51
|
Yang L, Li LC, Wang X, Wang WH, Wang YC, Xu CR. The contributions of mesoderm-derived cells in liver development. Semin Cell Dev Biol 2018; 92:63-76. [PMID: 30193996 DOI: 10.1016/j.semcdb.2018.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/31/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023]
Abstract
The liver is an indispensable organ for metabolism and drug detoxification. The liver consists of endoderm-derived hepatobiliary lineages and various mesoderm-derived cells, and interacts with the surrounding tissues and organs through the ventral mesentery. Liver development, from hepatic specification to liver maturation, requires close interactions with mesoderm-derived cells, such as mesothelial cells, hepatic stellate cells, mesenchymal cells, liver sinusoidal endothelial cells and hematopoietic cells. These cells affect liver development through precise signaling events and even direct physical contact. Through the use of new techniques, emerging studies have recently led to a deeper understanding of liver development and its related mechanisms, especially the roles of mesodermal cells in liver development. Based on these developments, the current protocols for in vitro hepatocyte-like cell induction and liver-like tissue construction have been optimized and are of great importance for the treatment of liver diseases. Here, we review the roles of mesoderm-derived cells in the processes of liver development, hepatocyte-like cell induction and liver-like tissue construction.
Collapse
Affiliation(s)
- Li Yang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Lin-Chen Li
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xin Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China
| | - Wei-Hua Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yan-Chun Wang
- Haidian Maternal & Child Health Hospital, Beijing, 100080, China
| | - Cheng-Ran Xu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, China.
| |
Collapse
|
52
|
Abstract
Stellate cells are resident lipid-storing cells of the pancreas and liver that transdifferentiate to a myofibroblastic state in the context of tissue injury. Beyond having roles in tissue homeostasis, stellate cells are increasingly implicated in pathological fibrogenic and inflammatory programs that contribute to tissue fibrosis and that constitute a growth-permissive tumor microenvironment. Although the capacity of stellate cells for extracellular matrix production and remodeling has long been appreciated, recent research efforts have demonstrated diverse roles for stellate cells in regulation of epithelial cell fate, immune modulation, and tissue health. Our present understanding of stellate cell biology in health and disease is discussed here, as are emerging means to target these multifaceted cells for therapeutic benefit.
Collapse
Affiliation(s)
- Mara H Sherman
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon 97201, USA;
| |
Collapse
|
53
|
Palaria A, Angelo JR, Guertin TM, Mager J, Tremblay KD. Patterning of the hepato-pancreatobiliary boundary by BMP reveals heterogeneity within the murine liver bud. Hepatology 2018; 68:274-288. [PMID: 29315687 PMCID: PMC6033643 DOI: 10.1002/hep.29769] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/20/2017] [Accepted: 01/01/2018] [Indexed: 12/17/2022]
Abstract
During development, the endoderm initiates organ-restricted gene expression patterns in a spatiotemporally controlled manner. This process, termed induction, requires signals from adjacent mesodermal derivatives. Fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) emanating from the cardiac mesoderm and the septum transversum mesenchyme (STM), respectively, are believed to be simultaneously and uniformly required to directly induce hepatic gene expression from the murine endoderm. Using small molecule inhibitors of BMP signals during liver bud induction in the developing mouse embryo, we found that BMP signaling was not uniformly required to induce hepatic gene expression. Although BMP inhibition caused an overall reduction in the number of induced hepatoblasts, the STM-bounded posterior liver bud demonstrated the most severe loss of the essential hepatic transcription factor, hepatocyte nuclear factor 4-α (HNF4α), whereas the sinus venosus-lined anterior liver bud was less affected. We found that the posterior liver bud progenitors were anteriorly displaced and aberrantly activated pancreatobiliary markers, including sex-determining region Y-box 9 (SOX9). Additionally, we found that ectopically expressed SOX9 inhibited HNF4α and that BMP was indirectly required for hepatoblast induction. Finally, because previous studies have demonstrated that FGF signals are essential for anterior but not posterior liver bud induction, we examined synchronous BMP and FGF inhibition and found this led to a nearly complete loss of hepatoblasts. CONCLUSION BMP signaling is required to maintain the hepato-pancreatobiliary boundary, at least in part, by indirectly repressing SOX9 in the hepatic endoderm. BMP and FGF signals are each required for the induction of spatially complementary subsets of hepatoblasts. These results underscore the importance of studying early inductive processes in the whole embryo. (Hepatology 2018;68:274-288).
Collapse
Affiliation(s)
- Amrita Palaria
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA
| | - Jesse R Angelo
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA
| | - Taylor M Guertin
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA
| | - Kimberly D Tremblay
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA
| |
Collapse
|
54
|
Yi X, Yu J, Ma C, Li L, Luo L, Li H, Ruan H, Huang H. Yap1/Taz are essential for the liver development in zebrafish. Biochem Biophys Res Commun 2018; 503:131-137. [PMID: 29859190 DOI: 10.1016/j.bbrc.2018.05.196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
Abstract
Hippo pathway regulates cell proliferation and differentiation. Yes-associated protein (Yap) and transcriptional coactivator with PDZ-binding motif (Taz) are effectors of Hippo pathway. The function of Yap/Taz in embryonic liver development has yet to be reported. Here yap1 and taz were found expressed in liver and other digestive organs in zebrafish embryos, and knockout of yap1 or taz did not lead to visible defects during embryogenesis. Interestingly, Taz was significantly increased in yap1 mutants, which may account for their normal development, albeit losing Yap1. However, yap1-/-; taz+/- embryos exhibited smaller digestive organs, and more than half of them showed bilateral livers and pancreas and non-looped intestines. Further analysis revealed that the disrupted gene function in yap1-/-; taz+/- embryos did not disturb liver bud formation, but instead impaired cell proliferation in liver and movement of the neighboring lateral plate mesoderm (LPM). Overexpression of wild type yap1 or taz could rescue the defective liver phenotypes in yap1-/-; taz+/- embryos, indicating that Yap1 cooperate with Taz to regulate the liver development. In addition, Yap1 was found to function in a Tead-dependent manner in the liver development. Our results suggest that Yap1/Taz regulate LPM movement and promote cell proliferation to ensure proper liver development in zebrafish.
Collapse
Affiliation(s)
- Xiaogui Yi
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Jia Yu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Chao Ma
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Li Li
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Lingfei Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Hongtao Li
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Hua Ruan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, China.
| | - Honghui Huang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, 2 Tiansheng Road, Beibei, Chongqing, 400715, China.
| |
Collapse
|
55
|
Wu TS, Lin YT, Huang YT, Cheng YC, Yu FY, Liu BH. Disruption of liver development and coagulation pathway by ochratoxin A in embryonic zebrafish. Toxicol Appl Pharmacol 2018; 340:1-8. [DOI: 10.1016/j.taap.2017.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/11/2017] [Accepted: 12/20/2017] [Indexed: 01/09/2023]
|
56
|
Li N, Zhou T, Geng X, Jin Y, Wang X, Liu S, Xu X, Gao D, Li Q, Liu Z. Identification of novel genes significantly affecting growth in catfish through GWAS analysis. Mol Genet Genomics 2017; 293:587-599. [PMID: 29230585 DOI: 10.1007/s00438-017-1406-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/07/2017] [Indexed: 12/01/2022]
Abstract
Growth is the most important economic trait in aquaculture. Improvements in growth-related traits can enhance production, reduce costs and time to produce market-size fish. Catfish is the major aquaculture species in the United States, accounting for 65% of the US finfish production. However, the genes underlying growth traits in catfish were not well studied. Currently, the majority of the US catfish industry uses hybrid catfish derived from channel catfish female mated with blue catfish male. Interestingly, channel catfish and blue catfish exhibit differences in growth-related traits, and therefore the backcross progenies provide an efficient system for QTL analysis. In this study, we conducted a genome-wide association study for catfish body weight using the 250 K SNP array with 556 backcross progenies generated from backcross of male F1 hybrid (female channel catfish × male blue catfish) with female channel catfish. A genomic region of approximately 1 Mb on linkage group 5 was found to be significantly associated with body weight. In addition, four suggestively associated QTL regions were identified on linkage groups 1, 2, 23 and 24. Most candidate genes in the associated regions are known to be involved in muscle growth and bone development, some of which were reported to be associated with obesity in humans and pigs, suggesting that the functions of these genes may be evolutionarily conserved in controlling growth. Additional fine mapping or functional studies should allow identification of the causal genes for fast growth in catfish, and elucidation of molecular mechanisms of regulation of growth in fish.
Collapse
Affiliation(s)
- Ning Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xin Geng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaozhu Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaoyan Xu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, China
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Qi Li
- The Shellfish Genetics and Breeding Laboratory, Fisheries College, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Zhanjiang Liu
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
57
|
Choi TY, Khaliq M, Tsurusaki S, Ninov N, Stainier DY, Tanaka M, Shin D. Bone morphogenetic protein signaling governs biliary-driven liver regeneration in zebrafish through tbx2b and id2a. Hepatology 2017; 66:1616-1630. [PMID: 28599080 PMCID: PMC5650528 DOI: 10.1002/hep.29309] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/04/2017] [Accepted: 06/06/2017] [Indexed: 01/10/2023]
Abstract
UNLABELLED Upon mild liver injury, new hepatocytes originate from preexisting hepatocytes. However, if hepatocyte proliferation is impaired, a manifestation of severe liver injury, biliary epithelial cells (BECs) contribute to new hepatocytes through BEC dedifferentiation into liver progenitor cells (LPCs), also termed oval cells or hepatoblast-like cells (HB-LCs), and subsequent differentiation into hepatocytes. Despite the identification of several factors regulating BEC dedifferentiation and activation, little is known about factors involved in the regulation of LPC differentiation into hepatocytes during liver regeneration. Using a zebrafish model of near-complete hepatocyte ablation, we show that bone morphogenetic protein (Bmp) signaling is required for BEC conversion to hepatocytes, particularly for LPC differentiation into hepatocytes. We found that severe liver injury led to the up-regulation of genes involved in Bmp signaling, including smad5, tbx2b, and id2a, in the liver. Bmp suppression did not block BEC dedifferentiation into HB-LCs; however, the differentiation of HB-LCs into hepatocytes was impaired due to the maintenance of HB-LCs in an undifferentiated state. Later Bmp suppression did not affect HB-LC differentiation but increased BEC number through proliferation. Notably, smad5, tbx2b, and id2a mutants exhibited similar liver regeneration defects as those observed in Bmp-suppressed livers. Moreover, BMP2 addition promoted the differentiation of a murine LPC line into hepatocytes in vitro. CONCLUSIONS Bmp signaling regulates BEC-driven liver regeneration through smad5, tbx2b, and id2a: it regulates HB-LC differentiation into hepatocytes through tbx2b and BEC proliferation through id2a; our findings provide insights into promoting innate liver regeneration as a novel therapy. (Hepatology 2017;66:1616-1630).
Collapse
Affiliation(s)
- Tae-Young Choi
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mehwish Khaliq
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Shinya Tsurusaki
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Nikolay Ninov
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, San Francisco, CA 94158, USA,Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Didier Y.R. Stainier
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, San Francisco, CA 94158, USA,Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Minoru Tanaka
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Donghun Shin
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA,Correspondence: Donghun Shin, 3501 5 Ave. #5063 Pittsburgh, PA 15260, 1-412-624-2144 (phone), 1-412-383-2211 (fax),
| |
Collapse
|
58
|
Tan AKY, Loh KM, Ang LT. Evaluating the regenerative potential and functionality of human liver cells in mice. Differentiation 2017; 98:25-34. [PMID: 29078082 DOI: 10.1016/j.diff.2017.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 02/07/2023]
Abstract
Liver diseases afflict millions of patients worldwide. Currently, the only long-term treatment for liver failure is the transplantation of a new liver. However, intravenously transplanting a suspension of human hepatocytes might be a less-invasive approach to partially reconstitute lost liver functions in human patients as evinced by promising outcomes in clinical trials. The purpose of this essay is to emphasize outstanding questions that continue to surround hepatocyte transplantation. While adult primary human hepatocytes are the gold standard for transplantation, hepatocytes are heterogeneous. Whether all hepatocytes engraft equally and what specifically defines an "engraftable" hepatocyte capable of long-term liver reconstitution remains unclear. To this end, mouse models of liver injury enable the evaluation of human hepatocytes and their behavior upon transplantation into a complex injured liver environment. While mouse models may not be fully representative of the injured human liver and human hepatocytes tend to engraft mice less efficiently than mouse hepatocytes, valuable lessons have nonetheless been learned from transplanting human hepatocytes into mouse models. With an eye to the future, it will be crucial to eventually detail the optimal biological source (whether in vivo- or in vitro-derived) and presumptive heterogeneity of human hepatocytes and to understand the mechanisms through which they engraft and regenerate liver tissue in vivo.
Collapse
Affiliation(s)
- Antson Kiat Yee Tan
- Stem Cell&Developmental Biology Group, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore
| | - Kyle M Loh
- Stanford Institute for Stem Cell Biology and Regenerative Medicine and the Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lay Teng Ang
- Stem Cell&Developmental Biology Group, Genome Institute of Singapore, A*STAR, Singapore 138672, Singapore.
| |
Collapse
|
59
|
Li YW, Chiang KY, Li YH, Wu SY, Liu W, Lin CR, Wu JL. MiR-145 mediates zebrafish hepatic outgrowth through progranulin A signaling. PLoS One 2017; 12:e0177887. [PMID: 28531199 PMCID: PMC5439702 DOI: 10.1371/journal.pone.0177887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/04/2017] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRs) are mRNA-regulatory molecules that fine-tune gene expression and modulate both processes of development and tumorigenesis. Our previous studies identified progranulin A (GrnA) as a growth factor which induces zebrafish hepatic outgrowth through MET signaling. We also found that miR-145 is one of potential fine-tuning regulators of GrnA involved in embryonic hepatic outgrowth. The low level of miR-145 seen in hepatocarinogenesis has been shown to promote pathological liver growth. However, little is known about the regulatory mechanism of miR-145 in embryonic liver development. In this study, we demonstrate a significant decrease in miR-145 expression during hepatogenesis. We modulate miR-145 expression in zebrafish embryos by injection with a miR-145 mimic or a miR-145 hairpin inhibitor. Altered embryonic liver outgrowth is observed in response to miR-145 expression modulation. We also confirm a critical role of miR-145 in hepatic outgrowth by using whole-mount in situ hybridization. Loss of miR-145 expression in embryos results in hepatic cell proliferation, and vice versa. Furthermore, we demonstrate that GrnA is a target of miR-145 and GrnA-induced MET signaling is also regulated by miR-145 as determined by luciferase reporter assay and gene expression analysis, respectively. In addition, co-injection of GrnA mRNA with miR-145 mimic or MO-GrnA with miR-145 inhibitor restores the liver defects caused by dysregulation of miR-145 expression. In conclusion, our findings suggest an important role of miR-145 in regulating GrnA-dependent hepatic outgrowth in zebrafish embryonic development.
Collapse
Affiliation(s)
- Ya-Wen Li
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Keng-Yu Chiang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Department of Life science, National Taiwan University, Taipei, Taiwan
| | - Yen-Hsing Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Sung-Yu Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Ray Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jen-Leih Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
60
|
Pham DH, Zhang C, Yin C. Using zebrafish to model liver diseases-Where do we stand? CURRENT PATHOBIOLOGY REPORTS 2017; 5:207-221. [PMID: 29098121 DOI: 10.1007/s40139-017-0141-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Purpose of Review The liver is the largest internal organ and performs both exocrine and endocrine function that is necessary for survival. Liver failure is among the leading causes of death and represents a major global health burden. Liver transplantation is the only effective treatment for end-stage liver diseases. Animal models advance our understanding of liver disease etiology and hold promise for the development of alternative therapies. Zebrafish has become an increasingly popular system for modeling liver diseases and complements the rodent models. Recent Findings The zebrafish liver contains main cell types that are found in mammalian liver and exhibits similar pathogenic responses to environmental insults and genetic mutations. Zebrafish have been used to model neonatal cholestasis, cholangiopathies, such as polycystic liver disease, alcoholic liver disease, and non-alcoholic fatty liver disease. It also provides a unique opportunity to study the plasticity of liver parenchymal cells during regeneration. Summary In this review, we summarize the recent work of building zebrafish models of liver diseases. We highlight how these studies have brought new knowledge of disease mechanisms. We also discuss the advantages and challenges of using zebrafish to model liver diseases.
Collapse
Affiliation(s)
- Duc-Hung Pham
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Changwen Zhang
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| |
Collapse
|
61
|
Zhai G, Song J, Shu T, Yan J, Jin X, He J, Yin Z. LRH-1 senses signaling from phosphatidylcholine to regulate the expansion growth of digestive organs via synergy with Wnt/β-catenin signaling in zebrafish. J Genet Genomics 2017. [PMID: 28642062 DOI: 10.1016/j.jgg.2017.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Liver receptor homolog-1 (LRH-1) is an orphan nuclear receptor that is critical for the growth and proliferation of cancer cells and other biological processes, including lipid transportation and metabolism, sexual determination and steroidogenesis. However, because homozygous lrh-1-/- mice die in utero, the regulatory mechanisms involved in embryonic development mediated by this receptor are poorly understood. In the present study, we performed transcription activator-like effector nuclease (TALEN)-mediated loss-of-function assays, taking advantage of zebrafish external fertilization, to investigate the function of lrh-1. The digestive organs were affected by lrh-1 depletion as a result of cell-cycle arrest (at the checkpoint of G1 to S phase), but not cell apoptosis. Biochemical analysis revealed that LRH-1 augments the transcriptional activity of β-catenin 1 and 2 via physical interactions. Screening the specific ligand(s) sensed by LRH-1 during organogenesis revealed that phosphatidylcholine (PC), a potential ligand, is the upstream target of LRH-1 during endoderm development. These data provide evidence for the crosstalk between the PC/LRH-1 and Wnt/β-catenin signaling pathways during the expansion growth of endoderm organs.
Collapse
Affiliation(s)
- Gang Zhai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jia Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Shu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Junjun Yan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jiangyan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
62
|
Villasenor A, Stainier DYR. On the development of the hepatopancreatic ductal system. Semin Cell Dev Biol 2017; 66:69-80. [PMID: 28214561 DOI: 10.1016/j.semcdb.2017.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/03/2017] [Accepted: 02/13/2017] [Indexed: 12/13/2022]
Abstract
The hepatopancreatic ductal system is the collection of ducts that connect the liver and pancreas to the digestive tract. The formation of this system is necessary for the transport of exocrine secretions, for the correct assembly of the pancreatobiliary ductal system, and for the overall function of the digestive system. Studies on endoderm organ formation have significantly advanced our understanding of the molecular mechanisms that govern organ induction, organ specification and morphogenesis of the major foregut-derived organs. However, little is known about the mechanisms that control the development of the hepatopancreatic ductal system. Here, we provide a description of the different components of the system, summarize its development from the endoderm to a complex system of tubes, list the pathologies produced by anomalies in its development, as well as the molecules and signaling pathways that are known to be involved in its formation. Finally, we discuss its proposed potential as a multipotent cell reservoir and the unresolved questions in the field.
Collapse
Affiliation(s)
- Alethia Villasenor
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| |
Collapse
|
63
|
Wang S, Miller SR, Ober EA, Sadler KC. Making It New Again: Insight Into Liver Development, Regeneration, and Disease From Zebrafish Research. Curr Top Dev Biol 2017; 124:161-195. [PMID: 28335859 PMCID: PMC6450094 DOI: 10.1016/bs.ctdb.2016.11.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The adult liver of most vertebrates is predominantly comprised of hepatocytes. However, these cells must work in concert with biliary, stellate, vascular, and immune cells to accomplish the vast array of hepatic functions required for physiological homeostasis. Our understanding of liver development was accelerated as zebrafish emerged as an ideal vertebrate system to study embryogenesis. Through work in zebrafish and other models, it is now clear that the cells in the liver develop in a coordinated fashion during embryogenesis through a complex yet incompletely understood set of molecular guidelines. Zebrafish research has uncovered many key players that govern the acquisition of hepatic potential, cell fate, and plasticity. Although rare, some hepatobiliary diseases-especially biliary atresia-are caused by developmental defects; we discuss how research using zebrafish to study liver development has informed our understanding of and approaches to liver disease. The liver can be injured in response to an array of stressors including viral, mechanical/surgical, toxin-induced, immune-mediated, or inborn defects in metabolism. The liver has thus evolved the capacity to efficiently repair and regenerate. We discuss the emerging field of using zebrafish to study liver regeneration and highlight recent advances where zebrafish genetics and imaging approaches have provided novel insights into how cell plasticity contributes to liver regeneration.
Collapse
Affiliation(s)
- Shuang Wang
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sophie R Miller
- Danish Stem Cell Center (DanStem), University of Copenhagen, Copenhagen N, Denmark
| | - Elke A Ober
- Danish Stem Cell Center (DanStem), University of Copenhagen, Copenhagen N, Denmark
| | - Kirsten C Sadler
- Icahn School of Medicine at Mount Sinai, New York, NY, United States; New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
64
|
Abstract
The endoderm is the innermost embryonic germ layer, and in zebrafish, it gives rise to the lining of the gut, the gills, liver, pancreas, gallbladder, and derivatives of the pharyngeal pouch. These organs form the gastrointestinal tract and are involved with the absorption, delivery, and metabolism of nutrients. The liver has a central role in regulating these processes because it controls carbohydrate and lipid metabolism, protein synthesis, and breakdown of endogenous and xenobiotic products. Liver dysfunction frequently leads to significant morbidity and mortality; however, in most settings of organ injury, the liver exhibits remarkable regenerative capacity. In this chapter, we review the principal mechanisms of endoderm and liver formation and provide protocols to assess liver formation and liver regeneration.
Collapse
|
65
|
Lovely CB, Swartz ME, McCarthy N, Norrie JL, Eberhart JK. Bmp signaling mediates endoderm pouch morphogenesis by regulating Fgf signaling in zebrafish. Development 2016; 143:2000-11. [PMID: 27122171 DOI: 10.1242/dev.129379] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 04/12/2016] [Indexed: 02/03/2023]
Abstract
The endodermal pouches are a series of reiterated structures that segment the pharyngeal arches and help pattern the vertebrate face. Multiple pathways regulate the complex process of endodermal development, including the Bone morphogenetic protein (Bmp) pathway. However, the role of Bmp signaling in pouch morphogenesis is poorly understood. Using genetic and chemical inhibitor approaches, we show that pouch morphogenesis requires Bmp signaling from 10-18 h post-fertilization, immediately following gastrulation. Blocking Bmp signaling during this window results in morphological defects to the pouches and craniofacial skeleton. Using genetic chimeras we show that Bmp signals directly to the endoderm for proper morphogenesis. Time-lapse imaging and analysis of reporter transgenics show that Bmp signaling is necessary for pouch outpocketing via the Fibroblast growth factor (Fgf) pathway. Double loss-of-function analyses demonstrate that Bmp and Fgf signaling interact synergistically in craniofacial development. Collectively, our analyses shed light on the tissue and signaling interactions that regulate development of the vertebrate face.
Collapse
Affiliation(s)
- C Ben Lovely
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Mary E Swartz
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Neil McCarthy
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Johann K Eberhart
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
66
|
Hu M, Bai Y, Zhang C, Liu F, Cui Z, Chen J, Peng J. Liver-Enriched Gene 1, a Glycosylated Secretory Protein, Binds to FGFR and Mediates an Anti-stress Pathway to Protect Liver Development in Zebrafish. PLoS Genet 2016; 12:e1005881. [PMID: 26901320 PMCID: PMC4764323 DOI: 10.1371/journal.pgen.1005881] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/28/2016] [Indexed: 01/19/2023] Open
Abstract
Unlike mammals and birds, teleost fish undergo external embryogenesis, and therefore their embryos are constantly challenged by stresses from their living environment. These stresses, when becoming too harsh, will cause arrest of cell proliferation, abnormal cell death or senescence. Such organisms have to evolve a sophisticated anti-stress mechanism to protect the process of embryogenesis/organogenesis. However, very few signaling molecule(s) mediating such activity have been identified. liver-enriched gene 1 (leg1) is an uncharacterized gene that encodes a novel secretory protein containing a single domain DUF781 (domain of unknown function 781) that is well conserved in vertebrates. In the zebrafish genome, there are two copies of leg1, namely leg1a and leg1b. leg1a and leg1b are closely linked on chromosome 20 and share high homology, but are differentially expressed. In this report, we generated two leg1a mutant alleles using the TALEN technique, then characterized liver development in the mutants. We show that a leg1a mutant exhibits a stress-dependent small liver phenotype that can be prevented by chemicals blocking the production of reactive oxygen species. Further studies reveal that Leg1a binds to FGFR3 and mediates a novel anti-stress pathway to protect liver development through enhancing Erk activity. More importantly, we show that the binding of Leg1a to FGFR relies on the glycosylation at the 70th asparagine (Asn70 or N70), and mutating the Asn70 to Ala70 compromised Leg1’s function in liver development. Therefore, Leg1 plays a unique role in protecting liver development under different stress conditions by serving as a secreted signaling molecule/modulator. Although being challenged by stresses from their living environment during embryogenesis, teleost fish harbor a robust genetic program dictating liver development as long as any environmental change, including temperature or natural UV irradiation, is not detrimental. It is therefore of interest to explore the mechanism(s) behind this phenomenon. We showed that Liver-enriched gene 1 (Leg1) plays a unique role in protecting liver development under different stress conditions by serving as a secretory signaling molecule/modulator that binds to FGF receptor and activates the Erk signaling pathway. This finding may explain the adaption of teleost fish in coping with environmental changes.
Collapse
Affiliation(s)
- Minjie Hu
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yun Bai
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chunxia Zhang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Liu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zongbin Cui
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (JC); (JP)
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (JC); (JP)
| |
Collapse
|
67
|
Gaston K, Tsitsilianos MA, Wadey K, Jayaraman PS. Misregulation of the proline rich homeodomain (PRH/HHEX) protein in cancer cells and its consequences for tumour growth and invasion. Cell Biosci 2016; 6:12. [PMID: 26877867 PMCID: PMC4752775 DOI: 10.1186/s13578-016-0077-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/01/2016] [Indexed: 02/07/2023] Open
Abstract
The proline rich homeodomain protein (PRH), also known as haematopoietically expressed homeobox (HHEX), is an essential transcription factor in embryonic development and in the adult. The PRH protein forms oligomeric complexes that bind to tandemly repeated PRH recognition sequences within or at a distance from PRH-target genes and recruit a variety of PRH-interacting proteins. PRH can also bind to other transcription factors and co-regulate specific target genes either directly through DNA binding, or indirectly through effects on the activity of its partner proteins. In addition, like some other homeodomain proteins, PRH can regulate the translation of specific mRNAs. Altered PRH expression and altered PRH intracellular localisation, are associated with breast cancer, liver cancer and thyroid cancer and some subtypes of leukaemia. This is consistent with the involvement of multiple PRH-interacting proteins, including the oncoprotein c-Myc, translation initiation factor 4E (eIF4E), and the promyelocytic leukaemia protein (PML), in the control of cell proliferation and cell survival. Similarly, multiple PRH target genes, including the genes encoding vascular endothelial growth factor (VEGF), VEGF receptors, Endoglin, and Goosecoid, are known to be important in the control of cell proliferation and cell survival and/or the regulation of cell migration and invasion. In this review, we summarise the evidence that implicates PRH in tumourigenesis and we review the data that suggests PRH levels could be useful in cancer prognosis and in the choice of treatment options.
Collapse
Affiliation(s)
- Kevin Gaston
- School of Biochemistry, University Walk, University of Bristol, Bristol, BS8 1TD UK
| | | | - Kerry Wadey
- School of Biochemistry, University Walk, University of Bristol, Bristol, BS8 1TD UK
| | - Padma-Sheela Jayaraman
- Division of Immunity and Infection, School of Medicine, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
68
|
Xu J, Cui J, Del Campo A, Shin CH. Four and a Half LIM Domains 1b (Fhl1b) Is Essential for Regulating the Liver versus Pancreas Fate Decision and for β-Cell Regeneration. PLoS Genet 2016; 12:e1005831. [PMID: 26845333 PMCID: PMC4741517 DOI: 10.1371/journal.pgen.1005831] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 01/06/2016] [Indexed: 12/12/2022] Open
Abstract
The liver and pancreas originate from overlapping embryonic regions, and single-cell lineage tracing in zebrafish has shown that Bone morphogenetic protein 2b (Bmp2b) signaling is essential for determining the fate of bipotential hepatopancreatic progenitors towards the liver or pancreas. Despite its pivotal role, the gene regulatory networks functioning downstream of Bmp2b signaling in this process are poorly understood. We have identified four and a half LIM domains 1b (fhl1b), which is primarily expressed in the prospective liver anlage, as a novel target of Bmp2b signaling. fhl1b depletion compromised liver specification and enhanced induction of pancreatic cells from endodermal progenitors. Conversely, overexpression of fhl1b favored liver specification and inhibited induction of pancreatic cells. By single-cell lineage tracing, we showed that fhl1b depletion led lateral endodermal cells, destined to become liver cells, to become pancreatic cells. Reversely, when fhl1b was overexpressed, medially located endodermal cells, fated to differentiate into pancreatic and intestinal cells, contributed to the liver by directly or indirectly modulating the discrete levels of pdx1 expression in endodermal progenitors. Moreover, loss of fhl1b increased the regenerative capacity of β-cells by increasing pdx1 and neurod expression in the hepatopancreatic ductal system. Altogether, these data reveal novel and critical functions of Fhl1b in the hepatic versus pancreatic fate decision and in β-cell regeneration. Lineage-specific multipotent progenitors play crucial roles in embryonic development, regeneration in adult tissues, and diseases such as cancer. Bone morphogenetic protein (Bmp) signaling is critical for regulating the cell fate choice of liver versus pancreas, two essential organs of body metabolism. Through transcriptome profiling of endodermal tissues exposed to increased or decreased Bmp2b signaling, we have discovered the zebrafish gene four and a half LIM domains 1b (fhl1b) as a novel target of Bmp2b signaling. fhl1b is primarily expressed in the prospective liver anlage. Loss- and gain-of-function analyses indicate that Fhl1b suppresses specification of the pancreas and induces the liver. By single-cell lineage tracing, we showed that depletion of fhl1b caused a liver-to-pancreas fate switch, while fhl1b overexpression redirected pancreatic progenitors to become liver cells. At later stages, Fhl1b regulates regeneration of insulin-secreting β-cells by directly or indirectly modulating pdx1 and neurod expression in the hepatopancreatic ductal system. Therefore, our work provides a novel paradigm of how Bmp signaling regulates the hepatic versus pancreatic fate decision and β-cell regeneration through its novel target Fhl1b.
Collapse
Affiliation(s)
- Jin Xu
- School of Biology and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Jiaxi Cui
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Chong Hyun Shin
- School of Biology and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
69
|
Zaret KS. From Endoderm to Liver Bud: Paradigms of Cell Type Specification and Tissue Morphogenesis. Curr Top Dev Biol 2016; 117:647-69. [PMID: 26970006 DOI: 10.1016/bs.ctdb.2015.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The early specification, rapid growth and morphogenesis, and conserved functions of the embryonic liver across diverse model organisms have made the system an experimentally facile paradigm for understanding basic regulatory mechanisms that govern cell differentiation and organogenesis. This essay highlights concepts that have emerged from studies of the discrete steps of foregut endoderm development into the liver bud, as well as from modeling the steps via embryonic stem cell differentiation. Such concepts include understanding the chromatin basis for the competence of progenitor cells to develop into specific lineages; the importance of combinatorial signaling from different sources to induce cell fates; the impact of inductive signaling on preexisting chromatin states; the ability of separately specified domains of cells to merge into a common tissue; and the marked cell biological dynamics, including interactions with the developing vasculature, which establish the initial morphogenesis and patterning of a tissue. The principles gleaned from these studies, focusing on the 2 days it takes for the endoderm to develop into a liver bud, should be instructive for many other organogenic systems and for manipulating tissues in regenerative contexts for biomedical purposes.
Collapse
Affiliation(s)
- Kenneth S Zaret
- Institute for Regenerative Medicine, Epigenetics Program, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
70
|
Enhancement of hepatocyte differentiation from human embryonic stem cells by Chinese medicine Fuzhenghuayu. Sci Rep 2016; 6:18841. [PMID: 26733102 PMCID: PMC4702137 DOI: 10.1038/srep18841] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/27/2015] [Indexed: 01/10/2023] Open
Abstract
Chinese medicine, Fuzhenghuayu (FZHY), appears to prevent fibrosis progression and improve liver function in humans. Here we found that FZHY enhanced hepatocyte differentiation from human embryonic stem cells (hESC). After treatment with FZHY, albumin expression was consistently increased during differentiation and maturation process, and expression of metabolizing enzymes and transporter were also increased. Importantly, expression of mesenchymal cell and cholangiocyte marker was significantly reduced by treatment with FZHY, indicating that one possible mechanism of FZHY’s role is to inhibit the formation of mesenchymal cells and cholangiocytes. Edu-labelled flow cytometric analysis showed that the percentage of the Edu positive cells was increased in the treated cells. These results indicate that the enhanced proliferation involved hepatocytes rather than another cell type. Our investigations further revealed that these enhancements by FZHY are mediated through activation of canonical Wnt and ERK pathways and inhibition of Notch pathway. Thus, FZHY not only promoted hepatocyte differentiation and maturation, but also enhanced hepatocyte proliferation. These results demonstrate that FZHY appears to represent an excellent therapeutic agent for the treatment of liver fibrosis, and that FZHY treatment can enhance our efforts to generate mature hepatocytes with proliferative capacity for cell-based therapeutics and for pharmacological and toxicological studies.
Collapse
|
71
|
Allison P, Espiritu D, Camenisch TD. BMP2 rescues deficient cell migration in Tgfbr3(-/-) epicardial cells and requires Src kinase. Cell Adh Migr 2015; 10:259-68. [PMID: 26645362 PMCID: PMC4951173 DOI: 10.1080/19336918.2015.1119362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
During embryogenesis, the epicardium undergoes proliferation, migration, and differentiation into several cardiac cell types which contribute to the coronary vessels. The type III transforming growth factor-β receptor (TGFβR3) is required for epicardial cell invasion and development of coronary vasculature in vivo. Bone Morphogenic Protein-2 (BMP2) is a driver of epicardial cell migration. Utilizing a primary epicardial cell line derived from Tgfbr3(+/+) and Tgfbr3(-/-) mouse embryos, we show that Tgfbr3(-/-) epicardial cells are deficient in BMP2 mRNA expression. Tgfbr3(-/-) epicardial cells are deficient in 2-dimensional migration relative to Tgfbr3(+/+) cells; BMP2 induces cellular migration to Tgfbr3(+/+) levels without affecting proliferation. We further demonstrate that Src kinase activity is required for BMP2 driven Tgfbr3(-/-) migration. BMP2 also requires Src for filamentous actin polymerization in Tgfbr3(-/-) epicardial cells. Taken together, our data identifies a novel pathway in epicardial cell migration required for development of the coronary vessels.
Collapse
Affiliation(s)
- Patrick Allison
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA,CONTACT Patrick Allison Michigan State University, College of Veterinary Medicine, 784 Wilson Rd, RmG358, East Lansing, MI 48824, USA
| | - Daniella Espiritu
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Todd D. Camenisch
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA,Southwest Environmental Health Sciences Center, University of Arizona, Tucson, AZ, USA,Steele Children's Research Center, University of Arizona, Tucson, AZ, USA,Sarver Heart Center, University of Arizona, Tucson, AZ, USA,Bio5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
72
|
Lu JW, Ho YJ, Yang YJ, Liao HA, Ciou SC, Lin LI, Ou DL. Zebrafish as a disease model for studying human hepatocellular carcinoma. World J Gastroenterol 2015; 21:12042-12058. [PMID: 26576090 PMCID: PMC4641123 DOI: 10.3748/wjg.v21.i42.12042] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/28/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is one of the world’s most common cancers and the second leading cause of cancer deaths. Hepatocellular carcinoma (HCC), a primary hepatic cancer, accounts for 90%-95% of liver cancer cases. The pathogenesis of HCC consists of a stepwise process of liver damage that extends over decades, due to hepatitis, fatty liver, fibrosis, and cirrhosis before developing fully into HCC. Multiple risk factors are highly correlated with HCC, including infection with the hepatitis B or C viruses, alcohol abuse, aflatoxin exposure, and metabolic diseases. Over the last decade, genetic alterations, which include the regulation of multiple oncogenes or tumor suppressor genes and the activation of tumorigenesis-related pathways, have also been identified as important factors in HCC. Recently, zebrafish have become an important living vertebrate model organism, especially for translational medical research. In studies focusing on the biology of cancer, carcinogen induced tumors in zebrafish were found to have many similarities to human tumors. Several zebrafish models have therefore been developed to provide insight into the pathogenesis of liver cancer and the related drug discovery and toxicology, and to enable the evaluation of novel small-molecule inhibitors. This review will focus on illustrative examples involving the application of zebrafish models to the study of human liver disease and HCC, through transgenesis, genome editing technology, xenografts, drug discovery, and drug-induced toxic liver injury.
Collapse
|
73
|
Abstract
The liver is a central regulator of metabolism, and liver failure thus constitutes a major health burden. Understanding how this complex organ develops during embryogenesis will yield insights into how liver regeneration can be promoted and how functional liver replacement tissue can be engineered. Recent studies of animal models have identified key signaling pathways and complex tissue interactions that progressively generate liver progenitor cells, differentiated lineages and functional tissues. In addition, progress in understanding how these cells interact, and how transcriptional and signaling programs precisely coordinate liver development, has begun to elucidate the molecular mechanisms underlying this complexity. Here, we review the lineage relationships, signaling pathways and transcriptional programs that orchestrate hepatogenesis.
Collapse
Affiliation(s)
- Miriam Gordillo
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Valerie Gouon-Evans
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
74
|
Gao M, Yan H, Yin RH, Wang Q, Zhan YQ, Yu M, Ge CH, Li CY, Wang XH, Ge ZQ, Yang XM. Hepassocin is required for hepatic outgrowth during zebrafish hepatogenesis. Biochem Biophys Res Commun 2015; 463:466-71. [PMID: 26047702 DOI: 10.1016/j.bbrc.2015.05.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 05/30/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS Hepassocin (HPS) is a hepatotrophic growth factor that specifically stimulates hepatocyte proliferation and promotes liver regeneration after liver damage. In this paper, zebrafish were used to investigate the role of HPS in liver development. METHODS AND RESULTS During zebrafish development, HPS expression is enriched in liver throughout hepatogenesis. Knockdown of HPS using its specific morpholino leads to a smaller liver phenotype. Further results showed that the HPS knockdown has no effect on the expression of the early endoderm marker gata6 and early hepatic marker hhex. In addition, results showed that the smaller-liver phenotype in HPS morphants was caused by suppression of cell proliferation, not induction of cell apoptosis. CONCLUSIONS Current findings indicated that HPS is essential to the later stages of development in vertebrate liver organogenesis.
Collapse
Affiliation(s)
- Ming Gao
- Tianjin University, Department of Pharmaceutical Engineering, Tianjin 300072, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hui Yan
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Rong-Hua Yin
- Beijing Institute of Radiation Medicine, Beijing 100850, China; State Key Laboratory of Proteomics, Beijing 100850, China
| | - Qiang Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Qun Zhan
- Beijing Institute of Radiation Medicine, Beijing 100850, China; State Key Laboratory of Proteomics, Beijing 100850, China
| | - Miao Yu
- Beijing Institute of Radiation Medicine, Beijing 100850, China; State Key Laboratory of Proteomics, Beijing 100850, China
| | - Chang-Hui Ge
- Beijing Institute of Radiation Medicine, Beijing 100850, China; State Key Laboratory of Proteomics, Beijing 100850, China
| | - Chang-Yan Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China; State Key Laboratory of Proteomics, Beijing 100850, China
| | - Xiao-Hui Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China; State Key Laboratory of Proteomics, Beijing 100850, China
| | - Zhi-Qiang Ge
- Tianjin University, Department of Pharmaceutical Engineering, Tianjin 300072, China
| | - Xiao-Ming Yang
- Tianjin University, Department of Pharmaceutical Engineering, Tianjin 300072, China; Beijing Institute of Radiation Medicine, Beijing 100850, China; State Key Laboratory of Proteomics, Beijing 100850, China.
| |
Collapse
|
75
|
Id2a is required for hepatic outgrowth during liver development in zebrafish. Mech Dev 2015; 138 Pt 3:399-414. [PMID: 26022495 DOI: 10.1016/j.mod.2015.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/24/2015] [Accepted: 05/14/2015] [Indexed: 12/19/2022]
Abstract
During development, inhibitor of DNA binding (Id) proteins, a subclass of the helix-loop-helix family of proteins, regulate cellular proliferation, differentiation, and apoptosis in various organs. However, a functional role of Id2a in liver development has not yet been reported. Here, using zebrafish as a model organism, we provide in vivo evidence that Id2a regulates hepatoblast proliferation and cell death during liver development. Initially, in the liver, id2a is expressed in hepatoblasts and after their differentiation, id2a expression is restricted to biliary epithelial cells. id2a knockdown in zebrafish embryos had no effect on hepatoblast specification or hepatocyte differentiation. However, liver size was greatly reduced in id2a morpholino-injected embryos, indicative of a hepatic outgrowth defect attributable to the significant decrease in proliferating hepatoblasts concomitant with the significant increase in hepatoblast cell death. Altogether, these data support the role of Id2a as an important regulator of hepatic outgrowth via modulation of hepatoblast proliferation and survival during liver development in zebrafish.
Collapse
|
76
|
Jiang F, Chen J, Ma X, Huang C, Zhu S, Wang F, Li L, Luo L, Ruan H, Huang H. Analysis of mutants from a genetic screening reveals the control of intestine and liver development by many common genes in zebrafish. Biochem Biophys Res Commun 2015; 460:838-44. [DOI: 10.1016/j.bbrc.2015.03.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 03/21/2015] [Indexed: 01/10/2023]
|
77
|
Cox AG, Goessling W. The lure of zebrafish in liver research: regulation of hepatic growth in development and regeneration. Curr Opin Genet Dev 2015; 32:153-61. [PMID: 25863341 DOI: 10.1016/j.gde.2015.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/23/2015] [Accepted: 03/05/2015] [Indexed: 12/18/2022]
Abstract
The liver is an essential organ that plays a pivotal role in metabolism, digestion and nutrient storage. Major efforts have been made to develop zebrafish (Danio rerio) as a model system to study the pathways regulating hepatic growth during liver development and regeneration. Zebrafish offer unique advantages over other vertebrates including in vivo imaging at cellular resolution and the capacity for large-scale chemical and genetic screens. Here, we review the cellular and molecular mechanisms that regulate hepatic growth during liver development in zebrafish. We also highlight emerging evidence that developmental pathways are reactivated following liver injury to facilitate regeneration. Finally, we discuss how zebrafish have transformed drug discovery efforts and enabled the identification of drugs that stimulate hepatic growth and provide hepatoprotection in pre-clinical models of liver injury, with the ultimate goal of identifying novel therapeutic approaches to treat liver disease.
Collapse
Affiliation(s)
- Andrew G Cox
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Wolfram Goessling
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Dana-Farber Cancer Institute, Boston, MA, United States; Harvard Stem Cell Institute, Cambridge, MA, United States; Broad Institute of MIT and Harvard, Cambridge, MA, United States.
| |
Collapse
|
78
|
Animal model of Sar1b deficiency presents lipid absorption deficits similar to Anderson disease. J Mol Med (Berl) 2015; 93:165-76. [PMID: 25559265 DOI: 10.1007/s00109-014-1247-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 11/19/2014] [Accepted: 12/18/2014] [Indexed: 01/25/2023]
Abstract
Anderson disease (ANDD) or chylomicron retention disease (CMRD) is a rare, hereditary lipid malabsorption syndrome associated with mutations in the SAR1B gene that is characterized by failure to thrive and hypocholesterolemia. Although the SAR1B structure has been resolved and its role in formation of coat protein II (COPII)-coated carriers is well established, little is known about the requirement for SAR1B during embryogenesis. To address this question, we have developed a zebrafish model of Sar1b deficiency based on antisense oligonucleotide knockdown. We show that zebrafish sar1b is highly conserved among vertebrates; broadly expressed during development; and enriched in the digestive tract organs, brain, and craniofacial skeleton. Consistent with ANDD symptoms of chylomicron retention, we found that dietary lipids in Sar1b-deficient embryos accumulate in enterocytes. Transgenic expression analysis revealed that Sar1b is required for growth of exocrine pancreas and liver. Furthermore, we found abnormal differentiation and maturation of craniofacial cartilage associated with defects in procollagen II secretion and absence of select, neuroD-positive neurons of the midbrain and hindbrain. The model presented here will help to systematically dissect developmental roles of Sar1b and to discover molecular and cellular mechanisms leading to organ-specific ANDD pathology. Key messages: Sar1b depletion phenotype in zebrafish resembles Anderson disease deficits. Sar1b deficiency results in multi-organ developmental deficits. Sar1b is required for dietary cholesterol uptake into enterocytes.
Collapse
|
79
|
Riley KG, Gannon M. Pancreas Development and Regeneration. PRINCIPLES OF DEVELOPMENTAL GENETICS 2015:565-590. [DOI: 10.1016/b978-0-12-405945-0.00031-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
80
|
Gao W, Zhou P, Ma X, Tschudy-Seney B, Chen J, Magner NL, Revzin A, Nolta JA, Zern MA, Duan Y. Ethanol negatively regulates hepatic differentiation of hESC by inhibition of the MAPK/ERK signaling pathway in vitro. PLoS One 2014; 9:e112698. [PMID: 25393427 PMCID: PMC4231066 DOI: 10.1371/journal.pone.0112698] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/10/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Alcohol insult triggers complex events in the liver, promoting fibrogenic/inflammatory signals and in more advanced cases, aberrant matrix deposition. It is well accepted that the regenerative capacity of the adult liver is impaired during alcohol injury. The liver progenitor/stem cells have been shown to play an important role in liver regeneration -in response to various chronic injuries; however, the effects of alcohol on stem cell differentiation in the liver are not well understood. METHODS We employed hepatic progenitor cells derived from hESCs to study the impact of ethanol on hepatocyte differentiation by exposure of these progenitor cells to ethanol during hepatocyte differentiation. RESULTS We found that ethanol negatively regulated hepatic differentiation of hESC-derived hepatic progenitor cells in a dose-dependent manner. There was also a moderate cell cycle arrest at G1/S checkpoint in the ethanol treated cells, which is associated with a reduced level of cyclin D1 in these cells. Ethanol treatment specifically inhibited the activation of the ERK but not JNK nor the p38 MAP signaling pathway. At the same time, the WNT signaling pathway was also reduced in the cells exposed to ethanol. Upon evaluating the effects of the inhibitors of these two signaling pathways, we determined that the Erk inhibitor replicated the effects of ethanol on the hepatocyte differentiation and attenuated the WNT/β-catenin signaling, however, inhibitors of WNT only partially replicated the effects of ethanol on the hepatocyte differentiation. CONCLUSION Our results demonstrated that ethanol negatively regulated hepatic differentiation of hESC-derived hepatic progenitors through inhibiting the MAPK/ERK signaling pathway, and subsequently attenuating the WNT signaling pathway. Thus, our finding provides a novel insight into the mechanism by which alcohol regulates cell fate selection of hESC-derived hepatic progenitor cells, and the identified pathways may provide therapeutic targets aimed at promoting liver repair and regeneration during alcoholic injury.
Collapse
Affiliation(s)
- Wei Gao
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha, Hunan, China
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, United States of America
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Ping Zhou
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, United States of America
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, United States of America
- * E-mail: (YD); (PZ)
| | - Xiaocui Ma
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, United States of America
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Benjamin Tschudy-Seney
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, United States of America
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Jiamei Chen
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, United States of America
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, United States of America
- Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nataly L. Magner
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, United States of America
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Alexander Revzin
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Jan A. Nolta
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, United States of America
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Mark A. Zern
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, United States of America
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Yuyou Duan
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California, United States of America
- Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, United States of America
- * E-mail: (YD); (PZ)
| |
Collapse
|
81
|
Wang J, Rhee S, Palaria A, Tremblay KD. FGF signaling is required for anterior but not posterior specification of the murine liver bud. Dev Dyn 2014; 244:431-43. [PMID: 25302779 DOI: 10.1002/dvdy.24215] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/03/2014] [Accepted: 09/23/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The definitive endoderm arises as a naive epithelial sheet that produces the entire gut tube and associated organs including the liver, pancreas and lungs. Murine explant studies demonstrate that fibroblast growth factor (FGF) signaling from adjacent tissues is required to induce hepatic gene expression from isolated foregut endoderm. The requirement of FGF signaling during liver development is examined by means of small molecule inhibition during whole embryo culture. RESULTS Loss of FGF signaling before hepatic induction results in morphological defects and gene expression changes that are confined to the anterior liver bud. In contrast the posterior portion of the liver bud remains relatively unaffected. Because FGF is thought to act as a morphogen during endoderm organogenesis, the ventral pancreas was also examined after FGF inhibition. Although the size of the ventral pancreas is not affected, loss of FGF signaling results in a significantly higher density of ventral pancreas cells. CONCLUSIONS The requirement for FGF-mediated induction of hepatic gene expression differs across the anterior/posterior axis of the developing liver bud. These results underscore the importance of studying tissue differentiation in the context of the whole embryo.
Collapse
Affiliation(s)
- Jikui Wang
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | | | | | | |
Collapse
|
82
|
Hypoxia-inducible factor 2 alpha is essential for hepatic outgrowth and functions via the regulation of leg1 transcription in the zebrafish embryo. PLoS One 2014; 9:e101980. [PMID: 25000307 PMCID: PMC4084947 DOI: 10.1371/journal.pone.0101980] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 06/13/2014] [Indexed: 12/11/2022] Open
Abstract
The liver plays a vital role in metabolism, detoxification, digestion, and the maintenance of homeostasis. During development, the vertebrate embryonic liver undergoes a series of morphogenic processes known as hepatogenesis. Hepatogenesis can be separated into three interrelated processes: endoderm specification, hepatoblast differentiation, and hepatic outgrowth. Throughout this process, signaling molecules and transcription factors initiate and regulate the coordination of cell proliferation, apoptosis, differentiation, intercellular adhesion, and cell migration. Hifs are already recognized to be essential in embryonic development, but their role in hepatogenesis remains unknown. Using the zebrafish embryo as a model organism, we report that the lack of Hif2-alpha but not Hif1-alpha blocks hepatic outgrowth. While Hif2-alpha is not involved in hepatoblast specification, this transcription factor regulates hepatocyte cell proliferation during hepatic outgrowth. Furthermore, we demonstrated that the lack of Hif2-alpha can reduce the expression of liver-enriched gene 1 (leg1), which encodes a secretory protein essential for hepatic outgrowth. Additionally, exogenous mRNA expression of leg1 can rescue the small liver phenotype of hif2-alpha morphants. We also showed that Hif2-alpha directly binds to the promoter region of leg1 to control leg1 expression. Interestingly, we discovered overrepresented, high-density Hif-binding sites in the potential upstream regulatory sequences of leg1 in teleosts but not in terrestrial mammals. We concluded that hif2-alpha is a key factor required for hepatic outgrowth and regulates leg1 expression in zebrafish embryos. We also proposed that the hif2-alpha-leg1 axis in liver development may have resulted from the adaptation of teleosts to their environment.
Collapse
|
83
|
Arterbery AS, Bogue CW. Endodermal and mesenchymal cross talk: a crossroad for the maturation of foregut organs. Pediatr Res 2014; 75:120-6. [PMID: 24192700 DOI: 10.1038/pr.2013.201] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/27/2013] [Indexed: 01/30/2023]
Abstract
The developmental stages of each foregut organ are intimately linked to the development of the other foregut organs such that the ultimate function of any one foregut organ, such as the metabolic function of the liver, depends on organizational changes associated with the maturation of multiple foregut organs. These changes include: (i) proliferation of the intrahepatic bile ducts and hepatoblasts within the liver coinciding with parenchymal expansion, (ii) elongation of extrahepatic bile ducts, which allows for proper gallbladder (GB) formation, and (iii) duodenal elongation and rotation, which coincides with all of the above to connect the intrahepatic, extrahepatic, and pancreatic ductal systems with the intestine. It is well established that cross talk between endodermal and mesenchymal components of the foregut occurs, particularly regarding the vascularization of developing organs. Furthermore, genetic mutations in mesenchymal and hepatic compartments of the developing foregut result in similar foregut pathologies: hypoplastic liver, absence of GB, biliary atresia (intrahepatic and/or extrahepatic), and failure of gut elongation and rotation. Finally, these shared pathologies can be linked to deficiencies in genes specific to the septum transversum mesenchyme (Hes1, Hlx, and Foxf1) or liver (Hhex and Hnf6), illustrating the complexity of such cross talk.
Collapse
Affiliation(s)
- Adam S Arterbery
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| | - Clifford W Bogue
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
84
|
Abstract
The liver performs a large number of essential synthetic and regulatory functions that are acquired during fetal development and persist throughout life. Their disruption underlies a diverse group of heritable and acquired diseases that affect both pediatric and adult patients. Although experimental analyses used to study liver development and disease are typically performed in cell culture models or rodents, the zebrafish is increasingly used to complement discoveries made in these systems. Forward and reverse genetic analyses over the past two decades have shown that the molecular program for liver development is largely conserved between zebrafish and mammals, and that the zebrafish can be used to model heritable human liver disorders. Recent work has demonstrated that zebrafish can also be used to study the mechanistic basis of acquired liver diseases. Here, we provide a comprehensive summary of how the zebrafish has contributed to our understanding of human liver development and disease.
Collapse
Affiliation(s)
- Benjamin J Wilkins
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
85
|
Yamazoe T, Shiraki N, Toyoda M, Kiyokawa N, Okita H, Miyagawa Y, Akutsu H, Umezawa A, Sasaki Y, Kume K, Kume S. A synthetic nanofibrillar matrix promotes in vitro hepatic differentiation of embryonic stem cells and induced pluripotent stem cells. J Cell Sci 2013; 126:5391-9. [PMID: 24101719 DOI: 10.1242/jcs.129767] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Embryonic stem (ES) cells recapitulate normal developmental processes and serve as an attractive source for routine access to a large number of cells for research and therapies. We previously reported that ES cells cultured on M15 cells, or a synthesized basement membrane (sBM) substratum, efficiently differentiated into an endodermal fate and subsequently adopted fates of various digestive organs, such as the pancreas and liver. Here, we established a novel hepatic differentiation procedure using the synthetic nanofiber (sNF) as a cell culture scaffold. We first compared endoderm induction and hepatic differentiation between murine ES cells grown on sNF and several other substrata. The functional assays for hepatocytes reveal that the ES cells grown on sNF were directed into hepatic differentiation. To clarify the mechanisms for the promotion of ES cell differentiation in the sNF system, we focused on the function of Rac1, which is a Rho family member protein known to regulate the actin cytoskeleton. We observed the activation of Rac1 in undifferentiated and differentiated ES cells cultured on sNF plates, but not in those cultured on normal plastic plates. We also show that inhibition of Rac1 blocked the potentiating effects of sNF on endoderm and hepatic differentiation throughout the whole differentiation stages. Taken together, our results suggest that morphological changes result in cellular differentiation controlled by Rac1 activation, and that motility is not only the consequence, but is also able to trigger differentiation. In conclusion, we believe that sNF is a promising material that might contribute to tissue engineering and drug delivery.
Collapse
Affiliation(s)
- Taiji Yamazoe
- Division of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Lu H, Ma J, Yang Y, Shi W, Luo L. EpCAM is an endoderm-specific Wnt derepressor that licenses hepatic development. Dev Cell 2013; 24:543-53. [PMID: 23484855 DOI: 10.1016/j.devcel.2013.01.021] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 11/26/2012] [Accepted: 01/28/2013] [Indexed: 12/14/2022]
Abstract
Mechanisms underlying cell-type-specific response to morphogens or signaling molecules during embryonic development are poorly understood. To learn how response to the liver-inductive Wnt2bb signal is achieved, we identify an endoderm-enriched, single transmembrane protein, epithelial-cell-adhesion-molecule (EpCAM), as an endoderm-specific Wnt derepressor in zebrafish. hi2151/epcam mutants exhibit defective liver development similar to prt/wnt2bb mutants. EpCAM directly binds to Kremen1 and disrupts the Kremen1-Dickkopf2 (Dkk2) interaction, which prevents Kremen1-Dkk2-mediated removal of Lipoprotein-receptor-related protein 6 (Lrp6) from the cell surface. These data lead to a model in which EpCAM derepresses Lrp6 and cooperates with Wnt ligand to activate Wnt signaling through stabilizing membrane Lrp6 and allowing Lrp6 clustering into active signalosomes. Thus, EpCAM cell autonomously licenses and cooperatively activates Wnt2bb signaling in endodermal cells. Our results identify EpCAM as the key molecule and its functional mechanism to confer endodermal cells the competence to respond to the liver-inductive Wnt2bb signal.
Collapse
Affiliation(s)
- Huiqiang Lu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China
| | | | | | | | | |
Collapse
|
87
|
Abstract
Liver is a prime organ responsible for synthesis, metabolism, and detoxification. The organ is endodermal in origin and its development is regulated by temporal, complex, and finely balanced cellular and molecular interactions that dictate its origin, growth, and maturation. We discuss the relevance of endoderm patterning, which truly is the first step toward mapping of domains that will give rise to specific organs. Once foregut patterning is completed, certain cells within the foregut endoderm gain competence in the form of expression of certain transcription factors that allow them to respond to certain inductive signals. Hepatic specification is then a result of such inductive signals, which often emanate from the surrounding mesenchyme. During hepatic specification bipotential hepatic stem cells or hepatoblasts become apparent and undergo expansion, which results in a visible liver primordium during the stage of hepatic morphogenesis. Hepatoblasts next differentiate into either hepatocytes or cholangiocytes. The expansion and differentiation is regulated by cellular and molecular interactions between hepatoblasts and mesenchymal cells including sinusoidal endothelial cells, stellate cells, and also innate hematopoietic elements. Further maturation of hepatocytes and cholangiocytes continues during late hepatic development as a function of various growth factors. At this time, liver gains architectural novelty in the form of zonality and at cellular level acquires polarity. A comprehensive elucidation of such finely tuned developmental cues have been the basis of transdifferentiation of various types of stem cells to hepatocyte-like cells for purposes of understanding health and disease and for therapeutic applications.
Collapse
Affiliation(s)
- Donghun Shin
- Department of Developmental Biology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | |
Collapse
|
88
|
Shen MC, Ozacar AT, Osgood M, Boeras C, Pink J, Thomas J, Kohtz JD, Karlstrom R. Heat-shock-mediated conditional regulation of hedgehog/gli signaling in zebrafish. Dev Dyn 2013; 242:539-49. [PMID: 23441066 DOI: 10.1002/dvdy.23955] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 12/16/2012] [Accepted: 01/14/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Hedgehog (Hh) signaling is required for embryogenesis and continues to play key roles postembryonically in many tissues, influencing growth, stem cell proliferation, and tumorigenesis. Systems for conditional regulation of Hh signaling facilitate the study of these postembryonic Hh functions. RESULTS We used the hsp70l promoter to generated three heat-shock-inducible transgenic lines that activate Hh signaling and one line that represses Hh signaling. Heat-shock activation of these transgenes appropriately recapitulates early embryonic loss or gain of Hh function phenotypes. Hh signaling remains activated 24 hr after heat shock in the Tg(hsp70l:shha-EGFP) and Tg(hsp70l:dnPKA-BGFP) lines, while a single heat shock of the Tg(hsp70l:gli1-EGFP) or Tg(hsp70l:gli2aDR-EGFP) lines results in a 6- to 12-hr pulse of Hh signal activation or inactivation, respectively. Using both in situ hybridization and quantitative polymerase chain reaction, we show that these lines can be used to manipulate Hh signaling through larval and juvenile stages. A ptch2 promoter element was used to generate new reporter lines that allow clear visualization of Hh responding cells throughout the life cycle, including graded Hh responses in the embryonic central nervous system. CONCLUSIONS These zebrafish transgenic lines provide important new experimental tools to study the embryonic and postembryonic roles of Hh signaling.
Collapse
Affiliation(s)
- Meng-Chieh Shen
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Fibroblast growth factor receptor 2c signaling is required for intestinal cell differentiation in zebrafish. PLoS One 2013; 8:e58310. [PMID: 23484013 PMCID: PMC3590179 DOI: 10.1371/journal.pone.0058310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 02/01/2013] [Indexed: 12/15/2022] Open
Abstract
Background There are four cell lineages derived from intestinal stem cells that are located at the crypt and villus in the mammalian intestine the non-secretory absorptive enterocytes, and the secretory cells, which include mucous-secreting goblet cells, regulatory peptide-secreting enteroendocrine cells and antimicrobial peptide-secreting Paneth cells. Although fibroblast growth factor (Fgf) signaling is important for cell proliferation and differentiation in various tissues, its role in intestinal differentiation is less well understood. Methodology/Principal Findings We used a loss of function approach to investigate the importance of Fgf signaling in intestinal cell differentiation in zebrafish; abnormal differentiation of goblet cells was observed when Fgf signaling was inhibited using SU5402 or in the Tg(hsp70ldnfgfr1-EGFP) transgenic line. We identified Fgfr2c as an important receptor for cell differentiation. The number of goblet cells and enteroendocrine cells was reduced in fgfr2c morphants. In addition to secretory cells, enterocyte differentiation was also disrupted in fgfr2c morphants. Furthermore, proliferating cells were increased in the morphants. Interestingly, the loss of fgfr2c expression repressed secretory cell differentiation and increased cell proliferation in the mibta52b mutant that had defective Notch signaling. Conclusions/Significance In conclusion, we found that Fgfr2c signaling derived from mesenchymal cells is important for regulating the differentiation of zebrafish intestine epithelial cells by promoting cell cycle exit. The results of Fgfr2c knockdown in mibta52b mutants indicated that Fgfr2c signaling is required for intestinal cell differentiation. These findings provide new evidences that Fgf signaling is required for the differentiation of intestinal cells in the zebrafish developing gut.
Collapse
|
90
|
Duszynski RJ, Topczewski J, LeClair EE. Divergent requirements for fibroblast growth factor signaling in zebrafish maxillary barbel and caudal fin regeneration. Dev Growth Differ 2013; 55:282-300. [PMID: 23350700 DOI: 10.1111/dgd.12035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 12/14/2012] [Accepted: 12/14/2012] [Indexed: 12/31/2022]
Abstract
The zebrafish maxillary barbel is an integumentary organ containing skin, glands, pigment cells, taste buds, nerves, and endothelial vessels. The maxillary barbel can regenerate (LeClair & Topczewski 2010); however, little is known about its molecular regulation. We have studied fibroblast growth factor (FGF) pathway molecules during barbel regeneration, comparing this system to a well-known regenerating appendage, the zebrafish caudal fin. Multiple FGF ligands (fgf20a, fgf24), receptors (fgfr1-4) and downstream targets (pea3, il17d) are expressed in normal and regenerating barbel tissue, confirming FGF activation. To test if specific FGF pathways were required for barbel regeneration, we performed simultaneous barbel and caudal fin amputations in two temperature-dependent zebrafish lines. Zebrafish homozygous for a point mutation in fgf20a, a factor essential for caudal fin blastema formation, regrew maxillary barbels normally, indicating that the requirement for this ligand is appendage-specific. Global overexpression of a dominant negative FGF receptor, Tg(hsp70l:dn-fgfr1:EGFP)(pd1) completely blocked fin outgrowth but only partially inhibited barbel outgrowth, suggesting reduced requirements for FGFs in barbel tissue. Maxillary barbels expressing dn-fgfr1 regenerated peripheral nerves, dermal connective tissue, endothelial tubes, and a glandular epithelium; in contrast to a recent report in which dn-fgfr1 overexpression blocks pharyngeal taste bud formation in zebrafish larvae (Kapsimali et al. 2011), we observed robust formation of calretinin-positive tastebuds. These are the first experiments to explore the molecular mechanisms of maxillary barbel regeneration. Our results suggest heterogeneous requirements for FGF signaling in the regeneration of different zebrafish appendages (caudal fin versus maxillary barbel) and taste buds of different embryonic origin (pharyngeal endoderm versus barbel ectoderm).
Collapse
Affiliation(s)
- Robert J Duszynski
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | | | | |
Collapse
|
91
|
Fujikura J, Hosoda K, Nakao K. Cell transplantation therapy for diabetes mellitus: endocrine pancreas and adipocyte. Endocr J 2013; 60:697-708. [PMID: 23719783 DOI: 10.1507/endocrj.ej13-0162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Experimental transplantation of endocrine tissues has led to significant advances in our understanding of endocrinology and metabolism. Endocrine cell transplantation therapy is expected to be applied to the treatment of metabolic endocriopathies. Restoration of functional pancreatic beta-cell mass or of functional adipose mass are reasonable treatment approaches for patients with diabetes or lipodystrophy, respectively. Human induced pluripotent stem (iPS) cell research is having a great impact on life sciences. Doctors Takahashi and Yamanaka discovered that the forced expression of a set of genes can convert mouse and human somatic cells into a pluripotent state [1, 2]. These iPS cells can differentiate into a variety of cell types. Therefore, iPS cells from patients may be a potential cell source for autologous cell replacement therapy. This review briefly summarizes the current knowledge about transplantation therapy for diabetes mellitus, the development of the endocrine pancreas and adipocytes, and endocrine-metabolic disease-specific iPS cells.
Collapse
Affiliation(s)
- Junji Fujikura
- Division of Endocrinology and Metabolism, Kyoto University Hospital, Kyoto 606-8507, Japan.
| | | | | |
Collapse
|
92
|
Garnaas MK, Cutting CC, Meyers A, Kelsey PB, Harris JM, North TE, Goessling W. Rargb regulates organ laterality in a zebrafish model of right atrial isomerism. Dev Biol 2012; 372:178-89. [PMID: 22982668 PMCID: PMC3697125 DOI: 10.1016/j.ydbio.2012.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/26/2012] [Accepted: 09/06/2012] [Indexed: 02/02/2023]
Abstract
Developmental signals determine organ morphology and position during embryogenesis. To discover novel modifiers of liver development, we performed a chemical genetic screen in zebrafish and identified retinoic acid as a positive regulator of hepatogenesis. Knockdown of the four RA receptors revealed that all receptors affect liver formation, however specific receptors exert differential effects. Rargb knockdown results in bilateral livers but does not impact organ size, revealing a unique role for Rargb in conferring left-right positional information. Bilateral populations of hepatoblasts are detectable in rargb morphants, indicating Rargb acts during hepatic specification to position the liver, and primitive endoderm is competent to form liver on both sides. Hearts remain at the midline and gut looping is perturbed in rargb morphants, suggesting Rargb affects lateral plate mesoderm migration. Overexpression of Bmp during somitogenesis similarly results in bilateral livers and midline hearts, and inhibition of Bmp signaling rescues the rargb morphant phenotype, indicating Rargb functions upstream of Bmp to regulate organ sidedness. Loss of rargb causes biliary and organ laterality defects as well as asplenia, paralleling symptoms of the human condition right atrial isomerism. Our findings uncover a novel role for RA in regulating organ laterality and provide an animal model of one form of human heterotaxia.
Collapse
Affiliation(s)
- Maija K Garnaas
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
93
|
Verzi MP, Shivdasani RA. Wnt signaling in gut organogenesis. Organogenesis 2012; 4:87-91. [PMID: 19279719 DOI: 10.4161/org.4.2.5854] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 03/06/2008] [Indexed: 01/11/2023] Open
Abstract
Wnt signaling regulates some aspect of development of nearly all endoderm-derived organs and Wnts mediate both differentiation and proliferation at different steps during visceral organogenesis. Wnt2b induces liver formation in zebrafish 1 and may combine with other inducers, Fibroblast Growth Factors 1 & 4 and Bone Morphogenetic Protein 4, to specify the mammalian liver.2-5 Later in development, Wnts are critical for liver expansion and, finally, for terminal hepatocyte differentiation,6-12 as reviewed elsewhere in this issue (Monga). Likewise, in the pancreas, Wnts drive proliferation of exocrine and endocrine cells13,14 and promote acinar cell differentiation,13,15 as reviewed in the chapter by Murtaugh. Here we examine the intricate involvement of Wnt signaling in growth and differentiation of the digestive tract.
Collapse
Affiliation(s)
- Michael P Verzi
- Department of Medical Oncology; Dana-Farber Cancer Institute; and Department of Medicine; Harvard Medical School; Boston, Massachusetts, USA
| | | |
Collapse
|
94
|
Shifley ET, Kenny AP, Rankin SA, Zorn AM. Prolonged FGF signaling is necessary for lung and liver induction in Xenopus. BMC DEVELOPMENTAL BIOLOGY 2012; 12:27. [PMID: 22988910 PMCID: PMC3514138 DOI: 10.1186/1471-213x-12-27] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 09/10/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND FGF signaling plays numerous roles during organogenesis of the embryonic gut tube. Mouse explant studies suggest that different thresholds of FGF signaling from the cardiogenic mesoderm induce lung, liver, and pancreas lineages from the ventral foregut progenitor cells. The mechanisms that regulate FGF dose in vivo are unknown. Here we use Xenopus embryos to examine the hypothesis that a prolonged duration of FGF signaling from the mesoderm is required to induce foregut organs. RESULTS We show that both mesoderm and FGF signaling are required for liver and lung development in Xenopus; formally demonstrating that this important step in organ induction is conserved with other vertebrate species. Prolonged contact with the mesoderm and persistent FGF signaling through both MEK and PI3K over an extended period of time are required for liver and lung specification. Inhibition of FGF signaling results in reduced liver and lung development, with a modest expansion of the pancreas/duodenum progenitor domain. Hyper-activation of FGF signaling has the opposite effect expanding liver and lung gene expression and repressing pancreatic markers. We show that FGF signaling is cell autonomously required in the endoderm and that a dominant negative FGF receptor decreases the ability of ventral foregut progenitor cells to contribute to the lung and liver buds. CONCLUSIONS These results suggest that the liver and lungs are specified at progressively later times in development requiring mesoderm contact for different lengths of time. Our data suggest that this is achieved at least in part through prolonged FGF signaling. In addition to providing a foundation for further mechanistic studies on foregut organogenesis using the experimental advantages of the Xenopus system, these data have implications for the directed differentiation of stem cells into foregut lineages.
Collapse
Affiliation(s)
- Emily T Shifley
- Perinatal Institute, Divisions of Developmental Biology, University of Cincinnati, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
95
|
Sheaffer KL, Kaestner KH. Transcriptional networks in liver and intestinal development. Cold Spring Harb Perspect Biol 2012; 4:a008284. [PMID: 22952394 DOI: 10.1101/cshperspect.a008284] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of the gastrointestinal tract is a complex process that integrates signaling processes with downstream transcriptional responses. Here, we discuss the regionalization of the primitive gut and formation of the intestine and liver. Anterior-posterior position in the primitive gut is important for establishing regions that will become functional organs. Coordination of signaling between the epithelium and mesenchyme and downstream transcriptional responses is required for intestinal development and homeostasis. Liver development uses a complex transcriptional network that controls the establishment of organ domains, cell differentiation, and adult function. Discussion of these transcriptional mechanisms gives us insight into how the primitive gut, composed of simple endodermal cells, develops into multiple diverse cell types that are organized into complex mature organs.
Collapse
Affiliation(s)
- Karyn L Sheaffer
- Department of Genetics, Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
96
|
Ribosome biogenesis factor Bms1-like is essential for liver development in zebrafish. J Genet Genomics 2012; 39:451-62. [PMID: 23021545 DOI: 10.1016/j.jgg.2012.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 11/20/2022]
Abstract
Ribosome biogenesis in the nucleolus requires numerous nucleolar proteins and small non-coding RNAs. Among them is ribosome biogenesis factor Bms1, which is highly conserved from yeast to human. In yeast, Bms1 initiates ribosome biogenesis through recruiting Rcl1 to pre-ribosomes. However, little is known about the biological function of Bms1 in vertebrates. Here we report that Bms1 plays an essential role in zebrafish liver development. We identified a zebrafish bms1l(sq163) mutant which carries a T to A mutation in the gene bms1-like (bms1l). This mutation results in L(152) to Q(152) substitution in a GTPase motif in Bms1l. Surprisingly, bms1l(sq163) mutation confers hypoplasia specifically in the liver, exocrine pancreas and intestine after 3 days post-fertilization (dpf). Consistent with the bms1l(sq163) mutant phenotypes, whole-mount in situ hybridization (WISH) on wild type embryos showed that bms1l transcripts are abundant in the entire digestive tract and its accessory organs. Immunostaining for phospho-Histone 3 (P-H3) and TUNEL assay revealed that impairment of hepatoblast proliferation rather than cell apoptosis is one of the consequences of bms1l(sq163) giving rise to an under-developed liver. Therefore, our findings demonstrate that Bms1l is necessary for zebrafish liver development.
Collapse
|
97
|
Seymour PA, Shih HP, Patel NA, Freude KK, Xie R, Lim CJ, Sander M. A Sox9/Fgf feed-forward loop maintains pancreatic organ identity. Development 2012; 139:3363-72. [PMID: 22874919 DOI: 10.1242/dev.078733] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
All mature pancreatic cell types arise from organ-specific multipotent progenitor cells. Although previous studies have identified cell-intrinsic and -extrinsic cues for progenitor cell expansion, it is unclear how these cues are integrated within the niche of the developing organ. Here, we present genetic evidence in mice that the transcription factor Sox9 forms the centerpiece of a gene regulatory network that is crucial for proper organ growth and maintenance of organ identity. We show that pancreatic progenitor-specific ablation of Sox9 during early pancreas development causes pancreas-to-liver cell fate conversion. Sox9 deficiency results in cell-autonomous loss of the fibroblast growth factor receptor (Fgfr) 2b, which is required for transducing mesenchymal Fgf10 signals. Likewise, Fgf10 is required to maintain expression of Sox9 and Fgfr2 in epithelial progenitors, showing that Sox9, Fgfr2 and Fgf10 form a feed-forward expression loop in the early pancreatic organ niche. Mirroring Sox9 deficiency, perturbation of Fgfr signaling in pancreatic explants or genetic inactivation of Fgf10 also result in hepatic cell fate conversion. Combined with previous findings that Fgfr2b or Fgf10 are necessary for pancreatic progenitor cell proliferation, our results demonstrate that organ fate commitment and progenitor cell expansion are coordinately controlled by the activity of a Sox9/Fgf10/Fgfr2b feed-forward loop in the pancreatic niche. This self-promoting Sox9/Fgf10/Fgfr2b loop may regulate cell identity and organ size in a broad spectrum of developmental and regenerative contexts.
Collapse
Affiliation(s)
- Philip A Seymour
- Departments of Pediatrics and Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0695, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Kenny AP, Rankin SA, Allbee AW, Prewitt AR, Zhang Z, Tabangin ME, Shifley ET, Louza MP, Zorn AM. Sizzled-tolloid interactions maintain foregut progenitors by regulating fibronectin-dependent BMP signaling. Dev Cell 2012; 23:292-304. [PMID: 22863744 DOI: 10.1016/j.devcel.2012.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 04/03/2012] [Accepted: 07/03/2012] [Indexed: 12/28/2022]
Abstract
The liver, pancreas, and lungs are induced from endoderm progenitors by a series of dynamic growth factor signals from the mesoderm, but how the temporal-spatial activity of these signals is controlled is poorly understood. We have identified an extracellular regulatory loop required for robust bone morphogenetic protein (BMP) signaling in the Xenopus foregut. We show that BMP signaling is required to maintain foregut progenitors and induce expression of the secreted frizzled related protein Sizzled (Szl) and the extracellular metalloprotease Tolloid-like 1 (Tll1). Szl negatively regulates Tll activity to control deposition of a fibronectin (FN) matrix between the mesoderm and endoderm, which is required to maintain BMP signaling. Foregut-specific Szl depletion results in a loss of the FN matrix and failure to maintain robust pSmad1 levels, causing a loss of foregut gene expression and organ agenesis. These results have implications for BMP signaling in diverse contexts and the differentiation of foregut tissue from stem cells.
Collapse
Affiliation(s)
- Alan P Kenny
- Perinatal Institute, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Tsai SM, Liu DW, Wang WP. Fibroblast growth factor (Fgf) signaling pathway regulates liver homeostasis in zebrafish. Transgenic Res 2012; 22:301-14. [DOI: 10.1007/s11248-012-9636-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/05/2012] [Indexed: 02/08/2023]
|
100
|
So J, Martin BL, Kimelman D, Shin D. Wnt/β-catenin signaling cell-autonomously converts non-hepatic endodermal cells to a liver fate. Biol Open 2012; 2:30-6. [PMID: 23336074 PMCID: PMC3545266 DOI: 10.1242/bio.20122857] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 09/24/2012] [Indexed: 01/05/2023] Open
Abstract
Wnt/β-catenin signaling plays multiple roles in liver development including hepatoblast proliferation and differentiation, hepatocyte differentiation, and liver zonation. A positive role for Wnt/β-catenin signaling in liver specification was recently identified in zebrafish; however, its underlying cellular mechanisms are unknown. Here, we present two cellular mechanisms by which Wnt/β-catenin signaling regulates liver specification. First, using lineage tracing we show that ectopic hepatoblasts, which form in the endoderm posterior to the liver upon activation of Wnt/β-catenin signaling, are derived from the direct conversion of non-hepatic endodermal cells, but not from the posterior migration of hepatoblasts. We found that endodermal cells at the 4-6(th) somite levels, which normally give rise to the intestinal bulb or intestine, gave rise to hepatoblasts in Wnt8a-overexpressing embryos, and that the distribution of traced endodermal cells in Wnt8a-overexpressing embryos was similar to that in controls. Second, by using an endoderm-restricted cell-transplantation technique and mosaic analysis with transgenic lines that cell-autonomously suppress or activate Wnt/β-catenin signaling upon heat-shock, we show that Wnt/β-catenin signaling acts cell-autonomously in endodermal cells to induce hepatic conversion. Altogether, these data demonstrate that Wnt/β-catenin signaling can induce the fate-change of non-hepatic endodermal cells into a liver fate in a cell-autonomous manner. These findings have potential application to hepatocyte differentiation protocols for the generation of mature hepatocytes from induced pluripotent stem cells, supplying a sufficient amount of hepatocytes for cell-based therapies to treat patients with severe liver diseases.
Collapse
Affiliation(s)
- Juhoon So
- Department of Developmental Biology, University of Pittsburgh , Pittsburgh, PA 15260 , USA
| | | | | | | |
Collapse
|