51
|
Gregory S, Johnson E, Byrne LM, Rodrigues FB, Henderson A, Moss J, Thomas D, Zhang H, De Vita E, Tabrizi SJ, Rees G, Scahill RI, Wild EJ. Characterizing White Matter in Huntington's Disease. Mov Disord Clin Pract 2020; 7:52-60. [PMID: 31970212 PMCID: PMC6962665 DOI: 10.1002/mdc3.12866] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/27/2019] [Accepted: 10/28/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Investigating early white matter (WM) change in Huntington's disease (HD) can improve our understanding of the way in which disease spreads from the striatum. OBJECTIVES We provide a detailed characterization of pathology-related WM change in HD. We first examined WM microstructure using diffusion-weighted imaging and then investigated both underlying biological properties of WM and products of WM damage including iron, myelin plus neurofilament light, a biofluid marker of axonal degeneration-in parallel with the mutant huntingtin protein. METHODS We examined WM change in HD gene carriers from the HD-CSFcohort, baseline visit. We used standard-diffusion magnetic resonance imaging to measure metrics including fractional anisotropy, a marker of WM integrity, and diffusivity; a novel diffusion model (neurite orientation dispersion and density imaging) to measure axonal density and organization; T1-weighted and T2-weighted structural magnetic resonance imaging images to derive proxy iron content and myelin-contrast measures; and biofluid concentrations of neurofilament light (in cerebrospinal fluid (CSF) and plasma) and mutant huntingtin protein (in CSF). RESULTS HD gene carriers displayed reduced fractional anisotropy and increased diffusivity when compared with controls, both of which were also associated with disease progression, CSF, and mutant huntingtin protein levels. HD gene carriers also displayed proxy measures of reduced myelin contrast and iron in the striatum. CONCLUSION Collectively, these findings present a more complete characterization of HD-related microstructural brain changes. The correlation between reduced fractional anisotropy, increased axonal orientation, and biofluid markers suggest that axonal breakdown is associated with increased WM degeneration, whereas higher quantitative T2 signal and lower myelin-contrast may indicate a process of demyelination limited to the striatum.
Collapse
Affiliation(s)
- Sarah Gregory
- University College London Huntington's Disease Centre, Department of Neurodegenerative DiseaseUniversity College London Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Eileanoir Johnson
- University College London Huntington's Disease Centre, Department of Neurodegenerative DiseaseUniversity College London Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Lauren M. Byrne
- University College London Huntington's Disease Centre, Department of Neurodegenerative DiseaseUniversity College London Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Filipe B. Rodrigues
- University College London Huntington's Disease Centre, Department of Neurodegenerative DiseaseUniversity College London Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Alexandra Henderson
- University College London Huntington's Disease Centre, Department of Neurodegenerative DiseaseUniversity College London Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - John Moss
- University College London Huntington's Disease Centre, Department of Neurodegenerative DiseaseUniversity College London Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - David Thomas
- Department of Brain Repair and Rehabilitation, University College London Queen Square Institute of NeurologyUniversity College LondonUnited Kingdom
- Leonard Wolfson Experimental Neurology Centre, University College London Queen Square Institute of NeurologyUniversity College LondonUnited Kingdom
| | - Hui Zhang
- Department of Computer Science and Centre for Medical Image ComputingUniversity College LondonLondonUnited Kingdom
| | - Enrico De Vita
- Lysholm Department of NeuroradiologyNational Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUnited Kingdom
| | - Sarah J. Tabrizi
- University College London Huntington's Disease Centre, Department of Neurodegenerative DiseaseUniversity College London Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Geraint Rees
- Wellcome Trust Centre for Neuroimaging, Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Rachael I. Scahill
- University College London Huntington's Disease Centre, Department of Neurodegenerative DiseaseUniversity College London Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Edward J. Wild
- University College London Huntington's Disease Centre, Department of Neurodegenerative DiseaseUniversity College London Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| |
Collapse
|
52
|
Ru Y, Corado C, Soon RK, Melton AC, Harris A, Yu GK, Pryer N, Sinclair JR, Katz ML, Ajayi T, Jacoby D, Russell CB, Chandriani S. Neurofilament light is a treatment-responsive biomarker in CLN2 disease. Ann Clin Transl Neurol 2019; 6:2437-2447. [PMID: 31814335 PMCID: PMC6917340 DOI: 10.1002/acn3.50942] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Neuronal ceroid lipofuscinosis type 2 (CLN2 disease) is a rare, progressive, fatal neurodegenerative pediatric disorder resulting from deficiencies of the lysosomal enzyme tripeptidyl peptidase 1 that are caused by mutations in TPP1. Identifying biomarkers of CLN2 disease progression will be important in assessing the efficacy of therapeutic interventions for this disorder. Neurofilament light is an intrinsic component of healthy neurons; elevated circulating extracellular neurofilament light is a biomarker of neuropathology in several adult-onset neurological diseases. Our objective was to assess whether circulating neurofilament light is a biomarker that is responsive to enzyme replacement therapy (ERT) in CLN2 disease. METHODS Using an ultrasensitive immunoassay, we assessed plasma neurofilament light changes during disease progression in a canine model of CLN2 disease and in ERT clinical trial CLN2 disease patients. RESULTS In tripeptidyl peptidase 1 (TPP1)-null dogs (N = 11), but not in control dogs [N = 6 (TPP1+/- ) and N = 27 (WT)], neurofilament light levels increased more than tenfold above initial low baseline levels during disease progression. Before treatment in 21 human subjects with CLN2 disease (age range: 1.72-6.85 years), neurofilament light levels were 48-fold higher (P < 0.001) than in 7 pediatric controls (age range: 8-11 years). Pretreatment neurofilament light did not significantly correlate with disease severity or age. In CLN2 disease subjects receiving ERT, neurofilament light levels decreased by 50% each year over more than 3 years of treatment. INTERPRETATION Our data indicate that circulating neurofilament light is a treatment-responsive biomarker in CLN2 disease and could contribute to understanding of the pathophysiology of this devastating pediatric disorder.
Collapse
Affiliation(s)
- Yuanbin Ru
- Research, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - Carley Corado
- Pharmacological Sciences, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - Russell K Soon
- Translational Sciences, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - Andrew C Melton
- Translational Sciences, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - Adam Harris
- Translational Sciences, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - Guoying K Yu
- Research, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - Nancy Pryer
- Translational Sciences, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - John R Sinclair
- Pharmacological Sciences, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - Martin L Katz
- Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, 65212
| | - Temitayo Ajayi
- Clinical Sciences, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - David Jacoby
- Clinical Sciences, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | - Chris B Russell
- Translational Sciences, BioMarin Pharmaceutical Inc., Novato, California, 94949
| | | |
Collapse
|
53
|
Meissner WG, Fernagut PO, Dehay B, Péran P, Traon APL, Foubert-Samier A, Lopez Cuina M, Bezard E, Tison F, Rascol O. Multiple System Atrophy: Recent Developments and Future Perspectives. Mov Disord 2019; 34:1629-1642. [PMID: 31692132 DOI: 10.1002/mds.27894] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023] Open
Abstract
Multiple system atrophy (MSA) is a rare and fatal neurodegenerative disorder characterized by a variable combination of parkinsonism, cerebellar impairment, and autonomic dysfunction. The pathologic hallmark is the accumulation of aggregated α-synuclein in oligodendrocytes, forming glial cytoplasmic inclusions, which qualifies MSA as a synucleinopathy together with Parkinson's disease and dementia with Lewy bodies. The underlying pathogenesis is still not well understood. Some symptomatic treatments are available, whereas neuroprotection remains an urgent unmet treatment need. In this review, we critically appraise significant developments of the past decade with emphasis on pathogenesis, diagnosis, prognosis, and treatment development. We further discuss unsolved questions and highlight some perspectives. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Wassilios G Meissner
- CRMR Atrophie Multisystématisée, CHU Bordeaux, Service de Neurologie, Bordeaux, France.,Institut des Maladies Neurodégénératives, Univ. de Bordeaux, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France.,Dept. of Medicine, University of Otago, Christchurch, New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Pierre-Olivier Fernagut
- Institut des Maladies Neurodégénératives, Univ. de Bordeaux, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France.,Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France.,INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Benjamin Dehay
- Institut des Maladies Neurodégénératives, Univ. de Bordeaux, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Toulouse, France
| | - Anne Pavy-Le Traon
- Services de Neurologie, CRMR Atrophie Multisystématisée, Toulouse, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Alexandra Foubert-Samier
- CRMR Atrophie Multisystématisée, CHU Bordeaux, Service de Neurologie, Bordeaux, France.,Institut des Maladies Neurodégénératives, Univ. de Bordeaux, Bordeaux, France.,Inserm, Bordeaux Population Health Research Center, Bordeaux University, Bordeaux, France
| | - Miguel Lopez Cuina
- Institut des Maladies Neurodégénératives, Univ. de Bordeaux, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Erwan Bezard
- Institut des Maladies Neurodégénératives, Univ. de Bordeaux, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - François Tison
- CRMR Atrophie Multisystématisée, CHU Bordeaux, Service de Neurologie, Bordeaux, France.,Institut des Maladies Neurodégénératives, Univ. de Bordeaux, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Olivier Rascol
- Services de Neurologie et de Pharmacologie Clinique, Centre de Reference AMS, Centre d'Investigation Clinique, Réseau NS-Park/FCRIN et Centre of Excellence for Neurodegenerative Disorders (COEN) de Toulouse, CHU de Toulouse, Toulouse 3 University, Toulouse, France
| |
Collapse
|
54
|
Silajdžić E, Björkqvist M. A Critical Evaluation of Wet Biomarkers for Huntington's Disease: Current Status and Ways Forward. J Huntingtons Dis 2019; 7:109-135. [PMID: 29614689 PMCID: PMC6004896 DOI: 10.3233/jhd-170273] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There is an unmet clinical need for objective biomarkers to monitor disease progression and treatment response in Huntington's disease (HD). The aim of this review is, therefore, to provide practical advice for biomarker discovery and to summarise studies on biofluid markers for HD. A PubMed search was performed to review literature with regard to candidate saliva, urine, blood and cerebrospinal fluid biomarkers for HD. Information has been organised into tables to allow a pragmatic approach to the discussion of the evidence and generation of practical recommendations for future studies. Many of the markers published converge on metabolic and inflammatory pathways, although changes in other analytes representing antioxidant and growth factor pathways have also been found. The most promising markers reflect neuronal and glial degeneration, particularly neurofilament light chain. International collaboration to standardise assays and study protocols, as well as to recruit sufficiently large cohorts, will facilitate future biomarker discovery and development.
Collapse
Affiliation(s)
- Edina Silajdžić
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Maria Björkqvist
- Department of Experimental Medical Science, Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
55
|
Byrne LM, Rodrigues FB, Johnson EB, Wijeratne PA, De Vita E, Alexander DC, Palermo G, Czech C, Schobel S, Scahill RI, Heslegrave A, Zetterberg H, Wild EJ. Evaluation of mutant huntingtin and neurofilament proteins as potential markers in Huntington's disease. Sci Transl Med 2019; 10:10/458/eaat7108. [PMID: 30209243 DOI: 10.1126/scitranslmed.aat7108] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/23/2018] [Indexed: 11/02/2022]
Abstract
Huntington's disease (HD) is a genetic progressive neurodegenerative disorder, caused by a mutation in the HTT gene, for which there is currently no cure. The identification of sensitive indicators of disease progression and therapeutic outcome could help the development of effective strategies for treating HD. We assessed mutant huntingtin (mHTT) and neurofilament light (NfL) protein concentrations in cerebrospinal fluid (CSF) and blood in parallel with clinical evaluation and magnetic resonance imaging in premanifest and manifest HD mutation carriers. Among HD mutation carriers, NfL concentrations in plasma and CSF correlated with all nonbiofluid measures more closely than did CSF mHTT concentration. Longitudinal analysis over 4 to 8 weeks showed that CSF mHTT, CSF NfL, and plasma NfL concentrations were highly stable within individuals. In our cohort, concentration of CSF mHTT accurately distinguished between controls and HD mutation carriers, whereas NfL concentration, in both CSF and plasma, was able to segregate premanifest from manifest HD. In silico modeling indicated that mHTT and NfL concentrations in biofluids might be among the earliest detectable alterations in HD, and sample size prediction suggested that low participant numbers would be needed to incorporate these measures into clinical trials. These findings provide evidence that biofluid concentrations of mHTT and NfL have potential for early and sensitive detection of alterations in HD and could be integrated into both clinical trials and the clinic.
Collapse
Affiliation(s)
- Lauren M Byrne
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, UK.
| | - Filipe B Rodrigues
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, UK
| | - Eileanor B Johnson
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, UK
| | - Peter A Wijeratne
- Centre for Medical Image Computing, Department of Computer Science, UCL, London WC1E 6EA, UK
| | - Enrico De Vita
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK.,Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, UCL, London WC1E 6EA, UK.,Clinical Imaging Research Centre, National University of Singapore, Singapore 117599, Singapore
| | - Giuseppe Palermo
- Neuroscience, Ophthalmology, and Rare Diseases, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffman-La Roche Ltd., 4070 Basel, Switzerland
| | - Christian Czech
- Neuroscience, Ophthalmology, and Rare Diseases, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffman-La Roche Ltd., 4070 Basel, Switzerland
| | - Scott Schobel
- Neuroscience, Ophthalmology, and Rare Diseases, Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffman-La Roche Ltd., 4070 Basel, Switzerland
| | - Rachael I Scahill
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, UK
| | - Amanda Heslegrave
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Henrik Zetterberg
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.,UK Dementia Research Institute at UCL, London WC1E 6BT, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, 405 30 Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 413 45 Gothenburg, Sweden
| | - Edward J Wild
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, UK.
| |
Collapse
|
56
|
Zeun P, Scahill RI, Tabrizi SJ, Wild EJ. Fluid and imaging biomarkers for Huntington's disease. Mol Cell Neurosci 2019; 97:67-80. [PMID: 30807825 DOI: 10.1016/j.mcn.2019.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/25/2019] [Accepted: 02/12/2019] [Indexed: 01/18/2023] Open
Abstract
Huntington's disease is a chronic progressive neurodegenerative condition for which there is no disease-modifying treatment. The known genetic cause of Huntington's disease makes it possible to identify individuals destined to develop the disease and instigate treatments before the onset of symptoms. Multiple trials are already underway that target the cause of HD, yet clinical measures are often insensitive to change over typical clinical trial duration. Robust biomarkers of drug target engagement, disease severity and progression are required to evaluate the efficacy of treatments and concerted efforts are underway to achieve this. Biofluid biomarkers have potential advantages of direct quantification of biological processes at the molecular level, whilst imaging biomarkers can quantify related changes at a structural level in the brain. The most robust biofluid and imaging biomarkers can offer complementary information, providing a more comprehensive evaluation of disease stage and progression to inform clinical trial design and endpoints.
Collapse
Affiliation(s)
- Paul Zeun
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| | - Rachael I Scahill
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| | - Sarah J Tabrizi
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| | - Edward J Wild
- Huntington's Disease Centre, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom.
| |
Collapse
|
57
|
Johnson EB, Gregory S. Huntington's disease: Brain imaging in Huntington's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 165:321-369. [PMID: 31481169 DOI: 10.1016/bs.pmbts.2019.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Huntington's disease (HD) gene-carriers show prominent neuronal loss by end-stage disease, and the use of magnetic resonance imaging (MRI) has been increasingly used to quantify brain changes during earlier stages of the disease. MRI offers an in vivo method of measuring structural and functional brain change. The images collected via MRI are processed to measure different anatomical features, such as brain volume, macro- and microstructural changes within white matter and functional brain activity. Structural imaging has demonstrated significant volume loss across multiple white and gray matter regions in HD, particularly within subcortical structures. There also appears to be increasing disorganization of white matter tracts and between-region connectivity with increasing disease progression. Finally, functional changes are thought to represent changes in brain activity underlying compensatory mechanisms in HD. This chapter will provide an overview of the principles of MRI and practicalities associated with using MRI in HD studies, and summarize findings from MRI studies investigating brain structure and function in HD.
Collapse
Affiliation(s)
- Eileanoir B Johnson
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sarah Gregory
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
58
|
Zhang Y, Mao J, Ji W, Feng T, Fu Z, Zhang M, Mao L. Collision of Aptamer/Pt Nanoparticles Enables Label-Free Amperometric Detection of Protein in Rat Brain. Anal Chem 2019; 91:5654-5659. [PMID: 30888153 DOI: 10.1021/acs.analchem.8b05457] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Single particle collision is emerging as a powerful and sensitive technique for analyzing small molecules, however, its application in biomacromolecules detection, for example, protein, in complex biological environments is still challenging. Here, we present the first demonstration on the single particle collision that can be developed for the detection of platelet-derived growth factor (PDGF), an important protein involved in the central nervous system in living rat brain. The system features Pt nanoparticles (PtNPs) conjugated with the PDGF recognition aptamer, suppressing the electrocatalytic collision of PtNPs toward the oxidation of hydrazine. In the presence of PDGF, the stronger binding between targeted protein and the aptamer disrupts the aptamer/PtNPs conjugates, recovering the electrocatalytic performance of PtNPs, and allowing quantitative, selective, and highly sensitive detection of PDGF in cerebrospinal fluid of rat brain.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Jinpeng Mao
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Wenliang Ji
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Taotao Feng
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Zixuan Fu
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Meining Zhang
- Department of Chemistry , Renmin University of China , Beijing 100872 , China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry , The Chinese Academy of Sciences (CAS) , Beijing 100190 , China
| |
Collapse
|
59
|
Tabrizi SJ, Ghosh R, Leavitt BR. Huntingtin Lowering Strategies for Disease Modification in Huntington's Disease. Neuron 2019; 101:801-819. [PMID: 30844400 DOI: 10.1016/j.neuron.2019.01.039] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/21/2018] [Accepted: 01/17/2019] [Indexed: 12/24/2022]
Abstract
Huntington's disease is caused by an abnormally expanded CAG repeat expansion in the HTT gene, which confers a predominant toxic gain of function in the mutant huntingtin (mHTT) protein. There are currently no disease-modifying therapies available, but approaches that target proximally in disease pathogenesis hold great promise. These include DNA-targeting techniques such as zinc-finger proteins, transcription activator-like effector nucleases, and CRISPR/Cas9; post-transcriptional huntingtin-lowering approaches such as RNAi, antisense oligonucleotides, and small-molecule splicing modulators; and novel methods to clear the mHTT protein, such as proteolysis-targeting chimeras. Improvements in the delivery and distribution of such agents as well as the development of objective biomarkers of disease and of HTT lowering pharmacodynamic outcomes have brought these potential therapies to the forefront of Huntington's disease research, with clinical trials in patients already underway.
Collapse
Affiliation(s)
- Sarah J Tabrizi
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; UK Dementia Research Institute (DRI) at UCL, London, UK.
| | - Rhia Ghosh
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Blair R Leavitt
- UBC Centre for Huntington's Disease, Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
60
|
Zetterberg H. Blood-based biomarkers for Alzheimer's disease-An update. J Neurosci Methods 2018; 319:2-6. [PMID: 30352211 DOI: 10.1016/j.jneumeth.2018.10.025] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022]
Abstract
Cerebrospinal fluid (CSF) biomarkers for Alzheimer's disease (AD) are in clinical use in many parts of the world and show good to excellent diagnostic accuracy in regards to identifying cerebral amyloid β (Aβ) and tau pathology irrespective of the clinical stage of the disease. However, CSF sampling is more difficult than a blood draw and a procedure only rarely performed by general practitioners. Since AD is such a common disease and since intense research on novel treatments that hopefully will be directed against underlying pathologies is moving forward, it would be excellent if the CSF tests for AD could be transformed into blood tests, as well as if novel blood biomarkers could be discovered. Brain-derived molecules are, however, present at much lower concentrations in blood than in CSF, which poses an analytical challenge. There are also additional issues with blood as a biofluid in which to measure biomarkers for central nervous system disease. Nevertheless, the past few years have seen an enormous development in the field of ultrasensitive measurement techniques. There is also much better availability of deeply phenotyped clinical cohorts for biomarker discovery and validation. This review gives an updated account of the current state of research on blood biomarkers for AD and related neurodegenerative dementias with special emphasis on findings that have been replicated by more than one research group.
Collapse
Affiliation(s)
- Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK.
| |
Collapse
|
61
|
Kanata E, Golanska E, Villar-Piqué A, Karsanidou A, Dafou D, Xanthopoulos K, Schmitz M, Ferrer I, Karch A, Sikorska B, Liberski PP, Sklaviadis T, Zerr I, Llorens F. Cerebrospinal fluid neurofilament light in suspected sporadic Creutzfeldt-Jakob disease. J Clin Neurosci 2018; 60:124-127. [PMID: 30309804 DOI: 10.1016/j.jocn.2018.09.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022]
Abstract
Sporadic Creutzfeldt-Jakob disease (sCJD) is the most common form of human prion disease. It is invariably fatal and displays a short clinical disease stage. The key event in sCJD is the propagation of a beta-sheet rich conformer of the physiological PrPC protein, known as PrPSc. Neuropathological disease characteristics include gliosis, neuronal loss and spongiform degeneration; disease clinical manifestations refer to mental and visual disabilities, cognitive impairment, gait or limb ataxia, myoclonus and mutism. Definite sCJD diagnosis requires post-mortem brain material histopathological examination. However, highly certain pre-mortem differential diagnosis is desired to exclude other treatable disorders and to reduce disease transmission risks. Detection and/or quantification of cerebrospinal fluid (CSF) biomarkers reflecting neuronal damage and PrPC misfolding in the diseased brain significantly enhance pre-mortem diagnosis. Previously established and newly identified biomarkers are used towards this direction. Increased CSF Neurofilament light chain (NFL) concentrations have been reported in several neurological disorders, including prion diseases. In the present study, we analyzed CSF NFL levels in two independent patient cohorts, consisting of highly suspected sCJD cases that were further classified as sCJD or non-CJD according to established diagnostic criteria. CSF NFL concentrations were increased in sCJD compared to non-CJD cases in both cohorts (area under the curve (with 95% confidence interval) equal to 0.89 (0.82 to 0.97) and 0.86 (0.77 to 0.96), respectively. CSF NFL was associated neither to age nor to sex but correlated with total-tau concentrations in both cohorts. Overall, our data provide independent validation of CSF NFL utility in sCJD differential diagnosis.
Collapse
Affiliation(s)
- Eirini Kanata
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Ewa Golanska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Anna Villar-Piqué
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Aikaterini Karsanidou
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Dafou
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University, Thessaloniki, Greece
| | - Konstantinos Xanthopoulos
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Matthias Schmitz
- Department of Neurology, University Medical School, Göttingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Isidro Ferrer
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, L'Hospitalet de Llobregat, Spain; Bellvitge University Hospital-IDIBELL, Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain
| | - André Karch
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Beata Sikorska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Pawel P Liberski
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | - Theodoros Sklaviadis
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Inga Zerr
- Department of Neurology, University Medical School, Göttingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Franc Llorens
- Department of Neurology, University Medical School, Göttingen, Germany; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, L'Hospitalet de Llobregat, Spain; Bellvitge Biomedical Research Institute (IDBELL), L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
62
|
McGlasson S, Wiseman S, Wardlaw J, Dhaun N, Hunt DPJ. Neurological Disease in Lupus: Toward a Personalized Medicine Approach. Front Immunol 2018; 9:1146. [PMID: 29928273 PMCID: PMC5997834 DOI: 10.3389/fimmu.2018.01146] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022] Open
Abstract
The brain and nervous system are important targets for immune-mediated damage in systemic lupus erythematosus (SLE), resulting in a complex spectrum of neurological syndromes. Defining nervous system disease in lupus poses significant challenges. Among the difficulties to be addressed are a diversity of clinical manifestations and a lack of understanding of their mechanistic basis. However, despite these challenges, progress has been made in the identification of pathways which contribute to neurological disease in SLE. Understanding the molecular pathogenesis of neurological disease in lupus will inform both classification and approaches to clinical trials.
Collapse
Affiliation(s)
- Sarah McGlasson
- MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
- The UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- The Anne Rowling Clinic, University of Edinburgh, Edinburgh, United Kingdom
| | - Stewart Wiseman
- The UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Joanna Wardlaw
- The UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Neeraj Dhaun
- Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David P. J. Hunt
- MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
- The UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- The Anne Rowling Clinic, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
63
|
Abstract
Huntington's disease (HD) is a chronic progressive neurodegenerative condition where new markers of disease progression are needed. So far no disease-modifying interventions have been found, and few interventions have been proven to alleviate symptoms. This may be partially explained by the lack of reliable indicators of disease severity, progression, and phenotype.Biofluid biomarkers may bring advantages in addition to clinical measures, such as reliability, reproducibility, price, accuracy, and direct quantification of pathobiological processes at the molecular level; and in addition to empowering clinical trials, they have the potential to generate useful hypotheses for new drug development.In this chapter we review biofluid biomarker reports in HD, emphasizing those we feel are likely to be closest to clinical applicability.
Collapse
Affiliation(s)
- Filipe B Rodrigues
- Huntington's Disease Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Lauren M Byrne
- Huntington's Disease Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Edward J Wild
- Huntington's Disease Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK.
| |
Collapse
|