagon, insulin activation of FGF21 secretion was associated with an increase in FGF21 mRNA abundance. Glucagon synergistically interacted with insulin to stimulate a further increase in FGF21 secretion and FGF21 mRNA abundance. These results demonstrate that glucagon increases hepatic FGF21 secretion via a posttranscriptional mechanism and provide evidence that both the PKA branch and EPAC branch of the cAMP pathway play a role in mediating this effect. These results also identify a novel synergistic interaction between glucagon and insulin in the regulation of FGF21 secretion and FGF21 mRNA abundance. We propose that this insulin/glucagon synergism plays a role in mediating the elevation in FGF21 production during starvation and conditions related to metabolic syndrome.
Collapse
Affiliation(s)
- Holly A Cyphert
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia, United States of America
| | - Kimberly M Alonge
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia, United States of America
| | - Siri M Ippagunta
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia, United States of America
| | - F Bradley Hillgartner
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
83
|
Sharma A, Joshi PH, Rinehart S, Thakker KM, Lele A, Voros S. Baseline Very Low-Density Lipoprotein Cholesterol is Associated with the Magnitude of Triglyceride Lowering on Statins, Fenofibric Acid, or Their Combination in Patients with Mixed Dyslipidemia. J Cardiovasc Transl Res 2014; 7:465-74. [DOI: 10.1007/s12265-014-9559-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
|
84
|
Rached FH, Chapman MJ, Kontush A. An overview of the new frontiers in the treatment of atherogenic dyslipidemias. Clin Pharmacol Ther 2014; 96:57-63. [PMID: 24727469 DOI: 10.1038/clpt.2014.85] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/07/2014] [Indexed: 01/19/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity/mortality worldwide. Dyslipidemia is a major risk factor for premature atherosclerosis and CVD. Lowering low-density-lipoprotein cholesterol (LDL-C) levels is well established as an intervention for the reduction of CVDs. Statins are the first-line drugs for treatment of dyslipidemia, but they do not address all CVD risk. Development of novel therapies is ongoing and includes the following: (i) reduction of LDL-C concentrations using antibodies to proprotein convertase subtilisin/kexin-9, antisense oligonucleotide inhibitors of apolipoprotein B production, microsomal transfer protein (MTP) inhibitors, and acyl-coenzyme A cholesterol acyl transferase inhibitors; (ii) reduction in levels of triglyceride-rich lipoproteins with ω-3 fatty acids, MTP inhibitors, and diacylglycerol acyl transferase-1 inhibitors; and (iii) increase of high-density-lipoprotein (HDL) cholesterol levels, HDL particle numbers, and/or HDL functionality using cholesteryl ester transfer protein inhibitors, HDL-derived agents, apolipoprotein AI mimetic peptides, and microRNAs. Large prospective outcome trials of several of these emerging therapies are under way, and thrilling progress in the field of lipid management is anticipated.
Collapse
Affiliation(s)
- F H Rached
- 1] UMR INSERM-UPMC 1166 ICAN, National Institute for Health and Medical Research, Université Pierre et Marie Curie-Paris 6, AP-HP, Pitié-Salpétrière University Hospital, ICAN, Paris, France [2] Heart Institute-InCor, University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | - M J Chapman
- UMR INSERM-UPMC 1166 ICAN, National Institute for Health and Medical Research, Université Pierre et Marie Curie-Paris 6, AP-HP, Pitié-Salpétrière University Hospital, ICAN, Paris, France
| | - A Kontush
- UMR INSERM-UPMC 1166 ICAN, National Institute for Health and Medical Research, Université Pierre et Marie Curie-Paris 6, AP-HP, Pitié-Salpétrière University Hospital, ICAN, Paris, France
| |
Collapse
|
85
|
Kim DH, Zhang T, Lee S, Calabuig-Navarro V, Yamauchi J, Piccirillo A, Fan Y, Uppala R, Goetzman E, Dong HH. FoxO6 integrates insulin signaling with MTP for regulating VLDL production in the liver. Endocrinology 2014; 155:1255-67. [PMID: 24437489 PMCID: PMC3959596 DOI: 10.1210/en.2013-1856] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Excessive production of triglyceride-rich very low-density lipoproteins (VLDL-TG) contributes to hypertriglyceridemia in obesity and type 2 diabetes. To understand the underlying mechanism, we studied hepatic regulation of VLDL-TG production by (forkhead box O6) FoxO6, a forkhead transcription factor that integrates insulin signaling to hepatic metabolism. We showed that transgenic mice expressing a constitutively active FoxO6 allele developed hypertriglyceridemia, culminating in elevated VLDL-TG levels and impaired postprandial TG clearance. This effect resulted in part from increased hepatic VLDL-TG production. We recapitulated these findings in cultured HepG2 cells and human primary hepatocytes, demonstrating that FoxO6 promoted hepatic VLDL-TG secretion. This action correlated with the ability of FoxO6 to stimulate hepatic production of microsomal triglyceride transfer protein (MTP), a molecular chaperone that catalyzes the rate-limiting step in VLDL-TG assembly and secretion. FoxO6 was shown to bind to the MTP promoter and stimulate MTP promoter activity in HepG2 cells. This effect was inhibited by insulin, consistent with the ability of insulin to promote FoxO6 phosphorylation and disable FoxO6 DNA-binding activity. Mutations of the FoxO6 target site within the MTP promoter abrogated FoxO6-mediated induction of MTP promoter activity. Hepatic FoxO6 expression became deregulated in insulin-resistant mice with obesity and type 2 diabetes. FoxO6 inhibition in insulin-resistant liver suppressed hepatic MTP expression and curbed VLDL-TG overproduction, contributing to the amelioration of hypertriglyceridemia in obese and diabetic db/db mice. These results characterize FoxO6 as an important signaling molecule upstream of MTP for regulating hepatic VLDL-TG production.
Collapse
Affiliation(s)
- Dae Hyun Kim
- Division of Immunogenetics (D.H.K., T.Z., S.L., V.C.-N., J.Y., A.P., Y.F., H.H.D.) and Division of Genetics (R.U., E.G.), Department of Pediatrics, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
This review article summarizes recent research into the mechanisms as to how elevated levels of triglyceride (TG) and low levels of high- density- lipoprotein cholesterol (HDL-C) contribute to inflammation and atherosclerosis. Evidence supports the role of TG-rich lipoproteins in signaling mechanisms via apolipoproteins C-III and free fatty acids leading to activation of NFKβ, VCAM-1 and other inflammatory mediators which lead to fatty streak formation and advanced atherosclerosis. Moreover, the cholesterol content in TG-rich lipoproteins has been shown to predict CAD risk better than LDL-C. In addition to reverse cholesterol transport, HDL has many other cardioprotective effects which include regulating immune function. The "functionality" of HDL appears more important than the level of HDL-C. Insulin resistance and central obesity underlie the pathophysiology of elevated TG and low HDL-C in metabolic syndrome and type 2 diabetes. Lifestyle recommendations including exercise and weight loss remain first line therapy in ameliorating insulin resistance and the adverse signaling processes from elevated levels of TG-rich lipoproteins and low HDL-C.
Collapse
|
87
|
Butkinaree C, Guo L, Ramkhelawon B, Wanschel A, Brodsky JL, Moore KJ, Fisher EA. A regulator of secretory vesicle size, Kelch-like protein 12, facilitates the secretion of apolipoprotein B100 and very-low-density lipoproteins--brief report. Arterioscler Thromb Vasc Biol 2013; 34:251-4. [PMID: 24334870 DOI: 10.1161/atvbaha.113.302728] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE One of the major risk factors for atherosclerosis is the plasma level of low-density lipoprotein (LDL), which is a product of very-low-density lipoprotein (VLDL). Hepatic apolipoprotein B100 (apoB100) is the essential component that provides structural stability to VLDL particles. Newly translated apoB100 is partially lipidated in the endoplasmic reticulum (ER), forming nascent apoB100-VLDL particles. These particles are further modified to form fully mature VLDLs in the Golgi apparatus. Therefore, the transport of nascent VLDL from the ER to the Golgi represents a critical step during VLDL maturation and secretion and in regulating serum LDL cholesterol levels. Our previous studies showed that apoB100 exits the ER in coat complex II vesicles (COPII), but the cohort of related factors that control trafficking is poorly defined. APPROACH AND RESULTS Expression levels of Kelch-like protein 12 (KLHL12), an adaptor protein known to assist COPII-dependent transport of procollagen, were manipulated by using a KLHL12-specific small interfering RNA and a KLHL12 expression plasmid in the rat hepatoma cell line, McArdle RH7777. KLHL12 knockdown decreased the secreted and intracellular pools of apoB100, an effect that was attenuated in the presence of an autophagy inhibitor. KLHL12 knockdown also significantly reduced secretion of the most lipidated apoB100-VLDL species and led to the accumulation of apoB100 in the ER. Consistent with these data, KLHL12 overexpression increased apoB100 recovery and apoB100-VLDL secretion. Images obtained from confocal microscopy revealed colocalization of apoB100 and KLHL12, further supporting a direct link between KLHL12 function and VLDL trafficking from the ER. CONCLUSIONS KLHL12 plays a critical role in facilitating the ER exit and secretion of apoB100-VLDL particles, suggesting that KLHL12 modulation would influence plasma lipid levels.
Collapse
Affiliation(s)
- Chutikarn Butkinaree
- From the Department of Medicine, Leon H. Charney Division of Cardiology, Department of Cell Biology, and the Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine (C.B., L.G., B.R., A.W., K.J.M., E.A.F.); and Department of Biological Sciences, University of Pittsburgh, PA (J.L.B.). C.B. is currently affiliated with Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
88
|
Maitin V, Andreo U, Guo L, Fisher EA. Docosahexaenoic acid impairs the maturation of very low density lipoproteins in rat hepatic cells. J Lipid Res 2013; 55:75-84. [PMID: 24136824 DOI: 10.1194/jlr.m043026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One mechanism of the lipid-lowering effects of the fish oil n-3 fatty acids [e.g., docosahexaenoic acid (DHA)] in cell and animal models is induced hepatic apolipoprotein B100 (apoB) presecretory degradation. This degradation occurs post-endoplasmic reticulum, but whether DHA induces it before or after intracellular VLDL formation remains unanswered. We found in McA-RH7777 rat hepatic cells that DHA and oleic acid (OA) treatments allowed formation of pre-VLDL particles and their transport to the Golgi, but, in contrast to OA, with DHA pre-VLDL particles failed to quantitatively assemble into fully lipidated (mature) VLDL. This failure required lipid peroxidation and was accompanied by the formation of apoB aggregates (known to be degraded by autophagy). Preventing the exit of proteins from the Golgi blocked the aggregation of apoB but did not restore VLDL maturation, indicating that failure to fully lipidate apoB preceded its aggregation. ApoB autophagic degradation did not appear to require an intermediate step of cytosolic aggresome formation. Taken with other examples in the literature, the results of this study suggest that pre-VLDL particles that are competent to escape endoplasmic reticulum quality control mechanisms but fail to mature in the Golgi remain subject to quality control surveillance late in the secretory pathway.
Collapse
Affiliation(s)
- Vatsala Maitin
- Departments of Medicine (Leon H. Charney Division of Cardiology) and Cell Biology and the Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, NY 10016; and
| | | | | | | |
Collapse
|
89
|
Koo SH. Nonalcoholic fatty liver disease: molecular mechanisms for the hepatic steatosis. Clin Mol Hepatol 2013; 19:210-5. [PMID: 24133660 PMCID: PMC3796672 DOI: 10.3350/cmh.2013.19.3.210] [Citation(s) in RCA: 303] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/06/2013] [Indexed: 12/21/2022] Open
Abstract
Liver plays a central role in the biogenesis of major metabolites including glucose, fatty acids, and cholesterol. Increased incidence of obesity in the modern society promotes insulin resistance in the peripheral tissues in humans, and could cause severe metabolic disorders by inducing accumulation of lipid in the liver, resulting in the progression of non-alcoholic fatty liver disease (NAFLD). NAFLD, which is characterized by increased fat depots in the liver, could precede more severe diseases such as non-alcoholic steatohepatitis (NASH), cirrhosis, and in some cases hepatocellular carcinoma. Accumulation of lipid in the liver can be traced by increased uptake of free fatty acids into the liver, impaired fatty acid beta oxidation, or the increased incidence of de novo lipogenesis. In this review, I would like to focus on the roles of individual pathways that contribute to the hepatic steatosis as a precursor for the NAFLD.
Collapse
Affiliation(s)
- Seung-Hoi Koo
- Department of Life Sciences, Korea University, Seoul, Korea
| |
Collapse
|
90
|
Xiao G, Zhang T, Yu S, Lee S, Calabuig-Navarro V, Yamauchi J, Ringquist S, Dong HH. ATF4 protein deficiency protects against high fructose-induced hypertriglyceridemia in mice. J Biol Chem 2013; 288:25350-25361. [PMID: 23888053 DOI: 10.1074/jbc.m113.470526] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hypertriglyceridemia is the most common lipid disorder in obesity and type 2 diabetes. It results from increased production and/or decreased clearance of triglyceride-rich lipoproteins. To better understand the pathophysiology of hypertriglyceridemia, we studied hepatic regulation of triglyceride metabolism by the activating transcription factor 4 (ATF4), a member of the basic leucine zipper-containing protein subfamily. We determined the effect of ATF4 on hepatic lipid metabolism in Atf4(-/-) mice fed regular chow or provided with free access to fructose drinking water. ATF4 depletion preferentially attenuated hepatic lipogenesis without affecting hepatic triglyceride production and fatty acid oxidation. This effect prevented excessive fat accumulation in the liver of Atf4(-/-) mice, when compared with wild-type littermates. To gain insight into the underlying mechanism, we showed that ATF4 depletion resulted in a significant reduction in hepatic expression of peroxisome proliferator-activated receptor-γ, a nuclear receptor that acts to promote lipogenesis in the liver. This effect was accompanied by a significant reduction in hepatic expression of sterol regulatory element-binding protein 1c (SREBP-1c), acetyl-CoA carboxylase, and fatty-acid synthase, three key functions in the lipogenic pathway in Atf4(-/-) mice. Of particular significance, we found that Atf4(-/-) mice, as opposed to wild-type littermates, were protected against the development of steatosis and hypertriglyceridemia in response to high fructose feeding. These data demonstrate that ATF4 plays a critical role in regulating hepatic lipid metabolism in response to nutritional cues.
Collapse
Affiliation(s)
- Guozhi Xiao
- From the Department of Biochemistry, Rush University Medical Center, Chicago, Illinois 60612,; the College of Life Sciences, Nankai University, Tianjin 300071, China, and.
| | - Ting Zhang
- the Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, and
| | - Shibing Yu
- the Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Sojin Lee
- the Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, and
| | - Virtu Calabuig-Navarro
- the Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, and
| | - Jun Yamauchi
- the Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, and
| | - Steven Ringquist
- the Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, and
| | - H Henry Dong
- the Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, and.
| |
Collapse
|
91
|
Abstract
PURPOSE OF REVIEW Microsomal triglyceride transfer protein (MTP) is a key protein in the secretion of apolipoprotein B-containing lipoproteins. Its pharmacological inhibition is associated with a decrease in LDL cholesterol (LDL-C) and triglycerides. However, the clinical use of MTP inhibitors has been uncertain because of the gastrointestinal adverse events and the increase in liver fat content observed during their administration. RECENT FINDINGS Lomitapide, a systemic MTP inhibitor, significantly reduces LDL-C in homozygous familial hypercholesterolemia (hoFH) when administered concurrently with other lipid-lowering therapies, including apheresis. Its lipid-lowering effect is additive to that of existing drugs. In the presence of an up-titration regiment and low-fat diet, lomitapide is generally well tolerated and liver fat accumulation stabilizes after the initial increase. Elevation of alanine aminotranferase levels greater than 3 times the upper limit of normal can be managed successfully with temporary dose reduction. Drug-drug interaction studies show that concomitant treatment of lomitapide with other lipid-lowering drugs is generally safe. Based on these findings, lomitapide was recently approved for the treatment of hoFH as add-on therapy. SUMMARY MTP inhibition is a valuable therapeutic approach for hoFH. Long-term safety consequences of liver fat accumulation will need to be assessed.
Collapse
Affiliation(s)
- Marina Cuchel
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
92
|
Miraldi ER, Sharfi H, Friedline RH, Johnson H, Zhang T, Lau KS, Ko HJ, Curran TG, Haigis KM, Yaffe MB, Bonneau R, Lauffenburger DA, Kahn BB, Kim JK, Neel BG, Saghatelian A, White FM. Molecular network analysis of phosphotyrosine and lipid metabolism in hepatic PTP1b deletion mice. Integr Biol (Camb) 2013; 5:940-63. [PMID: 23685806 DOI: 10.1039/c3ib40013a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Metabolic syndrome describes a set of obesity-related disorders that increase diabetes, cardiovascular, and mortality risk. Studies of liver-specific protein-tyrosine phosphatase 1b (PTP1b) deletion mice (L-PTP1b(-/-)) suggest that hepatic PTP1b inhibition would mitigate metabolic-syndrome through amelioration of hepatic insulin resistance, endoplasmic-reticulum stress, and whole-body lipid metabolism. However, the altered molecular-network states underlying these phenotypes are poorly understood. We used mass spectrometry to quantify protein-phosphotyrosine network changes in L-PTP1b(-/-) mouse livers relative to control mice on normal and high-fat diets. We applied a phosphosite-set-enrichment analysis to identify known and novel pathways exhibiting PTP1b- and diet-dependent phosphotyrosine regulation. Detection of a PTP1b-dependent, but functionally uncharacterized, set of phosphosites on lipid-metabolic proteins motivated global lipidomic analyses that revealed altered polyunsaturated-fatty-acid (PUFA) and triglyceride metabolism in L-PTP1b(-/-) mice. To connect phosphosites and lipid measurements in a unified model, we developed a multivariate-regression framework, which accounts for measurement noise and systematically missing proteomics data. This analysis resulted in quantitative models that predict roles for phosphoproteins involved in oxidation-reduction in altered PUFA and triglyceride metabolism.
Collapse
Affiliation(s)
- Emily R Miraldi
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Kawano Y, Cohen DE. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J Gastroenterol 2013; 48:434-41. [PMID: 23397118 PMCID: PMC3633701 DOI: 10.1007/s00535-013-0758-5] [Citation(s) in RCA: 690] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/15/2013] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation in the absence of excess alcohol intake. NAFLD is the most common chronic liver disease, and ongoing research efforts are focused on understanding the underlying pathobiology of hepatic steatosis with the anticipation that these efforts will identify novel therapeutic targets. Under physiological conditions, the low steady-state triglyceride concentrations in the liver are attributable to a precise balance between acquisition by uptake of non-esterified fatty acids from the plasma and by de novo lipogenesis, versus triglyceride disposal by fatty acid oxidation and by the secretion of triglyceride-rich lipoproteins. In NAFLD patients, insulin resistance leads to hepatic steatosis by multiple mechanisms. Greater uptake rates of plasma non-esterified fatty acids are attributable to increased release from an expanded mass of adipose tissue as a consequence of diminished insulin responsiveness. Hyperinsulinemia promotes the transcriptional upregulation of genes that promote de novo lipogenesis in the liver. Increased hepatic lipid accumulation is not offset by fatty acid oxidation or by increased secretion rates of triglyceride-rich lipoproteins. This review discusses the molecular mechanisms by which hepatic triglyceride homeostasis is achieved under normal conditions, as well as the metabolic alterations that occur in the setting of insulin resistance and contribute to the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Yuki Kawano
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115 USA
| | - David E. Cohen
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115 USA
| |
Collapse
|
94
|
Insulin-stimulated degradation of apolipoprotein B100: roles of class II phosphatidylinositol-3-kinase and autophagy. PLoS One 2013; 8:e57590. [PMID: 23516411 PMCID: PMC3596368 DOI: 10.1371/journal.pone.0057590] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 01/27/2013] [Indexed: 11/24/2022] Open
Abstract
Both in humans and animal models, an acute increase in plasma insulin levels, typically following meals, leads to transient depression of hepatic secretion of very low density lipoproteins (VLDL). One contributing mechanism for the decrease in VLDL secretion is enhanced degradation of apolipoprotein B100 (apoB100), which is required for VLDL formation. Unlike the degradation of nascent apoB100, which occurs in the endoplasmic reticulum (ER), insulin-stimulated apoB100 degradation occurs post-ER and is inhibited by pan-phosphatidylinositol (PI)3-kinase inhibitors. It is unclear, however, which of the three classes of PI3-kinases is required for insulin-stimulated apoB100 degradation, as well as the proteolytic machinery underlying this response. Class III PI3-kinase is not activated by insulin, but the other two classes are. By using a class I-specific inhibitor and siRNA to the major class II isoform in liver, we now show that it is class II PI3-kinase that is required for insulin-stimulated apoB100 degradation in primary mouse hepatocytes. Because the insulin-stimulated process resembles other examples of apoB100 post-ER proteolysis mediated by autophagy, we hypothesized that the effects of insulin in autophagy-deficient mouse primary hepatocytes would be attenuated. Indeed, apoB100 degradation in response to insulin was significantly impaired in two types of autophagy-deficient hepatocytes. Together, our data demonstrate that insulin-stimulated apoB100 degradation in the liver requires both class II PI3-kinase activity and autophagy.
Collapse
|
95
|
Abstract
LDs (lipid droplets) carrying TAG (triacylglycerol) and cholesteryl esters are emerging as dynamic cellular organelles that are generated in nearly every cell. They play a key role in lipid and membrane homoeostasis. Abnormal LD dynamics are associated with the pathophysiology of many metabolic diseases, such as obesity, diabetes, atherosclerosis, fatty liver and even cancer. Chylomicrons, stable droplets also consisting of TAG and cholesterol are generated in the intestinal epithelium to transport exogenous (dietary) lipids after meals from the small intestine to tissues for degradation. Defective chylomicron formation is responsible for inherited lipoprotein deficiencies, including abetalipoproteinaemia, hypobetalipoproteinaemia and chylomicron retention disease. These are disorders sharing characteristics such as fat malabsorption, low levels of circulating lipids and fat-soluble vitamins, failure to thrive in early childhood, ataxic neuropathy and visual impairment. Thus understanding the molecular mechanisms governing the dynamics of LDs and chylomicrons, namely, their biogenesis, growth, maintenance and degradation, will not only clarify their molecular role, but might also provide additional indications to treatment of metabolic diseases. In this review, we highlight the role of two small GTPases [ARFRP1 (ADP-ribosylation factor related protein 1) and ARL1 (ADP-ribosylation factor-like 1)] and their downstream targets acting on the trans-Golgi (Golgins and Rab proteins) on LD and chylomicron formation.
Collapse
|
96
|
Abstract
The underlying causes of nonalcoholic fatty liver disease are unclear, although recent evidence has implicated the endoplasmic reticulum in both the development of steatosis and progression to nonalcoholic steatohepatitis. Disruption of endoplasmic reticulum homeostasis, often termed ER stress, has been observed in liver and adipose tissue of humans with nonalcoholic fatty liver disease and/or obesity. Importantly, the signaling pathway activated by disruption of endoplasmic reticulum homeostasis, the unfolded protein response, has been linked to lipid and membrane biosynthesis, insulin action, inflammation, and apoptosis. Therefore, understanding the mechanisms that disrupt endoplasmic reticulum homeostasis in nonalcoholic fatty liver disease and the role of the unfolded protein response in the broader context of chronic, metabolic diseases have become topics of intense investigation. The present review examines the endoplasmic reticulum and the unfolded protein response in the context of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Michael J Pagliassotti
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
97
|
Chang MI, Puder M, Gura KM. The use of fish oil lipid emulsion in the treatment of intestinal failure associated liver disease (IFALD). Nutrients 2012; 4:1828-50. [PMID: 23363993 PMCID: PMC3546610 DOI: 10.3390/nu4121828] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 11/11/2012] [Accepted: 11/19/2012] [Indexed: 01/07/2023] Open
Abstract
Since 2004, fish oil based lipid emulsions have been used in the treatment of intestinal failure associated liver disease, with a noticeable impact on decreasing the incidence of morbidity and mortality of this often fatal condition. With this new therapy, however, different approaches have emerged as well as concerns about potential risks with using fish oil as a monotherapy. This review will discuss the experience to date with this lipid emulsion along with the rational for its use, controversies and concerns.
Collapse
|
98
|
Chamberlain JM, O'Dell C, Sparks CE, Sparks JD. Insulin suppression of apolipoprotein B in McArdle RH7777 cells involves increased sortilin 1 interaction and lysosomal targeting. Biochem Biophys Res Commun 2012; 430:66-71. [PMID: 23159624 DOI: 10.1016/j.bbrc.2012.11.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 11/06/2012] [Indexed: 12/16/2022]
Abstract
Insulin suppresses secretion of very low density lipoprotein (VLDL) apolipoprotein (apo) B in primary rodent hepatocytes (RH) by favoring the degradation of B100, the larger form of apo B, through post-endoplasmic reticulum proteolysis. Sortilin 1 (sort1), a multi-ligand sorting receptor, has been proposed as a mediator of lysosomal B100 degradation by directing B100 in pre-VLDL to lysosomes rather than allowing maturation to VLDL and secretion. The purpose of our studies was to investigate the role of sort1 in insulin-dependent degradation of apo B. Using liver derived McArdle RH7777 (McA) cells, we demonstrate that insulin suppresses VLDL B100 secretion via a phosphatidylinositide 3-kinase (PI3K) dependent process that is inhibitable by wortmannin in a fashion similar to RH. Using McA cells and in situ cross-linking, we demonstrate that insulin acutely (30min) stimulates the interaction of B100 with sort1. The insulin-induced interaction of sort1-B100 is markedly enhanced when lysosomal degradation is inhibited by Bafilomycin A1 (BafA1), an inhibitor of lysosomal acidification. As BafA1 also prevents insulin suppressive effects on apo B secretion, our results suggest that sort1-B100 interaction stimulated by insulin transiently accumulates with BafA1 and favors B100 secretion by default.
Collapse
Affiliation(s)
- Jeffrey M Chamberlain
- Department of Pathology & Laboratory Medicine, University of Rochester School of Medicine & Dentistry, Box 626, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
99
|
A malfunction in triglyceride transfer from the intracellular lipid pool to apoB in enterocytes of SOD1-deficient mice. FEBS Lett 2012; 586:4289-95. [PMID: 23098755 DOI: 10.1016/j.febslet.2012.09.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/28/2012] [Indexed: 12/16/2022]
Abstract
We compared lipid metabolism in the intestines of Sod1-knockout mice with that found in wild-type mice to elucidate the impact of oxidative stress in vivo. A high-fat diet in wild-type mice induced postprandial hypertriglyceridemia, but this adaptive response was impaired in Sod1-knockout mice. While fewer triglycerides were secreted to the blood in the form of triglyceride-rich lipoprotein, more lipid droplets accumulated in the enterocytes of Sod1-knockout mice fed a high-fat diet. These data collectively suggest that high-fat diet induces oxidative stress, inhibits lipid secretion to the blood, and ultimately leads to dysfunctional lipid metabolism in enterocytes.
Collapse
|
100
|
Inhibition of cholesterol absorption: targeting the intestine. Pharm Res 2012; 29:3235-50. [PMID: 22923351 DOI: 10.1007/s11095-012-0858-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/06/2012] [Indexed: 01/06/2023]
Abstract
Atherosclerosis, the gradual formation of a lipid-rich plaque in the arterial wall is the primary cause of Coronary Artery Disease (CAD), the leading cause of mortality worldwide. Hypercholesterolemia, elevated circulating cholesterol, was identified as a key risk factor for CAD in epidemiological studies. Since the approval of Mevacor in 1987, the primary therapeutic intervention for hypercholesterolemia has been statins, drugs that inhibit the biosynthesis of cholesterol. With improved understanding of the risks associated with elevated cholesterol levels, health agencies are recommending reductions in cholesterol that are not achievable in every patient with statins alone, underlying the need for improved combination therapies. The whole body cholesterol pool is derived from two sources, biosynthesis and diet. Although statins are effective at reducing the biosynthesis of cholesterol, they do not inhibit the absorption of cholesterol, making this an attractive target for adjunct therapies. This report summarizes the efforts to target the gastrointestinal absorption of cholesterol, with emphasis on specifically targeting the gastrointestinal tract to avoid the off-target effects sometimes associated with systemic exposure.
Collapse
|