51
|
Linker RA, Gold R. [Immunotherapy and personalized treatment of multiple sclerosis]. DER NERVENARZT 2021; 92:986-995. [PMID: 34427718 DOI: 10.1007/s00115-021-01176-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 11/29/2022]
Abstract
Personalized medicine requires a patient-oriented approach with the exact classification of the disease being determined by the underlying pathophysiological processes. In particular, the optimal treatment of multiple sclerosis (MS) requires personalized treatment that goes beyond the pure concept of precision medicine; however, due to the lack of robust biomarkers beyond cranial magnetic resonance imaging and a lacking detailed understanding of some aspects of MS pathogenesis, this approach is not yet fully implemented. Important questions for a better therapeutic stratification of MS patients are: (1) when does MS start? (2) Does the spectrum of MS really span multiple diseases? (3) When does the progressive phase of the disease begin? (4) In which phase of the disease is there a therapeutic window for immunotherapy? Recent findings indicate that MS represents a spectrum of diseases and that there is a therapeutic delay of several years, on which the optimal treatment effect of a disease-modifying treatment depends. For a personalized treatment of MS it is important to determine the exact disease stage of the patient and to react to the development or increase of focal inflammatory activity in a timely manner.
Collapse
Affiliation(s)
- Ralf A Linker
- Neurologische Klinik, Universitätsklinik Regensburg, Universität Regensburg, Universitätsstraße 84, 93053, Regensburg, Deutschland.
| | - Ralf Gold
- Neurologische Klinik, St. Josef-Hospital, Ruhr-Universität-Bochum, Bochum, Deutschland
| |
Collapse
|
52
|
Wiendl H, Gold R, Berger T, Derfuss T, Linker R, Mäurer M, Aktas O, Baum K, Berghoff M, Bittner S, Chan A, Czaplinski A, Deisenhammer F, Di Pauli F, Du Pasquier R, Enzinger C, Fertl E, Gass A, Gehring K, Gobbi C, Goebels N, Guger M, Haghikia A, Hartung HP, Heidenreich F, Hoffmann O, Kallmann B, Kleinschnitz C, Klotz L, Leussink VI, Leutmezer F, Limmroth V, Lünemann JD, Lutterotti A, Meuth SG, Meyding-Lamadé U, Platten M, Rieckmann P, Schmidt S, Tumani H, Weber F, Weber MS, Zettl UK, Ziemssen T, Zipp F. Multiple Sclerosis Therapy Consensus Group (MSTCG): position statement on disease-modifying therapies for multiple sclerosis (white paper). Ther Adv Neurol Disord 2021; 14:17562864211039648. [PMID: 34422112 PMCID: PMC8377320 DOI: 10.1177/17562864211039648] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis is a complex, autoimmune-mediated disease of the central nervous system characterized by inflammatory demyelination and axonal/neuronal damage. The approval of various disease-modifying therapies and our increased understanding of disease mechanisms and evolution in recent years have significantly changed the prognosis and course of the disease. This update of the Multiple Sclerosis Therapy Consensus Group treatment recommendation focuses on the most important recommendations for disease-modifying therapies of multiple sclerosis in 2021. Our recommendations are based on current scientific evidence and apply to those medications approved in wide parts of Europe, particularly German-speaking countries (Germany, Austria, and Switzerland).
Collapse
Affiliation(s)
- Heinz Wiendl
- Klinik für Neurologie mit Institut für Translationale Neurologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster
| | - Ralf Gold
- Neurologie, St. Josef-Hospital, Klinikum der Ruhr-Universität Bochum, Gudrunstraße 56, 44791 Bochum, Germany
| | - Thomas Berger
- Universitätsklinik für Neurologie, Medizinische Universität Wien, Wien, Austria
| | - Tobias Derfuss
- Neurologische Klinik und Poliklinik, Universitätsspital Basel, Basel, Switzerland
| | - Ralf Linker
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Mathias Mäurer
- Neurologie und Neurologische Frührehabilitation, Klinikum Würzburg Mitte gGmbH, Standort Juliusspital, Würzburg, Germany
| | - Orhan Aktas
- Neurologische Klinik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Karl Baum
- Neurologie, Klinik Hennigsdorf, Hennigsdorf, Germany
| | | | - Stefan Bittner
- Klinik für Neurologie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Andrew Chan
- Neurologie, Inselspital, Universitätsspital Bern, Bern, Switzerland
| | | | | | | | | | - Christian Enzinger
- Universitätsklinik für Neurologie, Medizinische Universität Graz, Graz, Austria
| | - Elisabeth Fertl
- Wiener Gesundheitsverbund, Neurologische Abteilung, Wien, Austria
| | - Achim Gass
- Neurologische Klinik, Universitätsmedizin Mannheim/Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Klaus Gehring
- Berufsverband Deutscher Nervenärzte (BVDN), Neurozentrum am Klosterforst, Itzehoe, Germany
| | | | - Norbert Goebels
- Klinik für Neurologie, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Michael Guger
- Klinik für Neurologie 2, Kepler Universitätsklinikum, Linz, Austria
| | | | - Hans-Peter Hartung
- Klinik für Neurologie, Medizinische Fakultät, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany; Klinik für Neurologie, Medizinische Universität Wien, Wien, Austria
| | - Fedor Heidenreich
- Diakovere Krankenhaus, Henriettenstift, Klinik für Neurologie und klinische Neurophysiologie, Hannover, Germany
| | - Olaf Hoffmann
- Klinik für Neurologie, Alexianer St. Josefs-Krankenhaus Potsdam, Potsdam, Germany; NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany; Medizinische Hochschule Brandenburg Theodor Fontane, Neuruppin, Germany
| | - Boris Kallmann
- Kallmann Neurologie, Multiple Sklerose Zentrum Bamberg, Bamberg, Germany
| | | | - Luisa Klotz
- Klinik für Neurologie mit Institut für Translationale Neurologie, Universitätsklinikum Münster, Münster, Germany
| | | | - Fritz Leutmezer
- Neurologie, Universitäts-Klinik für Neurologie Wien, Wien, Austria
| | - Volker Limmroth
- Klinik für Neurologie, Krankenhaus Köln-Merheim, Köln, Germany
| | - Jan D Lünemann
- Klinik für Neurologie mit Institut für Translationale Neurologie, Universitätsklinikum Münster, Münster, Germany
| | | | - Sven G Meuth
- Neurologische Klinik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | | | - Michael Platten
- Neurologische Klinik, Universitätsmedizin Mannheim/Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Peter Rieckmann
- Medical Park, Fachklinik für Neurologie, Zentrum für Klinische Neuroplastizität, Bischofswiesen, Germany
| | - Stephan Schmidt
- Neurologie, Gesundheitszentrum St. Johannes Hospital, Bonn, Germany
| | - Hayrettin Tumani
- Fachklinik für Neurologie Dietenbronn, Akademisches Krankenhaus der Universität Ulm, Ulm, Germany
| | - Frank Weber
- Neurologie, Sana Kliniken, Cham, Switzerland
| | - Martin S Weber
- Institut für Neuropathologie, Neurologische Klinik, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Uwe K Zettl
- Klinik und Poliklinik für Neurologie, Zentrum für Nervenheilkunde, Universitätsmedizin Rostock, Rostock, Germany
| | - Tjalf Ziemssen
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Germany
| | - Frauke Zipp
- Klinik und Poliklinik für Neurologie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | | |
Collapse
|
53
|
Wiendl H, Gold R, Berger T, Derfuss T, Linker R, Mäurer M, Stangel M, Aktas O, Baum K, Berghoff M, Bittner S, Chan A, Czaplinski A, Deisenhammer F, Di Pauli F, Du Pasquier R, Enzinger C, Fertl E, Gass A, Gehring K, Gobbi C, Goebels N, Guger M, Haghikia A, Hartung HP, Heidenreich F, Hoffmann O, Hunter ZR, Kallmann B, Kleinschnitz C, Klotz L, Leussink V, Leutmezer F, Limmroth V, Lünemann JD, Lutterotti A, Meuth SG, Meyding-Lamadé U, Platten M, Rieckmann P, Schmidt S, Tumani H, Weber MS, Weber F, Zettl UK, Ziemssen T, Zipp F. [Multiple sclerosis treatment consensus group (MSTCG): position paper on disease-modifying treatment of multiple sclerosis 2021 (white paper)]. DER NERVENARZT 2021; 92:773-801. [PMID: 34297142 PMCID: PMC8300076 DOI: 10.1007/s00115-021-01157-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 12/16/2022]
Abstract
Die Multiple Sklerose ist eine komplexe, autoimmun vermittelte Erkrankung des zentralen Nervensystems, charakterisiert durch inflammatorische Demyelinisierung sowie axonalen/neuronalen Schaden. Die Zulassung verschiedener verlaufsmodifizierender Therapien und unser verbessertes Verständnis der Krankheitsmechanismen und -entwicklung in den letzten Jahren haben die Prognose und den Verlauf der Erkrankung deutlich verändert. Diese Aktualisierung der Behandlungsempfehlung der Multiple Sklerose Therapie Konsensus Gruppe konzentriert sich auf die wichtigsten Empfehlungen für verlaufsmodifizierende Therapien der Multiplen Sklerose im Jahr 2021. Unsere Empfehlungen basieren auf aktuellen wissenschaftlichen Erkenntnissen und gelten für diejenigen Medikamente, die in weiten Teilen Europas, insbesondere in den deutschsprachigen Ländern (Deutschland, Österreich, Schweiz), zugelassen sind.
Collapse
Affiliation(s)
- Heinz Wiendl
- Klinik für Neurologie mit Institut für Translationale Neurologie, Universitätsklinikum Münster, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Deutschland. .,Steuerungsgruppe der MSTKG, Münster, Deutschland. .,Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland.
| | - Ralf Gold
- Steuerungsgruppe der MSTKG, Münster, Deutschland. .,Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland. .,Neurologie, St. Josef-Hospital, Klinikum der Ruhr-Universität Bochum, Gudrunstraße 56, 44791, Bochum, Deutschland.
| | - Thomas Berger
- Steuerungsgruppe der MSTKG, Münster, Deutschland.,Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland.,Universitätsklinik für Neurologie, Medizinische Universität Wien, Wien, Österreich
| | - Tobias Derfuss
- Steuerungsgruppe der MSTKG, Münster, Deutschland.,Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland.,Neurologische Klinik und Poliklinik, Universitätsspital Basel, Basel, Schweiz
| | - Ralf Linker
- Steuerungsgruppe der MSTKG, Münster, Deutschland.,Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland.,Klinik und Poliklinik für Neurologie, Universitätsklinikum Regensburg, Regensburg, Deutschland
| | - Mathias Mäurer
- Steuerungsgruppe der MSTKG, Münster, Deutschland.,Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland.,Neurologie und Neurologische Frührehabilitation, Klinikum Würzburg Mitte gGmbH, Standort Juliusspital, Würzburg, Deutschland
| | - Martin Stangel
- Steuerungsgruppe der MSTKG, Münster, Deutschland.,Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland.,Klinische Neuroimmunologie und Neurochemie, Klinik für Neurologie, Medizinische Hochschule Hannover, Hannover, Deutschland
| | - Orhan Aktas
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Karl Baum
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Martin Berghoff
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Stefan Bittner
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Andrew Chan
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Adam Czaplinski
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | | | - Franziska Di Pauli
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Renaud Du Pasquier
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Christian Enzinger
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Elisabeth Fertl
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Achim Gass
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Klaus Gehring
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Claudio Gobbi
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Norbert Goebels
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Michael Guger
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Aiden Haghikia
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Hans-Peter Hartung
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Fedor Heidenreich
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Olaf Hoffmann
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Zoë R Hunter
- Klinik für Neurologie mit Institut für Translationale Neurologie, Universitätsklinikum Münster, Münster, Deutschland
| | - Boris Kallmann
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | | | - Luisa Klotz
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Verena Leussink
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Fritz Leutmezer
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Volker Limmroth
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Jan D Lünemann
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Andreas Lutterotti
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Sven G Meuth
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Uta Meyding-Lamadé
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Michael Platten
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Peter Rieckmann
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Stephan Schmidt
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Hayrettin Tumani
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Martin S Weber
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Frank Weber
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Uwe K Zettl
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Tjalf Ziemssen
- Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland
| | - Frauke Zipp
- Steuerungsgruppe der MSTKG, Münster, Deutschland.,Multiple Sklerose Therapie Konsensus Gruppe (MSTKG), Münster, Deutschland.,Klinik und Poliklinik für Neurologie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Langenbeckstraße 1, 55131, Mainz, Deutschland
| | | |
Collapse
|
54
|
Rolfes L, Pawlitzki M, Pfeuffer S, Nelke C, Lux A, Pul R, Kleinschnitz C, Kleinschnitz K, Rogall R, Pape K, Bittner S, Zipp F, Warnke C, Goereci Y, Schroeter M, Ingwersen J, Aktas O, Klotz L, Ruck T, Wiendl H, Meuth SG. Ocrelizumab Extended Interval Dosing in Multiple Sclerosis in Times of COVID-19. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/5/e1035. [PMID: 34261812 PMCID: PMC8362352 DOI: 10.1212/nxi.0000000000001035] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/22/2021] [Indexed: 12/26/2022]
Abstract
Objective To evaluate the clinical consequences of extended interval dosing (EID) of ocrelizumab in relapsing-remitting multiple sclerosis (RRMS) during the coronavirus disease 2019 (COVID-19) pandemic. Methods In our retrospective, multicenter cohort study, we compared patients with RRMS on EID (defined as ≥4-week delay of dose interval) with a control group on standard interval dosing (SID) at the same period (January to December 2020). Results Three hundred eighteen patients with RRMS were longitudinally evaluated in 5 German centers. One hundred sixteen patients received ocrelizumab on EID (median delay [interquartile range 8.68 [5.09–13.07] weeks). Three months after the last ocrelizumab infusion, 182 (90.1%) patients following SID and 105 (90.5%) EID patients remained relapse free (p = 0.903). Three-month confirmed progression of disability was observed in 18 SID patients (8.9%) and 11 EID patients (9.5%, p = 0.433). MRI progression was documented in 9 SID patients (4.5%) and 8 EID patients (6.9%) at 3-month follow-up (p = 0.232). Multivariate logistic regression showed no association between treatment regimen and no evidence of disease activity status at follow-up (OR: 1.266 [95% CI: 0.695–2.305]; p = 0.441). Clinical stability was accompanied by persistent peripheral CD19+ B-cell depletion in both groups (SID vs EID: 82.6% vs 83.3%, p = 0.463). Disease activity in our cohort was not associated with CD19+ B-cell repopulation. Conclusion Our data support EID of ocrelizumab as potential risk mitigation strategy in times of the COVID-19 pandemic. Classification of Evidence This study provides Class IV evidence that for patients with RRMS, an EID of at least 4 weeks does not diminish effectiveness of ocrelizumab.
Collapse
Affiliation(s)
- Leoni Rolfes
- From the Department of Neurology with Institute of Translational Neurology (L.R., M.P., S.P., C.N., L.K., H.W.), University Hospital Muenster, Germany; Institute for Biometrics and Bioinformatic (A.L.), Otto-von-Guericke University, Magdeburg, Germany; Department for Neurology (R.P., C.K., K.K., R.R.), University Hospital Essen, Germany; Focus Program Translational Neurosciences (FTN) and Immunology (FZI) (K.P., S.B., F.Z.), Rhine Main Neuroscience Network (rmn2), Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany; Department of Neurology (C.W., Y.G., M.S.), University Hospital Cologne, Germany; and Department of Neurology (J.I., O.A., T.R., S.G.M.), Heinrich-Heine University, Duesseldorf, Germany
| | - Marc Pawlitzki
- From the Department of Neurology with Institute of Translational Neurology (L.R., M.P., S.P., C.N., L.K., H.W.), University Hospital Muenster, Germany; Institute for Biometrics and Bioinformatic (A.L.), Otto-von-Guericke University, Magdeburg, Germany; Department for Neurology (R.P., C.K., K.K., R.R.), University Hospital Essen, Germany; Focus Program Translational Neurosciences (FTN) and Immunology (FZI) (K.P., S.B., F.Z.), Rhine Main Neuroscience Network (rmn2), Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany; Department of Neurology (C.W., Y.G., M.S.), University Hospital Cologne, Germany; and Department of Neurology (J.I., O.A., T.R., S.G.M.), Heinrich-Heine University, Duesseldorf, Germany
| | - Steffen Pfeuffer
- From the Department of Neurology with Institute of Translational Neurology (L.R., M.P., S.P., C.N., L.K., H.W.), University Hospital Muenster, Germany; Institute for Biometrics and Bioinformatic (A.L.), Otto-von-Guericke University, Magdeburg, Germany; Department for Neurology (R.P., C.K., K.K., R.R.), University Hospital Essen, Germany; Focus Program Translational Neurosciences (FTN) and Immunology (FZI) (K.P., S.B., F.Z.), Rhine Main Neuroscience Network (rmn2), Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany; Department of Neurology (C.W., Y.G., M.S.), University Hospital Cologne, Germany; and Department of Neurology (J.I., O.A., T.R., S.G.M.), Heinrich-Heine University, Duesseldorf, Germany
| | - Christopher Nelke
- From the Department of Neurology with Institute of Translational Neurology (L.R., M.P., S.P., C.N., L.K., H.W.), University Hospital Muenster, Germany; Institute for Biometrics and Bioinformatic (A.L.), Otto-von-Guericke University, Magdeburg, Germany; Department for Neurology (R.P., C.K., K.K., R.R.), University Hospital Essen, Germany; Focus Program Translational Neurosciences (FTN) and Immunology (FZI) (K.P., S.B., F.Z.), Rhine Main Neuroscience Network (rmn2), Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany; Department of Neurology (C.W., Y.G., M.S.), University Hospital Cologne, Germany; and Department of Neurology (J.I., O.A., T.R., S.G.M.), Heinrich-Heine University, Duesseldorf, Germany
| | - Anke Lux
- From the Department of Neurology with Institute of Translational Neurology (L.R., M.P., S.P., C.N., L.K., H.W.), University Hospital Muenster, Germany; Institute for Biometrics and Bioinformatic (A.L.), Otto-von-Guericke University, Magdeburg, Germany; Department for Neurology (R.P., C.K., K.K., R.R.), University Hospital Essen, Germany; Focus Program Translational Neurosciences (FTN) and Immunology (FZI) (K.P., S.B., F.Z.), Rhine Main Neuroscience Network (rmn2), Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany; Department of Neurology (C.W., Y.G., M.S.), University Hospital Cologne, Germany; and Department of Neurology (J.I., O.A., T.R., S.G.M.), Heinrich-Heine University, Duesseldorf, Germany
| | - Refik Pul
- From the Department of Neurology with Institute of Translational Neurology (L.R., M.P., S.P., C.N., L.K., H.W.), University Hospital Muenster, Germany; Institute for Biometrics and Bioinformatic (A.L.), Otto-von-Guericke University, Magdeburg, Germany; Department for Neurology (R.P., C.K., K.K., R.R.), University Hospital Essen, Germany; Focus Program Translational Neurosciences (FTN) and Immunology (FZI) (K.P., S.B., F.Z.), Rhine Main Neuroscience Network (rmn2), Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany; Department of Neurology (C.W., Y.G., M.S.), University Hospital Cologne, Germany; and Department of Neurology (J.I., O.A., T.R., S.G.M.), Heinrich-Heine University, Duesseldorf, Germany
| | - Christoph Kleinschnitz
- From the Department of Neurology with Institute of Translational Neurology (L.R., M.P., S.P., C.N., L.K., H.W.), University Hospital Muenster, Germany; Institute for Biometrics and Bioinformatic (A.L.), Otto-von-Guericke University, Magdeburg, Germany; Department for Neurology (R.P., C.K., K.K., R.R.), University Hospital Essen, Germany; Focus Program Translational Neurosciences (FTN) and Immunology (FZI) (K.P., S.B., F.Z.), Rhine Main Neuroscience Network (rmn2), Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany; Department of Neurology (C.W., Y.G., M.S.), University Hospital Cologne, Germany; and Department of Neurology (J.I., O.A., T.R., S.G.M.), Heinrich-Heine University, Duesseldorf, Germany
| | - Konstanze Kleinschnitz
- From the Department of Neurology with Institute of Translational Neurology (L.R., M.P., S.P., C.N., L.K., H.W.), University Hospital Muenster, Germany; Institute for Biometrics and Bioinformatic (A.L.), Otto-von-Guericke University, Magdeburg, Germany; Department for Neurology (R.P., C.K., K.K., R.R.), University Hospital Essen, Germany; Focus Program Translational Neurosciences (FTN) and Immunology (FZI) (K.P., S.B., F.Z.), Rhine Main Neuroscience Network (rmn2), Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany; Department of Neurology (C.W., Y.G., M.S.), University Hospital Cologne, Germany; and Department of Neurology (J.I., O.A., T.R., S.G.M.), Heinrich-Heine University, Duesseldorf, Germany
| | - Rebeca Rogall
- From the Department of Neurology with Institute of Translational Neurology (L.R., M.P., S.P., C.N., L.K., H.W.), University Hospital Muenster, Germany; Institute for Biometrics and Bioinformatic (A.L.), Otto-von-Guericke University, Magdeburg, Germany; Department for Neurology (R.P., C.K., K.K., R.R.), University Hospital Essen, Germany; Focus Program Translational Neurosciences (FTN) and Immunology (FZI) (K.P., S.B., F.Z.), Rhine Main Neuroscience Network (rmn2), Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany; Department of Neurology (C.W., Y.G., M.S.), University Hospital Cologne, Germany; and Department of Neurology (J.I., O.A., T.R., S.G.M.), Heinrich-Heine University, Duesseldorf, Germany
| | - Katrin Pape
- From the Department of Neurology with Institute of Translational Neurology (L.R., M.P., S.P., C.N., L.K., H.W.), University Hospital Muenster, Germany; Institute for Biometrics and Bioinformatic (A.L.), Otto-von-Guericke University, Magdeburg, Germany; Department for Neurology (R.P., C.K., K.K., R.R.), University Hospital Essen, Germany; Focus Program Translational Neurosciences (FTN) and Immunology (FZI) (K.P., S.B., F.Z.), Rhine Main Neuroscience Network (rmn2), Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany; Department of Neurology (C.W., Y.G., M.S.), University Hospital Cologne, Germany; and Department of Neurology (J.I., O.A., T.R., S.G.M.), Heinrich-Heine University, Duesseldorf, Germany
| | - Stefan Bittner
- From the Department of Neurology with Institute of Translational Neurology (L.R., M.P., S.P., C.N., L.K., H.W.), University Hospital Muenster, Germany; Institute for Biometrics and Bioinformatic (A.L.), Otto-von-Guericke University, Magdeburg, Germany; Department for Neurology (R.P., C.K., K.K., R.R.), University Hospital Essen, Germany; Focus Program Translational Neurosciences (FTN) and Immunology (FZI) (K.P., S.B., F.Z.), Rhine Main Neuroscience Network (rmn2), Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany; Department of Neurology (C.W., Y.G., M.S.), University Hospital Cologne, Germany; and Department of Neurology (J.I., O.A., T.R., S.G.M.), Heinrich-Heine University, Duesseldorf, Germany
| | - Frauke Zipp
- From the Department of Neurology with Institute of Translational Neurology (L.R., M.P., S.P., C.N., L.K., H.W.), University Hospital Muenster, Germany; Institute for Biometrics and Bioinformatic (A.L.), Otto-von-Guericke University, Magdeburg, Germany; Department for Neurology (R.P., C.K., K.K., R.R.), University Hospital Essen, Germany; Focus Program Translational Neurosciences (FTN) and Immunology (FZI) (K.P., S.B., F.Z.), Rhine Main Neuroscience Network (rmn2), Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany; Department of Neurology (C.W., Y.G., M.S.), University Hospital Cologne, Germany; and Department of Neurology (J.I., O.A., T.R., S.G.M.), Heinrich-Heine University, Duesseldorf, Germany
| | - Clemens Warnke
- From the Department of Neurology with Institute of Translational Neurology (L.R., M.P., S.P., C.N., L.K., H.W.), University Hospital Muenster, Germany; Institute for Biometrics and Bioinformatic (A.L.), Otto-von-Guericke University, Magdeburg, Germany; Department for Neurology (R.P., C.K., K.K., R.R.), University Hospital Essen, Germany; Focus Program Translational Neurosciences (FTN) and Immunology (FZI) (K.P., S.B., F.Z.), Rhine Main Neuroscience Network (rmn2), Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany; Department of Neurology (C.W., Y.G., M.S.), University Hospital Cologne, Germany; and Department of Neurology (J.I., O.A., T.R., S.G.M.), Heinrich-Heine University, Duesseldorf, Germany
| | - Yasemin Goereci
- From the Department of Neurology with Institute of Translational Neurology (L.R., M.P., S.P., C.N., L.K., H.W.), University Hospital Muenster, Germany; Institute for Biometrics and Bioinformatic (A.L.), Otto-von-Guericke University, Magdeburg, Germany; Department for Neurology (R.P., C.K., K.K., R.R.), University Hospital Essen, Germany; Focus Program Translational Neurosciences (FTN) and Immunology (FZI) (K.P., S.B., F.Z.), Rhine Main Neuroscience Network (rmn2), Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany; Department of Neurology (C.W., Y.G., M.S.), University Hospital Cologne, Germany; and Department of Neurology (J.I., O.A., T.R., S.G.M.), Heinrich-Heine University, Duesseldorf, Germany
| | - Michael Schroeter
- From the Department of Neurology with Institute of Translational Neurology (L.R., M.P., S.P., C.N., L.K., H.W.), University Hospital Muenster, Germany; Institute for Biometrics and Bioinformatic (A.L.), Otto-von-Guericke University, Magdeburg, Germany; Department for Neurology (R.P., C.K., K.K., R.R.), University Hospital Essen, Germany; Focus Program Translational Neurosciences (FTN) and Immunology (FZI) (K.P., S.B., F.Z.), Rhine Main Neuroscience Network (rmn2), Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany; Department of Neurology (C.W., Y.G., M.S.), University Hospital Cologne, Germany; and Department of Neurology (J.I., O.A., T.R., S.G.M.), Heinrich-Heine University, Duesseldorf, Germany
| | - Jens Ingwersen
- From the Department of Neurology with Institute of Translational Neurology (L.R., M.P., S.P., C.N., L.K., H.W.), University Hospital Muenster, Germany; Institute for Biometrics and Bioinformatic (A.L.), Otto-von-Guericke University, Magdeburg, Germany; Department for Neurology (R.P., C.K., K.K., R.R.), University Hospital Essen, Germany; Focus Program Translational Neurosciences (FTN) and Immunology (FZI) (K.P., S.B., F.Z.), Rhine Main Neuroscience Network (rmn2), Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany; Department of Neurology (C.W., Y.G., M.S.), University Hospital Cologne, Germany; and Department of Neurology (J.I., O.A., T.R., S.G.M.), Heinrich-Heine University, Duesseldorf, Germany
| | - Orhan Aktas
- From the Department of Neurology with Institute of Translational Neurology (L.R., M.P., S.P., C.N., L.K., H.W.), University Hospital Muenster, Germany; Institute for Biometrics and Bioinformatic (A.L.), Otto-von-Guericke University, Magdeburg, Germany; Department for Neurology (R.P., C.K., K.K., R.R.), University Hospital Essen, Germany; Focus Program Translational Neurosciences (FTN) and Immunology (FZI) (K.P., S.B., F.Z.), Rhine Main Neuroscience Network (rmn2), Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany; Department of Neurology (C.W., Y.G., M.S.), University Hospital Cologne, Germany; and Department of Neurology (J.I., O.A., T.R., S.G.M.), Heinrich-Heine University, Duesseldorf, Germany
| | - Luisa Klotz
- From the Department of Neurology with Institute of Translational Neurology (L.R., M.P., S.P., C.N., L.K., H.W.), University Hospital Muenster, Germany; Institute for Biometrics and Bioinformatic (A.L.), Otto-von-Guericke University, Magdeburg, Germany; Department for Neurology (R.P., C.K., K.K., R.R.), University Hospital Essen, Germany; Focus Program Translational Neurosciences (FTN) and Immunology (FZI) (K.P., S.B., F.Z.), Rhine Main Neuroscience Network (rmn2), Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany; Department of Neurology (C.W., Y.G., M.S.), University Hospital Cologne, Germany; and Department of Neurology (J.I., O.A., T.R., S.G.M.), Heinrich-Heine University, Duesseldorf, Germany
| | - Tobias Ruck
- From the Department of Neurology with Institute of Translational Neurology (L.R., M.P., S.P., C.N., L.K., H.W.), University Hospital Muenster, Germany; Institute for Biometrics and Bioinformatic (A.L.), Otto-von-Guericke University, Magdeburg, Germany; Department for Neurology (R.P., C.K., K.K., R.R.), University Hospital Essen, Germany; Focus Program Translational Neurosciences (FTN) and Immunology (FZI) (K.P., S.B., F.Z.), Rhine Main Neuroscience Network (rmn2), Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany; Department of Neurology (C.W., Y.G., M.S.), University Hospital Cologne, Germany; and Department of Neurology (J.I., O.A., T.R., S.G.M.), Heinrich-Heine University, Duesseldorf, Germany
| | - Heinz Wiendl
- From the Department of Neurology with Institute of Translational Neurology (L.R., M.P., S.P., C.N., L.K., H.W.), University Hospital Muenster, Germany; Institute for Biometrics and Bioinformatic (A.L.), Otto-von-Guericke University, Magdeburg, Germany; Department for Neurology (R.P., C.K., K.K., R.R.), University Hospital Essen, Germany; Focus Program Translational Neurosciences (FTN) and Immunology (FZI) (K.P., S.B., F.Z.), Rhine Main Neuroscience Network (rmn2), Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany; Department of Neurology (C.W., Y.G., M.S.), University Hospital Cologne, Germany; and Department of Neurology (J.I., O.A., T.R., S.G.M.), Heinrich-Heine University, Duesseldorf, Germany
| | - Sven G Meuth
- From the Department of Neurology with Institute of Translational Neurology (L.R., M.P., S.P., C.N., L.K., H.W.), University Hospital Muenster, Germany; Institute for Biometrics and Bioinformatic (A.L.), Otto-von-Guericke University, Magdeburg, Germany; Department for Neurology (R.P., C.K., K.K., R.R.), University Hospital Essen, Germany; Focus Program Translational Neurosciences (FTN) and Immunology (FZI) (K.P., S.B., F.Z.), Rhine Main Neuroscience Network (rmn2), Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany; Department of Neurology (C.W., Y.G., M.S.), University Hospital Cologne, Germany; and Department of Neurology (J.I., O.A., T.R., S.G.M.), Heinrich-Heine University, Duesseldorf, Germany.
| |
Collapse
|
55
|
Kim KH, Kim SH, Park NY, Hyun JW, Kim HJ. Real-World Effectiveness of Natalizumab in Korean Patients With Multiple Sclerosis. Front Neurol 2021; 12:714941. [PMID: 34305808 PMCID: PMC8299833 DOI: 10.3389/fneur.2021.714941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Natalizumab is a highly efficacious disease-modifying therapy for relapsing-remitting multiple sclerosis (MS). Data on the efficacy and safety profile of natalizumab in Asian patients with MS are limited. This study assessed the efficacy and safety of natalizumab in Korean patients with MS in a real-world setting. Methods: This study enrolled consecutive Korean patients with active relapsing-remitting MS who were treated with natalizumab for at least 6 months between 2015 and 2021. To evaluate the therapeutic outcome of natalizumab, we used the Expanded Disability Status Scale (EDSS) scores and brain magnetic resonance imaging; adverse events were assessed at regular intervals. No evidence of disease activity (NEDA) was defined as no clinical relapse, no worsening of EDSS score, and no radiological activities. Results: Fourteen subjects with MS were included in the study. The mean age at initiation of natalizumab therapy was 32 years. All patients were positive for anti-John Cunningham virus antibodies before natalizumab administration. The mean annual relapse rate was markedly reduced from 2.7 ± 3.2 before natalizumab therapy to 0.1 ± 0.4 during natalizumab therapy (p = 0.001). Disability was either improved or stabilized after natalizumab treatment in 13 patients (93%). During the 1st year and 2 years after initiating natalizumab, NEDA-3 was achieved in 11/12 (92%) and 9/11 (82%) patients, respectively. No progressive multifocal leukoencephalopathy or other serious adverse events leading to the discontinuation of natalizumab were observed. Conclusions: Natalizumab therapy showed high efficacy in treating Korean patients with active MS, without unexpected safety problems.
Collapse
Affiliation(s)
- Ki Hoon Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, South Korea
| | - Su-Hyun Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, South Korea
| | - Na Young Park
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, South Korea
| | - Jae-Won Hyun
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, South Korea
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, South Korea
| |
Collapse
|
56
|
Hartung HP, Mares J, Meuth SG, Berger T. Multiple Sclerosis: Switching from Natalizumab to Other High-Efficacy Treatments to Mitigate Progressive Multifocal Leukoencephalopathy Risk. Neurotherapeutics 2021; 18:1654-1656. [PMID: 34480292 PMCID: PMC8609079 DOI: 10.1007/s13311-021-01102-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 02/04/2023] Open
Affiliation(s)
- Hans-Peter Hartung
- Department of Neurology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- Brain and Mind Centre, University of Sydney, Sydney, Australia.
- Department of Neurology, Palacky University, Olomouc, Olomouc, Czech Republic.
- Department of Neurology, Medical University of Vienna, Vienna, Austria.
| | - Jan Mares
- Department of Neurology, Palacky University, Olomouc, Olomouc, Czech Republic
| | - Sven G Meuth
- Department of Neurology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
57
|
Schweitzer F, Laurent S, Fink GR, Barnett MH, Hartung HP, Warnke C. Effects of disease-modifying therapy on peripheral leukocytes in patients with multiple sclerosis. J Neurol 2021; 268:2379-2389. [PMID: 32036423 PMCID: PMC8217029 DOI: 10.1007/s00415-019-09690-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022]
Abstract
Modern disease-modifying therapies (DMTs) in multiple sclerosis (MS) have variable modes of action and selectively suppress or modulate the immune system. In this review, we summarize the predicted and intended as well as unwanted adverse effects on leukocytes in peripheral blood as a result of treatment with DMTs for MS. We link changes in laboratory tests to the possible therapeutic risks that include secondary autoimmunity, infections, and impaired response to vaccinations. Profound knowledge of the intended effects on leukocyte counts, in particular lymphocytes, explained by the mode of action, and adverse effects which may require additional laboratory and clinical vigilance or even drug discontinuation, is needed when prescribing DMTs to treat patients with MS.
Collapse
Affiliation(s)
- F Schweitzer
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - S Laurent
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - G R Fink
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| | - Michael H Barnett
- Department of Neurology, Royal Prince Alfred Hospital, and Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - H P Hartung
- Department of Neurology, Medical Faculty, and Center for Neurology and Neuropsychiatry, LVR Klinikum, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - C Warnke
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany.
| |
Collapse
|
58
|
Elsbernd PM, Carter JL. Using Monoclonal Antibody Therapies for Multiple Sclerosis: A Review. Biologics 2021; 15:255-263. [PMID: 34234409 PMCID: PMC8255409 DOI: 10.2147/btt.s267273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/31/2021] [Indexed: 11/25/2022]
Abstract
Monoclonal antibody therapies have secured an important role in the therapeutic landscape for the treatment of both relapsing and progressive forms of multiple sclerosis due to their potent efficacy, convenient dosing schedules, and well-defined side effect profiles. Each therapy has unique risks and benefits associated with its specific mechanism of action which ultimately guides clinical decision-making for individual patients. This review will summarize the mechanisms of action, evidence leading to their approval, and clinically relevant considerations for each of the current monoclonal antibody therapies approved for the treatment of multiple sclerosis.
Collapse
|
59
|
Simonsen CS, Flemmen HØ, Broch L, Brunborg C, Berg-Hansen P, Moen SM, Celius EG. Early High Efficacy Treatment in Multiple Sclerosis Is the Best Predictor of Future Disease Activity Over 1 and 2 Years in a Norwegian Population-Based Registry. Front Neurol 2021; 12:693017. [PMID: 34220694 PMCID: PMC8248666 DOI: 10.3389/fneur.2021.693017] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/25/2021] [Indexed: 11/14/2022] Open
Abstract
Background: Moderate and high efficacy disease modifying therapies (DMTs) have a profound effect on disease activity. The current treatment guidelines only recommend high efficacy DMTs for patients with highly active MS. The objective was to examine the impact of initial treatment choice in achieving no evidence of disease activity (NEDA) at year 1 and 2. Methods: Using a real-world population-based registry with limited selection bias from the southeast of Norway, we determined how many patients achieved NEDA on moderate and high efficacy DMTs. Results: 68.0% of patients who started a high efficacy DMT as the first drug achieved NEDA at year 1 and 52.4% at year 2 as compared to 36.0 and 19.4% of patients who started a moderate efficacy DMT as a first drug. The odds ratio (OR) of achieving NEDA on high efficacy drugs compared to moderate efficacy drugs as a first drug at year 1 was 3.9 (95% CI 2.4–6.1, p < 0.001). The OR for high efficacy DMT as the second drug was 2.5 (95% CI 1.7–3.9, p < 0.001), and was not significant for the third drug. Patients with a medium or high risk of disease activity were significantly more likely to achieve NEDA on a high efficacy therapy as a first drug compared to moderate efficacy therapy as a first drug. Conclusions: Achieving NEDA at year 1 and 2 is significantly more likely in patients on high-efficacy disease modifying therapies than on moderate efficacy therapies, and the first choice of treatment is the most important. The immunomodulatory treatment guidelines should be updated to ensure early, high efficacy therapy for the majority of patients diagnosed with MS.
Collapse
Affiliation(s)
- Cecilia Smith Simonsen
- Department of Neurology, Vestre Viken Hospital Trust, Drammen, Norway.,Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Heidi Øyen Flemmen
- Department of Neurology, Telemark Hospital Trust, Skien, Norway.,Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Line Broch
- Department of Neurology, Vestre Viken Hospital Trust, Drammen, Norway.,Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Cathrine Brunborg
- Oslo Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | - Pål Berg-Hansen
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | | | - Elisabeth Gulowsen Celius
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
60
|
Smith TE, Kister I. Infection Mitigation Strategies for Multiple Sclerosis Patients on Oral and Monoclonal Disease-Modifying Therapies. Curr Neurol Neurosci Rep 2021; 21:36. [PMID: 34009478 PMCID: PMC8132488 DOI: 10.1007/s11910-021-01117-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW The newer, higher-efficacy disease-modifying therapies (DMTs) for multiple sclerosis (MS)-orals and monoclonals-have more profound immunomodulatory and immunosuppressive properties than the older, injectable therapies and require risk mitigation strategies to reduce the risk of serious infections. This review will provide a systematic framework for infectious risk mitigation strategies relevant to these therapies. RECENT FINDINGS We classify risk mitigation strategies according to the following framework: (1) screening and patient selection, (2) vaccinations, (3) antibiotic prophylaxis, (4) laboratory and MRI monitoring, (5) adjusting dose and frequency of DMT, and (6) behavioral modifications to limit the risk of infection. We systematically apply this framework to the infections for which risk mitigations are available: hepatitis B, herpetic infections, progressive multifocal leukoencephalopathy, and tuberculosis. We also discuss up-to-date recommendations regarding COVID-19 vaccinations for patients on DMTs. We offer a practical, comprehensive, DMT-specific framework of derisking strategies designed to minimize the risk of infections associated with the newer MS therapies.
Collapse
Affiliation(s)
- Tyler Ellis Smith
- Department of Neurology, NYU-Multiple Sclerosis Care Center, NYU School of Medicine, New York, NY, USA.
- , New York, NY, USA.
| | - Ilya Kister
- Department of Neurology, NYU-Multiple Sclerosis Care Center, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
61
|
Simpson A, Mowry EM, Newsome SD. Early Aggressive Treatment Approaches for Multiple Sclerosis. Curr Treat Options Neurol 2021; 23:19. [PMID: 34025110 PMCID: PMC8121641 DOI: 10.1007/s11940-021-00677-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW This review presents a comprehensive analysis of the current high-efficacy disease-modifying therapies (DMTs) available for treatment of multiple sclerosis (MS). We discuss the existing approved and emerging therapeutics in patients with relapsing and progressive forms of MS using data from clinical trials and observational studies. Treatment considerations in pediatric and pregnant populations are also reviewed. Finally, we discuss the treatment paradigms of the escalation and early aggressive approaches to treatment of MS, with review of ongoing clinical trials to compare these approaches. RECENT FINDINGS Natalizumab has shown promising data on efficacy in not only randomized trials but also observational studies when compared with placebo, the injectable DMTs, and fingolimod. The anti-CD20 B cell depleting therapies (rituximab, ocrelizumab, and ofatumumab) have also demonstrated superiority in randomized clinical trials compared to their comparator group (placebo, interferon, and teriflunomide, respectively) and rituximab has shown in observational studies to be more effective than older injectable therapies and some of the oral therapies. Alemtuzumab has shown good efficacy in randomized controlled trials and observational studies yet has several potentially severe side effects limiting its use. Mitoxantrone has similarly demonstrated significant reduction in new disease activity compared to placebo but is rarely used due to its severe side effects. Cladribine is an oral DMT often grouped in discussion with other higher efficacy DMTs but may be slightly less effective than the other therapies described in this review. Many emerging targets for therapeutic intervention are currently under investigation that may prove to be beneficial in early aggressive MS, including autologous hematopoietic stem cell transplantation. SUMMARY Traditionally, MS has been treated with an escalation approach, starting patients on a modestly effective DMT and subsequently escalating to a higher efficacy DMT when there is evidence of clinical and/or radiologic breakthrough activity. With the development of higher efficacy therapies and emerging data showing the potential positive long-term impact of these therapies when started earlier in the disease course, many clinicians have shifted to an early aggressive treatment approach in which patients are initially started on a higher efficacy DMT. Two clinical trials, the TRaditional versus Early Aggressive Therapy for MS (TREAT-MS) trial and the Determining the Effectiveness of earLy Intensive Versus Escalation approaches for the treatment of Relapsing-remitting MS (DELIVER-MS) trial, aim to directly compare these treatment strategies and their impact on clinical and radiologic outcomes.
Collapse
Affiliation(s)
- Alexandra Simpson
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Ellen M. Mowry
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Scott D. Newsome
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD USA
- Division of Neuroimmunology and Neurological Infections, Johns Hopkins Hospital, 600 North Wolfe St., Pathology 627, Baltimore, MD 21287 USA
| |
Collapse
|
62
|
Li H, Lian G, Wang G, Yin Q, Su Z. A review of possible therapies for multiple sclerosis. Mol Cell Biochem 2021; 476:3261-3270. [PMID: 33886059 DOI: 10.1007/s11010-021-04119-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/23/2021] [Indexed: 01/22/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune chronic inflammatory disease of the central nervous system with a wide range of symptoms, like executive function defect, cognitive dysfunction, blurred vision, decreased sensation, spasticity, fatigue, and other symptoms. This neurological disease is characterized by the destruction of the blood-brain barrier, loss of myelin, and damage to neurons. It is the result of immune cells crossing the blood-brain barrier into the central nervous system and attacking self-antigens. Heretofore, many treatments proved that they can retard the progression of the disease even though there is no cure. Therefore, treatments aimed at improving patients' quality of life and reducing adverse drug reactions and costs are essential. In this review, the treatment approaches to alleviate the progress of MS include the following: pharmacotherapy, antibody therapy, cell therapy, gene therapy, and surgery. The current treatment methods of MS are described in terms of the prevention of myelin shedding, the promotion of myelin regeneration, and the protection of neurons.
Collapse
Affiliation(s)
- Hui Li
- Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan Province, China
| | - Gaojian Lian
- Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan Province, China
| | - Guang Wang
- Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan Province, China
| | - Qianmei Yin
- Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan Province, China
| | - Zehong Su
- Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan Province, China.
| |
Collapse
|
63
|
Zanghì A, Gallo A, Avolio C, Capuano R, Lucchini M, Petracca M, Bonavita S, Lanzillo R, Ferraro D, Curti E, Buccafusca M, Callari G, Barone S, Pontillo G, Abbadessa G, Di Francescantonio V, Signoriello E, Lus G, Sola P, Granella F, Valentino P, Mirabella M, Patti F, D'Amico E. Exit Strategies in Natalizumab-Treated RRMS at High Risk of Progressive Multifocal Leukoencephalopathy: a Multicentre Comparison Study. Neurotherapeutics 2021; 18:1166-1174. [PMID: 33844155 PMCID: PMC8423885 DOI: 10.1007/s13311-021-01037-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 11/27/2022] Open
Abstract
The main aim of the study is to evaluate the efficacy and safety profile of ocrelizumab (OCR), rituximab (RTX), and cladribine (CLA), employed as natalizumab (NTZ) exit strategies in relapsing-remitting multiple sclerosis (RRMS) patients at high-risk for progressive multifocal leukoencephalopathy (PML). This is a multicentre, retrospective, real-world study on consecutive RRMS patients from eleven tertiary Italian MS centres, who switched from NTZ to OCR, RTX, and CLA from January 1st, 2019, to December 31st, 2019. The primary study outcomes were the annualized relapse rate (ARR) and magnetic resonance imaging (MRI) outcome. Treatment effects were estimated by the inverse probability treatment weighting (IPTW), based on propensity-score (PS) approach. Additional endpoint included confirmed disability progression (CDP) as measured by Expanded Disability Status Scale and adverse events (AEs). Patients satisfying predefined inclusion and exclusion criteria were 120; 64 switched to OCR, 36 to RTX, and 20 to CLA. Patients from the 3 groups did not show differences for baseline characteristics, also after post hoc analysis. The IPTW PS-adjusted models revealed that patients on OCR had a lower risk for ARR than patients on CLA (ExpBOCR 0.485, CI 95% 0.264-0.893, p = 0.020). This result was confirmed also for 12-month MRI activity (ExpBOCR 0.248 CI 95% 0.065-0.948, p = 0.042). No differences were found in other pairwise comparisons (OCR vs RTX and RTX vs CLA) for the investigated outcomes. AEs were similar among the 3 groups. Anti-CD20 drugs were revealed to be effective and safe options as NTZ exit strategies. All investigated DMTs showed a good safety profile.
Collapse
Affiliation(s)
- Aurora Zanghì
- Department "G.F. Ingrassia", MS Center, Organization University of Catania, Catania, Italy
| | - Antonio Gallo
- MS Center I Division of Neurology, University Della Campania "L. Vanvitelli", Naples, Italy
| | - Carlo Avolio
- Department of Medical and Surgical Sciences Head of Multiple Sclerosis Center Dept. of Neurosciences, University of Foggia, Foggia, Italy
| | - Rocco Capuano
- MS Center I Division of Neurology, University Della Campania "L. Vanvitelli", Naples, Italy
| | - Matteo Lucchini
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Petracca
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Simona Bonavita
- Dipartimento Di Scienze Mediche E Chirurgiche Avanzate, Università Della Campania Luigi Vanvitelli, Piazza Miraglia, 2, 80138, Naples, Italy
| | - Roberta Lanzillo
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Diana Ferraro
- University of Modena and Reggio Emilia, Modena, Italy
| | - Erica Curti
- Multiple Sclerosis Centre, Department of General Medicine, Parma University Hospital, Parma, Italy
| | | | | | - Stefania Barone
- Azienda Ospedaliera Universitaria "Mater Domini", Catanzaro, Italy
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
- Department of Electrical Engineering and Information Technology, , University "Federico II", Naples, Italy
| | - Gianmarco Abbadessa
- Dipartimento Di Scienze Mediche E Chirurgiche Avanzate, Università Della Campania Luigi Vanvitelli, Piazza Miraglia, 2, 80138, Napoli, Italy
| | - Valeria Di Francescantonio
- Department of Medical and Surgical Sciences Head of Multiple Sclerosis Center Dept. of Neurosciences, University of Foggia, Foggia, Italy
| | - Elisabetta Signoriello
- Department of Clinical and Experimental Medicine, Multiple Sclerosis Center, II Division of Neurology, Second University of Naples, Naples, Italy
| | - Giacomo Lus
- Department of Clinical and Experimental Medicine, Multiple Sclerosis Center, II Division of Neurology, Second University of Naples, Naples, Italy
| | - Patrizia Sola
- University of Modena and Reggio Emilia, Modena, Italy
| | - Franco Granella
- Multiple Sclerosis Centre, Department of General Medicine, Parma University Hospital, Parma, Italy
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Valentino
- Azienda Ospedaliera Universitaria "Mater Domini", Catanzaro, Italy
| | - Massimiliano Mirabella
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Patti
- Department "G.F. Ingrassia", MS Center, Organization University of Catania, Catania, Italy
| | - Emanuele D'Amico
- Department "G.F. Ingrassia", MS Center, Organization University of Catania, Catania, Italy.
| |
Collapse
|
64
|
Tugemann B, Berger JR. Improving risk-stratification of natalizumab-associated PML. Ann Clin Transl Neurol 2021; 8:696-703. [PMID: 33539683 PMCID: PMC7951098 DOI: 10.1002/acn3.51130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 05/14/2020] [Accepted: 06/02/2020] [Indexed: 11/26/2022] Open
Abstract
Based on publicly available data, we reevaluated current algorithms for stratifying the risk of progressive multifocal leukoencephalopathy (PML) in natalizumab‐treated patients with multiple sclerosis, and found that there are a number of issues. First and foremost, our analysis highlights the necessity of separate PML incidence assessments for the U.S. versus Europe, and indicates that the risk in John Cunningham virus (JCV) antibody‐negative patients may be higher than previously communicated. Additionally, we advocate introducing a low‐risk JCV index threshold of 0.45 for individuals with prior exposure to an immunosuppressant, and setting the low‐risk threshold at 0.6 instead of 0.9 for those without such pretherapies. On the other hand, the risk of PML on natalizumab, in general, appears to not only plateau but to actually decrease after about 5 years of continuous dosing.
Collapse
Affiliation(s)
| | - Joseph R Berger
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
65
|
Bhise V, Dhib-Jalbut S. Potential Risks and Benefits of Multiple Sclerosis Immune Therapies in the COVID-19 Era: Clinical and Immunological Perspectives. Neurotherapeutics 2021; 18:244-251. [PMID: 33533012 PMCID: PMC7853164 DOI: 10.1007/s13311-021-01008-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus SARS-CoV2 has emerged as one of the greatest infectious disease health challenges in a century. Patients with multiple sclerosis (MS) have a particular vulnerability to infections through their use of immunosuppressive disease-modifying therapies (DMTs). Specific DMTs pose particular risk based on their mechanisms of action (MOA). As a result, patients require individualized approaches to starting new treatments and continuation of therapy. Additionally, vaccinations must be considered carefully, and individuals on long-term B cell-depleting therapies may have diminished immune responses to vaccination, based on preserved T cells and diminished but present antibody titers to influenza vaccines. We review the immunology behind these treatments and their impact on COVID-19, as well as the current recommendations for best practices for use of DMTs in patients with MS.
Collapse
Affiliation(s)
- Vikram Bhise
- Departments of Pediatrics, Rutgers Robert Wood Johnson Medical School, 89 French Street, Suite 2200, New Brunswick, NJ, 08901, USA.
| | - Suhayl Dhib-Jalbut
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 65000, New Brunswick, NJ, 08901, USA
| |
Collapse
|
66
|
Anadani N, Hyland M, Cruz RA, Lisak R, Costello K, Major EO, Jassam Y, Meltzer E, Varkey TC, Parsons MS, Goodman AD, Graves JS, Newsome S, Zamvil SS, Frohman EM, Frohman TC. Treating MS after surviving PML: Discrete strategies for rescue, remission, and recovery patient 1: From the National Multiple Sclerosis Society Case Conference Proceedings. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 8:8/1/e929. [PMID: 33411672 PMCID: PMC7803340 DOI: 10.1212/nxi.0000000000000929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/21/2020] [Indexed: 11/15/2022]
Affiliation(s)
- Nidhiben Anadani
- From the University of Rochester (N.A.), NY. N. Anadani is now with Department of Neurology, University of Oklahoma Health Science Center; Department of Neurology (M.H., A.D.G.), University of Rochester, NY; Department of Neurology (R.A.C., E.M., T.C.V.), Dell Medical School at the University of Texas at Austin; Department of Neurology (R.L.), Wayne State University, Detroit, MI; The National Multiple Sclerosis Society (K.C.), New York, NY; Laboratory of Molecular Medicine and Neuroscience (E.O.M.), Neurological Institute of Neurological Disorder and Stroke (Y.J.), Bethesda, MD. Y. Jassam is now with Department of Neurology, The University of Kansas Health System; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; Department of Neurosciences (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California San Francisco; and Department of Neurology, Neurosurgery, and Ophthalmology (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Megan Hyland
- From the University of Rochester (N.A.), NY. N. Anadani is now with Department of Neurology, University of Oklahoma Health Science Center; Department of Neurology (M.H., A.D.G.), University of Rochester, NY; Department of Neurology (R.A.C., E.M., T.C.V.), Dell Medical School at the University of Texas at Austin; Department of Neurology (R.L.), Wayne State University, Detroit, MI; The National Multiple Sclerosis Society (K.C.), New York, NY; Laboratory of Molecular Medicine and Neuroscience (E.O.M.), Neurological Institute of Neurological Disorder and Stroke (Y.J.), Bethesda, MD. Y. Jassam is now with Department of Neurology, The University of Kansas Health System; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; Department of Neurosciences (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California San Francisco; and Department of Neurology, Neurosurgery, and Ophthalmology (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Roberto Alejandro Cruz
- From the University of Rochester (N.A.), NY. N. Anadani is now with Department of Neurology, University of Oklahoma Health Science Center; Department of Neurology (M.H., A.D.G.), University of Rochester, NY; Department of Neurology (R.A.C., E.M., T.C.V.), Dell Medical School at the University of Texas at Austin; Department of Neurology (R.L.), Wayne State University, Detroit, MI; The National Multiple Sclerosis Society (K.C.), New York, NY; Laboratory of Molecular Medicine and Neuroscience (E.O.M.), Neurological Institute of Neurological Disorder and Stroke (Y.J.), Bethesda, MD. Y. Jassam is now with Department of Neurology, The University of Kansas Health System; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; Department of Neurosciences (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California San Francisco; and Department of Neurology, Neurosurgery, and Ophthalmology (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Robert Lisak
- From the University of Rochester (N.A.), NY. N. Anadani is now with Department of Neurology, University of Oklahoma Health Science Center; Department of Neurology (M.H., A.D.G.), University of Rochester, NY; Department of Neurology (R.A.C., E.M., T.C.V.), Dell Medical School at the University of Texas at Austin; Department of Neurology (R.L.), Wayne State University, Detroit, MI; The National Multiple Sclerosis Society (K.C.), New York, NY; Laboratory of Molecular Medicine and Neuroscience (E.O.M.), Neurological Institute of Neurological Disorder and Stroke (Y.J.), Bethesda, MD. Y. Jassam is now with Department of Neurology, The University of Kansas Health System; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; Department of Neurosciences (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California San Francisco; and Department of Neurology, Neurosurgery, and Ophthalmology (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Kathleen Costello
- From the University of Rochester (N.A.), NY. N. Anadani is now with Department of Neurology, University of Oklahoma Health Science Center; Department of Neurology (M.H., A.D.G.), University of Rochester, NY; Department of Neurology (R.A.C., E.M., T.C.V.), Dell Medical School at the University of Texas at Austin; Department of Neurology (R.L.), Wayne State University, Detroit, MI; The National Multiple Sclerosis Society (K.C.), New York, NY; Laboratory of Molecular Medicine and Neuroscience (E.O.M.), Neurological Institute of Neurological Disorder and Stroke (Y.J.), Bethesda, MD. Y. Jassam is now with Department of Neurology, The University of Kansas Health System; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; Department of Neurosciences (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California San Francisco; and Department of Neurology, Neurosurgery, and Ophthalmology (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Eugene O Major
- From the University of Rochester (N.A.), NY. N. Anadani is now with Department of Neurology, University of Oklahoma Health Science Center; Department of Neurology (M.H., A.D.G.), University of Rochester, NY; Department of Neurology (R.A.C., E.M., T.C.V.), Dell Medical School at the University of Texas at Austin; Department of Neurology (R.L.), Wayne State University, Detroit, MI; The National Multiple Sclerosis Society (K.C.), New York, NY; Laboratory of Molecular Medicine and Neuroscience (E.O.M.), Neurological Institute of Neurological Disorder and Stroke (Y.J.), Bethesda, MD. Y. Jassam is now with Department of Neurology, The University of Kansas Health System; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; Department of Neurosciences (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California San Francisco; and Department of Neurology, Neurosurgery, and Ophthalmology (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Yasir Jassam
- From the University of Rochester (N.A.), NY. N. Anadani is now with Department of Neurology, University of Oklahoma Health Science Center; Department of Neurology (M.H., A.D.G.), University of Rochester, NY; Department of Neurology (R.A.C., E.M., T.C.V.), Dell Medical School at the University of Texas at Austin; Department of Neurology (R.L.), Wayne State University, Detroit, MI; The National Multiple Sclerosis Society (K.C.), New York, NY; Laboratory of Molecular Medicine and Neuroscience (E.O.M.), Neurological Institute of Neurological Disorder and Stroke (Y.J.), Bethesda, MD. Y. Jassam is now with Department of Neurology, The University of Kansas Health System; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; Department of Neurosciences (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California San Francisco; and Department of Neurology, Neurosurgery, and Ophthalmology (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Ethan Meltzer
- From the University of Rochester (N.A.), NY. N. Anadani is now with Department of Neurology, University of Oklahoma Health Science Center; Department of Neurology (M.H., A.D.G.), University of Rochester, NY; Department of Neurology (R.A.C., E.M., T.C.V.), Dell Medical School at the University of Texas at Austin; Department of Neurology (R.L.), Wayne State University, Detroit, MI; The National Multiple Sclerosis Society (K.C.), New York, NY; Laboratory of Molecular Medicine and Neuroscience (E.O.M.), Neurological Institute of Neurological Disorder and Stroke (Y.J.), Bethesda, MD. Y. Jassam is now with Department of Neurology, The University of Kansas Health System; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; Department of Neurosciences (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California San Francisco; and Department of Neurology, Neurosurgery, and Ophthalmology (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Thomas C Varkey
- From the University of Rochester (N.A.), NY. N. Anadani is now with Department of Neurology, University of Oklahoma Health Science Center; Department of Neurology (M.H., A.D.G.), University of Rochester, NY; Department of Neurology (R.A.C., E.M., T.C.V.), Dell Medical School at the University of Texas at Austin; Department of Neurology (R.L.), Wayne State University, Detroit, MI; The National Multiple Sclerosis Society (K.C.), New York, NY; Laboratory of Molecular Medicine and Neuroscience (E.O.M.), Neurological Institute of Neurological Disorder and Stroke (Y.J.), Bethesda, MD. Y. Jassam is now with Department of Neurology, The University of Kansas Health System; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; Department of Neurosciences (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California San Francisco; and Department of Neurology, Neurosurgery, and Ophthalmology (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Matthew S Parsons
- From the University of Rochester (N.A.), NY. N. Anadani is now with Department of Neurology, University of Oklahoma Health Science Center; Department of Neurology (M.H., A.D.G.), University of Rochester, NY; Department of Neurology (R.A.C., E.M., T.C.V.), Dell Medical School at the University of Texas at Austin; Department of Neurology (R.L.), Wayne State University, Detroit, MI; The National Multiple Sclerosis Society (K.C.), New York, NY; Laboratory of Molecular Medicine and Neuroscience (E.O.M.), Neurological Institute of Neurological Disorder and Stroke (Y.J.), Bethesda, MD. Y. Jassam is now with Department of Neurology, The University of Kansas Health System; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; Department of Neurosciences (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California San Francisco; and Department of Neurology, Neurosurgery, and Ophthalmology (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Andrew D Goodman
- From the University of Rochester (N.A.), NY. N. Anadani is now with Department of Neurology, University of Oklahoma Health Science Center; Department of Neurology (M.H., A.D.G.), University of Rochester, NY; Department of Neurology (R.A.C., E.M., T.C.V.), Dell Medical School at the University of Texas at Austin; Department of Neurology (R.L.), Wayne State University, Detroit, MI; The National Multiple Sclerosis Society (K.C.), New York, NY; Laboratory of Molecular Medicine and Neuroscience (E.O.M.), Neurological Institute of Neurological Disorder and Stroke (Y.J.), Bethesda, MD. Y. Jassam is now with Department of Neurology, The University of Kansas Health System; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; Department of Neurosciences (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California San Francisco; and Department of Neurology, Neurosurgery, and Ophthalmology (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Jennifer S Graves
- From the University of Rochester (N.A.), NY. N. Anadani is now with Department of Neurology, University of Oklahoma Health Science Center; Department of Neurology (M.H., A.D.G.), University of Rochester, NY; Department of Neurology (R.A.C., E.M., T.C.V.), Dell Medical School at the University of Texas at Austin; Department of Neurology (R.L.), Wayne State University, Detroit, MI; The National Multiple Sclerosis Society (K.C.), New York, NY; Laboratory of Molecular Medicine and Neuroscience (E.O.M.), Neurological Institute of Neurological Disorder and Stroke (Y.J.), Bethesda, MD. Y. Jassam is now with Department of Neurology, The University of Kansas Health System; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; Department of Neurosciences (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California San Francisco; and Department of Neurology, Neurosurgery, and Ophthalmology (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Scott Newsome
- From the University of Rochester (N.A.), NY. N. Anadani is now with Department of Neurology, University of Oklahoma Health Science Center; Department of Neurology (M.H., A.D.G.), University of Rochester, NY; Department of Neurology (R.A.C., E.M., T.C.V.), Dell Medical School at the University of Texas at Austin; Department of Neurology (R.L.), Wayne State University, Detroit, MI; The National Multiple Sclerosis Society (K.C.), New York, NY; Laboratory of Molecular Medicine and Neuroscience (E.O.M.), Neurological Institute of Neurological Disorder and Stroke (Y.J.), Bethesda, MD. Y. Jassam is now with Department of Neurology, The University of Kansas Health System; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; Department of Neurosciences (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California San Francisco; and Department of Neurology, Neurosurgery, and Ophthalmology (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Scott S Zamvil
- From the University of Rochester (N.A.), NY. N. Anadani is now with Department of Neurology, University of Oklahoma Health Science Center; Department of Neurology (M.H., A.D.G.), University of Rochester, NY; Department of Neurology (R.A.C., E.M., T.C.V.), Dell Medical School at the University of Texas at Austin; Department of Neurology (R.L.), Wayne State University, Detroit, MI; The National Multiple Sclerosis Society (K.C.), New York, NY; Laboratory of Molecular Medicine and Neuroscience (E.O.M.), Neurological Institute of Neurological Disorder and Stroke (Y.J.), Bethesda, MD. Y. Jassam is now with Department of Neurology, The University of Kansas Health System; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; Department of Neurosciences (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California San Francisco; and Department of Neurology, Neurosurgery, and Ophthalmology (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Elliot M Frohman
- From the University of Rochester (N.A.), NY. N. Anadani is now with Department of Neurology, University of Oklahoma Health Science Center; Department of Neurology (M.H., A.D.G.), University of Rochester, NY; Department of Neurology (R.A.C., E.M., T.C.V.), Dell Medical School at the University of Texas at Austin; Department of Neurology (R.L.), Wayne State University, Detroit, MI; The National Multiple Sclerosis Society (K.C.), New York, NY; Laboratory of Molecular Medicine and Neuroscience (E.O.M.), Neurological Institute of Neurological Disorder and Stroke (Y.J.), Bethesda, MD. Y. Jassam is now with Department of Neurology, The University of Kansas Health System; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; Department of Neurosciences (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California San Francisco; and Department of Neurology, Neurosurgery, and Ophthalmology (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin.
| | - Teresa C Frohman
- From the University of Rochester (N.A.), NY. N. Anadani is now with Department of Neurology, University of Oklahoma Health Science Center; Department of Neurology (M.H., A.D.G.), University of Rochester, NY; Department of Neurology (R.A.C., E.M., T.C.V.), Dell Medical School at the University of Texas at Austin; Department of Neurology (R.L.), Wayne State University, Detroit, MI; The National Multiple Sclerosis Society (K.C.), New York, NY; Laboratory of Molecular Medicine and Neuroscience (E.O.M.), Neurological Institute of Neurological Disorder and Stroke (Y.J.), Bethesda, MD. Y. Jassam is now with Department of Neurology, The University of Kansas Health System; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; Department of Neurosciences (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California San Francisco; and Department of Neurology, Neurosurgery, and Ophthalmology (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin.
| |
Collapse
|
67
|
Cruz RA, Hogan N, Sconzert J, Sconzert M, Major EO, Lisak RP, Melamed E, Varkey TC, Meltzer E, Goodman A, Komogortsev O, Parsons MS, Costello K, Graves JS, Newsome S, Zamvil SS, Frohman EM, Frohman TC. Treating MS after surviving PML: Discrete strategies for rescue, remission, and recovery patient 2: From the National Multiple Sclerosis Society Case Conference Proceedings. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 8:8/1/e930. [PMID: 33434885 PMCID: PMC7803334 DOI: 10.1212/nxi.0000000000000930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/21/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Roberto Alejandro Cruz
- From the Department of Neurology (R.A.C., E. Melamed, T.C.V., E. Meltzer), Dell Medical School, University of Texas at Austin; Department of Ophthalmology (N.H.), University of Texas Southwestern, Dallas; Wellness Care Centers and Pediatric Rehabilitation (J.S.), Denton, TX; Ascension Seton Medical Center (M.S.), Austin, TX; National Institutes of Health (E.O.M.), Bethesda, MD; Departments of Neurology, and Biochemistry, Microbiology and Immunology (R.P.L.), Wayne State University, Detroit, MI; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Department of Neurology (A.G.), University of Rochester, NY; Department of Computer Science (O.K.), Texas State University, San Marcos; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; The National Multiple Sclerosis Society (K.C.), New York, NY; Department of Neurology (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins Hospital, Bethesda, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco; andDepartments of Neurology, Ophthalmology & Neurosurgery (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Nick Hogan
- From the Department of Neurology (R.A.C., E. Melamed, T.C.V., E. Meltzer), Dell Medical School, University of Texas at Austin; Department of Ophthalmology (N.H.), University of Texas Southwestern, Dallas; Wellness Care Centers and Pediatric Rehabilitation (J.S.), Denton, TX; Ascension Seton Medical Center (M.S.), Austin, TX; National Institutes of Health (E.O.M.), Bethesda, MD; Departments of Neurology, and Biochemistry, Microbiology and Immunology (R.P.L.), Wayne State University, Detroit, MI; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Department of Neurology (A.G.), University of Rochester, NY; Department of Computer Science (O.K.), Texas State University, San Marcos; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; The National Multiple Sclerosis Society (K.C.), New York, NY; Department of Neurology (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins Hospital, Bethesda, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco; andDepartments of Neurology, Ophthalmology & Neurosurgery (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Jayne Sconzert
- From the Department of Neurology (R.A.C., E. Melamed, T.C.V., E. Meltzer), Dell Medical School, University of Texas at Austin; Department of Ophthalmology (N.H.), University of Texas Southwestern, Dallas; Wellness Care Centers and Pediatric Rehabilitation (J.S.), Denton, TX; Ascension Seton Medical Center (M.S.), Austin, TX; National Institutes of Health (E.O.M.), Bethesda, MD; Departments of Neurology, and Biochemistry, Microbiology and Immunology (R.P.L.), Wayne State University, Detroit, MI; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Department of Neurology (A.G.), University of Rochester, NY; Department of Computer Science (O.K.), Texas State University, San Marcos; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; The National Multiple Sclerosis Society (K.C.), New York, NY; Department of Neurology (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins Hospital, Bethesda, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco; andDepartments of Neurology, Ophthalmology & Neurosurgery (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Megan Sconzert
- From the Department of Neurology (R.A.C., E. Melamed, T.C.V., E. Meltzer), Dell Medical School, University of Texas at Austin; Department of Ophthalmology (N.H.), University of Texas Southwestern, Dallas; Wellness Care Centers and Pediatric Rehabilitation (J.S.), Denton, TX; Ascension Seton Medical Center (M.S.), Austin, TX; National Institutes of Health (E.O.M.), Bethesda, MD; Departments of Neurology, and Biochemistry, Microbiology and Immunology (R.P.L.), Wayne State University, Detroit, MI; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Department of Neurology (A.G.), University of Rochester, NY; Department of Computer Science (O.K.), Texas State University, San Marcos; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; The National Multiple Sclerosis Society (K.C.), New York, NY; Department of Neurology (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins Hospital, Bethesda, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco; andDepartments of Neurology, Ophthalmology & Neurosurgery (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Eugene O Major
- From the Department of Neurology (R.A.C., E. Melamed, T.C.V., E. Meltzer), Dell Medical School, University of Texas at Austin; Department of Ophthalmology (N.H.), University of Texas Southwestern, Dallas; Wellness Care Centers and Pediatric Rehabilitation (J.S.), Denton, TX; Ascension Seton Medical Center (M.S.), Austin, TX; National Institutes of Health (E.O.M.), Bethesda, MD; Departments of Neurology, and Biochemistry, Microbiology and Immunology (R.P.L.), Wayne State University, Detroit, MI; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Department of Neurology (A.G.), University of Rochester, NY; Department of Computer Science (O.K.), Texas State University, San Marcos; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; The National Multiple Sclerosis Society (K.C.), New York, NY; Department of Neurology (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins Hospital, Bethesda, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco; andDepartments of Neurology, Ophthalmology & Neurosurgery (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Robert P Lisak
- From the Department of Neurology (R.A.C., E. Melamed, T.C.V., E. Meltzer), Dell Medical School, University of Texas at Austin; Department of Ophthalmology (N.H.), University of Texas Southwestern, Dallas; Wellness Care Centers and Pediatric Rehabilitation (J.S.), Denton, TX; Ascension Seton Medical Center (M.S.), Austin, TX; National Institutes of Health (E.O.M.), Bethesda, MD; Departments of Neurology, and Biochemistry, Microbiology and Immunology (R.P.L.), Wayne State University, Detroit, MI; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Department of Neurology (A.G.), University of Rochester, NY; Department of Computer Science (O.K.), Texas State University, San Marcos; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; The National Multiple Sclerosis Society (K.C.), New York, NY; Department of Neurology (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins Hospital, Bethesda, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco; andDepartments of Neurology, Ophthalmology & Neurosurgery (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Esther Melamed
- From the Department of Neurology (R.A.C., E. Melamed, T.C.V., E. Meltzer), Dell Medical School, University of Texas at Austin; Department of Ophthalmology (N.H.), University of Texas Southwestern, Dallas; Wellness Care Centers and Pediatric Rehabilitation (J.S.), Denton, TX; Ascension Seton Medical Center (M.S.), Austin, TX; National Institutes of Health (E.O.M.), Bethesda, MD; Departments of Neurology, and Biochemistry, Microbiology and Immunology (R.P.L.), Wayne State University, Detroit, MI; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Department of Neurology (A.G.), University of Rochester, NY; Department of Computer Science (O.K.), Texas State University, San Marcos; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; The National Multiple Sclerosis Society (K.C.), New York, NY; Department of Neurology (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins Hospital, Bethesda, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco; andDepartments of Neurology, Ophthalmology & Neurosurgery (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Thomas C Varkey
- From the Department of Neurology (R.A.C., E. Melamed, T.C.V., E. Meltzer), Dell Medical School, University of Texas at Austin; Department of Ophthalmology (N.H.), University of Texas Southwestern, Dallas; Wellness Care Centers and Pediatric Rehabilitation (J.S.), Denton, TX; Ascension Seton Medical Center (M.S.), Austin, TX; National Institutes of Health (E.O.M.), Bethesda, MD; Departments of Neurology, and Biochemistry, Microbiology and Immunology (R.P.L.), Wayne State University, Detroit, MI; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Department of Neurology (A.G.), University of Rochester, NY; Department of Computer Science (O.K.), Texas State University, San Marcos; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; The National Multiple Sclerosis Society (K.C.), New York, NY; Department of Neurology (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins Hospital, Bethesda, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco; andDepartments of Neurology, Ophthalmology & Neurosurgery (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Ethan Meltzer
- From the Department of Neurology (R.A.C., E. Melamed, T.C.V., E. Meltzer), Dell Medical School, University of Texas at Austin; Department of Ophthalmology (N.H.), University of Texas Southwestern, Dallas; Wellness Care Centers and Pediatric Rehabilitation (J.S.), Denton, TX; Ascension Seton Medical Center (M.S.), Austin, TX; National Institutes of Health (E.O.M.), Bethesda, MD; Departments of Neurology, and Biochemistry, Microbiology and Immunology (R.P.L.), Wayne State University, Detroit, MI; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Department of Neurology (A.G.), University of Rochester, NY; Department of Computer Science (O.K.), Texas State University, San Marcos; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; The National Multiple Sclerosis Society (K.C.), New York, NY; Department of Neurology (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins Hospital, Bethesda, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco; andDepartments of Neurology, Ophthalmology & Neurosurgery (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Andrew Goodman
- From the Department of Neurology (R.A.C., E. Melamed, T.C.V., E. Meltzer), Dell Medical School, University of Texas at Austin; Department of Ophthalmology (N.H.), University of Texas Southwestern, Dallas; Wellness Care Centers and Pediatric Rehabilitation (J.S.), Denton, TX; Ascension Seton Medical Center (M.S.), Austin, TX; National Institutes of Health (E.O.M.), Bethesda, MD; Departments of Neurology, and Biochemistry, Microbiology and Immunology (R.P.L.), Wayne State University, Detroit, MI; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Department of Neurology (A.G.), University of Rochester, NY; Department of Computer Science (O.K.), Texas State University, San Marcos; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; The National Multiple Sclerosis Society (K.C.), New York, NY; Department of Neurology (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins Hospital, Bethesda, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco; andDepartments of Neurology, Ophthalmology & Neurosurgery (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Oleg Komogortsev
- From the Department of Neurology (R.A.C., E. Melamed, T.C.V., E. Meltzer), Dell Medical School, University of Texas at Austin; Department of Ophthalmology (N.H.), University of Texas Southwestern, Dallas; Wellness Care Centers and Pediatric Rehabilitation (J.S.), Denton, TX; Ascension Seton Medical Center (M.S.), Austin, TX; National Institutes of Health (E.O.M.), Bethesda, MD; Departments of Neurology, and Biochemistry, Microbiology and Immunology (R.P.L.), Wayne State University, Detroit, MI; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Department of Neurology (A.G.), University of Rochester, NY; Department of Computer Science (O.K.), Texas State University, San Marcos; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; The National Multiple Sclerosis Society (K.C.), New York, NY; Department of Neurology (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins Hospital, Bethesda, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco; andDepartments of Neurology, Ophthalmology & Neurosurgery (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Matthew S Parsons
- From the Department of Neurology (R.A.C., E. Melamed, T.C.V., E. Meltzer), Dell Medical School, University of Texas at Austin; Department of Ophthalmology (N.H.), University of Texas Southwestern, Dallas; Wellness Care Centers and Pediatric Rehabilitation (J.S.), Denton, TX; Ascension Seton Medical Center (M.S.), Austin, TX; National Institutes of Health (E.O.M.), Bethesda, MD; Departments of Neurology, and Biochemistry, Microbiology and Immunology (R.P.L.), Wayne State University, Detroit, MI; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Department of Neurology (A.G.), University of Rochester, NY; Department of Computer Science (O.K.), Texas State University, San Marcos; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; The National Multiple Sclerosis Society (K.C.), New York, NY; Department of Neurology (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins Hospital, Bethesda, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco; andDepartments of Neurology, Ophthalmology & Neurosurgery (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Kathleen Costello
- From the Department of Neurology (R.A.C., E. Melamed, T.C.V., E. Meltzer), Dell Medical School, University of Texas at Austin; Department of Ophthalmology (N.H.), University of Texas Southwestern, Dallas; Wellness Care Centers and Pediatric Rehabilitation (J.S.), Denton, TX; Ascension Seton Medical Center (M.S.), Austin, TX; National Institutes of Health (E.O.M.), Bethesda, MD; Departments of Neurology, and Biochemistry, Microbiology and Immunology (R.P.L.), Wayne State University, Detroit, MI; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Department of Neurology (A.G.), University of Rochester, NY; Department of Computer Science (O.K.), Texas State University, San Marcos; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; The National Multiple Sclerosis Society (K.C.), New York, NY; Department of Neurology (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins Hospital, Bethesda, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco; andDepartments of Neurology, Ophthalmology & Neurosurgery (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Jennifer S Graves
- From the Department of Neurology (R.A.C., E. Melamed, T.C.V., E. Meltzer), Dell Medical School, University of Texas at Austin; Department of Ophthalmology (N.H.), University of Texas Southwestern, Dallas; Wellness Care Centers and Pediatric Rehabilitation (J.S.), Denton, TX; Ascension Seton Medical Center (M.S.), Austin, TX; National Institutes of Health (E.O.M.), Bethesda, MD; Departments of Neurology, and Biochemistry, Microbiology and Immunology (R.P.L.), Wayne State University, Detroit, MI; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Department of Neurology (A.G.), University of Rochester, NY; Department of Computer Science (O.K.), Texas State University, San Marcos; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; The National Multiple Sclerosis Society (K.C.), New York, NY; Department of Neurology (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins Hospital, Bethesda, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco; andDepartments of Neurology, Ophthalmology & Neurosurgery (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Scott Newsome
- From the Department of Neurology (R.A.C., E. Melamed, T.C.V., E. Meltzer), Dell Medical School, University of Texas at Austin; Department of Ophthalmology (N.H.), University of Texas Southwestern, Dallas; Wellness Care Centers and Pediatric Rehabilitation (J.S.), Denton, TX; Ascension Seton Medical Center (M.S.), Austin, TX; National Institutes of Health (E.O.M.), Bethesda, MD; Departments of Neurology, and Biochemistry, Microbiology and Immunology (R.P.L.), Wayne State University, Detroit, MI; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Department of Neurology (A.G.), University of Rochester, NY; Department of Computer Science (O.K.), Texas State University, San Marcos; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; The National Multiple Sclerosis Society (K.C.), New York, NY; Department of Neurology (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins Hospital, Bethesda, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco; andDepartments of Neurology, Ophthalmology & Neurosurgery (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Scott S Zamvil
- From the Department of Neurology (R.A.C., E. Melamed, T.C.V., E. Meltzer), Dell Medical School, University of Texas at Austin; Department of Ophthalmology (N.H.), University of Texas Southwestern, Dallas; Wellness Care Centers and Pediatric Rehabilitation (J.S.), Denton, TX; Ascension Seton Medical Center (M.S.), Austin, TX; National Institutes of Health (E.O.M.), Bethesda, MD; Departments of Neurology, and Biochemistry, Microbiology and Immunology (R.P.L.), Wayne State University, Detroit, MI; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Department of Neurology (A.G.), University of Rochester, NY; Department of Computer Science (O.K.), Texas State University, San Marcos; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; The National Multiple Sclerosis Society (K.C.), New York, NY; Department of Neurology (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins Hospital, Bethesda, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco; andDepartments of Neurology, Ophthalmology & Neurosurgery (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin
| | - Elliot M Frohman
- From the Department of Neurology (R.A.C., E. Melamed, T.C.V., E. Meltzer), Dell Medical School, University of Texas at Austin; Department of Ophthalmology (N.H.), University of Texas Southwestern, Dallas; Wellness Care Centers and Pediatric Rehabilitation (J.S.), Denton, TX; Ascension Seton Medical Center (M.S.), Austin, TX; National Institutes of Health (E.O.M.), Bethesda, MD; Departments of Neurology, and Biochemistry, Microbiology and Immunology (R.P.L.), Wayne State University, Detroit, MI; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Department of Neurology (A.G.), University of Rochester, NY; Department of Computer Science (O.K.), Texas State University, San Marcos; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; The National Multiple Sclerosis Society (K.C.), New York, NY; Department of Neurology (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins Hospital, Bethesda, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco; andDepartments of Neurology, Ophthalmology & Neurosurgery (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin.
| | - Teresa C Frohman
- From the Department of Neurology (R.A.C., E. Melamed, T.C.V., E. Meltzer), Dell Medical School, University of Texas at Austin; Department of Ophthalmology (N.H.), University of Texas Southwestern, Dallas; Wellness Care Centers and Pediatric Rehabilitation (J.S.), Denton, TX; Ascension Seton Medical Center (M.S.), Austin, TX; National Institutes of Health (E.O.M.), Bethesda, MD; Departments of Neurology, and Biochemistry, Microbiology and Immunology (R.P.L.), Wayne State University, Detroit, MI; Colangelo College of Business (T.C.V.), Grand Canyon University, Phoenix, AZ; Department of Neurology (A.G.), University of Rochester, NY; Department of Computer Science (O.K.), Texas State University, San Marcos; Division of Microbiology and Immunology (M.S.P.), Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine (M.S.P.), Emory University, Atlanta, GA; The National Multiple Sclerosis Society (K.C.), New York, NY; Department of Neurology (J.S.G.), University of California at San Diego; Department of Neurology (S.N.), Johns Hopkins Hospital, Bethesda, MD; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco; andDepartments of Neurology, Ophthalmology & Neurosurgery (E.M.F., T.C.F.), Dell Medical School at the University of Texas at Austin.
| |
Collapse
|
68
|
Hauser SL, Cree BAC. Treatment of Multiple Sclerosis: A Review. Am J Med 2020; 133:1380-1390.e2. [PMID: 32682869 PMCID: PMC7704606 DOI: 10.1016/j.amjmed.2020.05.049] [Citation(s) in RCA: 464] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 10/23/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating and neurodegenerative disease of the central nervous system, and the leading cause of nontraumatic neurological disability in young adults. Effective management requires a multifaceted approach to control acute attacks, manage progressive worsening, and remediate bothersome or disabling symptoms associated with this illness. Remarkable advances in treatment of all forms of MS, and especially for relapsing disease, have favorably changed the long-term outlook for many patients. There also has been a conceptual shift in understanding the immune pathology of MS, away from a purely T-cell-mediated model to recognition that B cells have a key role in pathogenesis. The emergence of higher-efficacy drugs requiring less frequent administration have made these preferred options in terms of tolerability and adherence. Many experts now recommend use of these as first-line treatment for many patients with early disease, before permanent disability is evident.
Collapse
Affiliation(s)
- Stephen L Hauser
- UCSF Weill Institute for Neurosciences and Department of Neurology, University of California, San Francisco.
| | - Bruce A C Cree
- UCSF Weill Institute for Neurosciences and Department of Neurology, University of California, San Francisco
| |
Collapse
|
69
|
Cortese I, Reich DS, Nath A. Progressive multifocal leukoencephalopathy and the spectrum of JC virus-related disease. Nat Rev Neurol 2020; 17:37-51. [PMID: 33219338 PMCID: PMC7678594 DOI: 10.1038/s41582-020-00427-y] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a devastating CNS infection caused by JC virus (JCV), a polyomavirus that commonly establishes persistent, asymptomatic infection in the general population. Emerging evidence that PML can be ameliorated with novel immunotherapeutic approaches calls for reassessment of PML pathophysiology and clinical course. PML results from JCV reactivation in the setting of impaired cellular immunity, and no antiviral therapies are available, so survival depends on reversal of the underlying immunosuppression. Antiretroviral therapies greatly reduce the risk of HIV-related PML, but many modern treatments for cancers, organ transplantation and chronic inflammatory disease cause immunosuppression that can be difficult to reverse. These treatments — most notably natalizumab for multiple sclerosis — have led to a surge of iatrogenic PML. The spectrum of presentations of JCV-related disease has evolved over time and may challenge current diagnostic criteria. Immunotherapeutic interventions, such as use of checkpoint inhibitors and adoptive T cell transfer, have shown promise but caution is needed in the management of immune reconstitution inflammatory syndrome, an exuberant immune response that can contribute to morbidity and death. Many people who survive PML are left with neurological sequelae and some with persistent, low-level viral replication in the CNS. As the number of people who survive PML increases, this lack of viral clearance could create challenges in the subsequent management of some underlying diseases. In this Review, Cortese et al. provide an overview of the pathobiology and evolving presentations of progressive multifocal leukoencephalopathy and other diseases caused by JC virus, and discuss emerging immunotherapeutic approaches that could increase survival. Progressive multifocal leukoencephalopathy (PML) is a rare, debilitating and often fatal disease of the CNS caused by JC virus (JCV). JCV establishes asymptomatic, lifelong persistent or latent infection in immune competent hosts, but impairment of cellular immunity can lead to reactivation of JCV and PML. PML most commonly occurs in patients with HIV infection or lymphoproliferative disease and in patients who are receiving natalizumab for treatment of multiple sclerosis. The clinical phenotype of PML varies and is shaped primarily by the host immune response; changes in the treatment of underlying diseases associated with PML have changed phenotypes over time. Other clinical manifestations of JCV infection have been described, including granule cell neuronopathy. Survival of PML depends on reversal of the underlying immunosuppression; emerging immunotherapeutic strategies include use of checkpoint inhibitors and adoptive T cell transfer.
Collapse
Affiliation(s)
- Irene Cortese
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
70
|
Abstract
Multiple sclerosis is a relatively common, immune-mediated neurologic disease of the central nervous system that can cause significant disability and lead to reduced quality of life. There are several currently approved disease-modifying therapies, and more in the pipeline being developed and tested. As the field learns more about the pathophysiology and natural course of the disease, the treatment approaches are also being investigated. This article reviews data on available treatments along with a discussion of future treatment targets under investigation.
Collapse
Affiliation(s)
- Carolyn Goldschmidt
- Mellen Center U-10, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Marisa P McGinley
- Mellen Center U-10, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
71
|
Schneider-Hohendorf T, Schulte-Mecklenbeck A, Ostkamp P, Janoschka C, Pawlitzki M, Luessi F, Zipp F, Meuth SG, Klotz L, Wiendl H, Gross CC, Schwab N. High anti-JCPyV serum titers coincide with high CSF cell counts in RRMS patients. Mult Scler 2020; 27:1491-1496. [PMID: 33150829 PMCID: PMC8414828 DOI: 10.1177/1352458520970103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Progressive multifocal leukoencephalopathy (PML) can in rare cases occur in
natalizumab-treated patients with high serum anti-JCPyV antibodies,
hypothetically due to excessive blockade of immune cell migration. Objective: Immune cell recruitment to the central nervous system (CNS) was assessed in
relapsing-remitting multiple sclerosis (RRMS) patients stratified by low
versus high anti-JCPyV antibody titers as indicator for PML risk. Methods: Cerebrospinal fluid (CSF) cell counts of 145 RRMS patients were quantified by
flow cytometry. Generalized linear models were employed to assess influence
of age, sex, disease duration, Expanded Disability Status Scale (EDSS),
clinical/radiological activity, current steroid or natalizumab treatment, as
well as anti-JCPyV serology on CSF cell subset counts. Results: While clinical/radiological activity was associated with increased CD4,
natural killer (NK), B and plasma cell counts, natalizumab therapy reduced
all subpopulations except monocytes. With and without natalizumab therapy,
patients with high anti-JCPyV serum titers presented with increased CSF
T-cell counts compared to patients with low anti-JCPyV serum titers. In
contrast, PML patients assessed before (n = 2) or at
diagnosis (n = 5) presented with comparably low CD8 and
B-cell counts, which increased after plasma exchange
(n = 4). Conclusion: High anti-JCPyV indices, which could be indicative of increased viral
activity, are associated with elevated immune cell recruitment to the CNS.
Its excessive impairment in conjunction with viral activity could predispose
for PML development.
Collapse
Affiliation(s)
- Tilman Schneider-Hohendorf
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | | | - Patrick Ostkamp
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Claudia Janoschka
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Marc Pawlitzki
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Felix Luessi
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Nicholas Schwab
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| |
Collapse
|
72
|
Titus HE, Chen Y, Podojil JR, Robinson AP, Balabanov R, Popko B, Miller SD. Pre-clinical and Clinical Implications of "Inside-Out" vs. "Outside-In" Paradigms in Multiple Sclerosis Etiopathogenesis. Front Cell Neurosci 2020; 14:599717. [PMID: 33192332 PMCID: PMC7654287 DOI: 10.3389/fncel.2020.599717] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple Sclerosis (MS) is an immune-mediated neurological disorder, characterized by central nervous system (CNS) inflammation, oligodendrocyte loss, demyelination, and axonal degeneration. Although autoimmunity, inflammatory demyelination and neurodegeneration underlie MS, the initiating event has yet to be clarified. Effective disease modifying therapies need to both regulate the immune system and promote restoration of neuronal function, including remyelination. The challenge in developing an effective long-lived therapy for MS requires that three disease-associated targets be addressed: (1) self-tolerance must be re-established to specifically inhibit the underlying myelin-directed autoimmune pathogenic mechanisms; (2) neurons must be protected from inflammatory injury and degeneration; (3) myelin repair must be engendered by stimulating oligodendrocyte progenitors to remyelinate CNS neuronal axons. The combined use of chronic and relapsing remitting experimental autoimmune encephalomyelitis (C-EAE, R-EAE) (“outside-in”) as well as progressive diphtheria toxin A chain (DTA) and cuprizone autoimmune encephalitis (CAE) (“inside-out”) mouse models allow for the investigation and specific targeting of all three of these MS-associated disease parameters. The “outside-in” EAE models initiated by myelin-specific autoreactive CD4+ T cells allow for the evaluation of both myelin-specific tolerance in the absence or presence of neuroprotective and/or remyelinating agents. The “inside-out” mouse models of secondary inflammatory demyelination are triggered by toxin-induced oligodendrocyte loss or subtle myelin damage, which allows evaluation of novel therapeutics that could promote remyelination and neuroprotection in the CNS. Overall, utilizing these complementary pre-clinical MS models will open new avenues for developing therapeutic interventions, tackling MS from the “outside-in” and/or “inside-out”.
Collapse
Affiliation(s)
- Haley E Titus
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yanan Chen
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joseph R Podojil
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Cour Pharmaceutical Development Company, Inc., Northbrook, IL, United States
| | - Andrew P Robinson
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Roumen Balabanov
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Brian Popko
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Stephen D Miller
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Cour Pharmaceutical Development Company, Inc., Northbrook, IL, United States.,Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
73
|
Chang I, Muralidharan KK, Campbell N, Ho PR. Modeling the Efficacy of Natalizumab in Multiple Sclerosis Patients Who Switch From Every-4-Week Dosing to Extended-Interval Dosing. J Clin Pharmacol 2020; 61:339-348. [PMID: 32949472 PMCID: PMC7891569 DOI: 10.1002/jcph.1737] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/20/2020] [Indexed: 11/28/2022]
Abstract
Natalizumab is approved for multiple sclerosis treatment at a dose of 300 mg every 4 weeks. Extended‐interval dosing of natalizumab has been proposed as a strategy to mitigate the risk of progressive multifocal leukoencephalopathy, but the efficacy of extended‐interval dosing is not established. Previous models suggesting lower efficacy when initiating natalizumab treatment with extended‐interval dosing rather than every‐4‐week dosing are inconsistent with reports from clinical observations and real‐world studies conducted in patient populations switching to extended‐interval dosing after a period of receiving natalizumab every 4 weeks. Here, the efficacy of natalizumab extended‐interval dosing was modeled specifically in patients switching from every‐4‐week dosing to extended‐interval dosing. Published population pharmacokinetic/pharmacodynamic models were used to simulate the distribution of alpha‐4 integrin saturations for different body weight categories and dosing intervals (every 5, 6, 7, 8, 10, or 12 weeks). Generalized estimating equations relating alpha‐4 integrin saturation to probability of multiple sclerosis lesion or relapse were derived from RESTORE trial data, which included patients (n = 175) who discontinued natalizumab after being treated every 4 weeks for ≥1 year and had no relapses in the year before discontinuation. The model‐based simulations described indicate that every‐5‐week or every‐6‐week dosing is likely to maintain the efficacy of natalizumab, particularly at body weights <80 kg, in patients who switch after a period of stability on every‐4‐week dosing. The efficacy of natalizumab decreases as dosing intervals and body weight increase. Partial model validation was achieved in that observed outcomes in an independent clinical study were similar to those predicted by the models.
Collapse
Affiliation(s)
- Ih Chang
- Biogen, Cambridge, Massachusetts, USA
| | | | | | | |
Collapse
|
74
|
Korsukewitz C, Reddel SW, Bar-Or A, Wiendl H. Neurological immunotherapy in the era of COVID-19 - looking for consensus in the literature. Nat Rev Neurol 2020; 16:493-505. [PMID: 32641860 PMCID: PMC7341707 DOI: 10.1038/s41582-020-0385-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is concerning for patients with neuroimmunological diseases who are receiving immunotherapy. Uncertainty remains about whether immunotherapies increase the risk of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or increase the risk of severe disease and death upon infection. National and international societies have developed guidelines and statements, but consensus does not exist in several areas. In this Review, we attempt to clarify where consensus exists and where uncertainty remains to inform management approaches based on the first principles of neuroimmunology. We identified key questions that have been addressed in the literature and collated the recommendations to generate a consensus calculation in a Delphi-like approach to summarize the information. We summarize the international recommendations, discuss them in light of the first available data from patients with COVID-19 receiving immunotherapy and provide an overview of management approaches in the COVID-19 era. We stress the principles of medicine in general and neuroimmunology in particular because, although the risk of viral infection has become more relevant, most of the considerations apply to the general management of neurological immunotherapy. We also give special consideration to immunosuppressive treatment and cell-depleting therapies that might increase susceptibility to SARS-CoV-2 infection but reduce the risk of severe COVID-19.
Collapse
Affiliation(s)
- Catharina Korsukewitz
- Department of Neurology with Institute of Translational Neurology, University of Muenster, Muenster, Germany
| | - Stephen W Reddel
- Department of Neurology, Concord Hospital and The Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Amit Bar-Or
- Center for Neuroinflammation and Neurotherapeutics and the Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Muenster, Muenster, Germany.
| |
Collapse
|
75
|
Baker D, Amor S, Kang AS, Schmierer K, Giovannoni G. The underpinning biology relating to multiple sclerosis disease modifying treatments during the COVID-19 pandemic. Mult Scler Relat Disord 2020; 43:102174. [PMID: 32464584 PMCID: PMC7214323 DOI: 10.1016/j.msard.2020.102174] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND SARS-CoV-2 viral infection causes COVID-19 that can result in severe acute respiratory distress syndrome (ARDS), which can cause significant mortality, leading to concern that immunosuppressive treatments for multiple sclerosis and other disorders have significant risks for both infection and ARDS. OBJECTIVE To examine the biology that potentially underpins immunity to the SARS-Cov-2 virus and the immunity-induced pathology related to COVID-19 and determine how this impinges on the use of current disease modifying treatments in multiple sclerosis. OBSERVATIONS Although information about the mechanisms of immunity are scant, it appears that monocyte/macrophages and then CD8 T cells are important in eliminating the SARS-CoV-2 virus. This may be facilitated via anti-viral antibody responses that may prevent re-infection. However, viral escape and infection of leucocytes to promote lymphopenia, apparent CD8 T cell exhaustion coupled with a cytokine storm and vascular pathology appears to contribute to the damage in ARDS. IMPLICATIONS In contrast to ablative haematopoietic stem cell therapy, most multiple-sclerosis-related disease modifying therapies do not particularly target the innate immune system and few have any major long-term impact on CD8 T cells to limit protection against COVID-19. In addition, few block the formation of immature B cells within lymphoid tissue that will provide antibody-mediated protection from (re)infection. However, adjustments to dosing schedules may help de-risk the chance of infection further and reduce the concerns of people with MS being treated during the COVID-19 pandemic.
Collapse
Key Words
- ace2, angiotensin converting enzyme two
- ards, acute respiratory distress syndrome
- asc, antibody secreting cells
- cns, central nervous system
- dmt, disease modifying therapies
- (hsct), haematopoietic stem cell therapy
- irt, immune reconstitution therapies
- ms, multiple sclerosis
- rbd, receptor binding domain
- rna, ribonucleic acid
- sars, severe acute respiratory syndrome
Collapse
Affiliation(s)
- David Baker
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT; United Kingdom.
| | - Sandra Amor
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT; United Kingdom; Pathology Department, VUmc, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Angray S Kang
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT; United Kingdom; Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Klaus Schmierer
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT; United Kingdom; Clinical Board:Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Gavin Giovannoni
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT; United Kingdom; Clinical Board:Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
76
|
van Kempen ZLE, Hoogervorst ELJ, Wattjes MP, Kalkers NF, Mostert JP, Lissenberg-Witte BI, de Vries A, Ten Brinke A, van Oosten BW, Barkhof F, Teunissen CE, Uitdehaag BMJ, Rispens T, Killestein J. Personalized extended interval dosing of natalizumab in MS: A prospective multicenter trial. Neurology 2020; 95:e745-e754. [PMID: 32690785 DOI: 10.1212/wnl.0000000000009995] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/06/2020] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To determine whether natalizumab efficacy is maintained when switching to personalized extended interval dosing based on individual natalizumab trough concentrations in patients with relapsing-remitting multiple sclerosis (RRMS). METHODS This was a prospective multicenter single-arm trial with 1 year follow-up and a 1-year extension phase. Participants were adult persons with RRMS treated with natalizumab without disease activity in the year prior to enrollment. The natalizumab treatment interval was based on longitudinal natalizumab trough concentrations. Patients received 3 monthly MRI scans, relapse assessments, and disability scoring during follow-up. The primary endpoint was the occurrence of gadolinium-enhancing lesions on MRI. Secondary endpoints were new/enlarging T2 lesions on MRI and relapses and progression on the Expanded Disability Status Scale (EDSS) during follow-up and extension phase. RESULTS Sixty-one patients were included. Eighty-four percent extended the interval from a 4-week interval to a 5- to 7-week interval. No patient developed gadolinium-enhancing lesions (95% confidence interval [CI] 0%-7.4%) during follow-up. No new/enlarging T2 lesions (95% CI 0%-7.4%) or relapses (95% CI 0%-7.4%) were reported during follow-up and in the extension phase. Median EDSS was comparable at baseline (3.0, interquartile range [IQR] 2.0-5.0) and after follow-up (3.0, IQR 2.0-5.0). CONCLUSION Personalized extended interval dosing did not induce recurrence of MS disease activity. Natalizumab efficacy was maintained in stable patients with RRMS receiving personalized extended interval dosing based on individual natalizumab concentrations. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that personalized extended interval dosing of natalizumab does not result in recurrence of disease activity in stable patients with RRMS.
Collapse
Affiliation(s)
- Zoé L E van Kempen
- From the Department of Neurology, Amsterdam MS Center (Z.L.E.v.K., B.W.v.O., B.M.J.U., J.K.), Department of Radiology (M.P.W., F.B.), and Neurochemistry Lab and Biobank, Department of Clinical Chemistry (C.E.T.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (B.I.L.-W.), Amsterdam University Medical Centers, Vrije Universiteit; Department of Neurology (E.L.J.H.), St. Antonius Hospital, Utrecht, the Netherlands; Department of Diagnostic and Interventional Neuroradiology (M.P.W.), Hannover Medical School, Germany; Department of Neurology (N.F.K.), OLVG Hospital, Amsterdam; Department of Neurology (J.P.M.), Rijnstate Hospital, Arnhem; Biologics Lab, Bioanalysis (A.d.V.), Sanquin Diagnostic Services; Department of Immunopathology (A.t.B., T.R.), Sanquin Research, Amsterdam; Landsteiner Laboratory (A.t.B., T.R.), Academic Medical Centre, University of Amsterdam, the Netherlands; and UCL Institutes of Neurology & Healthcare Engineering (F.B.), Queen Square, London, UK.
| | - Erwin L J Hoogervorst
- From the Department of Neurology, Amsterdam MS Center (Z.L.E.v.K., B.W.v.O., B.M.J.U., J.K.), Department of Radiology (M.P.W., F.B.), and Neurochemistry Lab and Biobank, Department of Clinical Chemistry (C.E.T.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (B.I.L.-W.), Amsterdam University Medical Centers, Vrije Universiteit; Department of Neurology (E.L.J.H.), St. Antonius Hospital, Utrecht, the Netherlands; Department of Diagnostic and Interventional Neuroradiology (M.P.W.), Hannover Medical School, Germany; Department of Neurology (N.F.K.), OLVG Hospital, Amsterdam; Department of Neurology (J.P.M.), Rijnstate Hospital, Arnhem; Biologics Lab, Bioanalysis (A.d.V.), Sanquin Diagnostic Services; Department of Immunopathology (A.t.B., T.R.), Sanquin Research, Amsterdam; Landsteiner Laboratory (A.t.B., T.R.), Academic Medical Centre, University of Amsterdam, the Netherlands; and UCL Institutes of Neurology & Healthcare Engineering (F.B.), Queen Square, London, UK
| | - Mike P Wattjes
- From the Department of Neurology, Amsterdam MS Center (Z.L.E.v.K., B.W.v.O., B.M.J.U., J.K.), Department of Radiology (M.P.W., F.B.), and Neurochemistry Lab and Biobank, Department of Clinical Chemistry (C.E.T.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (B.I.L.-W.), Amsterdam University Medical Centers, Vrije Universiteit; Department of Neurology (E.L.J.H.), St. Antonius Hospital, Utrecht, the Netherlands; Department of Diagnostic and Interventional Neuroradiology (M.P.W.), Hannover Medical School, Germany; Department of Neurology (N.F.K.), OLVG Hospital, Amsterdam; Department of Neurology (J.P.M.), Rijnstate Hospital, Arnhem; Biologics Lab, Bioanalysis (A.d.V.), Sanquin Diagnostic Services; Department of Immunopathology (A.t.B., T.R.), Sanquin Research, Amsterdam; Landsteiner Laboratory (A.t.B., T.R.), Academic Medical Centre, University of Amsterdam, the Netherlands; and UCL Institutes of Neurology & Healthcare Engineering (F.B.), Queen Square, London, UK
| | - Nynke F Kalkers
- From the Department of Neurology, Amsterdam MS Center (Z.L.E.v.K., B.W.v.O., B.M.J.U., J.K.), Department of Radiology (M.P.W., F.B.), and Neurochemistry Lab and Biobank, Department of Clinical Chemistry (C.E.T.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (B.I.L.-W.), Amsterdam University Medical Centers, Vrije Universiteit; Department of Neurology (E.L.J.H.), St. Antonius Hospital, Utrecht, the Netherlands; Department of Diagnostic and Interventional Neuroradiology (M.P.W.), Hannover Medical School, Germany; Department of Neurology (N.F.K.), OLVG Hospital, Amsterdam; Department of Neurology (J.P.M.), Rijnstate Hospital, Arnhem; Biologics Lab, Bioanalysis (A.d.V.), Sanquin Diagnostic Services; Department of Immunopathology (A.t.B., T.R.), Sanquin Research, Amsterdam; Landsteiner Laboratory (A.t.B., T.R.), Academic Medical Centre, University of Amsterdam, the Netherlands; and UCL Institutes of Neurology & Healthcare Engineering (F.B.), Queen Square, London, UK
| | - Jop P Mostert
- From the Department of Neurology, Amsterdam MS Center (Z.L.E.v.K., B.W.v.O., B.M.J.U., J.K.), Department of Radiology (M.P.W., F.B.), and Neurochemistry Lab and Biobank, Department of Clinical Chemistry (C.E.T.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (B.I.L.-W.), Amsterdam University Medical Centers, Vrije Universiteit; Department of Neurology (E.L.J.H.), St. Antonius Hospital, Utrecht, the Netherlands; Department of Diagnostic and Interventional Neuroradiology (M.P.W.), Hannover Medical School, Germany; Department of Neurology (N.F.K.), OLVG Hospital, Amsterdam; Department of Neurology (J.P.M.), Rijnstate Hospital, Arnhem; Biologics Lab, Bioanalysis (A.d.V.), Sanquin Diagnostic Services; Department of Immunopathology (A.t.B., T.R.), Sanquin Research, Amsterdam; Landsteiner Laboratory (A.t.B., T.R.), Academic Medical Centre, University of Amsterdam, the Netherlands; and UCL Institutes of Neurology & Healthcare Engineering (F.B.), Queen Square, London, UK
| | - Birgit I Lissenberg-Witte
- From the Department of Neurology, Amsterdam MS Center (Z.L.E.v.K., B.W.v.O., B.M.J.U., J.K.), Department of Radiology (M.P.W., F.B.), and Neurochemistry Lab and Biobank, Department of Clinical Chemistry (C.E.T.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (B.I.L.-W.), Amsterdam University Medical Centers, Vrije Universiteit; Department of Neurology (E.L.J.H.), St. Antonius Hospital, Utrecht, the Netherlands; Department of Diagnostic and Interventional Neuroradiology (M.P.W.), Hannover Medical School, Germany; Department of Neurology (N.F.K.), OLVG Hospital, Amsterdam; Department of Neurology (J.P.M.), Rijnstate Hospital, Arnhem; Biologics Lab, Bioanalysis (A.d.V.), Sanquin Diagnostic Services; Department of Immunopathology (A.t.B., T.R.), Sanquin Research, Amsterdam; Landsteiner Laboratory (A.t.B., T.R.), Academic Medical Centre, University of Amsterdam, the Netherlands; and UCL Institutes of Neurology & Healthcare Engineering (F.B.), Queen Square, London, UK
| | - Annick de Vries
- From the Department of Neurology, Amsterdam MS Center (Z.L.E.v.K., B.W.v.O., B.M.J.U., J.K.), Department of Radiology (M.P.W., F.B.), and Neurochemistry Lab and Biobank, Department of Clinical Chemistry (C.E.T.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (B.I.L.-W.), Amsterdam University Medical Centers, Vrije Universiteit; Department of Neurology (E.L.J.H.), St. Antonius Hospital, Utrecht, the Netherlands; Department of Diagnostic and Interventional Neuroradiology (M.P.W.), Hannover Medical School, Germany; Department of Neurology (N.F.K.), OLVG Hospital, Amsterdam; Department of Neurology (J.P.M.), Rijnstate Hospital, Arnhem; Biologics Lab, Bioanalysis (A.d.V.), Sanquin Diagnostic Services; Department of Immunopathology (A.t.B., T.R.), Sanquin Research, Amsterdam; Landsteiner Laboratory (A.t.B., T.R.), Academic Medical Centre, University of Amsterdam, the Netherlands; and UCL Institutes of Neurology & Healthcare Engineering (F.B.), Queen Square, London, UK
| | - Anja Ten Brinke
- From the Department of Neurology, Amsterdam MS Center (Z.L.E.v.K., B.W.v.O., B.M.J.U., J.K.), Department of Radiology (M.P.W., F.B.), and Neurochemistry Lab and Biobank, Department of Clinical Chemistry (C.E.T.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (B.I.L.-W.), Amsterdam University Medical Centers, Vrije Universiteit; Department of Neurology (E.L.J.H.), St. Antonius Hospital, Utrecht, the Netherlands; Department of Diagnostic and Interventional Neuroradiology (M.P.W.), Hannover Medical School, Germany; Department of Neurology (N.F.K.), OLVG Hospital, Amsterdam; Department of Neurology (J.P.M.), Rijnstate Hospital, Arnhem; Biologics Lab, Bioanalysis (A.d.V.), Sanquin Diagnostic Services; Department of Immunopathology (A.t.B., T.R.), Sanquin Research, Amsterdam; Landsteiner Laboratory (A.t.B., T.R.), Academic Medical Centre, University of Amsterdam, the Netherlands; and UCL Institutes of Neurology & Healthcare Engineering (F.B.), Queen Square, London, UK
| | - Bob W van Oosten
- From the Department of Neurology, Amsterdam MS Center (Z.L.E.v.K., B.W.v.O., B.M.J.U., J.K.), Department of Radiology (M.P.W., F.B.), and Neurochemistry Lab and Biobank, Department of Clinical Chemistry (C.E.T.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (B.I.L.-W.), Amsterdam University Medical Centers, Vrije Universiteit; Department of Neurology (E.L.J.H.), St. Antonius Hospital, Utrecht, the Netherlands; Department of Diagnostic and Interventional Neuroradiology (M.P.W.), Hannover Medical School, Germany; Department of Neurology (N.F.K.), OLVG Hospital, Amsterdam; Department of Neurology (J.P.M.), Rijnstate Hospital, Arnhem; Biologics Lab, Bioanalysis (A.d.V.), Sanquin Diagnostic Services; Department of Immunopathology (A.t.B., T.R.), Sanquin Research, Amsterdam; Landsteiner Laboratory (A.t.B., T.R.), Academic Medical Centre, University of Amsterdam, the Netherlands; and UCL Institutes of Neurology & Healthcare Engineering (F.B.), Queen Square, London, UK
| | - Frederik Barkhof
- From the Department of Neurology, Amsterdam MS Center (Z.L.E.v.K., B.W.v.O., B.M.J.U., J.K.), Department of Radiology (M.P.W., F.B.), and Neurochemistry Lab and Biobank, Department of Clinical Chemistry (C.E.T.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (B.I.L.-W.), Amsterdam University Medical Centers, Vrije Universiteit; Department of Neurology (E.L.J.H.), St. Antonius Hospital, Utrecht, the Netherlands; Department of Diagnostic and Interventional Neuroradiology (M.P.W.), Hannover Medical School, Germany; Department of Neurology (N.F.K.), OLVG Hospital, Amsterdam; Department of Neurology (J.P.M.), Rijnstate Hospital, Arnhem; Biologics Lab, Bioanalysis (A.d.V.), Sanquin Diagnostic Services; Department of Immunopathology (A.t.B., T.R.), Sanquin Research, Amsterdam; Landsteiner Laboratory (A.t.B., T.R.), Academic Medical Centre, University of Amsterdam, the Netherlands; and UCL Institutes of Neurology & Healthcare Engineering (F.B.), Queen Square, London, UK
| | - Charlotte E Teunissen
- From the Department of Neurology, Amsterdam MS Center (Z.L.E.v.K., B.W.v.O., B.M.J.U., J.K.), Department of Radiology (M.P.W., F.B.), and Neurochemistry Lab and Biobank, Department of Clinical Chemistry (C.E.T.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (B.I.L.-W.), Amsterdam University Medical Centers, Vrije Universiteit; Department of Neurology (E.L.J.H.), St. Antonius Hospital, Utrecht, the Netherlands; Department of Diagnostic and Interventional Neuroradiology (M.P.W.), Hannover Medical School, Germany; Department of Neurology (N.F.K.), OLVG Hospital, Amsterdam; Department of Neurology (J.P.M.), Rijnstate Hospital, Arnhem; Biologics Lab, Bioanalysis (A.d.V.), Sanquin Diagnostic Services; Department of Immunopathology (A.t.B., T.R.), Sanquin Research, Amsterdam; Landsteiner Laboratory (A.t.B., T.R.), Academic Medical Centre, University of Amsterdam, the Netherlands; and UCL Institutes of Neurology & Healthcare Engineering (F.B.), Queen Square, London, UK
| | - Bernard M J Uitdehaag
- From the Department of Neurology, Amsterdam MS Center (Z.L.E.v.K., B.W.v.O., B.M.J.U., J.K.), Department of Radiology (M.P.W., F.B.), and Neurochemistry Lab and Biobank, Department of Clinical Chemistry (C.E.T.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (B.I.L.-W.), Amsterdam University Medical Centers, Vrije Universiteit; Department of Neurology (E.L.J.H.), St. Antonius Hospital, Utrecht, the Netherlands; Department of Diagnostic and Interventional Neuroradiology (M.P.W.), Hannover Medical School, Germany; Department of Neurology (N.F.K.), OLVG Hospital, Amsterdam; Department of Neurology (J.P.M.), Rijnstate Hospital, Arnhem; Biologics Lab, Bioanalysis (A.d.V.), Sanquin Diagnostic Services; Department of Immunopathology (A.t.B., T.R.), Sanquin Research, Amsterdam; Landsteiner Laboratory (A.t.B., T.R.), Academic Medical Centre, University of Amsterdam, the Netherlands; and UCL Institutes of Neurology & Healthcare Engineering (F.B.), Queen Square, London, UK
| | - Theo Rispens
- From the Department of Neurology, Amsterdam MS Center (Z.L.E.v.K., B.W.v.O., B.M.J.U., J.K.), Department of Radiology (M.P.W., F.B.), and Neurochemistry Lab and Biobank, Department of Clinical Chemistry (C.E.T.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (B.I.L.-W.), Amsterdam University Medical Centers, Vrije Universiteit; Department of Neurology (E.L.J.H.), St. Antonius Hospital, Utrecht, the Netherlands; Department of Diagnostic and Interventional Neuroradiology (M.P.W.), Hannover Medical School, Germany; Department of Neurology (N.F.K.), OLVG Hospital, Amsterdam; Department of Neurology (J.P.M.), Rijnstate Hospital, Arnhem; Biologics Lab, Bioanalysis (A.d.V.), Sanquin Diagnostic Services; Department of Immunopathology (A.t.B., T.R.), Sanquin Research, Amsterdam; Landsteiner Laboratory (A.t.B., T.R.), Academic Medical Centre, University of Amsterdam, the Netherlands; and UCL Institutes of Neurology & Healthcare Engineering (F.B.), Queen Square, London, UK
| | - Joep Killestein
- From the Department of Neurology, Amsterdam MS Center (Z.L.E.v.K., B.W.v.O., B.M.J.U., J.K.), Department of Radiology (M.P.W., F.B.), and Neurochemistry Lab and Biobank, Department of Clinical Chemistry (C.E.T.), Amsterdam Neuroscience, and Department of Epidemiology and Biostatistics (B.I.L.-W.), Amsterdam University Medical Centers, Vrije Universiteit; Department of Neurology (E.L.J.H.), St. Antonius Hospital, Utrecht, the Netherlands; Department of Diagnostic and Interventional Neuroradiology (M.P.W.), Hannover Medical School, Germany; Department of Neurology (N.F.K.), OLVG Hospital, Amsterdam; Department of Neurology (J.P.M.), Rijnstate Hospital, Arnhem; Biologics Lab, Bioanalysis (A.d.V.), Sanquin Diagnostic Services; Department of Immunopathology (A.t.B., T.R.), Sanquin Research, Amsterdam; Landsteiner Laboratory (A.t.B., T.R.), Academic Medical Centre, University of Amsterdam, the Netherlands; and UCL Institutes of Neurology & Healthcare Engineering (F.B.), Queen Square, London, UK
| |
Collapse
|
77
|
Ricardo A, Carnero Contentti E, Anabel SB, Adrian LP, Orlando G, Fernando H, Víctor R, Fernando G, Ignacio RJ. Decision-making on management of ms and nmosd patients during the COVID-19 pandemic: A latin american survey. Mult Scler Relat Disord 2020; 44:102310. [PMID: 32590314 PMCID: PMC7837246 DOI: 10.1016/j.msard.2020.102310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/29/2022]
Abstract
In this COVID-19 context, there is an urgent necessity of sharing information to enable evidence-based decision making on the clinical management. In LATAM, 60% of the experts had the possibility of monitoring their patients by telemedicine. Most neurologists postpone magnetic resonance and laboratory blood tests delay is associated with the type of MS or NMOSD treatment. Platform therapies, dimethyl-fumarate and natalizumab are considered safe options to initiate in naive patients.
Background The emergence of COVID-19 and its vertiginous spreading speed represents a unique challenge to neurologists managing multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD). The need for data on the impact of the virus on these patients grows rapidly. There is an urgent necessity of sharing information to enable evidence-based decision making on the clinical management. There are no data on what physicians are doing on clinical practice in Latin American countries. Aim to investigate current management opinion of Latin American MS and/or NMOSD expert neurologists based on their experience and recommendations. Methods we developed a voluntary web-based survey based on hypothetical situations that these patients may encounter, while taking into account the potential risk of developing severe COVID-19 infection. Results 60% of the experts had the possibility of monitoring their patients by telemedicine. Most neurologists postpone magnetic resonance. Laboratory blood tests delay is associated with the type of treatment. Platform therapies, dimethyl-fumarate and natalizumab are considered safe options to initiate in naive patients. Conclusion decision-making about MS and NMOSD patients has become even more complex in order to adapt to the COVID-19 pandemic. Risks and benefits should be taken into consideration throughout the patient follow-up.
Collapse
Affiliation(s)
- Alonso Ricardo
- Centro Universitario de Esclerosis Múltiple (CUEM), Hospital Ramos Mejía, Facultad de Medicina, Universidad de Buenos Aires, Urquiza número 609, CABA, C1221 ADC, Argentina; División Neurología, Sanatorio Güemes, CABA.
| | | | - Silva Berenice Anabel
- Centro Universitario de Esclerosis Múltiple (CUEM), Hospital Ramos Mejía, Facultad de Medicina, Universidad de Buenos Aires, Urquiza número 609, CABA, C1221 ADC, Argentina
| | - López Pablo Adrian
- Neuroimmunology Unit, Department of Neuroscience, Hospital Alemán, Buenos Aires, Argentina
| | - Garcea Orlando
- Centro Universitario de Esclerosis Múltiple (CUEM), Hospital Ramos Mejía, Facultad de Medicina, Universidad de Buenos Aires, Urquiza número 609, CABA, C1221 ADC, Argentina
| | - Hamuy Fernando
- Centro Nacional de Esclerosis Múltiple Hospital IMT, Paraguay-Departamento de Neurología de Diagnóstico Codas Thompson, Paraguay
| | - Rivera Víctor
- Department of Neurology, Baylor College of Medicine, Houston, TX, 77030, United States
| | - Gracia Fernando
- Clínica de Esclerosis Múltiple, Servicio de Neurología, Hospital Santo Tomas, Panamá, Facultad de Ciencias de la Salud, Universidad Interamericana de Panamá
| | | |
Collapse
|
78
|
Pawlitzki M, Zettl UK, Ruck T, Rolfes L, Hartung HP, Meuth SG. Merits and culprits of immunotherapies for neurological diseases in times of COVID-19. EBioMedicine 2020; 56:102822. [PMID: 32535547 PMCID: PMC7286830 DOI: 10.1016/j.ebiom.2020.102822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Immunosuppression and immunomodulation are valuable therapeutic approaches for managing neuroimmunological diseases. In times of the Coronavirus disease 2019 (COVID-19) pandemic, clinicians must deal with the question of whether immunotherapy should currently be initiated or discontinued in neurological patients. Uncertainty exists especially because different national medical associations publish different recommendations on the extent to which immunotherapies must be continued, monitored, or possibly switched during the current pandemic. Based on the most recently available data both about the novel coronavirus and the approved immunotherapies for neurological diseases, we provide an updated overview that includes current treatment strategies and the associated COVID-19 risk, but also the potential of immunotherapies to treat COVID-19.
Collapse
Affiliation(s)
- Marc Pawlitzki
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| | - Uwe K Zettl
- Department of Neurology, Neuroimmunological Section, University of Rostock, Rostock, Germany
| | - Tobias Ruck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Leoni Rolfes
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
79
|
Bringeland GH, Blaser N, Myhr KM, Vedeler CA, Gavasso S. Wearing-off at the end of natalizumab dosing intervals is associated with low receptor occupancy. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/3/e678. [PMID: 32019768 PMCID: PMC7051203 DOI: 10.1212/nxi.0000000000000678] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/20/2019] [Indexed: 11/15/2022]
Abstract
Objective We aimed to investigate whether wearing-off symptoms at the end of the natalizumab dosing interval were associated with clinical and demographic patient characteristics or natalizumab receptor occupancy (RO) on leukocytes. Methods In this cross-sectional study of 40 patients with relapsing-remitting MS (RRMS) receiving natalizumab at the Department of Neurology, Haukeland University Hospital, we recorded clinical and demographic data including age, body mass index (BMI), working status, smoking habits, disease characteristics, treatment duration, vitamin D levels, and wearing-off symptoms. We quantified neurofilament light chain in serum and measured natalizumab RO in leukocyte subtypes by high-parameter mass cytometry. Associations with wearing-off symptoms were analyzed. Results Eight (20.0%) patients who reported regular occurrence of wearing-off symptoms, 9 (22.5%) who sometimes had wearing-off symptoms, and 23 (57.5%) who did not have wearing-off symptoms were evaluated. Patients who regularly had wearing-off symptoms had lower natalizumab RO than patients who reported having such symptoms sometimes or never. The former group also had higher BMI and higher frequency of sick leave. High BMI was associated with low RO. No other demographic or disease characteristics were associated with the phenomenon. Conclusions Low RO may explain the wearing-off phenomenon observed in some patients with RRMS treated with natalizumab, and high BMI may be the underlying cause.
Collapse
Affiliation(s)
- Gerd Haga Bringeland
- From the Neuro-SysMed (G.H.B., K.-M.M., C.A.V., S.G.), Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine (G.H.B., K.-M.M., C.A.V., S.G.), University of Bergen, Bergen, Norway; and Department of Informatics (N.B.), University of Bergen, Bergen, Norway.
| | - Nello Blaser
- From the Neuro-SysMed (G.H.B., K.-M.M., C.A.V., S.G.), Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine (G.H.B., K.-M.M., C.A.V., S.G.), University of Bergen, Bergen, Norway; and Department of Informatics (N.B.), University of Bergen, Bergen, Norway
| | - Kjell-Morten Myhr
- From the Neuro-SysMed (G.H.B., K.-M.M., C.A.V., S.G.), Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine (G.H.B., K.-M.M., C.A.V., S.G.), University of Bergen, Bergen, Norway; and Department of Informatics (N.B.), University of Bergen, Bergen, Norway
| | - Christian Alexander Vedeler
- From the Neuro-SysMed (G.H.B., K.-M.M., C.A.V., S.G.), Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine (G.H.B., K.-M.M., C.A.V., S.G.), University of Bergen, Bergen, Norway; and Department of Informatics (N.B.), University of Bergen, Bergen, Norway
| | - Sonia Gavasso
- From the Neuro-SysMed (G.H.B., K.-M.M., C.A.V., S.G.), Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine (G.H.B., K.-M.M., C.A.V., S.G.), University of Bergen, Bergen, Norway; and Department of Informatics (N.B.), University of Bergen, Bergen, Norway
| |
Collapse
|
80
|
Mazzoni E, Pellegrinelli E, Mazziotta C, Lanzillotti C, Rotondo JC, Bononi I, Iaquinta MR, Manfrini M, Vesce F, Tognon M, Martini F. Mother-to-child transmission of oncogenic polyomaviruses BKPyV, JCPyV and SV40. J Infect 2020; 80:563-570. [PMID: 32097686 DOI: 10.1016/j.jinf.2020.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/29/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Polyomavirus (PyV) infections have been associated with different diseases. BK (BKPyV), JC (JCPyV) and simian virus 40 (SV40) are the three main PyVs whose primary infection occurs early in life. Their vertical transmission was investigated in this study. METHODS PyV sequences were analyzed by the digital droplet PCR in blood, serum, placenta, amniotic fluid, vaginal smear from two independent cohorts of pregnant females and umbilical cord blood (UCB) samples. IgG antibodies against the three PyVs were investigated by indirect E.L.I.S.As with viral mimotopes. RESULTS DNAs from blood, vaginal smear and placenta tested BKPyV-, JCPyV- and SV40-positive with a distinct prevalence, while amniotic fluids were all PyVs-negative. A prevalence of 3%, 7%, and 3% for BKPyV, JCPyV and SV40 DNA sequences, respectively, was obtained in UCBs. Serum IgG antibodies from pregnant females reached an overall prevalence of 62%, 42% and 17% for BKPyV, JCPyV and SV40, respectively. Sera from newborns (UCB) tested IgG-positive with a prevalence of 10% for BKPyV/JCPyV and 3% for SV40. CONCLUSIONS In this investigation, PyV vertical transmission was revealed by detecting PyV DNA sequences and IgG antibodies in samples from females and their offspring suggesting a potential risk of diseases in newborns.
Collapse
Affiliation(s)
- Elisa Mazzoni
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Elena Pellegrinelli
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Chiara Mazziotta
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Carmen Lanzillotti
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - John Charles Rotondo
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Ilaria Bononi
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Maria Rosa Iaquinta
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Marco Manfrini
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy; Biostatistic Unit, GVM Care & Research, Maria Cecilia Hospital, Cotignola, Italy
| | - Fortunato Vesce
- Section of Gynecology and Obstetrics, Department of Morphology, Surgery and Experimental Medicine, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy.
| | - Fernanda Martini
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy.
| |
Collapse
|
81
|
Brownlee W, Bourdette D, Broadley S, Killestein J, Ciccarelli O. Treating multiple sclerosis and neuromyelitis optica spectrum disorder during the COVID-19 pandemic. Neurology 2020; 94:949-952. [PMID: 32241953 DOI: 10.1212/wnl.0000000000009507] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Wallace Brownlee
- From the Department of Neuroinflammation (W.B., O.C.), Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (D.B.), Oregon Health & Science University, Portland, OR; Menzies Health Institute Queensland (S.B.), Griffith University, Gold Coast Campus, Queensland, Australia; Department of Neurology (J.K.), Amsterdam University Medical Center, Amsterdam, the Netherlands; and University College London Hospitals NIHR Biomedical Research Centre (O.C.), London, United Kingdom.
| | - Dennis Bourdette
- From the Department of Neuroinflammation (W.B., O.C.), Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (D.B.), Oregon Health & Science University, Portland, OR; Menzies Health Institute Queensland (S.B.), Griffith University, Gold Coast Campus, Queensland, Australia; Department of Neurology (J.K.), Amsterdam University Medical Center, Amsterdam, the Netherlands; and University College London Hospitals NIHR Biomedical Research Centre (O.C.), London, United Kingdom
| | - Simon Broadley
- From the Department of Neuroinflammation (W.B., O.C.), Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (D.B.), Oregon Health & Science University, Portland, OR; Menzies Health Institute Queensland (S.B.), Griffith University, Gold Coast Campus, Queensland, Australia; Department of Neurology (J.K.), Amsterdam University Medical Center, Amsterdam, the Netherlands; and University College London Hospitals NIHR Biomedical Research Centre (O.C.), London, United Kingdom
| | - Joep Killestein
- From the Department of Neuroinflammation (W.B., O.C.), Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (D.B.), Oregon Health & Science University, Portland, OR; Menzies Health Institute Queensland (S.B.), Griffith University, Gold Coast Campus, Queensland, Australia; Department of Neurology (J.K.), Amsterdam University Medical Center, Amsterdam, the Netherlands; and University College London Hospitals NIHR Biomedical Research Centre (O.C.), London, United Kingdom
| | - Olga Ciccarelli
- From the Department of Neuroinflammation (W.B., O.C.), Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology (D.B.), Oregon Health & Science University, Portland, OR; Menzies Health Institute Queensland (S.B.), Griffith University, Gold Coast Campus, Queensland, Australia; Department of Neurology (J.K.), Amsterdam University Medical Center, Amsterdam, the Netherlands; and University College London Hospitals NIHR Biomedical Research Centre (O.C.), London, United Kingdom
| |
Collapse
|
82
|
Rempe T, Wang Q, Wu Q, Ballur Narayana Reddy V, Newcomer Z, Miravalle A, Mao-Draayer Y. Progressive multifocal leukoencephalopathy and granule cell neuronopathy with novel mutation flanking VP1 C-terminus in natalizumab-extended interval dosing. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/3/e709. [PMID: 32198230 PMCID: PMC7136058 DOI: 10.1212/nxi.0000000000000709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Torge Rempe
- From the Department of Neurology (T.R., V.B.N.R., Z.N., A.M.), University of Florida, Gainesville; and Department of Neurology (Q. Wang, Q. Wu, Y.M.-D.), University of Michigan, Ann Arbor.
| | - Qin Wang
- From the Department of Neurology (T.R., V.B.N.R., Z.N., A.M.), University of Florida, Gainesville; and Department of Neurology (Q. Wang, Q. Wu, Y.M.-D.), University of Michigan, Ann Arbor
| | - Qi Wu
- From the Department of Neurology (T.R., V.B.N.R., Z.N., A.M.), University of Florida, Gainesville; and Department of Neurology (Q. Wang, Q. Wu, Y.M.-D.), University of Michigan, Ann Arbor
| | - Varalakshmi Ballur Narayana Reddy
- From the Department of Neurology (T.R., V.B.N.R., Z.N., A.M.), University of Florida, Gainesville; and Department of Neurology (Q. Wang, Q. Wu, Y.M.-D.), University of Michigan, Ann Arbor
| | - Zachary Newcomer
- From the Department of Neurology (T.R., V.B.N.R., Z.N., A.M.), University of Florida, Gainesville; and Department of Neurology (Q. Wang, Q. Wu, Y.M.-D.), University of Michigan, Ann Arbor
| | - Augusto Miravalle
- From the Department of Neurology (T.R., V.B.N.R., Z.N., A.M.), University of Florida, Gainesville; and Department of Neurology (Q. Wang, Q. Wu, Y.M.-D.), University of Michigan, Ann Arbor
| | - Yang Mao-Draayer
- From the Department of Neurology (T.R., V.B.N.R., Z.N., A.M.), University of Florida, Gainesville; and Department of Neurology (Q. Wang, Q. Wu, Y.M.-D.), University of Michigan, Ann Arbor.
| |
Collapse
|
83
|
Zhovtis Ryerson L, Li X, Goldberg JD, Hoyt T, Christensen A, Metzger RR, Kister I, Foley J. Pharmacodynamics of natalizumab extended interval dosing in MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/2/e672. [PMID: 32019876 PMCID: PMC7057061 DOI: 10.1212/nxi.0000000000000672] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/23/2019] [Indexed: 01/11/2023]
Abstract
Objective To determine if the concentration and saturation of natalizumab (NTZ) administration at extended interval dosing (EID; every 5–8 weeks) over 18 months is able to be maintained in the range considered adequate to sustain the clinical efficacy of NTZ. Methods In a cross-sectional assessment of patients with multiple sclerosis (MS) who received standard interval dosing (every 4 weeks) or EID, serum NTZ concentrations were measured using ELISA, and α4-integrin receptor saturations were analyzed via cytometry, in blood samples obtained at trough timepoints. Results Trough serum concentration was above the “therapeutic” concentration of 2.0 μg/mL in 72% of EID patients. Trough saturation was above the “therapeutic” 50% threshold in 79% of EID-treated patients. Our model predicted that at least 9 NTZ infusions/year are required to maintain adequate trough saturation and concentration levels. Higher body mass index (BMI) was a predictor of suboptimal trough saturation on EID NTZ. Conclusions Trough α4-integrin receptor saturation >50% correlated with high clinical efficacy of NTZ in previous studies. A continual treatment with EID maintains receptor saturation and concentration that are in the “therapeutic range” for most patients. This finding provides biological plausibility for the clinical efficacy of NTZ EID. Patients with higher BMI may require closer clinical and MRI follow-up.
Collapse
Affiliation(s)
- Lana Zhovtis Ryerson
- From NYU Multiple Sclerosis Comprehensive Care Center (L.Z.R., I.K.), New York; Division of Biostatistics (X.L., J.D.G.), New York University School of Medicine; and Rocky Mountain MS Research Group (T.H., A.C., R.R.M., J.F.), Salt Lake City, UT.
| | - Xiaochun Li
- From NYU Multiple Sclerosis Comprehensive Care Center (L.Z.R., I.K.), New York; Division of Biostatistics (X.L., J.D.G.), New York University School of Medicine; and Rocky Mountain MS Research Group (T.H., A.C., R.R.M., J.F.), Salt Lake City, UT
| | - Judith D Goldberg
- From NYU Multiple Sclerosis Comprehensive Care Center (L.Z.R., I.K.), New York; Division of Biostatistics (X.L., J.D.G.), New York University School of Medicine; and Rocky Mountain MS Research Group (T.H., A.C., R.R.M., J.F.), Salt Lake City, UT
| | - Tamara Hoyt
- From NYU Multiple Sclerosis Comprehensive Care Center (L.Z.R., I.K.), New York; Division of Biostatistics (X.L., J.D.G.), New York University School of Medicine; and Rocky Mountain MS Research Group (T.H., A.C., R.R.M., J.F.), Salt Lake City, UT
| | - Angel Christensen
- From NYU Multiple Sclerosis Comprehensive Care Center (L.Z.R., I.K.), New York; Division of Biostatistics (X.L., J.D.G.), New York University School of Medicine; and Rocky Mountain MS Research Group (T.H., A.C., R.R.M., J.F.), Salt Lake City, UT
| | - Ryan R Metzger
- From NYU Multiple Sclerosis Comprehensive Care Center (L.Z.R., I.K.), New York; Division of Biostatistics (X.L., J.D.G.), New York University School of Medicine; and Rocky Mountain MS Research Group (T.H., A.C., R.R.M., J.F.), Salt Lake City, UT
| | - Ilya Kister
- From NYU Multiple Sclerosis Comprehensive Care Center (L.Z.R., I.K.), New York; Division of Biostatistics (X.L., J.D.G.), New York University School of Medicine; and Rocky Mountain MS Research Group (T.H., A.C., R.R.M., J.F.), Salt Lake City, UT
| | - John Foley
- From NYU Multiple Sclerosis Comprehensive Care Center (L.Z.R., I.K.), New York; Division of Biostatistics (X.L., J.D.G.), New York University School of Medicine; and Rocky Mountain MS Research Group (T.H., A.C., R.R.M., J.F.), Salt Lake City, UT
| |
Collapse
|
84
|
Kartau M, Sipilä JOT, Auvinen E, Palomäki M, Verkkoniemi-Ahola A. Progressive Multifocal Leukoencephalopathy: Current Insights. Degener Neurol Neuromuscul Dis 2019; 9:109-121. [PMID: 31819703 PMCID: PMC6896915 DOI: 10.2147/dnnd.s203405] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022] Open
Abstract
Cases of PML should be evaluated according to predisposing factors, as these subgroups differ by incidence rate, clinical course, and prognosis. The three most significant groups at risk of PML are patients with hematological malignancies mostly previously treated with immunotherapies but also untreated, patients with HIV infection, and patients using monoclonal antibody (mAb) treatments. Epidemiological data is scarce and partly conflicting, but the distribution of the subgroups appears to have changed. While there is no specific anti-JCPyV treatment, restoration of the immune function is the most effective approach to PML treatment. Research is warranted to determine whether immune checkpoint inhibitors could benefit certain PML subgroups. There are no systematic national or international records of PML diagnoses or a risk stratification algorithm, except for MS patients receiving natalizumab (NTZ). These are needed to improve PML risk assessment and to tailor better prevention strategies.
Collapse
Affiliation(s)
- Marge Kartau
- Clinical Neurosciences, Neurology, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Jussi OT Sipilä
- Department of Neurology, Siun Sote, North Carelia Central Hospital, Joensuu, Finland
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Eeva Auvinen
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maarit Palomäki
- Neuroradiology, HUS Medical Imaging Center, Helsinki, Finland
| | - Auli Verkkoniemi-Ahola
- Clinical Neurosciences, Neurology, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| |
Collapse
|
85
|
Clifford DB, Tyler KL. Dosing interval of natalizumab in MS. Neurology 2019; 93:655-656. [DOI: 10.1212/wnl.0000000000008238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|