51
|
Strijkers GJ, Araujo EC, Azzabou N, Bendahan D, Blamire A, Burakiewicz J, Carlier PG, Damon B, Deligianni X, Froeling M, Heerschap A, Hollingsworth KG, Hooijmans MT, Karampinos DC, Loudos G, Madelin G, Marty B, Nagel AM, Nederveen AJ, Nelissen JL, Santini F, Scheidegger O, Schick F, Sinclair C, Sinkus R, de Sousa PL, Straub V, Walter G, Kan HE. Exploration of New Contrasts, Targets, and MR Imaging and Spectroscopy Techniques for Neuromuscular Disease - A Workshop Report of Working Group 3 of the Biomedicine and Molecular Biosciences COST Action BM1304 MYO-MRI. J Neuromuscul Dis 2020; 6:1-30. [PMID: 30714967 PMCID: PMC6398566 DOI: 10.3233/jnd-180333] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuromuscular diseases are characterized by progressive muscle degeneration and muscle weakness resulting in functional disabilities. While each of these diseases is individually rare, they are common as a group, and a large majority lacks effective treatment with fully market approved drugs. Magnetic resonance imaging and spectroscopy techniques (MRI and MRS) are showing increasing promise as an outcome measure in clinical trials for these diseases. In 2013, the European Union funded the COST (co-operation in science and technology) action BM1304 called MYO-MRI (www.myo-mri.eu), with the overall aim to advance novel MRI and MRS techniques for both diagnosis and quantitative monitoring of neuromuscular diseases through sharing of expertise and data, joint development of protocols, opportunities for young researchers and creation of an online atlas of muscle MRI and MRS. In this report, the topics that were discussed in the framework of working group 3, which had the objective to: Explore new contrasts, new targets and new imaging techniques for NMD are described. The report is written by the scientists who attended the meetings and presented their data. An overview is given on the different contrasts that MRI can generate and their application, clinical needs and desired readouts, and emerging methods.
Collapse
Affiliation(s)
| | - Ericky C.A. Araujo
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Noura Azzabou
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | | | - Andrew Blamire
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Jedrek Burakiewicz
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pierre G. Carlier
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Bruce Damon
- Vanderbilt University Medical Center, Nashville, USA
| | - Xeni Deligianni
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland & Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | | | - Arend Heerschap
- Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | | | | | | | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Armin M. Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany & Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Francesco Santini
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland & Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Olivier Scheidegger
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Fritz Schick
- University of Tübingen, Section on Experimental Radiology, Tübingen, Germany
| | | | | | | | - Volker Straub
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | | | - Hermien E. Kan
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
52
|
Strandberg K, Ayoglu B, Roos A, Reza M, Niks E, Signorelli M, Fasterius E, Pontén F, Lochmüller H, Domingos J, Ala P, Muntoni F, Aartsma-Rus A, Spitali P, Nilsson P, Szigyarto CAK. Blood-derived biomarkers correlate with clinical progression in Duchenne muscular dystrophy. J Neuromuscul Dis 2020; 7:231-246. [PMID: 32390640 PMCID: PMC7369103 DOI: 10.3233/jnd-190454] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Duchenne Muscular Dystrophy is a severe, incurable disorder caused by mutations in the dystrophin gene. The disease is characterized by decreased muscle function, impaired muscle regeneration and increased inflammation. In a clinical context, muscle deterioration, is evaluated using physical tests and analysis of muscle biopsies, which fail to accurately monitor the disease progression. OBJECTIVES This study aims to confirm and asses the value of blood protein biomarkers as disease progression markers using one of the largest longitudinal collection of samples. METHODS A total of 560 samples, both serum and plasma, collected at three clinical sites are analyzed using a suspension bead array platform to assess 118 proteins targeted by 250 antibodies in microliter amount of samples. RESULTS Nine proteins are confirmed as disease progression biomarkers in both plasma and serum. Abundance of these biomarkers decreases as the disease progresses but follows different trajectories. While carbonic anhydrase 3, microtubule associated protein 4 and collagen type I alpha 1 chain decline rather constantly over time, myosin light chain 3, electron transfer flavoprotein A, troponin T, malate dehydrogenase 2, lactate dehydrogenase B and nestin plateaus in early teens. Electron transfer flavoprotein A, correlates with the outcome of 6-minutes-walking-test whereas malate dehydrogenase 2 together with myosin light chain 3, carbonic anhydrase 3 and nestin correlate with respiratory capacity. CONCLUSIONS Nine biomarkers have been identified that correlate with disease milestones, functional tests and respiratory capacity. Together these biomarkers recapitulate different stages of the disorder that, if validated can improve disease progression monitoring.
Collapse
Affiliation(s)
- Kristin Strandberg
- Department of Protein Science, School of Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Burcu Ayoglu
- Department of Protein Science, SciLifeLab, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Andreas Roos
- MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
- Leibniz-Institut für Analytische Wissenschaften (ISAS), Dortmund, Germany
| | - Mojgan Reza
- MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Erik Niks
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mirko Signorelli
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik Fasterius
- Department of Protein Science, School of Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Fredrik Pontén
- Department of Immunology, SciLifeLab, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hanns Lochmüller
- MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
- Department of Neuropediatrics and Muscle Disorders, Medical Center –University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Centro Nacional de Análisis Genómico (CNAGCRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Joana Domingos
- The Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, UK
| | - Pierpaolo Ala
- The Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, UK
- National Institute for Health Research, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Annemieke Aartsma-Rus
- MRC Centre for Neuromuscular Diseases, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Nilsson
- Department of Protein Science, SciLifeLab, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Cristina Al-Khalili Szigyarto
- Department of Protein Science, School of Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Stockholm, Sweden
- Department of Protein Science, SciLifeLab, KTH-Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
53
|
Chrzanowski SM, Darras BT, Rutkove SB. The Value of Imaging and Composition-Based Biomarkers in Duchenne Muscular Dystrophy Clinical Trials. Neurotherapeutics 2020; 17:142-152. [PMID: 31879850 PMCID: PMC7007477 DOI: 10.1007/s13311-019-00825-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As the drug development pipeline for Duchenne muscular dystrophy (DMD) rapidly advances, clinical trial outcomes need to be optimized. Effective assessment of disease burden, natural history progression, and response to therapy in clinical trials for Duchenne muscular dystrophy are critical factors for clinical trial success. By choosing optimal biomarkers to better assess therapeutic efficacy, study costs and sample size requirements can be reduced. Currently, functional measures continue to serve as the primary outcome for the majority of DMD clinical trials. Quantitative measures of muscle health, including magnetic resonance imaging and spectroscopy, electrical impedance myography, and ultrasound, sensitively identify diseased muscle, disease progression, and response to a therapeutic intervention. Furthermore, such non-invasive techniques have the potential to identify disease pathology prior to onset of clinical symptoms. Despite robust supportive evidence, non-invasive quantitative techniques are still not frequently utilized in clinical trials for Duchenne muscular dystrophy. Non-invasive quantitative techniques have demonstrated the ability to quantify disease progression and potential response to therapeutic intervention, and should be used as a supplement to current standard functional measures. Such methods have the potential to significantly accelerate the development and approval of therapies for DMD.
Collapse
Affiliation(s)
- Stephen M Chrzanowski
- Department of Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA.
| | - Basil T Darras
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
54
|
Ropars J, Gravot F, Ben Salem D, Rousseau F, Brochard S, Pons C. Muscle MRI: A biomarker of disease severity in Duchenne muscular dystrophy? A systematic review. Neurology 2019; 94:117-133. [PMID: 31892637 DOI: 10.1212/wnl.0000000000008811] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To assess the evidence of a relationship between muscle MRI and disease severity in Duchenne muscular dystrophy (DMD). METHODS We conducted a systematic review of studies that analyzed correlations between MRI measurements and motor function in patients with DMD. PubMed, Cochrane, Scopus, and Web of Science were searched using relevant keywords and inclusion/exclusion criteria (January 1, 1990-January 31, 2019). We evaluated article quality using the Joanna Briggs Institute scale. Information regarding the samples included, muscles evaluated, MRI protocols and motor function tests used was collected from each article. Correlations between MRI measurements and motor function were reported exhaustively. RESULTS Seventeen of 1,629 studies identified were included. Most patients included were ambulant with a mean age of 8.9 years. Most studies evaluated lower limb muscles. Moderate to excellent correlations were found between MRI measurements and motor function. The strongest correlations were found for quantitative MRI measurements such as fat fraction or mean T2. Correlations were stronger for lower leg muscles such as soleus. One longitudinal study reported that changes in soleus mean T2 were highly correlated with changes in motor function. CONCLUSION The findings of this systematic review showed that MRI measurements can be used as biomarkers of disease severity in ambulant patients with DMD. Guidelines are proposed to help clinicians choose the most appropriate MRI measurements and muscles to evaluate. Studies exploring upper limb muscles, other stages of the disease, and sensitivity of measurements to change are needed.
Collapse
Affiliation(s)
- Juliette Ropars
- From the Department of Pediatrics (J.R., F.G.), CHU Brest, Brest, France; Neuromuscular Center (J.R., S.B., C.P), Brest, France; Laboratoire du Traitement de l'Information Médicale (J.R., D.B.S., F.R, S.B., C.P.), LaTIM INSERM UMR1101, Brest, France; Department of Radiology (D.B.S.), CHU Brest, Brest, France; Institut Mines Télécom Atlantiques (F.R), Brest, France; and Department of Pediatric Physical and Medical Rehabilitation (S.B., C.P.), Fondation ILDYS, Brest, France.
| | - France Gravot
- From the Department of Pediatrics (J.R., F.G.), CHU Brest, Brest, France; Neuromuscular Center (J.R., S.B., C.P), Brest, France; Laboratoire du Traitement de l'Information Médicale (J.R., D.B.S., F.R, S.B., C.P.), LaTIM INSERM UMR1101, Brest, France; Department of Radiology (D.B.S.), CHU Brest, Brest, France; Institut Mines Télécom Atlantiques (F.R), Brest, France; and Department of Pediatric Physical and Medical Rehabilitation (S.B., C.P.), Fondation ILDYS, Brest, France
| | - Douraied Ben Salem
- From the Department of Pediatrics (J.R., F.G.), CHU Brest, Brest, France; Neuromuscular Center (J.R., S.B., C.P), Brest, France; Laboratoire du Traitement de l'Information Médicale (J.R., D.B.S., F.R, S.B., C.P.), LaTIM INSERM UMR1101, Brest, France; Department of Radiology (D.B.S.), CHU Brest, Brest, France; Institut Mines Télécom Atlantiques (F.R), Brest, France; and Department of Pediatric Physical and Medical Rehabilitation (S.B., C.P.), Fondation ILDYS, Brest, France
| | - François Rousseau
- From the Department of Pediatrics (J.R., F.G.), CHU Brest, Brest, France; Neuromuscular Center (J.R., S.B., C.P), Brest, France; Laboratoire du Traitement de l'Information Médicale (J.R., D.B.S., F.R, S.B., C.P.), LaTIM INSERM UMR1101, Brest, France; Department of Radiology (D.B.S.), CHU Brest, Brest, France; Institut Mines Télécom Atlantiques (F.R), Brest, France; and Department of Pediatric Physical and Medical Rehabilitation (S.B., C.P.), Fondation ILDYS, Brest, France
| | - Sylvain Brochard
- From the Department of Pediatrics (J.R., F.G.), CHU Brest, Brest, France; Neuromuscular Center (J.R., S.B., C.P), Brest, France; Laboratoire du Traitement de l'Information Médicale (J.R., D.B.S., F.R, S.B., C.P.), LaTIM INSERM UMR1101, Brest, France; Department of Radiology (D.B.S.), CHU Brest, Brest, France; Institut Mines Télécom Atlantiques (F.R), Brest, France; and Department of Pediatric Physical and Medical Rehabilitation (S.B., C.P.), Fondation ILDYS, Brest, France
| | - Christelle Pons
- From the Department of Pediatrics (J.R., F.G.), CHU Brest, Brest, France; Neuromuscular Center (J.R., S.B., C.P), Brest, France; Laboratoire du Traitement de l'Information Médicale (J.R., D.B.S., F.R, S.B., C.P.), LaTIM INSERM UMR1101, Brest, France; Department of Radiology (D.B.S.), CHU Brest, Brest, France; Institut Mines Télécom Atlantiques (F.R), Brest, France; and Department of Pediatric Physical and Medical Rehabilitation (S.B., C.P.), Fondation ILDYS, Brest, France
| |
Collapse
|
55
|
Detection of collagens by multispectral optoacoustic tomography as an imaging biomarker for Duchenne muscular dystrophy. Nat Med 2019; 25:1905-1915. [PMID: 31792454 DOI: 10.1038/s41591-019-0669-y] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
Biomarkers for monitoring of disease progression and response to therapy are lacking for muscle diseases such as Duchenne muscular dystrophy. Noninvasive in vivo molecular imaging with multispectral optoacoustic tomography (MSOT) uses pulsed laser light to induce acoustic pressure waves, enabling the visualization of endogenous chromophores. Here we describe an application of MSOT, in which illumination in the near- and extended near-infrared ranges from 680-1,100 nm enables the visualization and quantification of collagen content. We first demonstrated the feasibility of this approach to noninvasive quantification of tissue fibrosis in longitudinal studies in a large-animal Duchenne muscular dystrophy model in pigs, and then applied this approach to pediatric patients. MSOT-derived collagen content measurements in skeletal muscle were highly correlated to the functional status of the patients and provided additional information on molecular features as compared to magnetic resonance imaging. This study highlights the potential of MSOT imaging as a noninvasive, age-independent biomarker for the implementation and monitoring of newly developed therapies in muscular diseases.
Collapse
|
56
|
Hu HH, Branca RT, Hernando D, Karampinos DC, Machann J, McKenzie CA, Wu HH, Yokoo T, Velan SS. Magnetic resonance imaging of obesity and metabolic disorders: Summary from the 2019 ISMRM Workshop. Magn Reson Med 2019; 83:1565-1576. [PMID: 31782551 DOI: 10.1002/mrm.28103] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Abstract
More than 100 attendees from Australia, Austria, Belgium, Canada, China, Germany, Hong Kong, Indonesia, Japan, Malaysia, the Netherlands, the Philippines, Republic of Korea, Singapore, Sweden, Switzerland, the United Kingdom, and the United States convened in Singapore for the 2019 ISMRM-sponsored workshop on MRI of Obesity and Metabolic Disorders. The scientific program brought together a multidisciplinary group of researchers, trainees, and clinicians and included sessions in diabetes and insulin resistance; an update on recent advances in water-fat MRI acquisition and reconstruction methods; with applications in skeletal muscle, bone marrow, and adipose tissue quantification; a summary of recent findings in brown adipose tissue; new developments in imaging fat in the fetus, placenta, and neonates; the utility of liver elastography in obesity studies; and the emerging role of radiomics in population-based "big data" studies. The workshop featured keynote presentations on nutrition, epidemiology, genetics, and exercise physiology. Forty-four proffered scientific abstracts were also presented, covering the topics of brown adipose tissue, quantitative liver analysis from multiparametric data, disease prevalence and population health, technical and methodological developments in data acquisition and reconstruction, newfound applications of machine learning and neural networks, standardization of proton density fat fraction measurements, and X-nuclei applications. The purpose of this article is to summarize the scientific highlights from the workshop and identify future directions of work.
Collapse
Affiliation(s)
- Houchun H Hu
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio
| | - Rosa Tamara Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Diego Hernando
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jürgen Machann
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research, Tübingen, Germany.,Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Charles A McKenzie
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Holden H Wu
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, California
| | - Takeshi Yokoo
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - S Sendhil Velan
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore.,Singapore BioImaging Consortium, Agency for Science Technology and Research, Singapore
| |
Collapse
|
57
|
Ogier AC, Heskamp L, Michel CP, Fouré A, Bellemare M, Le Troter A, Heerschap A, Bendahan D. A novel segmentation framework dedicated to the follow‐up of fat infiltration in individual muscles of patients with neuromuscular disorders. Magn Reson Med 2019; 83:1825-1836. [DOI: 10.1002/mrm.28030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/30/2019] [Accepted: 09/17/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Augustin C. Ogier
- Aix Marseille UniversityUniversité de ToulonCNRSLIS Marseille France
- Aix Marseille UniversityCNRSCRMBM Marseille France
| | - Linda Heskamp
- Department of Radiology and Nuclear Medicine Radboud University Medical Center Nijmegen Netherlands
| | | | - Alexandre Fouré
- Aix Marseille UniversityCNRSCRMBM Marseille France
- Laboratoire Interuniversitaire de Biologie de la Motricité Université Claude Bernard Lyon 1 Villeurbanne France
| | | | | | - Arend Heerschap
- Department of Radiology and Nuclear Medicine Radboud University Medical Center Nijmegen Netherlands
| | | |
Collapse
|
58
|
Hafner P, Bonati U, Klein A, Rubino D, Gocheva V, Schmidt S, Schroeder J, Bernert G, Laugel V, Steinlin M, Capone A, Gloor M, Bieri O, Hemkens LG, Speich B, Zumbrunn T, Gueven N, Fischer D. Effect of Combination l-Citrulline and Metformin Treatment on Motor Function in Patients With Duchenne Muscular Dystrophy: A Randomized Clinical Trial. JAMA Netw Open 2019; 2:e1914171. [PMID: 31664444 PMCID: PMC6824222 DOI: 10.1001/jamanetworkopen.2019.14171] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
IMPORTANCE Nitric oxide precursors, such as the amino acid l-arginine and the biguanide antidiabetic drug metformin, have been associated with metabolism and muscle function in patients with Duchenne muscular dystrophy (DMD). The treatment of DMD remains an unmet medical need. OBJECTIVE To evaluate the benefits and harms of a combination of l-citrulline and metformin treatment among patients with DMD. DESIGN, SETTING, AND PARTICIPANTS A single-center randomized double-blind placebo-controlled parallel-group clinical trial was conducted between December 12, 2013, and March 30, 2016, at the University Children's Hospital Basel in Switzerland. A total of 47 ambulant male patients aged 6.5 to 10 years with genetically confirmed DMD were recruited locally and from the patient registries of Switzerland, Germany, Austria, and France. Data were analyzed from April 6, 2016, to September 5, 2019. INTERVENTIONS Patients in the treatment group received 2500 mg of l-citrulline and 250 mg of metformin (combination therapy) 3 times a day for 26 weeks compared with patients in the control group, who received placebo. MAIN OUTCOMES AND MEASURES The primary end point was the change in transfer and standing posture, as assessed by the first dimension of the Motor Function Measure, version 32, from baseline to week 26. Secondary end points included assessments of timed function, quantitative muscle force, biomarkers for muscle necrosis, and adverse events. The 2 prespecified subgroups comprised patients who were able to walk 350 m or more in 6 minutes (stable subgroup) and patients who were not able to walk 350 m in 6 minutes (unstable subgroup) at baseline. RESULTS Among 49 ambulant male children with DMD who were screened for eligibility, 47 patients with a mean (SD) age of 8.2 (1.1) years were randomized to a treatment group receiving combination therapy (n = 23) or a control group receiving placebo (n = 24), and 45 patients completed the study. No significant differences between groups were found in the results of timed function and muscle force tests for overall, proximal and axial, and distal motor function. Among patients receiving combination therapy, the Motor Function Measure first dimension subscore decrease was 5.5% greater than that of patients receiving placebo (95% CI, -1.0% to 12.1%; P = .09). The administration of combination therapy had significantly favorable effects on the first dimension subscore decrease among the 29 patients in the stable subgroup (6.7%; 95% CI, 0.9%-12.6%; P = .03) but not among the 15 patients in the unstable subgroup (3.9%; 95% CI, -13.2% to 20.9%; P = .63). Overall, the treatment was well tolerated with only mild adverse effects. CONCLUSIONS AND RELEVANCE Treatment with combination therapy was not associated with an overall reduction in motor function decline among ambulant patients with DMD; however, a reduction in motor function decline was observed among the stable subgroup of patients treated with combination therapy. The statistically nonsignificant difference of distal motor function in favor of combination therapy and the reduced degeneration of muscle tissue appear to support the treatment concept, but the study may have lacked sufficient statistical power. Further research exploring this treatment option with a greater number of patients is warranted. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT01995032.
Collapse
Affiliation(s)
- Patricia Hafner
- Division of Pediatric Neurology, University Children's Hospital Basel, Basel, Switzerland
- Division of Neurology, Medical University Clinic, Kantonsspital Baselland, Bruderholz, Switzerland
| | - Ulrike Bonati
- Division of Pediatric Neurology, University Children's Hospital Basel, Basel, Switzerland
| | - Andrea Klein
- Division of Pediatric Neurology, University Children's Hospital Basel, Basel, Switzerland
- Division of Pediatric Neurology, University of Berne Hospital, Berne, Switzerland
- Division of Pediatric Neurology, Lausanne University Hospital, Lausanne, Switzerland
| | - Daniela Rubino
- Division of Pediatric Neurology, University Children's Hospital Basel, Basel, Switzerland
| | - Vanya Gocheva
- Division of Pediatric Neurology, University Children's Hospital Basel, Basel, Switzerland
| | - Simone Schmidt
- Division of Pediatric Neurology, University Children's Hospital Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Jonas Schroeder
- Division of Pediatric Neurology, University Children's Hospital Basel, Basel, Switzerland
| | - Günther Bernert
- Department of Pediatrics, Kaiser Franz Josef Hospital, Vienna, Austria
| | - Vincent Laugel
- Department of Pediatric Neurology, Strasbourg University Hospital, Strasbourg, France
| | - Maja Steinlin
- Division of Pediatric Neurology, University of Berne Hospital, Berne, Switzerland
| | - Andrea Capone
- Division of Pediatric Neurology, Children's Hospital, Aarau, Switzerland
| | - Monika Gloor
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Lars G. Hemkens
- Basel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Benjamin Speich
- Basel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Thomas Zumbrunn
- Clinical Trial Unit, Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Nuri Gueven
- Pharmacy, School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Dirk Fischer
- Division of Pediatric Neurology, University Children's Hospital Basel, Basel, Switzerland
- Division of Neurology, Medical University Clinic, Kantonsspital Baselland, Bruderholz, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
59
|
Reyngoudt H, Lopez Kolkovsky AL, Carlier PG. Free intramuscular Mg 2+ concentration calculated using both 31 P and 1 H NMRS-based pH in the skeletal muscle of Duchenne muscular dystrophy patients. NMR IN BIOMEDICINE 2019; 32:e4115. [PMID: 31184793 DOI: 10.1002/nbm.4115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/03/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
Early studies have demonstrated that (total) magnesium was decreased in skeletal muscle of Duchenne muscular dystrophy (DMD) patients. Free intramuscular Mg2+ can be derived from 31 P NMRS measurements. The value of free intramuscular magnesium concentration ([Mg2+ ]) is highly dependent on precise knowledge of intracellular pH, which is abnormally alkaline in dystrophic muscle, possibly due to an expanded interstitial space, potentially causing an underestimation of [Mg2+ ]. We have recently shown that intracellular pH can be derived using 1 H NMRS of carnosine. Our aim was to determine whether 31 P NMRS-based [Mg2+ ] is, in fact, abnormally low in DMD patients, taking advantage of the 1 H NMRS-based pH. A comparative analysis was, therefore, made between [Mg2+ ] values calculated with both 1 H and 31 P NMRS-based approaches to determine pH in 25 DMD patients, on a 3-T clinical NMR scanner. [Mg2+ ] was also assessed with 31 P NMRS only in (forearm or leg) skeletal muscle of 60 DMD patients and 63 age-matched controls. Additionally, phosphodiester levels as well as quantitative NMRI indices including water T2 , fat fraction, contractile cross-sectional area and one-year changes were evaluated. The main finding was that the significant difference in [Mg2+ ] between DMD patients and controls was preserved even when the intracellular pH determined with 1 H NMRS was similar in both groups. Consequently, we observed that [Mg2+ ] is significantly lower in DMD patients compared with controls in the larger database where only 31 P NMRS data were obtained. Significant yet weak correlations existed between [Mg2+ ] and PDE, water T2 and fat fraction. We concluded that low [Mg2+ ] is an actual finding in DMD, whether intracellular pH is normal or alkaline, and that it is a likely consequence of membrane leakiness. The response of Mg2+ to therapeutic treatment remains to be investigated in neuromuscular disorders. Free [Mg2+ ] determination with 31 P NMRS is highly dependent on a precise knowledge of intracellular pH. The pH of Duchenne muscular dystrophy (DMD) patients, as determined by 31 P NMRS, is abnormally alkaline. We have recently shown that intracellular pH could be determined using 1 H NMRS of carnosine, and that intracellular pH was alkaline in a proportion of, but not all, DMD patients with a 31 P NMRS-based alkaline pH. Taking advantage of this 1 H NMRS-based intracellular pH, we found that free intramuscular [Mg2+ ] is in fact abnormally low in DMD patients.
Collapse
Affiliation(s)
- Harmen Reyngoudt
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
- NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Alfredo L Lopez Kolkovsky
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
- NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Pierre G Carlier
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology, Paris, France
- NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| |
Collapse
|
60
|
Schlaffke L, Rehmann R, Rohm M, Otto LAM, de Luca A, Burakiewicz J, Baligand C, Monte J, den Harder C, Hooijmans MT, Nederveen A, Schlaeger S, Weidlich D, Karampinos DC, Stouge A, Vaeggemose M, D'Angelo MG, Arrigoni F, Kan HE, Froeling M. Multi-center evaluation of stability and reproducibility of quantitative MRI measures in healthy calf muscles. NMR IN BIOMEDICINE 2019; 32:e4119. [PMID: 31313867 DOI: 10.1002/nbm.4119] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 05/18/2023]
Abstract
The purpose of this study was to evaluate temporal stability, multi-center reproducibility and the influence of covariates on a multimodal MR protocol for quantitative muscle imaging and to facilitate its use as a standardized protocol for evaluation of pathology in skeletal muscle. Quantitative T2, quantitative diffusion and four-point Dixon acquisitions of the calf muscles of both legs were repeated within one hour. Sixty-five healthy volunteers (31 females) were included in one of eight 3-T MR systems. Five traveling subjects were examined in six MR scanners. Average values over all slices of water-T2 relaxation time, proton density fat fraction (PDFF) and diffusion metrics were determined for seven muscles. Temporal stability was tested with repeated measured ANOVA and two-way random intraclass correlation coefficient (ICC). Multi-center reproducibility of traveling volunteers was assessed by a two-way mixed ICC. The factors age, body mass index, gender and muscle were tested for covariance. ICCs of temporal stability were between 0.963 and 0.999 for all parameters. Water-T2 relaxation decreased significantly (P < 10-3 ) within one hour by ~ 1 ms. Multi-center reproducibility showed ICCs within 0.879-0.917 with the lowest ICC for mean diffusivity. Different muscles showed the highest covariance, explaining 20-40% of variance for observed parameters. Standardized acquisition and processing of quantitative muscle MRI data resulted in high comparability among centers. The imaging protocol exhibited high temporal stability over one hour except for water T2 relaxation times. These results show that data pooling is feasible and enables assembling data from patients with neuromuscular diseases, paving the way towards larger studies of rare muscle disorders.
Collapse
Affiliation(s)
- Lara Schlaffke
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- C.J., Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Robert Rehmann
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Marlena Rohm
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Louise A M Otto
- Brain Centre Rudolf Magnus, Department of Neurology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Alberto de Luca
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jedrzej Burakiewicz
- C.J., Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Celine Baligand
- C.J., Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jithsa Monte
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Chiel den Harder
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Melissa T Hooijmans
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Aart Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Sarah Schlaeger
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
| | - Anders Stouge
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Filippo Arrigoni
- Neuroimaging Lab, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Hermien E Kan
- C.J., Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Martijn Froeling
- Department of Radiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
61
|
Eresen A, Hafsa NE, Alic L, Birch SM, Griffin JF, Kornegay JN, Ji JX. Muscle percentage index as a marker of disease severity in golden retriever muscular dystrophy. Muscle Nerve 2019; 60:621-628. [PMID: 31397906 DOI: 10.1002/mus.26657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Golden retriever muscular dystrophy (GRMD) is a spontaneous X-linked canine model of Duchenne muscular dystrophy that resembles the human condition. Muscle percentage index (MPI) is proposed as an imaging biomarker of disease severity in GRMD. METHODS To assess MPI, we used MRI data acquired from nine GRMD samples using a 4.7 T small-bore scanner. A machine learning approach was used with eight raw quantitative mapping of MRI data images (T1m, T2m, two Dixon maps, and four diffusion tensor imaging maps), three types of texture descriptors (local binary pattern, gray-level co-occurrence matrix, gray-level run-length matrix), and a gradient descriptor (histogram of oriented gradients). RESULTS The confusion matrix, averaged over all samples, showed 93.5% of muscle pixels classified correctly. The classification, optimized in a leave-one-out cross-validation, provided an average accuracy of 80% with a discrepancy in overestimation for young (8%) and old (20%) dogs. DISCUSSION MPI could be useful for quantifying GRMD severity, but careful interpretation is needed for severe cases.
Collapse
Affiliation(s)
- Aydin Eresen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas
| | - Noor E Hafsa
- Department of Electrical and Computer Engineering, Texas A&M University, Doha, Qatar
| | - Lejla Alic
- Department of Electrical and Computer Engineering, Texas A&M University, Doha, Qatar.,Magnetic Detection & Imaging Group, Faculty of Science & Technology, University of Twente, Enschede, The Netherlands
| | - Sharla M Birch
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - John F Griffin
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Joe N Kornegay
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Jim X Ji
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas.,Department of Electrical and Computer Engineering, Texas A&M University, Doha, Qatar
| |
Collapse
|
62
|
Effectiveness of High-Speed T2-Corrected Multiecho MR Spectroscopic Method for Quantifying Thigh Muscle Fat Content in Boys With Duchenne Muscular Dystrophy. AJR Am J Roentgenol 2019; 212:1354-1360. [PMID: 30860898 DOI: 10.2214/ajr.18.20354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE. The purpose of this study was to investigate the potential of high-speed T2-corrected multiecho (HISTO) MR spectroscopy (MRS) for rapidly quantifying the fat content of thigh muscles in children with Duchenne muscular dystrophy (DMD). SUBJECTS AND METHODS. This study prospectively enrolled 58 boys with DMD (mean age, 7.5 years; range, 4-11 years) and 30 age-matched healthy boys (mean age, 7.2 years; range, 4-11 years) at one institution over a 1-year period. T1- and T2-weighted, multiecho Dixon, and HISTO sequences were performed on the right adductor magnus and vastus lateralis muscles. The fat fractions of these muscles were acquired from HISTO and multiecho Dixon images. An experienced radiologist graded the degree of fat infiltration of the adductor magnus and vastus lateralis muscles on axial T1-weighted images. The Bland-Altman method was used to assess the consistency and repeatability of the HISTO sequence. Pearson linear correlation analysis was used to determine the correlation coefficient relating HISTO fat fraction to multiecho Dixon fat fraction values. Spearman rank correlation analysis was used to assess the relation between the HISTO fat fraction values and T1-weighted image fat infiltration grades. The independent t test was used to compare the HISTO fat fraction values of the boys with DMD with those of the healthy control subjects. RESULTS. Bland-Altman analysis showed that 95.5% of the HISTO fat fraction values of the adductor magnus were within the 95% CI. HISTO fat fraction and multiecho Dixon fat fraction values of the adductor magnus and vastus lateralis muscles were highly positively correlated (adductor magnus, r = 0.983; vastus lateralis, r = 0.967; p < 0.0001). HISTO fat fraction values were also highly positively correlated with the grades of fat infiltration on T1-weighted images (adductor magnus, r = 0.911; vastus lateralis, r = 0.937; p < 0.0001). The HISTO fat fraction of the adductor magnus muscle was 33.3% ± 22.6% and of the vastus lateralis muscle was 25.6% ± 20.3% in patients with DMD. The corresponding values were 2.9% ± 2.1% and 2.3% ± 1.9% in the control group. The differences were statistically significant (p < 0.0001). CONCLUSION. The HISTO sequence is a rapid and feasible noninvasive MRS technique for quantifying the fat infiltration of thigh muscles in children with known or suspected DMD. It is useful for diagnosis and for assessment of disease activity and prognosis.
Collapse
|
63
|
Leung DG. Advancements in magnetic resonance imaging-based biomarkers for muscular dystrophy. Muscle Nerve 2019; 60:347-360. [PMID: 31026060 DOI: 10.1002/mus.26497] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2019] [Indexed: 12/26/2022]
Abstract
Recent years have seen steady progress in the identification of genetic muscle diseases as well as efforts to develop treatment for these diseases. Consequently, sensitive and objective new methods are required to identify and monitor muscle pathology. Magnetic resonance imaging offers multiple potential biomarkers of disease severity in the muscular dystrophies. This Review uses a pathology-based approach to examine the ways in which MRI and spectroscopy have been used to study muscular dystrophies. Methods that have been used to quantitate intramuscular fat, edema, fiber orientation, metabolism, fibrosis, and vascular perfusion are examined, and this Review describes how MRI can help diagnose these conditions and improve upon existing muscle biomarkers by detecting small increments of disease-related change. Important challenges in the implementation of imaging biomarkers, such as standardization of protocols and validating imaging measurements with respect to clinical outcomes, are also described.
Collapse
Affiliation(s)
- Doris G Leung
- Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, 716 North Broadway, Room 411, Baltimore, Maryland, 21205.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
64
|
Marty B, Carlier PG. Physiological and pathological skeletal muscle T1 changes quantified using a fast inversion-recovery radial NMR imaging sequence. Sci Rep 2019; 9:6852. [PMID: 31048765 PMCID: PMC6497638 DOI: 10.1038/s41598-019-43398-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
We investigated the response of skeletal muscle global T1 under different physiological and pathological conditions using an inversion-recovery radial T1 mapping sequence. Thirty five healthy volunteers, seven patients with Becker muscular dystrophy (BMD) and seven patients with sporadic inclusion body myositis (IBM) were investigated in order to evaluate the effects of gender, age, muscle group, exercise and pathological processes on global T1 values. In addition, the intramuscular fat content was measured using 3-point Dixon and the global T2 and water T2 (T2H2O) were determined with a multi-spin-echo sequence. In the muscles of healthy volunteers, there was no impact of age on global T1. However, we measured a significant effect of sex and muscle group. After exercise, a significant 7.7% increase of global T1 was measured in the recruited muscles, and global T1 variations were highly correlated to T2H2O variations (R = 0.91). In pathologies, global T1 values were reduced in fat infiltrated muscles. When fat fraction was taken into account, global T1 values were higher in IBM patients compared to BMD. Global T1 variations are a sensitive indicator of tissue changes in skeletal muscle related to several physiological and pathological events.
Collapse
Affiliation(s)
- Benjamin Marty
- Institute of Myology, Neuromuscular Investigation Center, NMR Laboratory, Paris, France. .,CEA, DRF, IBFJ, MIRCen, NMR Laboratory, Paris, France.
| | - Pierre G Carlier
- Institute of Myology, Neuromuscular Investigation Center, NMR Laboratory, Paris, France.,CEA, DRF, IBFJ, MIRCen, NMR Laboratory, Paris, France
| |
Collapse
|
65
|
Batra A, Vohra RS, Chrzanowski SM, Hammers DW, Lott DJ, Vandenborne K, Walter GA, Forbes SC. Effects of PDE5 inhibition on dystrophic muscle following an acute bout of downhill running and endurance training. J Appl Physiol (1985) 2019; 126:1737-1745. [PMID: 30946638 DOI: 10.1152/japplphysiol.00664.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lack of sarcolemma-localized neuronal nitric oxide synthase mu (nNOSμ) contributes to muscle damage and fatigue in dystrophic muscle. In this study, we examined the effects of compensating for lack of nNOSμ with a phosphodiesterase type 5 (PDE5) inhibitor in mdx mice following downhill running and endurance training. Dystrophic mice (mdx) were treated with sildenafil citrate and compared with untreated mdx and wild-type mice after an acute bout of downhill running and during a progressive low-intensity treadmill running program (5 days/wk, 4 wk). Magnetic resonance imaging (MRI) and spectroscopy (MRS) transverse relaxation time constant (T2) of hindlimb and forelimb muscles were measured as a marker of muscle damage after downhill running and throughout training. The MRI blood oxygenation level dependence (BOLD) response and 31phosphorus MRS (31P-MRS) data were acquired after stimulated muscle contractions. After downhill running, the increase in T2 was attenuated (P < 0.05) in treated mdx and wild-type mice compared with untreated mdx. During training, resting T2 values did not change in wild-type and mdx mice from baseline values; however, the running distance completed during training was greater (P < 0.05) in treated mdx (>90% of target distance) and wild-type (100%) than untreated mdx (60%). The post-contractile BOLD response was greater (P < 0.05) in treated mdx that trained than untreated mdx, with no differences in muscle oxidative capacity, as measured by 31P-MRS. Our findings indicate that PDE5 inhibition reduces muscle damage after a single bout of downhill running and improves performance during endurance training in dystrophic mice, possibly because of enhanced microvascular function. NEW & NOTEWORTHY This study examined the combined effects of PDE5 inhibition and exercise in dystrophic muscle using high-resolution magnetic resonance imaging and spectroscopy. Our findings demonstrated that sildenafil citrate reduces muscle damage after a single bout of downhill running, improves endurance-training performance, and enhances microvascular function in dystrophic muscle. Collectively, the results support the combination of exercise and PDE5 inhibition as a therapeutic approach in muscular dystrophies lacking nNOSμ.
Collapse
Affiliation(s)
- Abhinandan Batra
- Department of Physical Therapy, University of Florida , Gainesville, Florida
| | - Ravneet S Vohra
- Department of Physical Therapy, University of Florida , Gainesville, Florida
| | - Steve M Chrzanowski
- Department of Physiology and Therapeutics, University of Florida , Gainesville, Florida
| | - David W Hammers
- Department of Pharmacology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Donovan J Lott
- Department of Physical Therapy, University of Florida , Gainesville, Florida
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida , Gainesville, Florida
| | - Glenn A Walter
- Department of Physiology and Therapeutics, University of Florida , Gainesville, Florida
| | - Sean C Forbes
- Department of Physical Therapy, University of Florida , Gainesville, Florida
| |
Collapse
|
66
|
Yin L, Xie ZY, Xu HY, Zheng SS, Wang ZX, Xiao JX, Yuan Y. T2 Mapping and Fat Quantification of Thigh Muscles in Children with Duchenne Muscular Dystrophy. Curr Med Sci 2019; 39:138-145. [PMID: 30868504 DOI: 10.1007/s11596-019-2012-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/12/2018] [Indexed: 11/24/2022]
Abstract
Quantitative magnetic resonance image (MRI) in individual muscles may be useful for monitoring disease progression in Duchenne muscular dystrophy (DMD). The purpose of this study was to measure T2 relaxation time of thigh muscles in children with DMD and healthy boys, and to correlate the T2 relaxation time of muscles with the fat fraction (FF) at quantitative magnetic resonance and results of clinical assessment. Thirty-two boys with DMD and 18 healthy boys were evaluated with T2 mapping and three-point Dixon MRI. Age, body mass index (BMI), muscle strength assessment, timed functional tests (time to walk or run 10 metres, rise from the floor and ascend four stairs), and the North Star Ambulatory Assessment (NSAA) were evaluated. Spearman's correlation was used to assess the relationships between FF and clinical assessments and T2 relaxation time. The mean T2 relaxation time of thigh muscles in DMD was significantly longer than that in the control group (P<0.05), except for the gracilis (P=0.952). The gracilis, sartorius and adductor longus were relatively spared by fatty infiltration in DMD patients. The T2 relaxation time was correlated significantly with the mean FF in all muscles. Age, BMI, total muscle strength score, timed functional tests and NSAA were significantly correlated with the overall mean T2 relaxation time. T2 mapping may prove clinically useful in monitoring muscle changes as a result of the disease process and in predicting the outcome of DMD patients.
Collapse
Affiliation(s)
- Liang Yin
- Department of Radiology, Peking University First Hospital, Beijing, 100034, China
| | - Zhi-Ying Xie
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Hai-Yan Xu
- Department of Radiology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Sui-Sheng Zheng
- Department of Radiology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhao-Xia Wang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Jiang-Xi Xiao
- Department of Radiology, Peking University First Hospital, Beijing, 100034, China.
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
67
|
Connolly AM, Zaidman CM, Golumbek PT, Cradock MM, Flanigan KM, Kuntz NL, Finkel RS, McDonald CM, Iannaccone ST, Anand P, Siener CA, Florence JM, Lowes LP, Alfano LN, Johnson LB, Nicorici A, Nelson LL, Mendell JR. Twice‐weekly glucocorticosteroids in infants and young boys with Duchenne muscular dystrophy. Muscle Nerve 2019; 59:650-657. [DOI: 10.1002/mus.26441] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Anne M. Connolly
- Department of NeurologyWashington University School of Medicine in Saint Louis St Louis Missouri USA 63110
- Department of PediatricsWashington University School of Medicine in Saint Louis St Louis Missouri USA
| | - Craig M. Zaidman
- Department of NeurologyWashington University School of Medicine in Saint Louis St Louis Missouri USA 63110
- Department of PediatricsWashington University School of Medicine in Saint Louis St Louis Missouri USA
| | - Paul T. Golumbek
- Department of NeurologyWashington University School of Medicine in Saint Louis St Louis Missouri USA 63110
- Department of PediatricsWashington University School of Medicine in Saint Louis St Louis Missouri USA
| | - Mary M. Cradock
- Department of PediatricsWashington University School of Medicine in Saint Louis St Louis Missouri USA
| | - Kevin M. Flanigan
- Department of Pediatrics, Nationwide Children's HospitalOhio State University Columbus Ohio USA
| | - Nancy L. Kuntz
- Department of NeurologyNorthwestern University Feinberg School of Medicine Chicago Illinois USA
| | - Richard S. Finkel
- Department of PediatricsNemours Children's Hospital Orlando Florida USA
| | - Craig M. McDonald
- Department of Physical Medicine and RehabilitationUniversity of California, Davis Medical Center Sacramento California USA
| | - Susan T. Iannaccone
- Department of PediatricsUniversity of Texas Southwestern Medical Center Dallas Texas USA
| | - Pallavi Anand
- Department of NeurologyWashington University School of Medicine in Saint Louis St Louis Missouri USA 63110
| | - Catherine A. Siener
- Department of NeurologyWashington University School of Medicine in Saint Louis St Louis Missouri USA 63110
| | - Julaine M. Florence
- Department of NeurologyWashington University School of Medicine in Saint Louis St Louis Missouri USA 63110
| | - Linda P. Lowes
- Department of Pediatrics, Nationwide Children's HospitalOhio State University Columbus Ohio USA
| | - Lindsay N. Alfano
- Department of Pediatrics, Nationwide Children's HospitalOhio State University Columbus Ohio USA
| | - Linda B. Johnson
- Department of Physical Medicine and RehabilitationUniversity of California, Davis Medical Center Sacramento California USA
| | - Alina Nicorici
- Department of Physical Medicine and RehabilitationUniversity of California, Davis Medical Center Sacramento California USA
| | - Leslie L. Nelson
- Department of PediatricsUniversity of Texas Southwestern Medical Center Dallas Texas USA
| | - Jerry R. Mendell
- Department of Pediatrics, Nationwide Children's HospitalOhio State University Columbus Ohio USA
| | | |
Collapse
|
68
|
Paoletti M, Pichiecchio A, Cotti Piccinelli S, Tasca G, Berardinelli AL, Padovani A, Filosto M. Advances in Quantitative Imaging of Genetic and Acquired Myopathies: Clinical Applications and Perspectives. Front Neurol 2019; 10:78. [PMID: 30804884 PMCID: PMC6378279 DOI: 10.3389/fneur.2019.00078] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
In the last years, magnetic resonance imaging (MRI) has become fundamental for the diagnosis and monitoring of myopathies given its ability to show the severity and distribution of pathology, to identify specific patterns of damage distribution and to properly interpret a number of genetic variants. The advances in MR techniques and post-processing software solutions have greatly expanded the potential to assess pathological changes in muscle diseases, and more specifically of myopathies; a number of features can be studied and quantified, ranging from composition, architecture, mechanical properties, perfusion, and function, leading to what is known as quantitative MRI (qMRI). Such techniques can effectively provide a variety of information beyond what can be seen and assessed by conventional MR imaging; their development and application in clinical practice can play an important role in the diagnostic process and in assessing disease course and treatment response. In this review, we briefly discuss the current role of muscle MRI in diagnosing muscle diseases and describe in detail the potential and perspectives of the application of advanced qMRI techniques in this field.
Collapse
Affiliation(s)
- Matteo Paoletti
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Anna Pichiecchio
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Stefano Cotti Piccinelli
- Unit of Neurology, Center for Neuromuscular Diseases, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Giorgio Tasca
- Neurology Department, Dipartimento di Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Alessandro Padovani
- Unit of Neurology, Center for Neuromuscular Diseases, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Massimiliano Filosto
- Unit of Neurology, Center for Neuromuscular Diseases, ASST Spedali Civili and University of Brescia, Brescia, Italy
| |
Collapse
|
69
|
Gerhalter T, Gast LV, Marty B, Martin J, Trollmann R, Schüssler S, Roemer F, Laun FB, Uder M, Schröder R, Carlier PG, Nagel AM. 23 Na MRI depicts early changes in ion homeostasis in skeletal muscle tissue of patients with duchenne muscular dystrophy. J Magn Reson Imaging 2019; 50:1103-1113. [PMID: 30719784 DOI: 10.1002/jmri.26681] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a hereditary neuromuscular disease leading to progressive muscle wasting. Since there is a need for MRI variables that serve as early sensitive indicators of response to treatment, several quantitative MRI methods have been suggested for disease monitoring. PURPOSE To evaluate the potential of sodium (23 Na) and proton (1 H) MRI methods to assess early pathological changes in skeletal muscle of DMD. STUDY TYPE Prospective clinical study. POPULATION 23 Na and 1 H MRI of the right leg were performed in 13 patients with DMD (age 7.8 ± 2.4) and 14 healthy boys (age 9.5 ± 2.2). FIELD STRENGTH/SEQUENCE 3 T including a multiecho-spin-echo sequence, diffusion-weighted sequences, 1 H spectroscopy, 3-pt Dixon, and 23 Na ultrashort echo time sequences. ASSESSMENT We obtained water T2 maps, fat fraction (FF), pH, and diffusion properties of the skeletal muscle tissue. Moreover, total tissue sodium concentration (TSC) was calculated from the 23 Na sequence. Intracellular-weighted 23 Na signal (ICwS) was derived from 23 Na inversion-recovery imaging. STATISTICAL TESTS Results from DMD patients and controls were compared using Wilcoxon rank-sum tests and repeated analysis of variance (ANOVA). Spearman-rank correlations and area under the curve (AUC) were calculated to assess the performance of the different MRI methods to distinguish dystrophic from healthy muscle tissue. RESULTS FF, water T2 , and pH were higher in DMD patients (0.07 ± 0.03, 39.4 ± 0.8 msec, 7.06 ± 0.03, all P < 0.05) than in controls (0.02 ± 0.01, 36.0 ± 0.4 msec, 7.03 ± 0.02). No difference was observed in diffusion properties. TSC (26.0 ± 1.3 mM, P < 0.05) and ICwS (0.69 ± 0.05 a.u., P < 0.05) were elevated in DMD (controls: 16.5 ± 1.3 mM and 0.47 ± 0.04 a.u.). The ICwS was frequently abnormal in DMD even when water T2 , FF, and pH were in the normal range. 23 Na MRI showed higher AUC values in comparison to the 1 H methods. DATA CONCLUSION Sodium anomalies were regularly observed in patients with DMD compared with controls, and were present even in absence of fatty degenerative changes and water T2 increases. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1103-1113.
Collapse
Affiliation(s)
- Teresa Gerhalter
- NMR Laboratory, Institute of Myology, Paris, France.,NMR laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France.,Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Benjamin Marty
- NMR Laboratory, Institute of Myology, Paris, France.,NMR laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Jan Martin
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Regina Trollmann
- Department of Pediatrics, Division Neuropediatrics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stephanie Schüssler
- Department of Pediatrics, Division Neuropediatrics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frank Roemer
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frederik B Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rolf Schröder
- Department of Neuropathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Pierre G Carlier
- NMR Laboratory, Institute of Myology, Paris, France.,NMR laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
70
|
Eresen A, Alic L, Birch SM, Friedeck W, Griffin JF, Kornegay JN, Ji JX. Texture as an imaging biomarker for disease severity in golden retriever muscular dystrophy. Muscle Nerve 2019; 59:380-386. [PMID: 30461036 DOI: 10.1002/mus.26386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/11/2018] [Accepted: 11/16/2018] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Golden retriever muscular dystrophy (GRMD), an X-linked recessive disorder, causes similar phenotypic features to Duchenne muscular dystrophy (DMD). There is currently a need for a quantitative and reproducible monitoring of disease progression for GRMD and DMD. METHODS To assess severity in the GRMD, we analyzed texture features extracted from multi-parametric MRI (T1w, T2w, T1m, T2m, and Dixon images) using 5 feature extraction methods and classified using support vector machines. RESULTS A single feature from qualitative images can provide 89% maximal accuracy. Furthermore, 2 features from T1w, T2m, or Dixon images provided highest accuracy. When considering a tradeoff between scan-time and computational complexity, T2m images provided good accuracy at a lower acquisition and processing time and effort. CONCLUSIONS The combination of MRI texture features improved the classification accuracy for assessment of disease progression in GRMD with evaluation of the heterogenous nature of skeletal muscles as reflection of the histopathological changes. Muscle Nerve 59:380-386, 2019.
Collapse
Affiliation(s)
- Aydin Eresen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Lejla Alic
- Department of Electrical and Computer Engineering, Texas A&M University at Qatar, Doha, Qatar
| | - Sharla M Birch
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Wade Friedeck
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - John F Griffin
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Joe N Kornegay
- College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Jim X Ji
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA.,Department of Electrical and Computer Engineering, Texas A&M University at Qatar, Doha, Qatar
| |
Collapse
|
71
|
Alizai H, Chang G, Regatte RR. MR Imaging of the Musculoskeletal System Using Ultrahigh Field (7T) MR Imaging. PET Clin 2019; 13:551-565. [PMID: 30219187 DOI: 10.1016/j.cpet.2018.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
MR imaging is an indispensable instrument for the diagnosis of musculoskeletal diseases. In vivo MR imaging at 7T offers many advantages, including increased signal-to-noise ratio, higher spatial resolution, improved spectral resolution for spectroscopy, improved sensitivity for X-nucleus imaging, and decreased image acquisition times. There are also however technical challenges of imaging at a higher field strength compared with 1.5 and 3T MR imaging systems. We discuss the many potential opportunities as well as the challenges presented by 7T MR imaging systems and highlight recent developments in in vivo research imaging of musculoskeletal applications in general and cartilage, skeletal muscle, and bone in particular.
Collapse
Affiliation(s)
- Hamza Alizai
- Department of Radiology, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA.
| | - Gregory Chang
- Department of Radiology, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA
| | - Ravinder R Regatte
- Department of Radiology, New York University Langone Medical Center, 660 First Avenue, New York, NY 10016, USA
| |
Collapse
|
72
|
ten Dam L, de Visser M. Dystrophic Myopathies. Clin Neuroradiol 2019. [DOI: 10.1007/978-3-319-68536-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
73
|
Chrzanowski SM, Vohra RS, Lee-McMullen BA, Batra A, Spradlin RA, Morales J, Forbes S, Vandenborne K, Barton ER, Walter GA. Contrast-Enhanced Near-Infrared Optical Imaging Detects Exacerbation and Amelioration of Murine Muscular Dystrophy. Mol Imaging 2018; 16:1536012117732439. [PMID: 29271299 PMCID: PMC5985549 DOI: 10.1177/1536012117732439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Assessment of muscle pathology is a key outcome measure to measure the success of
clinical trials studying muscular dystrophies; however, few robust minimally invasive
measures exist. Indocyanine green (ICG)-enhanced near-infrared (NIR) optical imaging
offers an objective, minimally invasive, and longitudinal modality that can quantify
pathology within muscle by imaging uptake of ICG into the damaged muscles. Dystrophic mice
lacking dystrophin (mdx) or gamma-sarcoglycan (Sgcg−/−) were compared to
control mice by NIR optical imaging and magnetic resonance imaging (MRI). We determined
that optical imaging could be used to differentiate control and dystrophic mice, visualize
eccentric muscle induced by downhill treadmill running, and restore the membrane integrity
in Sgcg−/− mice following adeno-associated virus (AAV) delivery of recombinant
human SGCG (desAAV8hSGCG). We conclude that NIR optical imaging is comparable to MRI and
can be used to detect muscle damage in dystrophic muscle as compared to unaffected
controls, monitor worsening of muscle pathology in muscular dystrophy, and assess
regression of pathology following therapeutic intervention in muscular dystrophies.
Collapse
Affiliation(s)
- Stephen M Chrzanowski
- 1 Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Ravneet S Vohra
- 1 Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | | | - Abhinandan Batra
- 3 Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Ray A Spradlin
- 4 Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Jazmine Morales
- 4 Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Sean Forbes
- 3 Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Krista Vandenborne
- 3 Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Elisabeth R Barton
- 4 Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Glenn A Walter
- 1 Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
74
|
Diaz-Manera J, Fernandez-Torron R, LLauger J, James MK, Mayhew A, Smith FE, Moore UR, Blamire AM, Carlier PG, Rufibach L, Mittal P, Eagle M, Jacobs M, Hodgson T, Wallace D, Ward L, Smith M, Stramare R, Rampado A, Sato N, Tamaru T, Harwick B, Rico Gala S, Turk S, Coppenrath EM, Foster G, Bendahan D, Le Fur Y, Fricke ST, Otero H, Foster SL, Peduto A, Sawyer AM, Hilsden H, Lochmuller H, Grieben U, Spuler S, Tesi Rocha C, Day JW, Jones KJ, Bharucha-Goebel DX, Salort-Campana E, Harms M, Pestronk A, Krause S, Schreiber-Katz O, Walter MC, Paradas C, Hogrel JY, Stojkovic T, Takeda S, Mori-Yoshimura M, Bravver E, Sparks S, Bello L, Semplicini C, Pegoraro E, Mendell JR, Bushby K, Straub V. Muscle MRI in patients with dysferlinopathy: pattern recognition and implications for clinical trials. J Neurol Neurosurg Psychiatry 2018; 89:1071-1081. [PMID: 29735511 PMCID: PMC6166612 DOI: 10.1136/jnnp-2017-317488] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/02/2018] [Accepted: 03/26/2018] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVE Dysferlinopathies are a group of muscle disorders caused by mutations in the DYSF gene. Previous muscle imaging studies describe a selective pattern of muscle involvement in smaller patient cohorts, but a large imaging study across the entire spectrum of the dysferlinopathies had not been performed and previous imaging findings were not correlated with functional tests. METHODS We present cross-sectional T1-weighted muscle MRI data from 182 patients with genetically confirmed dysferlinopathies. We have analysed the pattern of muscles involved in the disease using hierarchical analysis and presented it as heatmaps. Results of the MRI scans have been correlated with relevant functional tests for each region of the body analysed. RESULTS In 181 of the 182 patients scanned, we observed muscle pathology on T1-weighted images, with the gastrocnemius medialis and the soleus being the most commonly affected muscles. A similar pattern of involvement was identified in most patients regardless of their clinical presentation. Increased muscle pathology on MRI correlated positively with disease duration and functional impairment. CONCLUSIONS The information generated by this study is of high diagnostic value and important for clinical trial development. We have been able to describe a pattern that can be considered as characteristic of dysferlinopathy. We have defined the natural history of the disease from a radiological point of view. These results enabled the identification of the most relevant regions of interest for quantitative MRI in longitudinal studies, such as clinical trials. CLINICAL TRIAL REGISTRATION NCT01676077.
Collapse
Affiliation(s)
- Jordi Diaz-Manera
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain.,Neuromuscular Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Roberto Fernandez-Torron
- Neuromuscular Area, Biodonostia Health Research Institute, Neurology Service, Donostia University Hospital, Donostia-San Sebastian, Spain.,The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Jaume LLauger
- Radiology Department, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Meredith K James
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Anna Mayhew
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Fiona E Smith
- Magnetic Resonance Centre, Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ursula R Moore
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Andrew M Blamire
- Magnetic Resonance Centre, Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Pierre G Carlier
- AIM & CEA NMR Laboratory, Institute of Myology, Pitié-Salpêtrière University Hospital, Paris, France
| | | | | | - Michelle Eagle
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Marni Jacobs
- Center for Translational Science, Division of Biostatistics and Study Methodology, Children's National Health System, Washington, District of Columbia, USA.,Department of Pediatrics, Epidemiology and Biostatistics, George Washington University, Washington, District of Columbia, USA
| | - Tim Hodgson
- Magnetic Resonance Centre, Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Dorothy Wallace
- Magnetic Resonance Centre, Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Louise Ward
- Magnetic Resonance Centre, Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Mark Smith
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Roberto Stramare
- Radiology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Alessandro Rampado
- Radiology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Noriko Sato
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takeshi Tamaru
- Department of Radiology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Bruce Harwick
- Department of Radiology, CMC Mercy Charlotte, Carolinas Healthcare System Neurosciences Institute, Charlotte, North Carolina, USA
| | - Susana Rico Gala
- Department of Radiology, Hospital U. Virgen de Valme, Sevilla, Spain
| | - Suna Turk
- AIM & CEA NMR Laboratory, Institute of Myology, Pitié-Salpêtrière University Hospital, Paris, France
| | - Eva M Coppenrath
- Department of Clinical Radiology, Ludwig-Maximilians-University, Munich, Germany
| | - Glenn Foster
- Center for Clinical Imaging Research CCIR, Washington University, St. Louis, Missouri, USA
| | - David Bendahan
- Centre de Résonance, Magnétique Biologique et Médicale, Marseille, France.,Aix-Marseille Université, Marseille, France
| | | | - Stanley T Fricke
- Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, District of Columbia, USA
| | - Hansel Otero
- Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, District of Columbia, USA
| | - Sheryl L Foster
- Department of Radiology, Westmead Hospital, Westmead, New South Wales, Australia.,Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - Anthony Peduto
- Department of Radiology, Westmead Hospital, Westmead, New South Wales, Australia.,Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - Anne Marie Sawyer
- Lucas Center for Imaging, Stanford University School of Medicine, Stanford, California, USA
| | - Heather Hilsden
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Hanns Lochmuller
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Ulrike Grieben
- Charite Muscle Research Unit, Experimental and Clinical Research Center, A Joint Co-operation of the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Simone Spuler
- Charite Muscle Research Unit, Experimental and Clinical Research Center, A Joint Co-operation of the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Carolina Tesi Rocha
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - John W Day
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Kristi J Jones
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, University of Sydney, Sydney, New South Wales, Australia
| | - Diana X Bharucha-Goebel
- Department of Neurology, Children's National Health System, Washington, District of Columbia, USA.,National Institutes of Health (NINDS), Bethesda, Maryland, USA
| | | | - Matthew Harms
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alan Pestronk
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sabine Krause
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Olivia Schreiber-Katz
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Maggie C Walter
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Carmen Paradas
- Neuromuscular Unit, Department of Neurology, Hospital U. Virgen del Rocío/Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - Jean-Yves Hogrel
- Institut de Myologie, AP-HP, G.H. Pitié-Salpêtrière, Paris, Île-de-France, France
| | - Tanya Stojkovic
- Institut de Myologie, AP-HP, G.H. Pitié-Salpêtrière, Paris, Île-de-France, France
| | - Shin'ichi Takeda
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Elena Bravver
- Neurosciences Institute, Carolinas Healthcare System, Charlotte, North Carolina, USA
| | - Susan Sparks
- Neurosciences Institute, Carolinas Healthcare System, Charlotte, North Carolina, USA
| | - Luca Bello
- Department of Neurosciences, University of Padova, Padova, Italy
| | | | - Elena Pegoraro
- Department of Neurosciences, University of Padova, Padova, Italy
| | | | - Kate Bushby
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle upon Tyne, UK
| | | |
Collapse
|
75
|
Gomes JP, Coatti GC, Valadares MC, Assoni AF, Pelatti MV, Secco M, Zatz M. Human Adipose-Derived CD146+ Stem Cells Increase Life Span of a Muscular Dystrophy Mouse Model More Efficiently than Mesenchymal Stromal Cells. DNA Cell Biol 2018; 37:798-804. [DOI: 10.1089/dna.2018.4158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Juliana P. Gomes
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Giuliana C. Coatti
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marcos C. Valadares
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Amanda F. Assoni
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mayra V. Pelatti
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mariane Secco
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mayana Zatz
- Human Genome and Stem-Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
76
|
Arora H, Willcocks RJ, Lott DJ, Harrington AT, Senesac CR, Zilke KL, Daniels MJ, Xu D, Tennekoon GI, Finanger EL, Russman BS, Finkel RS, Triplett WT, Byrne BJ, Walter GA, Sweeney HL, Vandenborne K. Longitudinal timed function tests in Duchenne muscular dystrophy: ImagingDMD cohort natural history. Muscle Nerve 2018; 58:631-638. [PMID: 29742798 DOI: 10.1002/mus.26161] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 05/03/2018] [Accepted: 05/05/2018] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Tests of ambulatory function are common clinical trial endpoints in Duchenne muscular dystrophy (DMD). Using these tests, the ImagingDMD study has generated a large data set that can describe the contemporary natural history of DMD in 5-12.9-year-olds. METHODS Ninety-two corticosteroid-treated boys with DMD and 45 controls participated in this longitudinal study. Participants performed the 6-minute walk test (6MWT) and timed function tests (TFT: 10-m walk/run, climbing 4 stairs, supine to stand). RESULTS Boys with DMD had impaired functional performance even at 5-6.9 years old. Boys older than 7 had significant declines in function over 1 year for 10-m walk/run and 6MWT. Eighty percent of participants could perform all functional tests at 9 years old. TFTs appear to be slightly more responsive and predictive of disease progression than the 6MWT in 7-12.9 year olds. DISCUSSION This study provides insight into the contemporary natural history of key functional endpoints in DMD. Muscle Nerve 58: 631-638, 2018.
Collapse
Affiliation(s)
- Harneet Arora
- Department of Physical Therapy, University of Florida, Box 100154, UFHSC, Gainesville, Florida, 32610, USA
| | - Rebecca J Willcocks
- Department of Physical Therapy, University of Florida, Box 100154, UFHSC, Gainesville, Florida, 32610, USA
| | - Donovan J Lott
- Department of Physical Therapy, University of Florida, Box 100154, UFHSC, Gainesville, Florida, 32610, USA
| | - Ann T Harrington
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Claudia R Senesac
- Department of Physical Therapy, University of Florida, Box 100154, UFHSC, Gainesville, Florida, 32610, USA
| | | | - Michael J Daniels
- Department of Statistics, University of Florida, Gainesville, Florida, USA
| | - Dandan Xu
- Department of Statistics & Data Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Gihan I Tennekoon
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | - William T Triplett
- Department of Physical Therapy, University of Florida, Box 100154, UFHSC, Gainesville, Florida, 32610, USA
| | - Barry J Byrne
- Department of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - Glenn A Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - H Lee Sweeney
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, USA
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Box 100154, UFHSC, Gainesville, Florida, 32610, USA
| |
Collapse
|
77
|
Barnard AM, Willcocks RJ, Finanger EL, Daniels MJ, Triplett WT, Rooney WD, Lott DJ, Forbes SC, Wang DJ, Senesac CR, Harrington AT, Finkel RS, Russman BS, Byrne BJ, Tennekoon GI, Walter GA, Sweeney HL, Vandenborne K. Skeletal muscle magnetic resonance biomarkers correlate with function and sentinel events in Duchenne muscular dystrophy. PLoS One 2018; 13:e0194283. [PMID: 29554116 PMCID: PMC5858773 DOI: 10.1371/journal.pone.0194283] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/28/2018] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To provide evidence for quantitative magnetic resonance (qMR) biomarkers in Duchenne muscular dystrophy by investigating the relationship between qMR measures of lower extremity muscle pathology and functional endpoints in a large ambulatory cohort using a multicenter study design. METHODS MR spectroscopy and quantitative imaging were implemented to measure intramuscular fat fraction and the transverse magnetization relaxation time constant (T2) in lower extremity muscles of 136 participants with Duchenne muscular dystrophy. Measures were collected at 554 visits over 48 months at one of three imaging sites. Fat fraction was measured in the soleus and vastus lateralis using MR spectroscopy, while T2 was assessed using MRI in eight lower extremity muscles. Ambulatory function was measured using the 10m walk/run, climb four stairs, supine to stand, and six minute walk tests. RESULTS Significant correlations were found between all qMR and functional measures. Vastus lateralis qMR measures correlated most strongly to functional endpoints (|ρ| = 0.68-0.78), although measures in other rapidly progressing muscles including the biceps femoris (|ρ| = 0.63-0.73) and peroneals (|ρ| = 0.59-0.72) also showed strong correlations. Quantitative MR biomarkers were excellent indicators of loss of functional ability and correlated with qualitative measures of function. A VL FF of 0.40 was an approximate lower threshold of muscle pathology associated with loss of ambulation. DISCUSSION Lower extremity qMR biomarkers have a robust relationship to clinically meaningful measures of ambulatory function in Duchenne muscular dystrophy. These results provide strong supporting evidence for qMR biomarkers and set the stage for their potential use as surrogate outcomes in clinical trials.
Collapse
Affiliation(s)
- Alison M. Barnard
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
| | - Rebecca J. Willcocks
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
| | - Erika L. Finanger
- Departments of Pediatrics and Neurology, Oregon Health & Science University, Portland, OR, United States of America
| | - Michael J. Daniels
- Department of Statistics, University of Florida, Gainesville, FL, United States of America
| | - William T. Triplett
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
| | - William D. Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States of America
| | - Donovan J. Lott
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
| | - Sean C. Forbes
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
| | - Dah-Jyuu Wang
- Department of Radiology, Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Claudia R. Senesac
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
| | - Ann T. Harrington
- The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | | | - Barry S. Russman
- Departments of Pediatrics and Neurology, Oregon Health & Science University, Portland, OR, United States of America
| | - Barry J. Byrne
- Department of Pediatrics and Molecular Genetics and Microbiology, Powell Gene Therapy Center, University of Florida, Gainesville, FL, United States of America
| | - Gihan I. Tennekoon
- The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Glenn A. Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States of America
| | - H. Lee Sweeney
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States of America
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
78
|
Carlier PG, Marty B, Scheidegger O, Loureiro de Sousa P, Baudin PY, Snezhko E, Vlodavets D. Skeletal Muscle Quantitative Nuclear Magnetic Resonance Imaging and Spectroscopy as an Outcome Measure for Clinical Trials. J Neuromuscul Dis 2018; 3:1-28. [PMID: 27854210 PMCID: PMC5271435 DOI: 10.3233/jnd-160145] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent years have seen tremendous progress towards therapy of many previously incurable neuromuscular diseases. This new context has acted as a driving force for the development of novel non-invasive outcome measures. These can be organized in three main categories: functional tools, fluid biomarkers and imagery. In the latest category, nuclear magnetic resonance imaging (NMRI) offers a considerable range of possibilities for the characterization of skeletal muscle composition, function and metabolism. Nowadays, three NMR outcome measures are frequently integrated in clinical research protocols. They are: 1/ the muscle cross sectional area or volume, 2/ the percentage of intramuscular fat and 3/ the muscle water T2, which quantity muscle trophicity, chronic fatty degenerative changes and oedema (or more broadly, “disease activity”), respectively. A fourth biomarker, the contractile tissue volume is easily derived from the first two ones. The fat fraction maps most often acquired with Dixon sequences have proven their capability to detect small changes in muscle composition and have repeatedly shown superior sensitivity over standard functional evaluation. This outcome measure will more than likely be the first of the series to be validated as an endpoint by regulatory agencies. The versatility of contrast generated by NMR has opened many additional possibilities for characterization of the skeletal muscle and will result in the proposal of more NMR biomarkers. Ultra-short TE (UTE) sequences, late gadolinium enhancement and NMR elastography are being investigated as candidates to evaluate skeletal muscle interstitial fibrosis. Many options exist to measure muscle perfusion and oxygenation by NMR. Diffusion NMR as well as texture analysis algorithms could generate complementary information on muscle organization at microscopic and mesoscopic scales, respectively. 31P NMR spectroscopy is the reference technique to assess muscle energetics non-invasively during and after exercise. In dystrophic muscle, 31P NMR spectrum at rest is profoundly perturbed, and several resonances inform on cell membrane integrity. Considerable efforts are being directed towards acceleration of image acquisitions using a variety of approaches, from the extraction of fat content and water T2 maps from one single acquisition to partial matrices acquisition schemes. Spectacular decreases in examination time are expected in the near future. They will reinforce the attractiveness of NMR outcome measures and will further facilitate their integration in clinical research trials.
Collapse
Affiliation(s)
- Pierre G Carlier
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France.,National Academy of Sciences, United Institute for Informatics Problems, Minsk, Belarus
| | - Benjamin Marty
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France
| | - Olivier Scheidegger
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,Support Center for Advanced Neuroimaging (SCAN), Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | | | | | - Eduard Snezhko
- National Academy of Sciences, United Institute for Informatics Problems, Minsk, Belarus
| | - Dmitry Vlodavets
- N.I. Prirogov Russian National Medical Research University, Clinical Research Institute of Pediatrics, Moscow, Russian Federation
| |
Collapse
|
79
|
Leung DG, Wang X, Barker PB, Carrino JA, Wagner KR. Multivoxel proton magnetic resonance spectroscopy in facioscapulohumeral muscular dystrophy. Muscle Nerve 2018; 57:958-963. [PMID: 29266323 DOI: 10.1002/mus.26048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Facioscapulohumeral muscular dystrophy (FSHD) is a hereditary disorder that causes progressive muscle wasting. This study evaluates the use of proton magnetic resonance spectroscopy (1 H MRS) as a biomarker of muscle strength and function in FSHD. METHODS Thirty-six individuals with FSHD and 15 healthy controls underwent multivoxel 1 H MRS of a cross-section of the mid-thigh. Concentrations of creatine, intramyocellular and extramyocellular lipids, and trimethylamine (TMA)-containing compounds in skeletal muscle were calculated. Metabolite concentrations for individuals with FSHD were compared with those of controls. The relationship between metabolite concentrations and muscle strength was also examined. RESULTS The TMA/creatine (Cr) ratio in individuals with FSHD was reduced compared with controls. The TMA/Cr ratio in the hamstrings also showed a moderate linear correlation with muscle strength. DISCUSSION 1 H MRS offers a potential method of detecting early muscle pathology in FSHD prior to the development of fat infiltration. Muscle Nerve 57: 958-963, 2018.
Collapse
Affiliation(s)
- Doris G Leung
- Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, 716 North Broadway, Room 411, Baltimore, Maryland, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xin Wang
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Peter B Barker
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John A Carrino
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York, USA
| | - Kathryn R Wagner
- Center for Genetic Muscle Disorders, Hugo W. Moser Research Institute at Kennedy Krieger Institute, 716 North Broadway, Room 411, Baltimore, Maryland, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
80
|
Szigyarto CAK, Spitali P. Biomarkers of Duchenne muscular dystrophy: current findings. Degener Neurol Neuromuscul Dis 2018; 8:1-13. [PMID: 30050384 PMCID: PMC6053903 DOI: 10.2147/dnnd.s121099] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Numerous biomarkers have been unveiled in the rapidly evolving biomarker discovery field, with an aim to improve the clinical management of disorders. In rare diseases, such as Duchenne muscular dystrophy, this endeavor has created a wealth of knowledge that, if effectively exploited, will benefit affected individuals, with respect to health care, therapy, improved quality of life and increased life expectancy. The most promising findings and molecular biomarkers are inspected in this review, with an aim to provide an overview of currently known biomarkers and the technological developments used. Biomarkers as cells, genetic variations, miRNAs, proteins, lipids and/or metabolites indicative of disease severity, progression and treatment response have the potential to improve development and approval of therapies, clinical management of DMD and patients’ life quality. We highlight the complexity of translating research results to clinical use, emphasizing the need for biomarkers, fit for purpose and describe the challenges associated with qualifying biomarkers for clinical applications.
Collapse
Affiliation(s)
- Cristina Al-Khalili Szigyarto
- Division of Proteomics, School of Biotechnology, AlbaNova University Center, KTH-Royal Institute of Technology, Stockholm, Sweden, .,Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden,
| | - Pietro Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands,
| |
Collapse
|
81
|
Reyngoudt H, Turk S, Carlier PG. 1 H NMRS of carnosine combined with 31 P NMRS to better characterize skeletal muscle pH dysregulation in Duchenne muscular dystrophy. NMR IN BIOMEDICINE 2018; 31:e3839. [PMID: 29130550 DOI: 10.1002/nbm.3839] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 05/18/2023]
Abstract
In recent years, quantitative nuclear magnetic resonance imaging and spectroscopy (NMRI and NMRS) have been used more systematically as outcome measures in natural history and clinical trial studies for Duchenne muscular dystrophy (DMD). Whereas most of these studies have emphasized the evaluation of the fat fraction as an assessment for disease severity, less focus has been placed on metabolic indices measured by NMRS. 31 P NMRS in DMD reveals an alkaline inorganic phosphate (Pi ) pool, originating from either leaky dystrophic myocytes or an increased interstitial space. 1 H NMRS, exploiting the pH-sensitive proton resonances of carnosine, an intracellular dipeptide, was used to distinguish between these two hypotheses. NMR data were obtained in 23 patients with DMD and 14 healthy subjects on a 3-T clinical NMR system. Both 31 P and 1 H NMRS data were acquired at the level of the gastrocnemius medialis muscle. A multi-slice multi-echo imaging acquisition was performed for the determination of water T2 and fat fraction in the same region of interest. Whereas nearly all patients with DMD showed an elevated pH compared with healthy controls when using 31 P NMRS, 1 H NMRS-determined pH was not systematically increased. As expected, the carnosine-based intracellular pH was never found to be alkaline in the absence of a concurrent Pi -based pH elevation. In addition, abnormal intracellular pH, based on carnosine, was never associated with normal water T2 values. We conclude that, in one group of patients, both 1 H and 31 P NMRS showed an alkaline pH, originating from the intracellular compartment and reflecting ionic dysregulation in dystrophic myocytes. In the other patients with DMD, intracellular pH was normal, but an alkaline Pi pool was still present, suggesting an extracellular origin, probably revealing an expanded interstitial volume fraction, often associated with fibrotic changes. The data demonstrate that 1 H NMRS could serve as a biomarker to assess the normalization of intramyocytic pH and sarcolemmal permeability following therapy inducing dystrophin expression in patients with DMD.
Collapse
Affiliation(s)
- Harmen Reyngoudt
- NMR Laboratory, Institute of Myology, Paris, France
- CEA, DRF, IBFJ, MIRCen, Paris, France
| | - Suna Turk
- NMR Laboratory, Institute of Myology, Paris, France
- CEA, DRF, IBFJ, MIRCen, Paris, France
| | - Pierre G Carlier
- NMR Laboratory, Institute of Myology, Paris, France
- CEA, DRF, IBFJ, MIRCen, Paris, France
| |
Collapse
|
82
|
ten Dam L, de Visser M. Dystrophic Myopathies. Clin Neuroradiol 2018. [DOI: 10.1007/978-3-319-61423-6_3-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
83
|
Sporadic Inclusion Body Myositis: MRI Findings and Correlation With Clinical and Functional Parameters. AJR Am J Roentgenol 2017; 209:1340-1347. [DOI: 10.2214/ajr.17.17849] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
84
|
Vohra R, Batra A, Forbes SC, Vandenborne K, Walter GA. Magnetic Resonance Monitoring of Disease Progression in mdx Mice on Different Genetic Backgrounds. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2060-2070. [PMID: 28826559 DOI: 10.1016/j.ajpath.2017.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/04/2017] [Indexed: 12/15/2022]
Abstract
Genetic modifiers alter disease progression in both preclinical models and subjects with Duchenne muscular dystrophy (DMD). Using multiparametric magnetic resonance (MR) techniques, we compared the skeletal and cardiac muscles of two different dystrophic mouse models of DMD, which are on different genetic backgrounds, the C57BL/10ScSn-Dmdmdx (B10-mdx) and D2.B10-Dmdmdx (D2-mdx). The proton transverse relaxation constant (T2) using both MR imaging and spectroscopy revealed significant age-related differences in dystrophic skeletal and cardiac muscles as compared with their age-matched controls. D2-mdx muscles demonstrated an earlier and accelerated decrease in muscle T2 compared with age-matched B10-mdx muscles. Diffusion-weighted MR imaging indicated differences in the underlying muscle structure between the mouse strains. The fractional anisotropy, mean diffusion, and radial diffusion of water varied significantly between the two dystrophic strains. Muscle structural differences were confirmed by histological analyses of the gastrocnemius, revealing a decreased muscle fiber size and increased fibrosis in skeletal muscle fibers of D2-mdx mice compared with B10-mdx and control. Cardiac involvement was also detected in D2-mdx myocardium based on both decreased function and myocardial T2. These data indicate that MR parameters may be used as sensitive biomarkers to detect fibrotic tissue deposition and fiber atrophy in dystrophic strains.
Collapse
Affiliation(s)
- Ravneet Vohra
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida
| | - Abhinandan Batra
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Sean C Forbes
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Glenn A Walter
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida.
| |
Collapse
|
85
|
|
86
|
Long-term follow-up of MRI changes in thigh muscles of patients with Facioscapulohumeral dystrophy: A quantitative study. PLoS One 2017; 12:e0183825. [PMID: 28841698 PMCID: PMC5571945 DOI: 10.1371/journal.pone.0183825] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 08/11/2017] [Indexed: 11/24/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common hereditary muscular disorders. Currently FSHD has no known effective treatment and detailed data on the natural history are lacking. Determination of the efficacy of a given therapeutic approach might be difficult in FSHD given the slow and highly variable disease progression. Magnetic resonance imaging (MRI) has been widely used to qualitatively and quantitatively evaluate in vivo the muscle alterations in various neuromuscular disorders. The main aim of the present study was to investigate longitudinally the time-dependent changes occurring in thigh muscles of FSHD patients using quantitative MRI and to assess the potential relationships with the clinical findings. Thirty-five FSHD1 patients (17 females) were enrolled. Clinical assessment tools including manual muscle testing using medical research council score (MRC), and motor function measure (MFM) were recorded each year for a period ranging from 1 to 2 years. For the MRI measurements, we used a new quantitative index, i.e., the mean pixel intensity (MPI) calculated from the pixel-intensity distribution in T1 weighted images. The corresponding MPI scores were calculated for each thigh, for each compartment and for both thighs totally (MPItotal). The total mean pixel intensity (MPItotal) refers to the sum of each pixel signal intensity divided by the corresponding number of pixels. An increased MPItotal indicates both a raised fat infiltration together with a reduced muscle volume thereby illustrating disease progression. Clinical scores did not change significantly over time whereas MPItotal increased significantly from an initial averaged value of 39.6 to 41.1 with a corresponding rate of 0.62/year. While clinical scores and MPItotal measured at the start of the study were significantly related, no correlation was found between the rate of MPItotal and MRC sum score changes, MFMtotal and MFM subscores. The relative rate of MPItotal change was 2.3% (0.5–4.3)/year and was significantly higher than the corresponding rates measured for MRCS 0% (0–1.7) /year and MFMtotal 0% (0–2.0) /year (p = 0.000). On the basis of these results, we suggested that muscle MRI and more particularly the MPItotal index could be used as a reliable biomarker and outcome measure of disease progression. In slowly progressive myopathies such as FSHD, the MPItotal index might reveal subclinical changes, which could not be evidenced using clinical scales over a short period of time.
Collapse
|
87
|
Hooijmans MT, Doorenweerd N, Baligand C, Verschuuren JJGM, Ronen I, Niks EH, Webb AG, Kan HE. Spatially localized phosphorous metabolism of skeletal muscle in Duchenne muscular dystrophy patients: 24-month follow-up. PLoS One 2017; 12:e0182086. [PMID: 28763477 PMCID: PMC5538641 DOI: 10.1371/journal.pone.0182086] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/12/2017] [Indexed: 12/29/2022] Open
Abstract
Objectives To assess the changes in phosphodiester (PDE)-levels, detected by 31P magnetic resonance spectroscopy (MRS), over 24-months to determine the potential of PDE as marker for muscle tissue changes in Duchenne Muscular Dystrophy (DMD) patients. Methods Spatially resolved phosphorous datasets were acquired in the right lower leg of 18 DMD patients (range: 5–15.4 years) and 12 age-matched healthy controls (range: 5–14 years) at three time-points (baseline, 12-months, and 24-months) using a 7T MR-System (Philips Achieva). 3-point Dixon images were acquired at 3T (Philips Ingenia) to determine muscle fat fraction. Analyses were done for six muscles that represent different stages of muscle wasting. Differences between groups and time-points were assessed with non-parametric tests with correction for multiple comparisons. Coefficient of variance (CV) were determined for PDE in four healthy adult volunteers in high and low signal-to-noise ratio (SNR) datasets. Results PDE-levels were significantly higher (two-fold) in DMD patients compared to controls in all analyzed muscles at almost every time point and did not change over the study period. Fat fraction was significantly elevated in all muscles at all time points compared to healthy controls, and increased significantly over time, except in the tibialis posterior muscle. The mean within subject CV for PDE-levels was 4.3% in datasets with high SNR (>10:1) and 5.7% in datasets with low SNR. Discussion and conclusion The stable two-fold increase in PDE-levels found in DMD patients in muscles with different levels of muscle wasting over 2-year time, including DMD patients as young as 5.5 years-old, suggests that PDE-levels may increase very rapidly early in the disease process and remain elevated thereafter. The low CV values in high and low SNR datasets show that PDE-levels can be accurately and reproducibly quantified in all conditions. Our data confirms the great potential of PDE as a marker for muscle tissue changes in DMD patients.
Collapse
Affiliation(s)
- M. T. Hooijmans
- Dept of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| | - N. Doorenweerd
- Dept of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands
- John Walton Muscular Dystrophy Research Centre, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - C. Baligand
- Dept of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | | | - I. Ronen
- Dept of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - E. H. Niks
- Dept of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - A. G. Webb
- Dept of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - H. E. Kan
- Dept of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
88
|
Burakiewicz J, Sinclair CDJ, Fischer D, Walter GA, Kan HE, Hollingsworth KG. Quantifying fat replacement of muscle by quantitative MRI in muscular dystrophy. J Neurol 2017; 264:2053-2067. [PMID: 28669118 PMCID: PMC5617883 DOI: 10.1007/s00415-017-8547-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 12/15/2022]
Abstract
The muscular dystrophies are rare orphan diseases, characterized by progressive muscle weakness: the most common and well known is Duchenne muscular dystrophy which affects young boys and progresses quickly during childhood. However, over 70 distinct variants have been identified to date, with different rates of progression, implications for morbidity, mortality, and quality of life. There are presently no curative therapies for these diseases, but a range of potential therapies are presently reaching the stage of multi-centre, multi-national first-in-man clinical trials. There is a need for sensitive, objective end-points to assess the efficacy of the proposed therapies. Present clinical measurements are often too dependent on patient effort or motivation, and lack sensitivity to small changes, or are invasive. Quantitative MRI to measure the fat replacement of skeletal muscle by either chemical shift imaging methods (Dixon or IDEAL) or spectroscopy has been demonstrated to provide such a sensitive, objective end-point in a number of studies. This review considers the importance of the outcome measures, discusses the considerations required to make robust measurements and appropriate quality assurance measures, and draws together the existing literature for cross-sectional and longitudinal cohort studies using these methods in muscular dystrophy.
Collapse
Affiliation(s)
- Jedrzej Burakiewicz
- Department of Radiology, C. J. Gorter Center for High Field MRI, Leiden University Medical Centre, Leiden, The Netherlands
| | - Christopher D J Sinclair
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, UK.,Neuroradiological Academic Unit, UCL Institute of Neurology, London, UK
| | - Dirk Fischer
- Division of Neuropaediatrics, University of Basel Children's Hospital, Spitalstrasse 33, Postfach, Basel, 4031, Switzerland.,Department of Neurology, University of Basel Hospital, Petersgraben 4, Basel, 4031, Switzerland
| | - Glenn A Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, 32610, USA
| | - Hermien E Kan
- Department of Radiology, C. J. Gorter Center for High Field MRI, Leiden University Medical Centre, Leiden, The Netherlands
| | - Kieren G Hollingsworth
- Newcastle Magnetic Resonance Centre, Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK.
| |
Collapse
|
89
|
Jensen L, Petersson S, Illum N, Laugaard-Jacobsen H, Thelle T, Jørgensen L, Schrøder H. Muscular response to the first three months of deflazacort treatment in boys with Duchenne muscular dystrophy. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2017; 17:8-18. [PMID: 28574407 PMCID: PMC5492315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
OBJECTIVE Duchenne muscular dystrophy (DMD) patients are often treated with glucocorticoids; yet their precise molecular action remains unknown. METHODS We investigated muscle biopsies from nine boys with DMD (aged: 7,6±2,8 yrs.) collected before and after three months of deflazacort treatment and compared them to eight healthy boys (aged: 5,3±2,4 yrs.). mRNA transcripts involved in activation of satellite cells, myogenesis, regeneration, adipogenesis, muscle growth and tissue inflammation were assessed. Serum creatine kinase (CK) levels and muscle protein expression by immunohistochemistry of selected targets were also analysed. RESULTS Transcript levels for ADIPOQ, CD68, CDH15, FGF2, IGF1R, MYF5, MYF6, MYH8, MYOD, PAX7, and TNFα were significantly different in untreated patients vs. normal muscle (p⟨0.05). Linear tests for trend indicated that the expression levels of treated patients were approaching normal values (p⟨0.05) following treatment (towards an increase; CDH15, C-MET, DLK1, FGF2, IGF1R, MYF5, MYF6, MYOD, PAX7; towards a decrease: CD68, MYH8, TNFα). Treatment reduced CK levels (p⟨0.05), but we observed no effect on muscle protein expression. CONCLUSIONS This study provides insight into the molecular actions of glucocorticoids in DMD at the mRNA level, and we show that multiple regulatory pathways are influenced. This information can be important in the development of new treatments.
Collapse
Affiliation(s)
- L. Jensen
- Department of Clinical Pathology, Institute of Clinical Research, University of Southern Denmark and Odense University Hospital, 5000 Odense C, Denmark
| | - S.J. Petersson
- Department of Clinical Pathology, Institute of Clinical Research, University of Southern Denmark and Odense University Hospital, 5000 Odense C, Denmark
| | - N.O. Illum
- H.C. Andersen Children’s Hospital, Odense University Hospital, 5000 Odense C, Denmark
| | | | - T. Thelle
- Pediatric Department, Regional Hospital Central Jutland, 8800 Viborg, Denmark
| | - L.H. Jørgensen
- Department of Clinical Pathology, Institute of Clinical Research, University of Southern Denmark and Odense University Hospital, 5000 Odense C, Denmark
| | - H.D. Schrøder
- Department of Clinical Pathology, Institute of Clinical Research, University of Southern Denmark and Odense University Hospital, 5000 Odense C, Denmark,Corresponding author: Henrik Daa Schrøder, Institute of Clinical Research, Clinical Pathology, Odense University Hospital, JB. Winsløw Vej 15, 2. DK-5000 Odense C, Denmark E-mail:
| |
Collapse
|
90
|
Wright CR, Allsopp GL, Addinsall AB, McRae NL, Andrikopoulos S, Stupka N. A Reduction in Selenoprotein S Amplifies the Inflammatory Profile of Fast-Twitch Skeletal Muscle in the mdx Dystrophic Mouse. Mediators Inflamm 2017; 2017:7043429. [PMID: 28592916 PMCID: PMC5448157 DOI: 10.1155/2017/7043429] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/23/2017] [Accepted: 03/07/2017] [Indexed: 12/20/2022] Open
Abstract
Excessive inflammation is a hallmark of muscle myopathies, including Duchenne muscular dystrophy (DMD). There is interest in characterising novel genes that regulate inflammation due to their potential to modify disease progression. Gene polymorphisms in Selenoprotein S (Seps1) are associated with elevated proinflammatory cytokines, and in vitro SEPS1 is protective against inflammatory stress. Given that SEPS1 is highly expressed in skeletal muscle, we investigated whether the genetic reduction of Seps1 exacerbated inflammation in the mdx mouse. F1 male mdx mice with a heterozygous Seps1 deletion (mdx:Seps1-/+) were generated. The mdx:Seps1-/+ mice had a 50% reduction in SEPS1 protein expression in hindlimb muscles. In the extensor digitorum longus (EDL) muscles, mRNA expression of monocyte chemoattractant protein 1 (Mcp-1) (P = 0.034), macrophage marker F4/80 (P = 0.030), and transforming growth factor-β1 (Tgf-β1) (P = 0.056) were increased in mdx:Seps1-/+ mice. This was associated with a reduction in muscle fibre size; however, ex vivo EDL muscle strength and endurance were unaltered. In dystrophic slow twitch soleus muscles, SEPS1 reduction had no effect on the inflammatory profile nor function. In conclusion, the genetic reduction of Seps1 appears to specifically exacerbate the inflammatory profile of fast-twitch muscle fibres, which are typically more vulnerable to degeneration in dystrophy.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Body Composition/genetics
- Body Composition/physiology
- Female
- Immunohistochemistry
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscle Contraction/physiology
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/physiology
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/physiology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Muscular Dystrophy, Duchenne/metabolism
- Real-Time Polymerase Chain Reaction
- Selenoproteins/genetics
- Selenoproteins/metabolism
Collapse
Affiliation(s)
- Craig Robert Wright
- Institute for Physical Activity and Nutrition Research (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Giselle Larissa Allsopp
- Institute for Physical Activity and Nutrition Research (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Alex Bernard Addinsall
- Molecular Medical Research SRC, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Natasha Lee McRae
- Molecular Medical Research SRC, School of Medicine, Deakin University, Geelong, VIC, Australia
| | | | - Nicole Stupka
- Molecular Medical Research SRC, School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
91
|
Mankodi A, Azzabou N, Bulea T, Reyngoudt H, Shimellis H, Ren Y, Kim E, Fischbeck KH, Carlier PG. Skeletal muscle water T 2 as a biomarker of disease status and exercise effects in patients with Duchenne muscular dystrophy. Neuromuscul Disord 2017; 27:705-714. [PMID: 28601553 DOI: 10.1016/j.nmd.2017.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 12/16/2022]
Abstract
The purpose of this study was to examine exercise effects on muscle water T2 in patients with Duchenne muscular dystrophy (DMD). In 12 DMD subjects and 19 controls, lower leg muscle fat (%) was measured by Dixon and muscle water T2 and R2 (1/T2) by the tri-exponential model. Muscle water R2 was measured again at 3 hours after an ankle dorsiflexion exercise. The muscle fat fraction was higher in DMD participants than in controls (p < .001) except in the tibialis posterior muscle. Muscle water T2 was measured independent of the degree of fatty degeneration in DMD muscle. At baseline, muscle water T2 was higher in all but the extensor digitorum longus muscles of DMD participants than controls (p < .001). DMD participants had a lower muscle torque (p < .001) and exerted less power (p < .01) during exercise than controls. Nevertheless, muscle water R2 decreased (T2 increased) after exercise from baseline in DMD subjects and controls with greater changes in the target muscles of the exercise than in ankle plantarflexor muscles. Skeletal muscle water T2 is a sensitive biomarker of the disease status in DMD and of the exercise response in DMD patients and controls.
Collapse
Affiliation(s)
- Ami Mankodi
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Noura Azzabou
- NMR Laboratory, DRF, I2BM, MIRCen, Institute of Myology, Pitie-Salpetriere University Hospital and CEA, Paris, France
| | - Thomas Bulea
- Functional & Applied Biomechanics Section, Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Harmen Reyngoudt
- NMR Laboratory, DRF, I2BM, MIRCen, Institute of Myology, Pitie-Salpetriere University Hospital and CEA, Paris, France
| | - Hirity Shimellis
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Eunhee Kim
- Office of Biostatistics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Pierre G Carlier
- NMR Laboratory, DRF, I2BM, MIRCen, Institute of Myology, Pitie-Salpetriere University Hospital and CEA, Paris, France
| |
Collapse
|
92
|
Non-uniform muscle fat replacement along the proximodistal axis in Duchenne muscular dystrophy. Neuromuscul Disord 2017; 27:458-464. [PMID: 28302391 DOI: 10.1016/j.nmd.2017.02.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 12/25/2022]
Abstract
The progressive replacement of muscle tissue by fat in Duchenne muscular dystrophy (DMD) has been studied using quantitative MRI between, but not within, individual muscles. We studied fat replacement along the proximodistal muscle axis using the Dixon technique on a 3T MR scanner in 22 DMD patients and 12 healthy controls. Mean fat fractions per muscle per slice for seven lower and upper leg muscles were compared between and within groups assuming a parabolic distribution. Average fat fraction for a small central slice stack and a large coverage slice stack were compared to the value when the stack was shifted one slice (15 mm) up or down. Higher fat fractions were observed in distal and proximal muscle segments compared to the muscle belly in all muscles of the DMD subjects (p <0.001). A shift of 15 mm resulted in a difference in mean fat fraction which was on average 1-2% ranging up to 12% (p <0.01). The muscle end regions are exposed to higher mechanical strain, which points towards mechanical disruption of the sarcolemma as one of the key factors in the pathophysiology. Overall, this non-uniformity in fat replacement needs to be taken into account to prevent sample bias when applying quantitative MRI as biomarker in clinical trials for DMD.
Collapse
|
93
|
Pichiecchio A, Rossi M, Cinnante C, Colafati GS, Icco R, Parini R, Menni F, Furlan F, Burlina A, Sacchini M, Donati MA, Fecarotta S, Casa RD, Deodato F, Taurisano R, Rocco M. Muscle MRI of classic infantile pompe patients: Fatty substitution and edema‐like changes. Muscle Nerve 2017; 55:841-848. [DOI: 10.1002/mus.25417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 07/18/2016] [Accepted: 09/23/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Anna Pichiecchio
- Neuroradiology DepartmentC. Mondino National Neurological InstituteVia Mondino2 ‐ 27100Pavia Italy
| | - Marta Rossi
- Child Neuropsychiatry UnitDepartment of Brain and Behavioral Sciences, University of PaviaPavia Italy
| | - Claudia Cinnante
- Unit of NeuroradiologyDepartment of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of MilanMilan Italy
| | | | - Roberto Icco
- Neurology UnitDepartment of Brain and Behavioral Sciences, University of PaviaPavia Italy
| | - Rossella Parini
- Unit of Rare Metabolic Diseases, San Gerardo HospitalMonza Italy
| | - Francesca Menni
- Pediatric Highly Intensive Care UnitDepartment of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilano Italy
| | - Francesca Furlan
- Unit of Metabolic DiseasesAzienda Ospedaliera UniversitariaPadua Italy
| | - Alberto Burlina
- Unit of Metabolic DiseasesAzienda Ospedaliera UniversitariaPadua Italy
| | - Michele Sacchini
- Metabolic and Neuromuscular UnitAOU Meyer HospitalFlorence Italy
| | | | - Simona Fecarotta
- Department of Translational Medicine‐Section of PediatricsFederico II UniversityNaples Italy
| | - Roberto Della Casa
- Department of Translational Medicine‐Section of PediatricsFederico II UniversityNaples Italy
| | | | | | - Maja Rocco
- Unit of Rare DiseasesDepartment of Pediatrics, Giannina Gaslini InstituteGenoa Italy
| |
Collapse
|
94
|
Hooijmans MT, Niks EH, Burakiewicz J, Verschuuren JJGM, Webb AG, Kan HE. Elevated phosphodiester and T 2 levels can be measured in the absence of fat infiltration in Duchenne muscular dystrophy patients. NMR IN BIOMEDICINE 2017; 30:e3667. [PMID: 27859827 DOI: 10.1002/nbm.3667] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 05/27/2023]
Abstract
Quantitative MRI and MRS are increasingly important as non-invasive outcome measures in therapy development for Duchenne muscular dystrophy (DMD). Many studies have focussed on individual measures such as fat fraction and metabolite levels in relation to age and functionality, but much less attention has been given to how these indices relate to each other. Here, we assessed spatially resolved metabolic changes in leg muscles of DMD patients, and classified muscles according to the degree of fat replacement compared with healthy controls. Quantitative MRI (three-point Dixon and multi-spin echo without fat suppression and a tri-exponential fit) and 2D-CSI 31 P MRS scans were obtained from 18 DMD patients and 12 healthy controls using a 3 T and a 7 T MR scanner. Metabolite levels, T2 values and fat fraction were individually assessed for five lower leg muscles. In muscles with extensive fat replacement, phosphodiester over adenosine triphosphate (PDE/ATP), inorganic phosphate over phosphocreatine, intracellular tissue pH and T2 were significantly increased compared with healthy controls. In contrast, in muscles without extensive fat replacement, only PDE/ATP and T2 values were significantly elevated. Overall, our results show that PDE levels and T2 values increase prior to the occurrence of fat replacement and remain elevated in later stages of the disease. This suggests that these individual measures could not only function as early markers for muscle damage but also reflect potentially reversible pathology in the more advanced stages.
Collapse
Affiliation(s)
- M T Hooijmans
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - E H Niks
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - J Burakiewicz
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - J J G M Verschuuren
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - A G Webb
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - H E Kan
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
95
|
Ten Dam L, van der Kooi AJ, Verhamme C, Wattjes MP, de Visser M. Muscle imaging in inherited and acquired muscle diseases. Eur J Neurol 2016; 23:688-703. [PMID: 27000978 DOI: 10.1111/ene.12984] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 01/18/2016] [Indexed: 02/05/2023]
Abstract
In this review we discuss the use of conventional (computed tomography, magnetic resonance imaging, ultrasound) and advanced muscle imaging modalities (diffusion tensor imaging, magnetic resonance spectroscopy) in hereditary and acquired myopathies. We summarize the data on specific patterns of muscle involvement in the major categories of muscle disease and provide recommendations on how to use muscle imaging in this field of neuromuscular disorders.
Collapse
Affiliation(s)
- L Ten Dam
- Department of Neurology, Academic Medical Centre, Amsterdam, The Netherlands
| | - A J van der Kooi
- Department of Neurology, Academic Medical Centre, Amsterdam, The Netherlands
| | - C Verhamme
- Department of Neurology, Academic Medical Centre, Amsterdam, The Netherlands
| | - M P Wattjes
- Department of Radiology and Nuclear Medicine, VU University Medical Centre, Amsterdam, The Netherlands
| | - M de Visser
- Department of Neurology, Academic Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
96
|
Magnetic resonance imaging of the proximal upper extremity musculature in boys with Duchenne muscular dystrophy. J Neurol 2016; 264:64-71. [PMID: 27778157 DOI: 10.1007/s00415-016-8311-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 12/25/2022]
Abstract
There is a pressing need for biomarkers and outcomes that can be used across disease stages in Duchenne muscular dystrophy (DMD), to facilitate the inclusion of a wider range of participants in clinical trials and to improve our understanding of the natural history of DMD. Quantitative magnetic resonance imaging (qMRI) and spectroscopy (MRS) biomarkers show considerable promise in both the legs and forearms of individuals with DMD, but have not yet been examined in functionally important proximal upper extremity muscles such as the biceps brachii and deltoid. The primary objective of this study was to examine the feasibility of implementing qMRI and MRS biomarkers in the proximal upper extremity musculature, and the secondary objective was to examine the relationship between MR measures of arm muscle pathology and upper extremity functional endpoints. Biomarkers included MRS and MRI measures of fat fraction and transverse relaxation time (T 2). The MR exam was well tolerated in both ambulatory and non-ambulatory boys. qMR biomarkers differentiated affected and unaffected participants and correlated strongly with upper extremity function (r = 0.91 for biceps brachii T 2 versus performance of upper limb score). These qMR outcome measures could be highly beneficial to the neuromuscular disease community, allowing measurement of the quality of functionally important muscles across disease stages to understand the natural history of DMD and particularly to broaden the opportunity for clinical trial participation.
Collapse
|
97
|
Jin S, Du J, Wang Z, Zhang W, Lv H, Meng L, Xiao J, Yuan Y. Heterogeneous characteristics of MRI changes of thigh muscles in patients with dysferlinopathy. Muscle Nerve 2016; 54:1072-1079. [PMID: 27251469 DOI: 10.1002/mus.25207] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 05/18/2016] [Accepted: 05/31/2016] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The aim of this study was to evaluate the pattern of thigh muscle MRI changes in a large cohort of patients with dysferlinopathy. METHODS MRI of the thigh was performed in 60 patients. We correlated the scale of muscle involvement on MRI with the modified Gardner-Medwin and Walton (GM-W) scale and disease duration. We also analyzed the relationship between muscle changes and genetic mutations. RESULTS Fatty infiltration and edema were observed in 95.50% and 86.67% of patients, respectively. The hamstring muscles had the highest frequency and mean score of fatty infiltration, although a posterior-dominant pattern was found in only 56%. Edema most commonly and severely affected the quadriceps and adductor magnus muscles. Fatty infiltration score correlated positively with disease duration and GM-W scale. CONCLUSIONS The pattern of fatty infiltration was heterogeneous in dysferlinopathy patients. Muscle edema was common. Fatty infiltration can be used to assess disease progression. Muscle Nerve 54: 1072-1079, 2016.
Collapse
Affiliation(s)
- Suqin Jin
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, PR. China
| | - Jing Du
- Department of Radiology, Peking University First Hospital, Beijing, 100034, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, PR. China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, PR. China
| | - He Lv
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, PR. China
| | - Lingchao Meng
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, PR. China
| | - Jiangxi Xiao
- Department of Radiology, Peking University First Hospital, Beijing, 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, 8 Xishiku St, Xicheng District, Beijing, 100034, PR. China
| |
Collapse
|
98
|
Figueroa-Bonaparte S, Segovia S, Llauger J, Belmonte I, Pedrosa I, Alejaldre A, Mayos M, Suárez-Cuartín G, Gallardo E, Illa I, Díaz-Manera J. Muscle MRI Findings in Childhood/Adult Onset Pompe Disease Correlate with Muscle Function. PLoS One 2016; 11:e0163493. [PMID: 27711114 PMCID: PMC5053479 DOI: 10.1371/journal.pone.0163493] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/09/2016] [Indexed: 11/18/2022] Open
Abstract
Objectives Enzyme replacement therapy has shown to be effective for childhood/adult onset Pompe disease (AOPD). The discovery of biomarkers useful for monitoring disease progression is one of the priority research topics in Pompe disease. Muscle MRI could be one possible test but the correlation between muscle MRI and muscle strength and function has been only partially addressed so far. Methods We studied 34 AOPD patients using functional scales (Manual Research Council scale, hand held myometry, 6 minutes walking test, timed to up and go test, time to climb up and down 4 steps, time to walk 10 meters and Motor Function Measure 20 Scale), respiratory tests (Forced Vital Capacity seated and lying, Maximun Inspiratory Pressure and Maximum Expiratory Pressure), daily live activities scales (Activlim) and quality of life scales (Short Form-36 and Individualized Neuromuscular Quality of Life questionnaire). We performed a whole body muscle MRI using T1w and 3-point Dixon imaging centered on thighs and lower trunk region. Results T1w whole body muscle MRI showed a homogeneous pattern of muscle involvement that could also be found in pre-symptomatic individuals. We found a strong correlation between muscle strength, muscle functional scales and the degree of muscle fatty replacement in muscle MRI analyzed using T1w and 3-point Dixon imaging studies. Moreover, muscle MRI detected mild degree of fatty replacement in paraspinal muscles in pre-symptomatic patients. Conclusion Based on our findings, we consider that muscle MRI correlates with muscle function in patients with AOPD and could be useful for diagnosis and follow-up in pre-symptomatic and symptomatic patients under treatment. Take home message Muscle MRI correlates with muscle function in patients with AOPD and could be useful to follow-up patients in daily clinic.
Collapse
Affiliation(s)
- Sebastián Figueroa-Bonaparte
- Neuromuscular Disorders Unit. Neurology Department. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona, Spain
- Centro de Investigación en Red en Enfermedades Raras (CIBERER)
| | - Sonia Segovia
- Neuromuscular Disorders Unit. Neurology Department. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona, Spain
- Centro de Investigación en Red en Enfermedades Raras (CIBERER)
| | - Jaume Llauger
- Radiology department. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona, Spain
| | - Izaskun Belmonte
- Rehabilitation and physiotherapy department. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona, Spain
| | - Irene Pedrosa
- Rehabilitation and physiotherapy department. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona, Spain
| | - Aída Alejaldre
- Neuromuscular Disorders Unit. Neurology Department. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona, Spain
- Centro de Investigación en Red en Enfermedades Raras (CIBERER)
| | - Mercè Mayos
- Respiratory diseases department. Hospital de la Santa Creu i Sant Pau. Barcelona. Universitat Autònoma de Barcelona, Spain
| | - Guillermo Suárez-Cuartín
- Respiratory diseases department. Hospital de la Santa Creu i Sant Pau. Barcelona. Universitat Autònoma de Barcelona, Spain
| | - Eduard Gallardo
- Neuromuscular Disorders Unit. Neurology Department. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona, Spain
- Centro de Investigación en Red en Enfermedades Raras (CIBERER)
| | - Isabel Illa
- Neuromuscular Disorders Unit. Neurology Department. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona, Spain
- Centro de Investigación en Red en Enfermedades Raras (CIBERER)
| | - Jordi Díaz-Manera
- Neuromuscular Disorders Unit. Neurology Department. Hospital de la Santa Creu i Sant Pau. Universitat Autònoma de Barcelona, Spain
- Centro de Investigación en Red en Enfermedades Raras (CIBERER)
- * E-mail:
| | | |
Collapse
|
99
|
|
100
|
Ricotti V, Evans MRB, Sinclair CDJ, Butler JW, Ridout DA, Hogrel JY, Emira A, Morrow JM, Reilly MM, Hanna MG, Janiczek RL, Matthews PM, Yousry TA, Muntoni F, Thornton JS. Upper Limb Evaluation in Duchenne Muscular Dystrophy: Fat-Water Quantification by MRI, Muscle Force and Function Define Endpoints for Clinical Trials. PLoS One 2016; 11:e0162542. [PMID: 27649492 PMCID: PMC5029878 DOI: 10.1371/journal.pone.0162542] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/24/2016] [Indexed: 01/16/2023] Open
Abstract
Objective A number of promising experimental therapies for Duchenne muscular dystrophy (DMD) are emerging. Clinical trials currently rely on invasive biopsies or motivation-dependent functional tests to assess outcome. Quantitative muscle magnetic resonance imaging (MRI) could offer a valuable alternative and permit inclusion of non-ambulant DMD subjects. The aims of our study were to explore the responsiveness of upper-limb MRI muscle-fat measurement as a non-invasive objective endpoint for clinical trials in non-ambulant DMD, and to investigate the relationship of these MRI measures to those of muscle force and function. Methods 15 non-ambulant DMD boys (mean age 13.3 y) and 10 age-gender matched healthy controls (mean age 14.6 y) were recruited. 3-Tesla MRI fat-water quantification was used to measure forearm muscle fat transformation in non-ambulant DMD boys compared with healthy controls. DMD boys were assessed at 4 time-points over 12 months, using 3-point Dixon MRI to measure muscle fat-fraction (f.f.). Images from ten forearm muscles were segmented and mean f.f. and cross-sectional area recorded. DMD subjects also underwent comprehensive upper limb function and force evaluation. Results Overall mean baseline forearm f.f. was higher in DMD than in healthy controls (p<0.001). A progressive f.f. increase was observed in DMD over 12 months, reaching significance from 6 months (p<0.001, n = 7), accompanied by a significant loss in pinch strength at 6 months (p<0.001, n = 9) and a loss of upper limb function and grip force observed over 12 months (p<0.001, n = 8). Conclusions These results support the use of MRI muscle f.f. as a biomarker to monitor disease progression in the upper limb in non-ambulant DMD, with sensitivity adequate to detect group-level change over time intervals practical for use in clinical trials. Clinical validity is supported by the association of the progressive fat transformation of muscle with loss of muscle force and function.
Collapse
Affiliation(s)
- Valeria Ricotti
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health and Great Ormond Street Hospital, London, United Kingdom
- * E-mail:
| | - Matthew R. B. Evans
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
- Neuroradiological Academic Unit, UCL Institute of Neurology, London, United Kingdom
| | - Christopher D. J. Sinclair
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
- Neuroradiological Academic Unit, UCL Institute of Neurology, London, United Kingdom
| | - Jordan W. Butler
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health and Great Ormond Street Hospital, London, United Kingdom
| | - Deborah A. Ridout
- Population, Policy and Practice Programme, UCL Institute of Child Health and Great Ormond Street Hospital, London, United Kingdom
| | | | - Ahmed Emira
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
- Neuroradiological Academic Unit, UCL Institute of Neurology, London, United Kingdom
| | - Jasper M. Morrow
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Mary M. Reilly
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - Michael G. Hanna
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | | | - Paul M. Matthews
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
- Division of Brain Sciences and Centre for Neurotechnology, Imperial College London, United Kingdom
| | - Tarek A. Yousry
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
- Neuroradiological Academic Unit, UCL Institute of Neurology, London, United Kingdom
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health and Great Ormond Street Hospital, London, United Kingdom
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
| | - John S. Thornton
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, United Kingdom
- Neuroradiological Academic Unit, UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|