51
|
Exosomes: Their Role in Pathogenesis, Diagnosis and Treatment of Diseases. Cancers (Basel) 2020; 13:cancers13010084. [PMID: 33396739 PMCID: PMC7795854 DOI: 10.3390/cancers13010084] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The aim of this review is to provide an overview of the current scientific evidence concerning the role played by exosomes in the pathogenesis, diagnosis and treatment of diseases. The potential use of exosomes as delivery vectors for small-molecule therapeutic agents will be discussed. In addition, a special emphasis will be placed on the involvement of exosomes in oncological diseases, as well as to their potential therapeutic application as liquid biopsy tools mainly in cancer diagnosis. A better understanding of exosome biology could improve the results of clinical interventions using exosomes as therapeutic agents. Abstract Exosomes are lipid bilayer particles released from cells into their surrounding environment. These vesicles are mediators of near and long-distance intercellular communication and affect various aspects of cell biology. In addition to their biological function, they play an increasingly important role both in diagnosis and as therapeutic agents. In this paper, we review recent literature related to the molecular composition of exosomes, paying special attention to their role in pathogenesis, along with their application as biomarkers and as therapeutic tools. In this context, we analyze the potential use of exosomes in biomedicine, as well as the limitations that preclude their wider application.
Collapse
|
52
|
Vassileff N, Cheng L, Hill AF. Extracellular vesicles - propagators of neuropathology and sources of potential biomarkers and therapeutics for neurodegenerative diseases. J Cell Sci 2020; 133:133/23/jcs243139. [PMID: 33310868 DOI: 10.1242/jcs.243139] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases are characterised by the irreversible degeneration of neurons in the central or peripheral nervous systems. These include amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD) and prion diseases. Small extracellular vesicles (sEVs), a type of EV involved in cellular communication, have been well documented as propagating neurodegenerative diseases. These sEVs carry cargo, such as proteins and RNA, to recipient cells but are also capable of promoting protein misfolding, thus actively contributing to the progression of these diseases. sEV secretion is also a compensatory process for lysosomal dysfunction in the affected cells, despite inadvertently propagating disease to recipient cells. Despite this, sEV miRNAs have biomarker potential for the early diagnosis of these diseases, while stem cell-derived sEVs and those generated through exogenous assistance demonstrate the greatest therapeutic potential. This Review will highlight novel advancements in the involvement of sEVs as propagators of neuropathology, biomarkers and potential therapeutics in neurodegenerative diseases.
Collapse
Affiliation(s)
- Natasha Vassileff
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Lesley Cheng
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3083, Australia
| | - Andrew F Hill
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
53
|
Quiroz-Baez R, Hernández-Ortega K, Martínez-Martínez E. Insights Into the Proteomic Profiling of Extracellular Vesicles for the Identification of Early Biomarkers of Neurodegeneration. Front Neurol 2020; 11:580030. [PMID: 33362690 PMCID: PMC7759525 DOI: 10.3389/fneur.2020.580030] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are involved in the development and progression of neurodegenerative diseases, including Alzheimer's and Parkinson's disease. Moreover, EVs have the capacity to modify the physiology of neuronal circuits by transferring proteins, RNA, lipids, and metabolites. The proteomic characterization of EVs (exosomes and microvesicles) from preclinical models and patient samples has the potential to reveal new proteins and molecular networks that affect the normal physiology prior to the appearance of traditional biomarkers of neurodegeneration. Noteworthy, many of the genetic risks associated to the development of Alzheimer's and Parkinson's disease affect the crosstalk between mitochondria, endosomes, and lysosomes. Recent research has focused on determining the role of endolysosomal trafficking in the onset of neurodegenerative diseases. Proteomic studies indicate an alteration of biogenesis and molecular content of EVs as a result of endolysosomal and autophagic dysfunction. In this review, we discuss the status of EV proteomic characterization and their usefulness in discovering new biomarkers for the differential diagnosis of neurodegenerative diseases. Despite the challenges related to the failure to follow a standard isolation protocol and their implementation for a clinical setting, the analysis of EV proteomes has revealed the presence of key proteins with post-translational modifications that can be measured in peripheral fluids.
Collapse
Affiliation(s)
- Ricardo Quiroz-Baez
- Departamento de Investigación Básica, Dirección de Investigación, Instituto Nacional de Geriatría, Ciudad de México, Mexico
| | - Karina Hernández-Ortega
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Eduardo Martínez-Martínez
- Laboratory of Cell Communication & Extracellular Vesicles, Division of Basic Science, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| |
Collapse
|
54
|
Vandendriessche C, Bruggeman A, Van Cauwenberghe C, Vandenbroucke RE. Extracellular Vesicles in Alzheimer's and Parkinson's Disease: Small Entities with Large Consequences. Cells 2020; 9:cells9112485. [PMID: 33203181 PMCID: PMC7696752 DOI: 10.3390/cells9112485] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD) and Parkinson’s disease (PD) are incurable, devastating neurodegenerative disorders characterized by the formation and spreading of protein aggregates throughout the brain. Although the exact spreading mechanism is not completely understood, extracellular vesicles (EVs) have been proposed as potential contributors. Indeed, EVs have emerged as potential carriers of disease-associated proteins and are therefore thought to play an important role in disease progression, although some beneficial functions have also been attributed to them. EVs can be isolated from a variety of sources, including biofluids, and the analysis of their content can provide a snapshot of ongoing pathological changes in the brain. This underlines their potential as biomarker candidates which is of specific relevance in AD and PD where symptoms only arise after considerable and irreversible neuronal damage has already occurred. In this review, we discuss the known beneficial and detrimental functions of EVs in AD and PD and we highlight their promising potential to be used as biomarkers in both diseases.
Collapse
Affiliation(s)
- Charysse Vandendriessche
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; (C.V.); (A.B.); (C.V.C.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Arnout Bruggeman
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; (C.V.); (A.B.); (C.V.C.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Department of Neurology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Caroline Van Cauwenberghe
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; (C.V.); (A.B.); (C.V.C.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Roosmarijn E. Vandenbroucke
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; (C.V.); (A.B.); (C.V.C.)
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Correspondence: ; Tel.: +32-9-3313730
| |
Collapse
|
55
|
Exosome markers of LRRK2 kinase inhibition. NPJ PARKINSONS DISEASE 2020; 6:32. [PMID: 33298972 PMCID: PMC7666125 DOI: 10.1038/s41531-020-00138-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
Hyper-activated LRRK2 is linked to Parkinson’s disease susceptibility and progression. Quantitative measures of LRRK2 inhibition, especially in the brain, maybe critical in the development of successful LRRK2-targeting therapeutics. In this study, two different brain-penetrant and selective LRRK2 small-molecule kinase inhibitors (PFE-360 and MLi2) were orally administered to groups of cynomolgus macaques. Proposed pharmacodynamic markers in exosomes from urine and cerebrospinal fluid (CSF) were compared to established markers in peripheral blood mononuclear cells (PBMCs). LRRK2 kinase inhibition led to reductions in exosome-LRRK2 protein and the LRRK2-substrate pT73-Rab10 in urine, as well as reduced exosome-LRRK2 and autophosphorylated pS1292-LRRK2 protein in CSF. We propose orthogonal markers for LRRK2 inhibition in urine and CSF can be used in combination with blood markers to non-invasively monitor the potency of LRRK2-targeting therapeutics.
Collapse
|
56
|
Gonzalez-Hunt CP, Thacker EA, Toste CM, Boularand S, Deprets S, Dubois L, Sanders LH. Mitochondrial DNA damage as a potential biomarker of LRRK2 kinase activity in LRRK2 Parkinson's disease. Sci Rep 2020; 10:17293. [PMID: 33057100 PMCID: PMC7557909 DOI: 10.1038/s41598-020-74195-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a promising therapeutic target for the treatment of Parkinson's disease (PD) and LRRK2 kinase inhibitors are currently being tested in early phase clinical trials. In order to ensure the highest chance of success, a biomarker-guided entry into clinical trials is key. LRRK2 phosphorylation, and phosphorylation of the LRRK2 substrate Rab10, have been proposed as target engagement biomarkers for LRRK2 kinase inhibition. However, a pharmacodynamic biomarker to demonstrate that a biological response has occurred is lacking. We previously discovered that the LRRK2 G2019S mutation causes mitochondrial DNA (mtDNA) damage and is LRRK2 kinase activity-dependent. Here, we have explored the possibility that measurement of mtDNA damage is a "surrogate" for LRRK2 kinase activity and consequently of kinase inhibitor activity. Mitochondrial DNA damage was robustly increased in PD patient-derived immune cells with LRRK2 G2019S mutations as compared with controls. Following treatment with multiple classes of LRRK2 kinase inhibitors, a full reversal of mtDNA damage to healthy control levels was observed and correlated with measures of LRRK2 dephosphorylation. Taken together, assessment of mtDNA damage levels may be a sensitive measure of altered kinase activity and provide an extended profile of LRRK2 kinase modulation in clinical studies.
Collapse
Affiliation(s)
- C P Gonzalez-Hunt
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - E A Thacker
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - C M Toste
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - S Boularand
- Rare & Neurologic Diseases Research, Sanofi, Chilly Mazarin, France
| | - S Deprets
- Rare & Neurologic Diseases Research, Sanofi, Chilly Mazarin, France
| | - L Dubois
- Rare & Neurologic Diseases Research, Sanofi, Chilly Mazarin, France
| | - L H Sanders
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
57
|
Leggio L, Paternò G, Vivarelli S, L’Episcopo F, Tirolo C, Raciti G, Pappalardo F, Giachino C, Caniglia S, Serapide MF, Marchetti B, Iraci N. Extracellular Vesicles as Nanotherapeutics for Parkinson's Disease. Biomolecules 2020; 10:E1327. [PMID: 32948090 PMCID: PMC7563168 DOI: 10.3390/biom10091327] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are naturally occurring membranous structures secreted by normal and diseased cells, and carrying a wide range of bioactive molecules. In the central nervous system (CNS), EVs are important in both homeostasis and pathology. Through receptor-ligand interactions, direct fusion, or endocytosis, EVs interact with their target cells. Accumulating evidence indicates that EVs play crucial roles in the pathogenesis of many neurodegenerative disorders (NDs), including Parkinson's disease (PD). PD is the second most common ND, characterized by the progressive loss of dopaminergic (DAergic) neurons within the Substantia Nigra pars compacta (SNpc). In PD, EVs are secreted by both neurons and glial cells, with either beneficial or detrimental effects, via a complex program of cell-to-cell communication. The functions of EVs in PD range from their etiopathogenetic relevance to their use as diagnostic tools and innovative carriers of therapeutics. Because they can cross the blood-brain barrier, EVs can be engineered to deliver bioactive molecules (e.g., small interfering RNAs, catalase) within the CNS. This review summarizes the latest findings regarding the role played by EVs in PD etiology, diagnosis, prognosis, and therapy, with a particular focus on their use as novel PD nanotherapeutics.
Collapse
Affiliation(s)
- Loredana Leggio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| | - Greta Paternò
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| | - Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| | - Francesca L’Episcopo
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Cataldo Tirolo
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Gabriele Raciti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| | - Fabrizio Pappalardo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| | - Carmela Giachino
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Salvatore Caniglia
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Maria Francesca Serapide
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| | - Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy; (F.L.); (C.T.); (C.G.); (S.C.)
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy; (L.L.); (G.P.); (S.V.); (G.R.); (F.P.); (M.F.S.)
| |
Collapse
|
58
|
Delcambre S, Ghelfi J, Ouzren N, Grandmougin L, Delbrouck C, Seibler P, Wasner K, Aasly JO, Klein C, Trinh J, Pereira SL, Grünewald A. Mitochondrial Mechanisms of LRRK2 G2019S Penetrance. Front Neurol 2020; 11:881. [PMID: 32982917 PMCID: PMC7477385 DOI: 10.3389/fneur.2020.00881] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022] Open
Abstract
Several mutations in leucine-rich repeat kinase-2 (LRRK2) have been associated with Parkinson's disease (PD). The most common substitution, G2019S, interferes with LRRK2 kinase activity, which is regulated by autophosphorylation. Yet, the penetrance of this gain-of-function mutation is incomplete, and thus far, few factors have been correlated with disease status in carriers. This includes (i) LRRK2 autophosphorylation in urinary exosomes, (ii) serum levels of the antioxidant urate, and (iii) abundance of mitochondrial DNA (mtDNA) transcription-associated 7S DNA. In light of a mechanistic link between LRRK2 kinase activity and mtDNA lesion formation, we previously investigated mtDNA integrity in fibroblasts from manifesting (LRRK2+/PD+) and non-manifesting carriers (LRRK2+/PD−) of the G2019S mutation as well as from aged-matched controls. In our published study, mtDNA major arc deletions correlated with PD status, with manifesting carriers presenting the highest levels. In keeping with these findings, we now further explored mitochondrial features in fibroblasts derived from LRRK2+/PD+ (n = 10), LRRK2+/PD− (n = 21), and control (n = 10) individuals. In agreement with an accumulation of mtDNA major arc deletions, we also detected reduced NADH dehydrogenase activity in the LRRK2+/PD+ group. Moreover, in affected G2019S carriers, we observed elevated mitochondrial mass and mtDNA copy numbers as well as increased expression of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates antioxidant signaling. Taken together, these results implicate mtDNA dyshomeostasis—possibly as a consequence of impaired mitophagy—in the penetrance of LRRK2-associated PD. Our findings are a step forward in the pursuit of unveiling markers that will allow monitoring of disease progression of LRRK2 mutation carriers.
Collapse
Affiliation(s)
- Sylvie Delcambre
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jenny Ghelfi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Nassima Ouzren
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Léa Grandmougin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Catherine Delbrouck
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Kobi Wasner
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jan O Aasly
- Department of Neuromedicine and Movement Science, Department of Neurology, St. Olav's Hospital, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Joanne Trinh
- Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Sandro L Pereira
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
59
|
Rideout HJ, Chartier-Harlin MC, Fell MJ, Hirst WD, Huntwork-Rodriguez S, Leyns CEG, Mabrouk OS, Taymans JM. The Current State-of-the Art of LRRK2-Based Biomarker Assay Development in Parkinson's Disease. Front Neurosci 2020; 14:865. [PMID: 33013290 PMCID: PMC7461933 DOI: 10.3389/fnins.2020.00865] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
Evidence is mounting that LRRK2 function, particularly its kinase activity, is elevated in multiple forms of Parkinson's disease, both idiopathic as well as familial forms linked to mutations in the LRRK2 gene. However, sensitive quantitative markers of LRRK2 activation in clinical samples remain at the early stages of development. There are several measures of LRRK2 activity that could potentially be used in longitudinal studies of disease progression, as inclusion/exclusion criteria for clinical trials, to predict response to therapy, or as markers of target engagement. Among these are levels of LRRK2, phosphorylation of LRRK2 itself, either by other kinases or via auto-phosphorylation, its in vitro kinase activity, or phosphorylation of downstream substrates. This is advantageous on many levels, in that multiple indices of elevated kinase activity clearly strengthen the rationale for targeting this kinase with novel therapeutic candidates, and provide alternate markers of activation in certain tissues or biofluids for which specific measures are not detectable. However, this can also complicate interpretation of findings from different studies using disparate measures. In this review we discuss the current state of LRRK2-focused biomarkers, the advantages and disadvantages of the current pallet of outcome measures, the gaps that need to be addressed, and the priorities that the field has defined.
Collapse
Affiliation(s)
- Hardy J. Rideout
- Division of Basic Neurosciences, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Marie-Christine Chartier-Harlin
- Univ. Lille, Inserm, CHU Lille, U1172 - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | | | | | | | | | | | - Jean-Marc Taymans
- Univ. Lille, Inserm, CHU Lille, U1172 - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| |
Collapse
|
60
|
Kelly K, West AB. Pharmacodynamic Biomarkers for Emerging LRRK2 Therapeutics. Front Neurosci 2020; 14:807. [PMID: 32903744 PMCID: PMC7438883 DOI: 10.3389/fnins.2020.00807] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022] Open
Abstract
Genetic studies have identified variants in the LRRK2 gene as important components of Parkinson's disease (PD) pathobiology. Biochemical and emergent biomarker studies have coalesced around LRRK2 hyperactivation in disease. Therapeutics that diminish LRRK2 activity, either with small molecule kinase inhibitors or anti-sense oligonucleotides, have recently advanced to the clinic. Historically, there have been few successes in the development of therapies that might slow or halt the progression of neurodegenerative diseases. Over the past few decades of biomedical research, retrospective analyses suggest the broad integration of informative biomarkers early in development tends to distinguish successful pipelines from those that fail early. Herein, we discuss the biomarker regulatory process, emerging LRRK2 biomarker candidates, assays, underlying biomarker biology, and clinical integration.
Collapse
Affiliation(s)
- Kaela Kelly
- Duke Center for Neurodegeneration Research, Departments of Pharmacology and Cancer Biology, Neurology, and Neurobiology, Duke University, Durham, NC, United States
| | - Andrew B West
- Duke Center for Neurodegeneration Research, Departments of Pharmacology and Cancer Biology, Neurology, and Neurobiology, Duke University, Durham, NC, United States
| |
Collapse
|
61
|
Melachroinou K, Kang MS, Liong C, Narayan S, Levers N, Joshi N, Kopil K, Hutten SJ, Baptista MAS, Padmanabhan S, Kang UJ, Stefanis L, Alcalay RN, Rideout HJ. Elevated In Vitro Kinase Activity in Peripheral Blood Mononuclear Cells of Leucine-Rich Repeat Kinase 2 G2019S Carriers: A Novel Enzyme-Linked Immunosorbent Assay-Based Method. Mov Disord 2020; 35:2095-2100. [PMID: 32652692 PMCID: PMC7754308 DOI: 10.1002/mds.28175] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/17/2020] [Accepted: 05/11/2020] [Indexed: 01/20/2023] Open
Abstract
Background Leucine‐rich repeat kinase 2 kinase inhibitors are being vigorously pursued as potential therapeutic options; however, there is a critical need for sensitive and quantitative assays of leucine‐rich repeat kinase 2 function and target engagement. Objectives Our objective was to compare collection and storage protocols for peripheral blood mononuclear cells, and to determine the optimal conditions for downstream analyses of leucine‐rich repeat kinase 2 in PD cohorts. Methods Here, we describe enzyme‐linked immunosorbent assay–based assays capable of detecting multiple aspects of leucine‐rich repeat kinase 2 function at endogenous levels in human tissues. Results In peripheral blood mononuclear cells from both healthy and affected carriers of the G2019S mutation in leucine‐rich repeat kinase 2, we report, for the first time, significantly elevated in vitro kinase activity, while detecting a significant increase in pS935/leucine‐rich repeat kinase 2 in idiopathic PD patients. Conclusions Quantitative assays such as these described here could potentially uncover specific markers of leucine‐rich repeat kinase 2 function that are predictive of disease progression, aid in patient stratification, and be a critical component of upcoming clinical trials. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Katerina Melachroinou
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Min Suk Kang
- Department of Neurology, Columbia University, New York, New York, USA
| | - Christopher Liong
- Department of Neurology, Columbia University, New York, New York, USA
| | - Sushma Narayan
- Department of Neurology, Columbia University, New York, New York, USA
| | - Najah Levers
- Department of Neurology, Columbia University, New York, New York, USA
| | - Neal Joshi
- Department of Neurology, Columbia University, New York, New York, USA
| | - Katie Kopil
- The Michael J. Fox Foundation for Parkinson's Research, New York, New York, USA
| | - Samantha J Hutten
- The Michael J. Fox Foundation for Parkinson's Research, New York, New York, USA
| | - Marco A S Baptista
- The Michael J. Fox Foundation for Parkinson's Research, New York, New York, USA
| | - Shalini Padmanabhan
- The Michael J. Fox Foundation for Parkinson's Research, New York, New York, USA
| | - Un Jung Kang
- Department of Neurology, NYU Langone Health, New York, New York, USA
| | - Leonidas Stefanis
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Department of Neurology, University of Athens Medical School, Athens, Greece
| | - Roy N Alcalay
- Department of Neurology, Columbia University, New York, New York, USA
| | - Hardy J Rideout
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
62
|
Song C, Kong Y, Huang L, Luo H, Zhu X. Big data-driven precision medicine: Starting the custom-made era of iatrology. Biomed Pharmacother 2020; 129:110445. [PMID: 32593132 DOI: 10.1016/j.biopha.2020.110445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
Precision medicine is a new therapeutic concept and method emerging in recent years. The rapid development of precision medicine is driven by the development of omics related technology, biological information and big data science. Precision medicine is provided to implement precise and personalized treatment for diseases and specific patients. Precision medicine is commonly used in the diagnosis, treatment and prevention of various diseases. This review introduces the application of precision medicine in eight systematic diseases of the human body, and systematically presenting the current situation of precision medicine. At the same time, the shortcomings and limitations of precision medicine are pointed out. Finally, we prospect the development of precision medicine.
Collapse
Affiliation(s)
- Chang Song
- Marine Medical Research Institute of Guangdong Zhanjiang (GDZJMMRI), Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Guangdong Medical University, Zhanjiang 524023, China
| | - Ying Kong
- Department of Clinical Laboratory, Hubei No. 3 People's Hospital of Jianghan University, Wuhan 430033, China
| | - Lianfang Huang
- Marine Medical Research Institute of Guangdong Zhanjiang (GDZJMMRI), Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Guangdong Medical University, Zhanjiang 524023, China.
| | - Hui Luo
- Marine Medical Research Institute of Guangdong Zhanjiang (GDZJMMRI), Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Guangdong Medical University, Zhanjiang 524023, China.
| | - Xiao Zhu
- Marine Medical Research Institute of Guangdong Zhanjiang (GDZJMMRI), Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Guangdong Medical University, Zhanjiang 524023, China.
| |
Collapse
|
63
|
Polissidis A, Petropoulou-Vathi L, Nakos-Bimpos M, Rideout HJ. The Future of Targeted Gene-Based Treatment Strategies and Biomarkers in Parkinson's Disease. Biomolecules 2020; 10:E912. [PMID: 32560161 PMCID: PMC7355671 DOI: 10.3390/biom10060912] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
Biomarkers and disease-modifying therapies are both urgent unmet medical needs in the treatment of Parkinson's disease (PD) and must be developed concurrently because of their interdependent relationship: biomarkers for the early detection of disease (i.e., prior to overt neurodegeneration) are necessary in order for patients to receive maximal therapeutic benefit and vice versa; disease-modifying therapies must become available for patients whose potential for disease diagnosis and prognosis can be predicted with biomarkers. This review provides an overview of the milestones achieved to date in the therapeutic strategy development of disease-modifying therapies and biomarkers for PD, with a focus on the most common and advanced genetically linked targets alpha-synuclein (SNCA), leucine-rich repeat kinase-2 (LRRK2) and glucocerebrosidase (GBA1). Furthermore, we discuss the convergence of the different pathways and the importance of patient stratification and how these advances may apply more broadly to idiopathic PD. The heterogeneity of PD poses a challenge for therapeutic and biomarker development, however, the one gene- one target approach has brought us closer than ever before to an unprecedented number of clinical trials and biomarker advancements.
Collapse
Affiliation(s)
| | | | | | - Hardy J. Rideout
- Laboratory of Neurodegenerative Diseases, Centre for Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (A.P.); (L.P.-V.); (M.N.-B.)
| |
Collapse
|
64
|
Marchand A, Drouyer M, Sarchione A, Chartier-Harlin MC, Taymans JM. LRRK2 Phosphorylation, More Than an Epiphenomenon. Front Neurosci 2020; 14:527. [PMID: 32612495 PMCID: PMC7308437 DOI: 10.3389/fnins.2020.00527] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations in the Leucine Rich Repeat Kinase 2 (LRRK2) gene are linked to autosomal dominant Parkinson's disease (PD), and genetic variations at the LRRK2 locus are associated with an increased risk for sporadic PD. This gene encodes a kinase that is physiologically multiphosphorylated, including clusters of both heterologous phosphorylation and autophosphorylation sites. Several pieces of evidence indicate that LRRK2's phosphorylation is important for its pathological and physiological functioning. These include a reduced LRRK2 heterologous phosphorylation in PD brains or after pharmacological inhibition of LRRK2 kinase activity as well as the appearance of subcellular LRRK2 accumulations when this protein is dephosphorylated at heterologous phosphosites. Nevertheless, the regulatory mechanisms governing LRRK2 phosphorylation levels and the cellular consequences of changes in LRRK2 phosphorylation remain incompletely understood. In this review, we present current knowledge on LRRK2 phosphorylation, LRRK2 phosphoregulation, and how LRRK2 phosphorylation changes affect cellular processes that may ultimately be linked to PD mechanisms.
Collapse
Affiliation(s)
- Antoine Marchand
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Matthieu Drouyer
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Alessia Sarchione
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Marie-Christine Chartier-Harlin
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Jean-Marc Taymans
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| |
Collapse
|
65
|
Loeffler DA, Aasly JO, LeWitt PA, Coffey MP. What Have We Learned from Cerebrospinal Fluid Studies about Biomarkers for Detecting LRRK2 Parkinson's Disease Patients and Healthy Subjects with Parkinson's-Associated LRRK2 Mutations? JOURNAL OF PARKINSONS DISEASE 2020; 9:467-488. [PMID: 31322581 PMCID: PMC6700639 DOI: 10.3233/jpd-191630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common known cause of autosomal dominant Parkinson’s disease (PD) and sporadic PD (sPD). The clinical presentation of LRRK2 PD is similar to sPD, and except for genetic testing, no biochemical or imaging markers can differentiate LRRK2 PD from sPD. Discovery of such biomarkers could indicate neuropathological mechanisms that are unique to or increased in LRRK2 PD. This review discusses findings in 17 LRRK2 - related CSF studies found on PubMed. Most of these studies compared analyte concentrations between four diagnostic groups: LRRK2 PD patients, sPD patients, asymptomatic control subjects carrying PD-associated LRRK2 mutations (LRRK2 CTL), and healthy control subjects lacking LRRK2 mutations (CTL). Analytes examined in these studies included Aβ1-42, tau, α-synuclein, oxidative stress markers, autophagy-related proteins, pteridines, neurotransmitter metabolites, exosomal LRRK2 protein, RNA species, inflammatory cytokines, mitochondrial DNA (mtDNA), and intermediary metabolites. FINDINGS: Pteridines, α-synuclein, mtDNA, 5-hydroxyindolacetic acid, β-D-glucose, lamp2, interleukin-8, and vascular endothelial growth factor were suggested to differentiate LRRK2 PD from sPD patients; 8-hydroxy-2’-deoxyguanosine (8-OHdG), 8-isoprostane (8-ISO), 2-hydroxybutyrate, mtDNA, lamp2, and neopterin may differentiate between LRRK2 CTL and LRRK2 PD subjects; and soluble oligomeric α-synuclein, 8-OHdG, and 8-ISO might differentiate LRRK2 CTL from CTL subjects. CONCLUSIONS: The low numbers of investigations of each analyte, small sample sizes, and methodological differences limit conclusions that can be drawn from these studies. Further investigations are indicated to determine the validity of the analytes identified in these studies as possible biomarkers for LRRK2 PD patients and/or LRRK2 CTL subjects.
Collapse
Affiliation(s)
- David A Loeffler
- Department of Neurology, Beaumont Hospital-Royal Oak, Beaumont Health, Royal Oak, MI, USA
| | - Jan O Aasly
- Department of Neurology, St. Olav's Hospital, Trondheim, Norway
| | - Peter A LeWitt
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.,Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mary P Coffey
- Department of Biostatistics, Beaumont Hospital-Royal Oak, Beaumont Health, Royal Oak, MI, USA
| |
Collapse
|
66
|
Design of guanidyl-functionalized magnetic covalent organic framework for highly selective capture of endogenous phosphopeptides. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1145:122080. [DOI: 10.1016/j.jchromb.2020.122080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 11/17/2022]
|
67
|
Luo S, Du L, Cui Y. Potential Therapeutic Applications and Developments of Exosomes in Parkinson’s Disease. Mol Pharm 2020; 17:1447-1457. [DOI: 10.1021/acs.molpharmaceut.0c00195] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Siqi Luo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Libo Du
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Cui
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
68
|
Vieira SRL, Toffoli M, Campbell P, Schapira AHV. Biofluid Biomarkers in Parkinson's Disease: Clarity Amid Controversy. Mov Disord 2020; 35:1128-1133. [PMID: 32220025 DOI: 10.1002/mds.28030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/21/2020] [Accepted: 03/03/2020] [Indexed: 01/15/2023] Open
Affiliation(s)
- Sophia R L Vieira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Marco Toffoli
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Philip Campbell
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
69
|
Yu H, Sun T, An J, Wen L, Liu F, Bu Z, Cui Y, Feng J. Potential Roles of Exosomes in Parkinson's Disease: From Pathogenesis, Diagnosis, and Treatment to Prognosis. Front Cell Dev Biol 2020; 8:86. [PMID: 32154247 PMCID: PMC7047039 DOI: 10.3389/fcell.2020.00086] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease in the world, after Alzheimer's disease (AD), affecting approximately 1% of people over 65 years of age. Exosomes were once considered to be cellular waste and functionless. However, our understanding about exosome function has increased, and exosomes have been found to carry specific proteins, lipids, functional messenger RNAs (mRNAs), high amounts of non-coding RNAs (including microRNAs, lncRNAs, and circRNAs) and other bioactive substances. Exosomes have been shown to be involved in many physiological processes in vivo, including intercellular communication, cell migration, angiogenesis, and anti-tumor immunity. Moreover, exosomes may be pivotal in the occurrence and progression of various diseases. Therefore, exosomes have several diverse potential applications due to their unique structure and function. For instance, exosomes may be used as biological markers for the diagnosis and prognosis of various diseases, or as a natural carrier of drugs for clinical treatment. Here, we review the potential roles of exosomes in the pathogenesis, diagnosis, treatment, and prognosis of PD.
Collapse
Affiliation(s)
- Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tong Sun
- Department of Neonatology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing An
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lulu Wen
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fei Liu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhongqi Bu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yueran Cui
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
70
|
Yuan Q, Li XD, Zhang SM, Wang HW, Wang YL. Extracellular vesicles in neurodegenerative diseases: Insights and new perspectives. Genes Dis 2019; 8:124-132. [PMID: 33997159 PMCID: PMC8099685 DOI: 10.1016/j.gendis.2019.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/24/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are vesicle-like substances released by eukaryotic cells. Based on their origin and size, EVs are mainly divided into exosomes, microvesicles and apoptotic bodies, and they are secreted by eukaryotic cells under physiological and pathological conditions. EVs are enriched with nucleic acids, proteins and other factors. EVs can regulate the function of adjacent and distant cells, and they are even involved in the pathogenesis of diseases. They contain proteins associated with the pathogenesis of neurodegenerative diseases (NDs), such as the α-synuclein (α-syn) and tau proteins, which suggest potential roles for EVs as biomarkers and carriers of drugs and other therapeutic molecules that can cross the blood–brain barrier to treat NDs. In this review, we summarized the function of EVs in the pathogenesis of different NDs and related advances in EVs as diagnostic biomarkers and treatments for diseases.
Collapse
Affiliation(s)
- Qian Yuan
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450014, PR China
| | - Xiao-Dong Li
- Department of Neurology, Zhengzhou Central Hospital, Zhengzhou, Henan Province, 450014, PR China
| | - Si-Miao Zhang
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450014, PR China
| | - Hong-Wei Wang
- Department of Medicine, The University of Chicago, IL, 60637, USA
| | - Yun-Liang Wang
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450014, PR China.,Department of Neurology, The 960th Hospital of Chinese PLA, Zibo, Shandong Province, 255300, PR China
| |
Collapse
|
71
|
Candelario KM, Balaj L, Zheng T, Skog J, Scheffler B, Breakefield X, Schüle B, Steindler DA. Exosome/microvesicle content is altered in leucine-rich repeat kinase 2 mutant induced pluripotent stem cell-derived neural cells. J Comp Neurol 2019; 528:1203-1215. [PMID: 31743443 DOI: 10.1002/cne.24819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles, including exosomes/microvesicles (EMVs), have been described as sensitive biomarkers that represent disease states and response to therapies. In light of recent reports of disease-mirroring EMV molecular signatures, the present study profiled two EMVs from different Parkinson's disease (PD) tissue sources: (a) neural progenitor cells derived from an endogenous adult stem/progenitor cell, called adult human neural progenitor (AHNP) cells, that we found to be pathological when isolated from postmortem PD patients' substantia nigra; and (b) leucine-rich repeat kinase 2 (LRRK2) gene identified patient induced pluripotent stem cells (iPSCs), which were used to isolate EMVs and begin to characterize their cargoes. Initial characterization of EMVs derived from idiopathic patients (AHNPs) and mutant LRRK2 patients showed differences between both phenotypes and when compared with a sibling control in EMV size and release based on Nanosight analysis. Furthermore, molecular profiling disclosed that neurodegenerative-related gene pathways altered in PD can be reversed using gene-editing approaches. In fact, the EMV cargo genes exhibited normal expression patterns after gene editing. This study shows that EMVs have the potential to serve as sensitive biomarkers of disease state in both idiopathic and gene-identified PD patients and that following gene-editing, EMVs reflect a corrected state. This is relevant for both prodromal and symptomatic patient populations where potential responses to therapies can be monitored via non-invasive liquid biopsies and EMV characterizations.
Collapse
Affiliation(s)
- Kate M Candelario
- Department of Neurological Surgery, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Leonora Balaj
- Massachusetts General Hospital and Harvard University, Boston, Massachusetts
| | - Tong Zheng
- JM USDA Human Nutrition Research Center on Aging, and CTSI of Tufts University, Boston, Massachusetts
| | - Johan Skog
- Exosome Diagnostics, Inc., Cambridge, Massachusetts
| | - Bjorn Scheffler
- DKFZ-Division of Translational Oncology/Neurooncology, German Cancer Consortium (DKTK), Heidelberg & University Hospital Essen, Essen, Germany
| | - Xandra Breakefield
- Massachusetts General Hospital and Harvard University, Boston, Massachusetts
| | - Birgitt Schüle
- Department of Pathology, Stanford University, Stanford, California
| | - Dennis A Steindler
- Department of Neurological Surgery, McKnight Brain Institute, University of Florida, Gainesville, Florida.,JM USDA Human Nutrition Research Center on Aging, and CTSI of Tufts University, Boston, Massachusetts
| |
Collapse
|
72
|
Dixit A, Mehta R, Singh AK. Proteomics in Human Parkinson's Disease: Present Scenario and Future Directions. Cell Mol Neurobiol 2019; 39:901-915. [PMID: 31190159 PMCID: PMC11457823 DOI: 10.1007/s10571-019-00700-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/04/2019] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is an age-related, threatening neurodegenerative disorder with no reliable treatment till date. Identification of specific and reliable biomarker is a major challenge for disease diagnosis and designing effective therapeutic strategy against it. PD pathology at molecular level involves abnormal expression and function of several proteins, including alpha-synuclein. These proteins affect the normal functioning of neurons through various post-translational modifications and interaction with other cellular components. The role of protein anomalies during PD pathogenesis can be better understood by the application of proteomics approach. A number of proteomic studies conducted on brain tissue, blood, and cerebrospinal fluid of PD patients have identified a wide array of protein alterations underlying disease pathogenesis. However, these studies are limited by the types of brain regions or biofluids utilized in the research. For a complete understanding of PD mechanism and discovery of reliable protein biomarkers, it is essential to analyze the proteome of different PD-associated brain regions and easily accessible biofluids such as saliva and urine. The present review summarizes the major advances in the field of PD research in humans utilizing proteomic techniques. Moreover, potential samples for proteomic analysis and limitations associated with the analyses of different types of samples have also been discussed.
Collapse
Affiliation(s)
- Anubhuti Dixit
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India.
| | - Rachna Mehta
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Abhishek Kumar Singh
- Amity Institute of Neuropsychology and Neurosciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| |
Collapse
|
73
|
Vinaiphat A, Sze SK. Clinical implications of extracellular vesicles in neurodegenerative diseases. Expert Rev Mol Diagn 2019; 19:813-824. [PMID: 31429341 DOI: 10.1080/14737159.2019.1657407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Introduction: Extracellular vesicles (EVs) released by neural cells play a crucial role in intracellular communication in both physiological and pathological states. Recent studies have shown that the neuropathogenic manifestation of many progressive nervous system diseases including Parkinson's disease (PD), Alzheimer's diseases (AD), and amyotrophic lateral sclerosis (ALS). These diseases are frequently found to be associated with the accumulation of misfolded proteins, exploit EVs for the spread of aggregates to naive cells in a prion-like mechanism. Therefore, characterization of EVs and understanding their mechanism of action could open a window of opportunity to discover biomarkers and therapeutic targets in a disease-specific manner. Areas covered: In this review, we discuss the role of neural cells-derived EVs in normal and disease states. We also highlight their biomedical potential in modern medicine, including the use of circulating EVs as biomarkers for diagnosis with a special focus on newly-identified potential biomarkers in neurodegenerative disease, and novel methodologies in EVs isolation. Expert opinion: Systematic and comprehensive analysis of EVs in different biofluid sources is needed. Considering the potential for tremendous clinical benefits of EVs research in neurodegenerative disease, there is also an urgent need to standardize neural cells-derived EV enrichment protocols for consensus results.
Collapse
Affiliation(s)
- Arada Vinaiphat
- School of Biological Sciences, Nanyang Technological University , Singapore Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University , Singapore Singapore
| |
Collapse
|
74
|
Wang S, Kojima K, Mobley JA, West AB. Proteomic analysis of urinary extracellular vesicles reveal biomarkers for neurologic disease. EBioMedicine 2019; 45:351-361. [PMID: 31229437 PMCID: PMC6642358 DOI: 10.1016/j.ebiom.2019.06.021] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 12/22/2022] Open
Abstract
Background Extracellular vesicles (EVs) harbor thousands of proteins that hold promise for biomarker development. Usually difficult to purify, EVs in urine are relatively easily obtained and have demonstrated efficacy for kidney disease prediction. Herein, we further characterize the proteome of urinary EVs to explore the potential for biomarkers unrelated to kidney dysfunction, focusing on Parkinson's disease (PD). Methods Using a quantitative mass spectrometry approach, we measured urinary EV proteins from a discovery cohort of 50 subjects. EVs in urine were classified into subgroups and EV proteins were ranked by abundance and variability over time. Enriched pathways and ontologies in stable EV proteins were identified and proteins that predict PD were further measured in a cohort of 108 subjects. Findings Hundreds of commonly expressed urinary EV proteins with stable expression over time were distinguished from proteins with high variability. Bioinformatic analyses reveal a striking enrichment of endolysosomal proteins linked to Parkinson's, Alzheimer's, and Huntington's disease. Tissue and biofluid enrichment analyses show broad representation of EVs from across the body without bias towards kidney or urine proteins. Among the proteins linked to neurological diseases, SNAP23 and calbindin were the most elevated in PD cases with 86% prediction success for disease diagnosis in the discovery cohort and 76% prediction success in the replication cohort. Interpretation Urinary EVs are an underutilized but highly accessible resource for biomarker discovery with particular promise for neurological diseases like PD.
Collapse
Affiliation(s)
- Shijie Wang
- Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC, USA
| | - Kyoko Kojima
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James A Mobley
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew B West
- Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC, USA.
| |
Collapse
|
75
|
Ouzren N, Delcambre S, Ghelfi J, Seibler P, Farrer MJ, König IR, Aasly JO, Trinh J, Klein C, Grünewald A. Mitochondrial DNA Deletions Discriminate Affected from Unaffected LRRK2 Mutation Carriers. Ann Neurol 2019; 86:324-326. [PMID: 31148195 PMCID: PMC6900150 DOI: 10.1002/ana.25510] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Nassima Ouzren
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sylvie Delcambre
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jenny Ghelfi
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Matthew J Farrer
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Inke R König
- Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Jan O Aasly
- Department of Neuromedicine and Movement Science and Department of Neurology, St Olav's Hospital, Norwegian University of Science and Technology, Trondheim, Norway
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Anne Grünewald
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
76
|
Schaffner A, Li X, Gomez-Llorente Y, Leandrou E, Memou A, Clemente N, Yao C, Afsari F, Zhi L, Pan N, Morohashi K, Hua X, Zhou MM, Wang C, Zhang H, Chen SG, Elliott CJ, Rideout H, Ubarretxena-Belandia I, Yue Z. Vitamin B 12 modulates Parkinson's disease LRRK2 kinase activity through allosteric regulation and confers neuroprotection. Cell Res 2019; 29:313-329. [PMID: 30858560 PMCID: PMC6462009 DOI: 10.1038/s41422-019-0153-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/09/2019] [Indexed: 12/12/2022] Open
Abstract
Missense mutations in Leucine-Rich Repeat Kinase 2 (LRRK2) cause the majority of familial and some sporadic forms of Parkinson's disease (PD). The hyperactivity of LRRK2 kinase induced by the pathogenic mutations underlies neurotoxicity, promoting the development of LRRK2 kinase inhibitors as therapeutics. Many potent and specific small-molecule LRRK2 inhibitors have been reported with promise. However, nearly all inhibitors are ATP competitive-some with unwanted side effects and unclear clinical outcome-alternative types of LRRK2 inhibitors are lacking. Herein we identify 5'-deoxyadenosylcobalamin (AdoCbl), a physiological form of the essential micronutrient vitamin B12 as a mixed-type allosteric inhibitor of LRRK2 kinase activity. Multiple assays show that AdoCbl directly binds LRRK2, leading to the alterations of protein conformation and ATP binding in LRRK2. STD-NMR analysis of a LRRK2 homologous kinase reveals the contact sites in AdoCbl that interface with the kinase domain. Furthermore, we provide evidence that AdoCbl modulates LRRK2 activity through disrupting LRRK2 dimerization. Treatment with AdoCbl inhibits LRRK2 kinase activity in cultured cells and brain tissue, and prevents neurotoxicity in cultured primary rodent neurons as well as in transgenic C. elegans and D. melanogaster expressing LRRK2 disease variants. Finally, AdoCbl alleviates deficits in dopamine release sustainability caused by LRRK2 disease variants in mouse models. Our study uncovers vitamin B12 as a novel class of LRRK2 kinase modulator with a distinct mechanism, which can be harnessed to develop new LRRK2-based PD therapeutics in the future.
Collapse
Affiliation(s)
- Adam Schaffner
- Department of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xianting Li
- Department of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yacob Gomez-Llorente
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emmanouela Leandrou
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Anna Memou
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Nicolina Clemente
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Chen Yao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Farinaz Afsari
- Department of Biology, University of York, York, YO1 5DD, UK
| | - Lianteng Zhi
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Nina Pan
- Department of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Keita Morohashi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xiaoluan Hua
- Department of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chunyu Wang
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Hui Zhang
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Shu G Chen
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | | | - Hardy Rideout
- Division of Basic Neurosciences, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Iban Ubarretxena-Belandia
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain
| | - Zhenyu Yue
- Department of Neurology and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
77
|
Caught in the act: LRRK2 in exosomes. Biochem Soc Trans 2019; 47:663-670. [PMID: 30837321 DOI: 10.1042/bst20180467] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/15/2019] [Accepted: 01/31/2019] [Indexed: 12/20/2022]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are a frequent genetic cause of late-onset Parkinson's disease (PD) and a target for therapeutic approaches. LRRK2 protein can influence vesicle trafficking events in the cytosol, with action both in endosomal and lysosomal pathways in different types of cells. A subset of late endosomes harbor intraluminal vesicles that can be secreted into the extracellular milieu. These extracellular vesicles, called exosomes, package LRRK2 protein for transport outside the cell into easily accessed biofluids. Both the cytoplasmic complement of LRRK2 as well as the exosome-associated fraction of protein appears regulated in part by interactions with 14-3-3 proteins. LRRK2 inside exosomes have disease-linked post-translational modifications and are relatively stable compared with unprotected proteins in the extracellular space or disrupted cytosolic compartments. Herein, we review the biology of exosome-associated LRRK2 and the potential for utility in diagnosis, prognosis, and theragnosis in PD and other LRRK2-linked diseases.
Collapse
|
78
|
Kinase activity of mutant LRRK2 manifests differently in hetero-dimeric vs. homo-dimeric complexes. Biochem J 2019; 476:559-579. [PMID: 30670570 DOI: 10.1042/bcj20180589] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 01/04/2023]
Abstract
The Parkinson's disease (PD) protein leucine-rich repeat kinase 2 (LRRK2) exists as a mixture of monomeric and dimeric species, with its kinase activity highly concentrated in the dimeric conformation of the enzyme. We have adapted the proximity biotinylation approach to study the formation and activity of LRRK2 dimers isolated from cultured cells. We find that the R1441C and I2020T mutations both enhance the rate of dimer formation, whereas, the G2019S kinase domain mutant is similar to WT, and the G2385R risk factor variant de-stabilizes dimers. Interestingly, we find a marked departure in the kinase activity between G2019S-LRRK2 homo-dimers and wild-type-G2019S hetero-dimers. While the homo-dimeric G2019S-LRRK2 exhibits the typical robust enhancement of kinase activity, hetero-dimers comprised of wild-type (WT) and G2019S-LRRK2 exhibit kinase activity similar to WT. Dimeric complexes of specific mutant forms of LRRK2 show reduced stability following an in vitro kinase reaction, in LRRK2 mutants for which the kinase activity is similar to WT. Phosphorylation of the small GTPase Rab10 follows a similar pattern in which hetero-dimers of WT and mutant LRRK2 show similar levels of phosphorylation of Rab10 to WT homo-dimers; while the levels of pRab10 are significantly increased in cells expressing mutant homo-dimers. Interestingly, while the risk variant G2385R leads to a de-stabilization of LRRK2 dimers, those dimers possess significantly elevated kinase activity. The vast majority of familial LRRK2-dependent PD cases are heterozygous; thus, these findings raise the possibility that a crucial factor in disease pathogenesis may be the accumulation of homo-dimeric mutant LRRK2.
Collapse
|
79
|
Liu Z, Bryant N, Kumaran R, Beilina A, Abeliovich A, Cookson MR, West AB. LRRK2 phosphorylates membrane-bound Rabs and is activated by GTP-bound Rab7L1 to promote recruitment to the trans-Golgi network. Hum Mol Genet 2019; 27:385-395. [PMID: 29177506 DOI: 10.1093/hmg/ddx410] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/17/2017] [Indexed: 01/14/2023] Open
Abstract
Human genetic studies implicate LRRK2 and RAB7L1 in susceptibility to Parkinson disease (PD). These two genes function in the same pathway, as knockout of Rab7L1 results in phenotypes similar to LRRK2 knockout, and studies in cells and model organisms demonstrate LRRK2 and Rab7L1 interact in the endolysosomal system. Recently, a subset of Rab proteins have been identified as LRRK2 kinase substrates. Herein, we find that Rab8, Rab10, and Rab7L1 must be membrane and GTP-bound for LRRK2 phosphorylation. LRRK2 mutations that cause PD including R1441C, Y1699C, and G2019S all increase LRRK2 phosphorylation of Rab7L1 four-fold over wild-type LRRK2 in cells, resulting in the phosphorylation of nearly one-third the available Rab7L1 protein in cells. In contrast, the most common pathogenic LRRK2 mutation, G2019S, does not upregulate LRRK2-mediated phosphorylation of Rab8 or Rab10. LRRK2 interaction with membrane and GTP-bound Rab7L1, but not Rab8 or Rab10, results in the activation of LRRK2 autophosphorylation at the serine 1292 position, required for LRRK2 toxicity. Further, Rab7L1 controls the proportion of LRRK2 that is membrane-associated, and LRRK2 mutations enhance Rab7L1-mediated recruitment of LRRK2 to the trans-Golgi network. Interaction studies with the Rab8 and Rab10 GTPase-activating protein TBC1D4/AS160 demonstrate that LRRK2 phosphorylation may block membrane and GTP-bound Rab protein interaction with effectors. These results suggest reciprocal regulation between LRRK2 and Rab protein substrates, where Rab7L1-mediated upregulation of LRRK2 kinase activity results in the stabilization of membrane and GTP-bound Rab proteins that may be unable to interact with Rab effector proteins.
Collapse
Affiliation(s)
- Zhiyong Liu
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - Nicole Bryant
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - Ravindran Kumaran
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra Beilina
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Asa Abeliovich
- Departments of Pathology, Cell Biology and Neurology, and Taub Institute, Columbia University, New York, NY 10032, USA
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew B West
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| |
Collapse
|
80
|
De Wit T, Baekelandt V, Lobbestael E. Inhibition of LRRK2 or Casein Kinase 1 Results in LRRK2 Protein Destabilization. Mol Neurobiol 2018; 56:5273-5286. [PMID: 30592011 PMCID: PMC6657425 DOI: 10.1007/s12035-018-1449-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/06/2018] [Indexed: 11/25/2022]
Abstract
Mutations and variations in the leucine-rich repeat kinase 2 (LRRK2) gene are strongly associated with an increased risk to develop Parkinson's disease (PD). Most pathogenic LRRK2 mutations display increased kinase activity, which is believed to underlie LRRK2-mediated toxicity. Therefore, major efforts have been invested in the development of potent and selective LRRK2 kinase inhibitors. Several of these compounds have proven beneficial in cells and in vivo, even in a LRRK2 wild-type background. Therefore, LRRK2 kinase inhibition holds great promise as disease-modifying PD therapy, and is currently tested in preclinical and early clinical studies. One of the safety concerns is the development of lung pathology in mice and non-human primates, which is most likely related to the strongly reduced LRRK2 protein levels after LRRK2 kinase inhibition. In this study, we aimed to better understand the molecular consequences of chronic LRRK2 kinase inhibition, which may be pivotal in the further development of a LRRK2 kinase inhibitor-based PD therapy. We found that LRRK2 protein levels are not restored during long-term LRRK2 kinase inhibition, but are recovered upon inhibitor withdrawal. Interestingly, LRRK2 kinase inhibitor-induced destabilization does not occur in all pathogenic LRRK2 variants and the N-terminal part of LRRK2 appears to play a crucial role in this process. In addition, we identified CK1, an upstream kinase of LRRK2, as a regulator of LRRK2 protein stability in cell culture and in vivo. We propose that pharmacological LRRK2 kinase inhibition triggers a cascade that results in reduced CK1-mediated phosphorylation of yet unidentified LRRK2 phosphorylation sites. This process involves the N-terminus of LRRK2 and ultimately leads to LRRK2 protein degradation.
Collapse
Affiliation(s)
- T De Wit
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Herestraat 49 - Bus 1023, 3000, Leuven, Belgium
| | - V Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Herestraat 49 - Bus 1023, 3000, Leuven, Belgium.
| | - E Lobbestael
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Herestraat 49 - Bus 1023, 3000, Leuven, Belgium.
| |
Collapse
|
81
|
Kishore A, Ashok Kumar Sreelatha A, Sturm M, von-Zweydorf F, Pihlstrøm L, Raimondi F, Russell R, Lichtner P, Banerjee M, Krishnan S, Rajan R, Puthenveedu DK, Chung SJ, Bauer P, Riess O, Gloeckner CJ, Kruger R, Gasser T, Sharma M. Understanding the role of genetic variability in LRRK2 in Indian population. Mov Disord 2018; 34:496-505. [PMID: 30485545 DOI: 10.1002/mds.27558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Genetic variability in LRRK2 has been unequivocally established as a major risk factor for familial and sporadic forms of PD in ethnically diverse populations. OBJECTIVES To resolve the role of LRRK2 in the Indian population. METHODS We performed targeted resequencing of the LRRK2 locus in 288 cases and 298 controls and resolved the haplotypic structure of LRRK2 in a combined cohort of 800 cases and 402 controls in the Indian population. We assessed the frequency of novel missense variants in the white and East Asian population by leveraging exome sequencing and densely genotype data, respectively. We did computational modeling and biochemical approach to infer the potential role of novel variants impacting the LRRK2 protein function. Finally, we assessed the phosphorylation activity of identified novel coding variants in the LRRK2 gene. RESULTS We identified four novel missense variants with frequency ranging from 0.0008% to 0.002% specific for the Indian population, encompassing armadillo and kinase domains of the LRRK2 protein. A common genetic variability within LRRK2 may contribute to increased risk, but it was nonsignificant after correcting for multiple testing, because of small cohort size. The computational modeling showed destabilizing effect on the LRRK2 function. In comparison to the wild-type, the kinase domain variant showed 4-fold increase in the kinase activity. CONCLUSIONS Our study, for the first time, identified novel missense variants for LRRK2, specific for the Indian population, and showed that a novel missense variant in the kinase domain modifies kinase activity in vitro. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Asha Kishore
- Sree Chitra Tirunal Institute for Medical Science and Technology, Kerala, India
| | - Ashwin Ashok Kumar Sreelatha
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Felix von-Zweydorf
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | | | - Rob Russell
- Cell Networks, University of Heidelberg, Heidelberg, Germany
| | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Syam Krishnan
- Sree Chitra Tirunal Institute for Medical Science and Technology, Kerala, India
| | - Roopa Rajan
- Sree Chitra Tirunal Institute for Medical Science and Technology, Kerala, India.,All India Institute for Medical Sciences, New Delhi, India
| | | | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Christian Johannes Gloeckner
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Rejko Kruger
- Center of Neurology, and Hertie Institute for Clinical Brain Research, University Hospital, Tübingen, Germany.,LCSB, Luxembourg Centre for Systems Biology, University of Luxembourg, and Centre Hospitalier de Luxembourg (CHL), Luxembourg
| | - Thomas Gasser
- Center of Neurology, and Hertie Institute for Clinical Brain Research, University Hospital, Tübingen, Germany
| | - Manu Sharma
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
82
|
Chen-Plotkin AS, Albin R, Alcalay R, Babcock D, Bajaj V, Bowman D, Buko A, Cedarbaum J, Chelsky D, Cookson MR, Dawson TM, Dewey R, Foroud T, Frasier M, German D, Gwinn K, Huang X, Kopil C, Kremer T, Lasch S, Marek K, Marto JA, Merchant K, Mollenhauer B, Naito A, Potashkin J, Reimer A, Rosenthal LS, Saunders-Pullman R, Scherzer CR, Sherer T, Singleton A, Sutherland M, Thiele I, van der Brug M, Van Keuren-Jensen K, Vaillancourt D, Walt D, West A, Zhang J. Finding useful biomarkers for Parkinson's disease. Sci Transl Med 2018; 10:eaam6003. [PMID: 30111645 PMCID: PMC6097233 DOI: 10.1126/scitranslmed.aam6003] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 12/14/2017] [Indexed: 12/11/2022]
Abstract
The recent advent of an "ecosystem" of shared biofluid sample biorepositories and data sets will focus biomarker efforts in Parkinson's disease, boosting the therapeutic development pipeline and enabling translation with real-world impact.
Collapse
Affiliation(s)
- Alice S Chen-Plotkin
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Roger Albin
- Neurology Service and GRECC, VAAHS, Ann Arbor, MI 48105, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roy Alcalay
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Debra Babcock
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20824, USA
| | - Vikram Bajaj
- Verily/Google Life Sciences, South San Francisco, CA 94080, USA
| | - Dubois Bowman
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Alex Buko
- Human Metabolome Technology-America, Boston, MA 02134, USA
| | | | | | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute of Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ted M Dawson
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard Dewey
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark Frasier
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY 10163, USA
| | - Dwight German
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katrina Gwinn
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20824, USA
| | - Xuemei Huang
- Department of Neurology, Penn State University-Hershey Medical Center, Hershey, PA 17033, USA
| | - Catherine Kopil
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY 10163, USA
| | - Thomas Kremer
- Pharmaceutical Research and Early Development, NORD Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Shirley Lasch
- Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA
| | - Ken Marek
- Institute for Neurodegenerative Disorders, New Haven, CT 06510, USA
| | - Jarrod A Marto
- Departments of Cancer Biology and Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | | | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, 34128 Kassel, Germany
- University Medical Center, 37075 Goettingen, Germany
| | - Anna Naito
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY 10163, USA
| | - Judith Potashkin
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Chicago, IL 60064, USA
| | - Alyssa Reimer
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY 10163, USA
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Rachel Saunders-Pullman
- Department of Neurology, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, NY 10003, USA
| | - Clemens R Scherzer
- Center for Advanced Parkinson's Disease Research and Precision Neurology Program, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Todd Sherer
- The Michael J. Fox Foundation for Parkinson's Research, New York, NY 10163, USA
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA
| | - Margaret Sutherland
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20824, USA
| | - Ines Thiele
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg, Luxembourg
| | | | | | - David Vaillancourt
- Department of Applied Physiology, Biomedical Engineering, and Neurology, University of Florida, Gainesville, FL 32611, USA
| | - David Walt
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Andrew West
- Department of Neurology, University of Alabama, Birmingham, AL 35233, USA
| | - Jing Zhang
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
83
|
Zhao X, Zhang W, Liu T, Dong H, Huang J, Sun C, Wang G, Qian X, Qin W. A fast sample processing strategy for large-scale profiling of human urine phosphoproteome by mass spectrometry. Talanta 2018; 185:166-173. [DOI: 10.1016/j.talanta.2018.03.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/02/2018] [Accepted: 03/14/2018] [Indexed: 12/23/2022]
|
84
|
Kelly K, Wang S, Boddu R, Liu Z, Moukha-Chafiq O, Augelli-Szafran C, West AB. The G2019S mutation in LRRK2 imparts resiliency to kinase inhibition. Exp Neurol 2018; 309:1-13. [PMID: 30048714 DOI: 10.1016/j.expneurol.2018.07.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/18/2018] [Accepted: 07/21/2018] [Indexed: 12/13/2022]
Abstract
The G2019S mutation in LRRK2 is one of the most common known genetic causes of neurodegeneration and Parkinson disease (PD). LRRK2 mutations are thought to enhance LRRK2 kinase activity. Efficacious small molecule LRRK2 kinase inhibitors with favorable drug properties have recently been developed for pre-clinical studies in rodent models, and inhibitors have advanced to safety trials in humans. Rats that express human G2019S-LRRK2 protein and G2019S-LRRK2 knock-in mice provide newly characterized models to better understand the ostensible target for inhibitors. Herein, we explore the relationships between LRRK2 kinase inhibition in the brain and the periphery to establish the link between LRRK2 kinase activity and protein stability, induction of lysosomal defects in kidney and lung, and how G2019S-LRRK2 expression impacts these phenotypes. Using a novel ultra-sensitive scalable assay based on protein capillary electrophoresis with LRRK2 kinase inhibitors included in-diet, G2019S-LRRK2 protein was resilient to inhibition compared to wild-type (WT)-LRRK2 protein, particularly in the brain. Whereas WT-LRRK2 kinase activity could be completed blocked without lowering LRRK2 protein levels, higher inhibitor concentrations were necessary to fully reduce G2019S-LRRK2 activity. G2019S-LRRK2 expression afforded robust protection from inhibitor-induced kidney lysosomal defects, suggesting a gain-of-function for the mutation in this phenotype. In rodents treated with inhibitors, parallel measurements of phospho-Rab10 revealed a poor correlation to phospho-LRRK2, likely due to cells that express Rab10 but poorly express LRRK2 in heterogenous tissues and cell isolates. In summary, our results highlight several challenges associated with the inhibition of the G2019S-LRRK2 kinase that might be considered in initial clinical efforts.
Collapse
Affiliation(s)
- Kaela Kelly
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Shijie Wang
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ravindra Boddu
- Division of Nephrology, Nephrology Research and Training Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Zhiyong Liu
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | | | - Andrew B West
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
85
|
Tofaris GK. A Critical Assessment of Exosomes in the Pathogenesis and Stratification of Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2018; 7:569-576. [PMID: 28922170 PMCID: PMC5676982 DOI: 10.3233/jpd-171176] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Extracellular vesicles including exosomes are released by a variety of cell types including neurons and exhibit molecular profiles that reflect normal and disease states. As their content represents a snapshot of the intracellular milieu, they could be exploited as biomarkers of the otherwise inaccessible brain microenvironment. In addition they may contribute to the progression of neurodegenerative disorders by facilitating the spread of misfolded proteins at distant sites or activating immune cells. This review summarizes recent advances in the study of exosomes in Parkinson’s disease pathophysiology and their potential as disease biomarkers.
Collapse
Affiliation(s)
- George K Tofaris
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
86
|
Chang YH, Wu KC, Harn HJ, Lin SZ, Ding DC. Exosomes and Stem Cells in Degenerative Disease Diagnosis and Therapy. Cell Transplant 2018; 27:349-363. [PMID: 29692195 PMCID: PMC6038041 DOI: 10.1177/0963689717723636] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Stroke can cause death and disability, resulting in a huge burden on society. Parkinson’s disease (PD) is a chronic neurodegenerative disorder characterized by motor dysfunction. Osteoarthritis (OA) is a progressive degenerative joint disease characterized by cartilage destruction and osteophyte formation in the joints. Stem cell therapy may provide a biological treatment alternative to traditional pharmacological therapy. Mesenchymal stem cells (MSCs) are preferred because of their differentiation ability and possible derivation from many adult tissues. In addition, the paracrine effects of MSCs play crucial anti-inflammatory and immunosuppressive roles in immune cells. Extracellular vesicles (EVs) are vital mediators of cell-to-cell communication. Exosomes contain various molecules such as microRNA (miRNA), which mediates biological functions through gene regulation. Therefore, exosomes carrying miRNA or other molecules can enhance the therapeutic effects of MSC transplantation. MSC-derived exosomes have been investigated in various animal models representing stroke, PD, and OA. Exosomes are a subtype of EVs. This review article focuses on the mechanism and therapeutic potential of MSC-derived exosomes in stroke, PD, and OA in basic and clinical aspects.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- 1 Department of Pediatrics, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.,2 Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Kung-Chi Wu
- 3 Department of Orthopedics, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Horng-Jyh Harn
- 4 Department of Pathology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Shinn-Zong Lin
- 5 Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Dah-Ching Ding
- 2 Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,6 Department of Obstetrics and Gynecology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| |
Collapse
|
87
|
Detection of endogenous S1292 LRRK2 autophosphorylation in mouse tissue as a readout for kinase activity. NPJ PARKINSONS DISEASE 2018; 4:13. [PMID: 29707617 PMCID: PMC5908918 DOI: 10.1038/s41531-018-0049-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/16/2018] [Accepted: 03/28/2018] [Indexed: 11/14/2022]
Abstract
Parkinson’s disease-linked mutations in LRRK2 enhance the kinase activity of the protein, therefore targeting LRRK2 kinase activity is a promising therapeutic approach. Phosphorylation at S935 of LRRK2 and of its Rab GTPase substrates have proven very useful biomarkers to monitor its kinase activity. Complementary to these approaches autophosphorylation of LRRK2 can be used as a direct kinase activity readout but to date detection of autophosphorylation at endogenous levels in vivo has been limited. We developed a fractionation-based enrichment method to successfully detect endogenous S1292 LRRK2 autophosphorylation in mouse tissues and highlight S1292 as a physiological readout candidate for LRRK2 kinase activity in vivo.
Collapse
|
88
|
Abstract
Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are known today as the most common genetic cause of Parkinson's disease (PD). LRRK2 is a large protein that is hypothesized to regulate other proteins as a scaffold in downstream signaling pathways. This is supported by the multiple domain composition of LRRK2 with several protein-protein interaction domains combined with kinase and GTPase activity. LRRK2 is highly phosphorylated at sites that are strictly controlled by upstream regulators, including its own kinase domain. In cultured cells, most pathogenic mutants display increased autophosphorylation at S1292, but decreased phosphorylation at sites controlled by other kinases. We only begin to understand how LRRK2 phosphorylation is regulated and how this impacts its physiological and pathological function. Intriguingly, LRRK2 kinase inhibition, currently one of the most prevailing disease-modifying therapeutic strategies for PD, induces LRRK2 dephosphorylation at sites that are also dephosphorylated in pathogenic variants. In addition, LRRK2 kinase inhibition can induce LRRK2 protein degradation, which might be related to the observed inhibitor-induced adverse effects on the lung in rodents and non-human primates, as it resembles the lung pathology in LRRK2 knock-out animals. In this review, we will provide an overview of how LRRK2 phosphorylation is regulated and how this complex regulation relates to several molecular and cellular features of LRRK2.
Collapse
Affiliation(s)
- Tina De Wit
- 1 Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- 1 Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Evy Lobbestael
- 1 Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
89
|
Luo B, Zhou X, Jiang P, Yi Q, Lan F, Wu Y. PAMA–Arg brush-functionalized magnetic composite nanospheres for highly effective enrichment of phosphorylated biomolecules. J Mater Chem B 2018; 6:3969-3978. [DOI: 10.1039/c8tb00705e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel polymer brush-functionalized magnetic composite nanosphere was successfully prepared, exhibiting large enrichment capacity, extremely high detection sensitivity, and high enrichment recovery in phosphorylated biomolecule enrichment.
Collapse
Affiliation(s)
- Bin Luo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiaoxi Zhou
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Peipei Jiang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Qiangying Yi
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Fang Lan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yao Wu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
90
|
West AB. Achieving neuroprotection with LRRK2 kinase inhibitors in Parkinson disease. Exp Neurol 2017; 298:236-245. [PMID: 28764903 PMCID: PMC5693612 DOI: 10.1016/j.expneurol.2017.07.019] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/11/2017] [Accepted: 07/28/2017] [Indexed: 01/10/2023]
Abstract
In the translation of discoveries from the laboratory to the clinic, the track record in developing disease-modifying therapies in neurodegenerative disease is poor. A carefully designed development pipeline built from discoveries in both pre-clinical models and patient populations is necessary to optimize the chances for success. Genetic variation in the leucine-rich repeat kinase two gene (LRRK2) is linked to Parkinson disease (PD) susceptibility. Pathogenic mutations, particularly those in the LRRK2 GTPase (Roc) and COR domains, increase LRRK2 kinase activities in cells and tissues. In some PD models, small molecule LRRK2 kinase inhibitors that block these activities also provide neuroprotection. Herein, the genetic and biochemical evidence that supports the involvement of LRRK2 kinase activity in PD susceptibility is reviewed. Issues related to the definition of a therapeutic window for LRRK2 inhibition and the safety of chronic dosing are discussed. Finally, recommendations are given for a biomarker-guided initial entry of LRRK2 kinase inhibitors in PD patients. Four key areas must be considered for achieving neuroprotection with LRRK2 kinase inhibitors in PD: 1) identification of patient populations most likely to benefit from LRRK2 kinase inhibitors, 2) prioritization of superior LRRK2 small molecule inhibitors based on open disclosures of drug performance, 3) incorporation of biomarkers and empirical measures of LRRK2 kinase inhibition in clinical trials, and 4) utilization of appropriate efficacy measures guided in part by rigorous pre-clinical modeling. Meticulous and rational development decisions can potentially prevent incredibly costly errors and provide the best chances for LRRK2 inhibitors to slow the progression of PD.
Collapse
Affiliation(s)
- Andrew B West
- Center for Neurodegeneration and Experimental Therapeutics, 1719 6th Ave. South, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America.
| |
Collapse
|
91
|
Wang S, Liu Z, Ye T, Mabrouk OS, Maltbie T, Aasly J, West AB. Elevated LRRK2 autophosphorylation in brain-derived and peripheral exosomes in LRRK2 mutation carriers. Acta Neuropathol Commun 2017; 5:86. [PMID: 29166931 PMCID: PMC5700679 DOI: 10.1186/s40478-017-0492-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/08/2017] [Indexed: 01/21/2023] Open
Abstract
Missense mutations in the leucine-rich repeat kinase 2 (LRRK2) gene can cause late-onset Parkinson disease (PD). LRRK2 mutations increase LRRK2 kinase activities that may increase levels of LRRK2 autophosphorylation at serine 1292 (pS1292) and neurotoxicity in model systems. pS1292-LRRK2 protein can be packaged into exosomes and measured in biobanked urine. Herein we provide evidence that pS1292-LRRK2 protein is robustly expressed in cerebral spinal fluid (CSF) exosomes. In a novel cohort of Norwegian subjects with and without the G2019S-LRRK2 mutation, with and without PD, we quantified levels of pS1292-LRRK2, total LRRK2, and other exosome proteins in urine from 132 subjects and in CSF from 82 subjects. CSF and urine were collected from the same morning clinic visit in 55 of the participants. We found that total LRRK2 protein concentration was similar in exosomes purified from either CSF or urine but the levels did not correlate. pS1292-LRRK2 levels were higher in urinary exosomes from male and female subjects with a LRRK2 mutation. Male LRRK2 mutation carriers without PD had intermediate pS1292-LRRK2 levels compared to male carriers with PD and controls. However, female LRRK2 mutation carriers without PD had the same pS1292-LRRK2 levels compared to female carriers with PD. pS1292-LRRK2 levels in CSF exosomes were near saturated in most subjects, ten-fold higher on average than pS1292-LRRK2 levels in urinary exosomes, irrespective of LRRK2 mutation status or PD diagnosis. These results provide insights into the effects of LRRK2 mutations in both the periphery and brain in a well-characterized clinical population and show that LRRK2 protein in brain exosomes may be much more active than in the periphery in most subjects.
Collapse
|
92
|
Gasser T. Personalized Medicine Approaches in Parkinson's Disease: The Genetic Perspective. JOURNAL OF PARKINSONS DISEASE 2017; 6:699-701. [PMID: 27662328 DOI: 10.3233/jpd-160876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent discoveries with respect to the genetic and molecular basis of Parkinson's disease have led to an increasing recognition of the etiologic heterogeneity of the disorder. As in other complex diseases, it is hoped that this knowledge will allow the identification of novel therapeutic targets that will eventually lead to a more efficient treatment, based on the patient's individual genetic predispositions.
Collapse
|
93
|
Zhao HT, John N, Delic V, Ikeda-Lee K, Kim A, Weihofen A, Swayze EE, Kordasiewicz HB, West AB, Volpicelli-Daley LA. LRRK2 Antisense Oligonucleotides Ameliorate α-Synuclein Inclusion Formation in a Parkinson's Disease Mouse Model. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:508-519. [PMID: 28918051 PMCID: PMC5573879 DOI: 10.1016/j.omtn.2017.08.002] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 01/30/2023]
Abstract
No treatments exist to slow or halt Parkinson's disease (PD) progression; however, inhibition of leucine-rich repeat kinase 2 (LRRK2) activity represents one of the most promising therapeutic strategies. Genetic ablation and pharmacological LRRK2 inhibition have demonstrated promise in blocking α-synuclein (α-syn) pathology. However, LRRK2 kinase inhibitors may reduce LRRK2 activity in several tissues and induce systemic phenotypes in the kidney and lung that are undesirable. Here, we test whether antisense oligonucleotides (ASOs) provide an alternative therapeutic strategy, as they can be restricted to the CNS and provide a stable, long-lasting reduction of protein throughout the brain. Administration of LRRK2 ASOs to the brain reduces LRRK2 protein levels and fibril-induced α-syn inclusions. Mice exposed to α-syn fibrils treated with LRRK2 ASOs show more tyrosine hydroxylase (TH)-positive neurons compared to control mice. Furthermore, intracerebral injection of LRRK2 ASOs avoids unwanted phenotypes associated with loss of LRRK2 expression in the periphery. This study further demonstrates that a reduction of endogenous levels of normal LRRK2 reduces the formation of α-syn inclusions. Importantly, this study points toward LRRK2 ASOs as a potential therapeutic strategy for preventing PD-associated pathology and phenotypes without causing potential adverse side effects in peripheral tissues associated with LRRK2 inhibition.
Collapse
Affiliation(s)
| | - Neena John
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama, Birmingham, AL 35294, USA
| | - Vedad Delic
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama, Birmingham, AL 35294, USA
| | | | - Aneeza Kim
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | | | - Eric E Swayze
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | | | - Andrew B West
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama, Birmingham, AL 35294, USA
| | - Laura A Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama, Birmingham, AL 35294, USA.
| |
Collapse
|
94
|
Long XY, Zhang ZJ, Li JY, Sheng D, Lian HZ. Controllable Preparation of CuFeMnO4 Nanospheres as a Novel Multifunctional Affinity Probe for Efficient Adsorption and Selective Enrichment of Low-Abundance Peptides and Phosphopeptides. Anal Chem 2017; 89:10446-10453. [DOI: 10.1021/acs.analchem.7b02476] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xing-Yu Long
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
- Editorial
Department of Journal, Guizhou Normal University, Guiyang 550001, China
| | - Zi-Jin Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
| | - Jia-Yuan Li
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
| | - Dong Sheng
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
| | - Hong-Zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
| |
Collapse
|
95
|
Selective LRRK2 kinase inhibition reduces phosphorylation of endogenous Rab10 and Rab12 in human peripheral mononuclear blood cells. Sci Rep 2017; 7:10300. [PMID: 28860483 PMCID: PMC5578959 DOI: 10.1038/s41598-017-10501-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/10/2017] [Indexed: 01/09/2023] Open
Abstract
Genetic variation in the leucine-rich repeat kinase 2 (LRRK2) gene is associated with risk of familial and sporadic Parkinson’s disease (PD). To support clinical development of LRRK2 inhibitors as disease-modifying treatment in PD biomarkers for kinase activity, target engagement and kinase inhibition are prerequisite tools. In a combined proteomics and phosphoproteomics study on human peripheral mononuclear blood cells (PBMCs) treated with the LRRK2 inhibitor Lu AF58786 a number of putative biomarkers were identified. Among the phospho-site hits were known LRRK2 sites as well as two phospho-sites on human Rab10 and Rab12. LRRK2 dependent phosphorylation of human Rab10 and human Rab12 at positions Thr73 and Ser106, respectively, was confirmed in HEK293 and, more importantly, Rab10-pThr73 inhibition was validated in immune stimulated human PBMCs using two distinct LRRK2 inhibitors. In addition, in non-stimulated human PBMCs acute inhibition of LRRK2 with two distinct LRRK2 inhibitor compounds reduced Rab10-Thr73 phosphorylation in a concentration-dependent manner with apparent IC50’s equivalent to IC50’s on LRRK2-pSer935. The identification of Rab10 phosphorylated at Thr73 as a LRRK2 inhibition marker in human PBMCs strongly support inclusion of assays quantifying Rab10-pThr73 levels in upcoming clinical trials evaluating LRRK2 kinase inhibition as a disease-modifying treatment principle in PD.
Collapse
|
96
|
Li W, Li C, Zhou T, Liu X, Liu X, Li X, Chen D. Role of exosomal proteins in cancer diagnosis. Mol Cancer 2017; 16:145. [PMID: 28851367 PMCID: PMC5576100 DOI: 10.1186/s12943-017-0706-8] [Citation(s) in RCA: 307] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/01/2017] [Indexed: 12/16/2022] Open
Abstract
Exosomes are emerging as a new type of cancer biomarkers. Exosome is a bilayered nano-sized vesicle secreted by various living cells in all body fluids. Based on the expanding albeit incomplete knowledge of their biogenesis, secretion by cells and cancer cell-specific molecular and genetic contents, exosomes are viewed as promising, clinically-relevant surrogates of cancer progression and response to therapy. Preliminary proteomic, genetic and functional profiling of cancer cell-derived or cancer plasma-derived exosomes confirms their unique characteristics. Alterations in protein or nucleic acid profiles of exosomes in plasma correlate with pathological processes of many diseases including cancer. However, previous studies on exosome application in cancer diagnosis and treatment mainly focussed on miRNAs. With the development of rapid large-scale production, purification, extraction and screening of exosomal contents, exosomal protein application can be explored for early stage cancer diagnosis, monitoring and prognosis evaluation. Here, we summarized the recent developments in application of exosomal proteins for cancer diagnosis.
Collapse
Affiliation(s)
- Weihua Li
- YouAn Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Hepatology, Beijing, China.,, NO.8, xitoutiao,Youan men wai, Fengtai District, Beijing, China
| | - Chuanyun Li
- YouAn Hospital, Capital Medical University, Beijing, China
| | - Tong Zhou
- Xinjiang Medical University, Wulumuqi, China
| | - Xiuhong Liu
- Beijing Institute of Hepatology, Beijing, China
| | - Xiaoni Liu
- Beijing Institute of Hepatology, Beijing, China
| | - Xiuhui Li
- YouAn Hospital, Capital Medical University, Beijing, China.
| | - Dexi Chen
- Beijing Institute of Hepatology, Beijing, China.
| |
Collapse
|
97
|
Cryo-EM analysis of homodimeric full-length LRRK2 and LRRK1 protein complexes. Sci Rep 2017; 7:8667. [PMID: 28819229 PMCID: PMC5561129 DOI: 10.1038/s41598-017-09126-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/03/2017] [Indexed: 11/30/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain protein implicated in the pathogenesis of both familial and sporadic Parkinson’s disease (PD), and currently one of the most promising therapeutic targets for drug design in Parkinson’s disease. In contrast, LRRK1, the closest homologue to LRRK2, does not play any role in PD. Here, we use cryo-electron microscopy (cryo-EM) and single particle analysis to gain structural insight into the full-length dimeric structures of LRRK2 and LRRK1. Differential scanning fluorimetry-based screening of purification buffers showed that elution of the purified LRRK2 protein in a high pH buffer is beneficial in obtaining high quality cryo-EM images. Next, analysis of the 3D maps generated from the cryo-EM data show 16 and 25 Å resolution structures of full length LRRK2 and LRRK1, respectively, revealing the overall shape of the dimers with two-fold symmetric orientations of the protomers that is closely similar between the two proteins. These results suggest that dimerization mechanisms of both LRRKs are closely related and hence that specificities in functions of each LRRK are likely derived from LRRK2 and LRRK1’s other biochemical functions. To our knowledge, this study is the first to provide 3D structural insights in LRRK2 and LRRK1 dimers in parallel.
Collapse
|
98
|
LRRK2 detection in human biofluids: potential use as a Parkinson's disease biomarker? Biochem Soc Trans 2017; 45:207-212. [PMID: 28202674 DOI: 10.1042/bst20160334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/25/2016] [Accepted: 12/02/2016] [Indexed: 02/05/2023]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a complex signalling protein that is a key therapeutic target, particularly in Parkinson's disease (PD). In addition, there is now evidence showing that LRRK2 expression and phosphorylation levels have potential as markers of disease or target engagement. Indeed, reports show increases in LRRK2 protein levels in the prefrontal cortex of PD patients relative to controls, suggesting that increase in total LRRK2 protein expression is correlated with disease progression. LRRK2 phosphorylation levels are reduced in experimental systems for most disease mutants, and LRRK2 is also rapidly dephosphorylated upon LRRK2 inhibitor treatment, considered potential therapeutics. Recently, the presence of LRRK2 was confirmed in exosomes from human biofluids, including urine and cerebrospinal fluid. Moreover, phosphorylation of LRRK2 at phosphosites S910, S935, S955 and S973, as well as at the autophosphoryation site S1292, was found in urinary exosomes. In this review, we summarize knowledge on detection of LRRK2 in human biofluids and the relevance of these findings for the development of PD-related biomarkers.
Collapse
|
99
|
Cellular functions of LRRK2 implicate vesicular trafficking pathways in Parkinson's disease. Biochem Soc Trans 2017; 44:1603-1610. [PMID: 27913668 DOI: 10.1042/bst20160228] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 11/17/2022]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene, associated with Parkinson's disease, have been shown to affect intracellular trafficking pathways in a variety of cells and organisms. An emerging theme is that LRRK2 can bind to multiple membranous structures in cells, and several recent studies have suggested that the Rab family of small GTPases might be important in controlling the recruitment of LRRK2 to specific cellular compartments. Once localized to membranes, LRRK2 then influences downstream events, evidenced by changes in the autophagy-lysosome pathway. Here, I will discuss available evidence that supports or challenges this outline, with a specific emphasis on those aspects of LRRK2 function that have been controversial or remain to be fully clarified.
Collapse
|
100
|
Balck A, Klein C. Reduced penetrance of Leucine-rich repeat kinase 2 mutations: Discovering genetic factors of endogenous disease protection. Mov Disord 2017; 32:527. [DOI: 10.1002/mds.26940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 11/09/2022] Open
Affiliation(s)
- Alexander Balck
- Institute of Neurogenetics; University of Lübeck; Lübeck Germany
| | - Christine Klein
- Institute of Neurogenetics; University of Lübeck; Lübeck Germany
| |
Collapse
|