51
|
Taylor DM, Olds CL, Haney RS, Torrevillas BK, Luckhart S. Comprehensive and Durable Modulation of Growth, Development, Lifespan and Fecundity in Anopheles stephensi Following Larval Treatment With the Stress Signaling Molecule and Novel Antimalarial Abscisic Acid. Front Microbiol 2020; 10:3024. [PMID: 32010091 PMCID: PMC6979008 DOI: 10.3389/fmicb.2019.03024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022] Open
Abstract
The larval environment of holometabolous insects determines many adult life history traits including, but not limited to, rate and success of development and adult lifespan and fecundity. The ancient stress signaling hormone abscisic acid (ABA), released by plants inundated with water and by leaf and root fragments in water, is likely ubiquitous in the mosquito larval environment and is well known for its wide ranging effects on invertebrate biology. Accordingly, ABA is a relevant stimulus and signal for mosquito development. In our studies, the addition of ABA at biologically relevant levels to larval rearing containers accelerated the time to pupation and increased death of A. stephensi pupae. We could not attribute these effects, however, to ABA-dependent changes in JH biosynthesis-associated gene expression, 20E titers or transcript patterns of insulin-like peptide genes. Adult females derived from ABA-treated larvae had reduced total protein content and significantly reduced post blood meal transcript expression of vitellogenin, effects that were consistent with variably reduced egg clutch sizes and oviposition success from the first through the third gonotrophic cycles. Adult female A. stephensi derived from ABA-treated larvae also exhibited reduced lifespans relative to controls. Collectively, these effects of ABA on A. stephensi life history traits are robust, durable and predictive of multiple impacts of an important malaria vector spreading to new malaria endemic regions.
Collapse
Affiliation(s)
- Dean M Taylor
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Cassandra L Olds
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Reagan S Haney
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Brandi K Torrevillas
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States.,Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
52
|
Abstract
This autobiographical article describes the research career of Lynn M. Riddiford from its early beginnings in a summer program for high school students at Jackson Laboratory to the present "retirement" at the Friday Harbor Laboratories. The emphasis is on her forays into many areas of insect endocrinology, supported by her graduate students and postdoctoral associates. The main theme is the hormonal regulation of metamorphosis, especially the roles of juvenile hormone (JH). The article describes the work of her laboratory first in the elucidation of the endocrinology of the tobacco hornworm, Manduca sexta, and later in the molecular aspects of the regulation of cuticular and pigment proteins and of the ecdysone-induced transcription factor cascade during molting and metamorphosis. Later studies utilized Drosophila melanogaster to answer further questions about the actions of JH.
Collapse
Affiliation(s)
- Lynn M Riddiford
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington 98250, USA;
| |
Collapse
|
53
|
Lin X, Smagghe G. Roles of the insulin signaling pathway in insect development and organ growth. Peptides 2019; 122:169923. [PMID: 29458057 DOI: 10.1016/j.peptides.2018.02.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 12/16/2022]
Abstract
Organismal development is a complex process as it requires coordination of many aspects to grow into fit individuals, such as the control of body size and organ growth. Therefore, the mechanisms of precise control of growth are essential for ensuring the growth of organisms at a correct body size and proper organ proportions during development. The control of the growth rate and the duration of growth (or the cessation of growth) are required in size control. The insulin signaling pathway and the elements involved are essential in the control of growth. On the other hand, the ecdysteroid molting hormone determines the duration of growth. The secretion of these hormones is controlled by environmental factors such as nutrition. Moreover, the target of rapamycin (TOR) pathway is considered as a nutrient sensing pathway. Important cross-talks have been shown to exist among these pathways. In this review, we outline the control of body and organ growth by the insulin/TOR signaling pathway, and also the interaction between nutrition via insulin/TOR signaling and ecdysteroids at the coordination of organismal development and organ growth in insects, mainly focusing on the well-studied fruit fly Drosophila melanogaster.
Collapse
Affiliation(s)
- Xianyu Lin
- Department of Crop Protection, Ghent University, 9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
54
|
Moss-Taylor L, Upadhyay A, Pan X, Kim MJ, O'Connor MB. Body Size and Tissue-Scaling Is Regulated by Motoneuron-Derived Activinß in Drosophila melanogaster. Genetics 2019; 213:1447-1464. [PMID: 31585954 PMCID: PMC6893369 DOI: 10.1534/genetics.119.302394] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/29/2019] [Indexed: 01/17/2023] Open
Abstract
Correct scaling of body and organ size is crucial for proper development, and the survival of all organisms. Perturbations in circulating hormones, including insulins and steroids, are largely responsible for changing body size in response to both genetic and environmental factors. Such perturbations typically produce adults whose organs and appendages scale proportionately with final size. The identity of additional factors that might contribute to scaling of organs and appendages with body size is unknown. Here, we report that loss-of-function mutations in DrosophilaActivinβ (Actβ), a member of the TGF-β superfamily, lead to the production of small larvae/pupae and undersized rare adult escapers. Morphometric measurements of escaper adult appendage size (wings and legs), as well as heads, thoraxes, and abdomens, reveal a disproportional reduction in abdominal size compared to other tissues. Similar size measurements of selected Actβ mutant larval tissues demonstrate that somatic muscle size is disproportionately smaller when compared to the fat body, salivary glands, prothoracic glands, imaginal discs, and brain. We also show that Actβ control of body size is dependent on canonical signaling through the transcription-factor dSmad2 and that it modulates the growth rate, but not feeding behavior, during the third-instar period. Tissue- and cell-specific knockdown, and overexpression studies, reveal that motoneuron-derived Actβ is essential for regulating proper body size and tissue scaling. These studies suggest that, unlike in vertebrates, where Myostatin and certain other Activin-like factors act as systemic negative regulators of muscle mass, in Drosophila, Actβ is a positive regulator of muscle mass that is directly delivered to muscles by motoneurons. We discuss the importance of these findings in coordinating proportional scaling of insect muscle mass to appendage size.
Collapse
Affiliation(s)
- Lindsay Moss-Taylor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Ambuj Upadhyay
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Xueyang Pan
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Myung-Jun Kim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
55
|
Lyu Z, Li Z, Cheng J, Wang C, Chen J, Lin T. Suppression of Gene Juvenile Hormone Diol Kinase Delays Pupation in Heortia vitessoides Moore. INSECTS 2019; 10:insects10090278. [PMID: 31480643 PMCID: PMC6780227 DOI: 10.3390/insects10090278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 12/12/2022]
Abstract
Juvenile hormone diol kinase (JHDK) is a critical enzyme involved in juvenile hormone degradation in insects. In this study, HvJHDK in the Heortia vitessoides Moore (Lepidoptera: Crambidae) transcriptional library was cloned. Stage-specific expression patterns of HvJHDK, HvJHEH, and HvJHE as well as juvenile hormone titers were determined. The three tested enzymes participated in juvenile hormone degradation. Moreover, juvenile hormone titers peaked after larval–larval molts, consistent with a role for juvenile hormone in inhibition of metamorphosis. HvJHDK was subsequently suppressed using RNA interference (RNAi) to reveal its functions. Different concentrations of dsJHDK elicited the optimal interference efficiency at different life stages of H. vitessoides. Suppression of HvJHDK decreased HvJHDK content and increased the juvenile hormone titer, thereby resulting in reduced triglyceride content, sharply declined survival rate, clearly lethal phenotypes, and extended larval growth. Moreover, suppression of HvJHDK upregulated HvJHEH and HvJHE expression levels, suggesting that there is feedback regulation in the juvenile hormone metabolic pathway. Taken together, our findings provide molecular references for the selection of novel insecticidal targets.
Collapse
Affiliation(s)
- Zihao Lyu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Zhixing Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jie Cheng
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Chunyan Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jingxiang Chen
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Tong Lin
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
56
|
Ishimaru Y, Tomonari S, Watanabe T, Noji S, Mito T. Regulatory mechanisms underlying the specification of the pupal-homologous stage in a hemimetabolous insect. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190225. [PMID: 31438810 DOI: 10.1098/rstb.2019.0225] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Juvenile hormones and the genetic interaction between the transcription factors Krüppel homologue 1 (Kr-h1) and Broad (Br) regulate the transformation of insects from immature to adult forms in both types of metamorphosis (holometaboly with a pupal stage versus hemimetaboly with no pupal stage); however, knowledge about the exact instar in which this occurs is limited. Using the hemimetabolous cricket Gryllus bimaculatus (Gb), we demonstrate that a genetic interaction occurs among Gb'Kr-h1, Gb'Br and the adult-specifier transcription factor Gb'E93 from the sixth to final (eighth) nymphal instar. Gb'Kr-h1 and Gb'Br mRNAs were strongly expressed in the abdominal tissues of sixth instar nymphs, with precocious adult moults being induced by Gb'Kr-h1 or Gb'Br knockdown in the sixth instar. The depletion of Gb'Kr-h1 or Gb'Br upregulates Gb'E93 in the sixth instar. By contrast, Gb'E93 knockdown at the sixth instar prevents nymphs transitioning to adults, instead producing supernumerary nymphs. Gb'E93 also represses Gb'Kr-h1 and Gb'Br expression in the penultimate nymphal instar, demonstrating its important role in adult differentiation. Our results suggest that the regulatory mechanisms underlying the pupal transition in holometabolous insects are evolutionarily conserved in hemimetabolous G. bimaculatus, with the penultimate and final nymphal periods being equivalent to the pupal stage. This article is part of the theme issue 'The evolution of complete metamorphosis'.
Collapse
Affiliation(s)
- Yoshiyasu Ishimaru
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| | - Sayuri Tomonari
- Division of Chemical and Physical Analyses, Center for Technical Support, Institute of Technology and Science, Tokushima University, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8506, Japan
| | - Takahito Watanabe
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| | - Sumihare Noji
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| | - Taro Mito
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| |
Collapse
|
57
|
Green DA, Kronforst MR. Monarch butterflies use an environmentally sensitive, internal timer to control overwintering dynamics. Mol Ecol 2019; 28:3642-3655. [PMID: 31338928 PMCID: PMC6834359 DOI: 10.1111/mec.15178] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 01/09/2023]
Abstract
The monarch butterfly (Danaus plexippus) complements its iconic migration with diapause, a hormonally controlled developmental programme that contributes to winter survival at overwintering sites. Although timing is a critical adaptive feature of diapause, how environmental cues are integrated with genetically-determined physiological mechanisms to time diapause development, particularly termination, is not well understood. In a design that subjected western North American monarchs to different environmental chamber conditions over time, we modularized constituent components of an environmentally-controlled, internal diapause termination timer. Using comparative transcriptomics, we identified molecular controllers of these specific diapause termination components. Calcium signalling mediated environmental sensitivity of the diapause timer, and we speculate that it is a key integrator of environmental condition (cold temperature) with downstream hormonal control of diapause. Juvenile hormone (JH) signalling changed spontaneously in diapause-inducing conditions, capacitating response to future environmental condition. Although JH is a major target of the internal timer, it is not itself the timer. Epigenetic mechanisms are implicated to be the proximate timing mechanism. Ecdysteroid, JH, and insulin/insulin-like peptide signalling are major targets of the diapause programme used to control response to permissive environmental conditions. Understanding the environmental and physiological mechanisms of diapause termination sheds light on fundamental properties of biological timing, and also helps inform expectations for how monarch populations may respond to future climate change.
Collapse
Affiliation(s)
- Delbert A. Green
- Department of Ecology and Evolution University of Chicago. Chicago, IL 60637 USA
- Current Address: Department of Ecology and Evolutionary Biology University of Michigan. Ann Arbor, MI 48109 USA
| | - Marcus R. Kronforst
- Department of Ecology and Evolution University of Chicago. Chicago, IL 60637 USA
| |
Collapse
|
58
|
Li K, Jia QQ, Li S. Juvenile hormone signaling - a mini review. INSECT SCIENCE 2019; 26:600-606. [PMID: 29888456 DOI: 10.1111/1744-7917.12614] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Since it was first postulated by Wigglesworth in 1934, juvenile hormone (JH) is considered a status quo hormone in insects because it prevents metamorphosis that is initiated by the molting hormone 20-hydroxyecdysone (20E). During the last decade, significant advances have been made regarding JH signaling. First, the bHLH-PAS transcription factor Met/Gce was identified as the JH intracellular receptor. In the presence of JH, with the assistance of Hsp83, and through physical association with a bHLH-PAS transcriptional co-activator, Met/Gce enters the nucleus and binds to E-box-like motifs in promoter regions of JH primary-response genes for inducing gene expression. Second, the zinc finger transcription factor Kr-h1 was identified as the anti-metamorphic factor which transduces JH signaling. Via Kr-h1 binding sites, Kr-h1 represses expression of 20E primary-response genes (i.e. Br, E93 and E75) to prevent 20E-induced metamorphosis. Third, through the intracellular signaling, JH promotes different aspects of female reproduction. Nevertheless, this action varies greatly from species to species. Last, a hypothetical JH membrane receptor has been predicted to be either a GPCR or a tyrosine kinase receptor. In future, it will be a great challenge to understand how the JH intracellular receptor Met/Gce and the yet unidentified JH membrane receptor coordinate to regulate metamorphosis and reproduction in insects.
Collapse
Affiliation(s)
- Kang Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qiang-Qiang Jia
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sheng Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
59
|
Deshpande SA, Meiselman M, Hice RH, Arensburger P, Rivera-Perez C, Kim DH, Croft RL, Noriega FG, Adams ME. Ecdysis triggering hormone receptors regulate male courtship behavior via antennal lobe interneurons in Drosophila. Gen Comp Endocrinol 2019; 278:79-88. [PMID: 30543770 DOI: 10.1016/j.ygcen.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
Ecdysis triggering hormone receptors (ETHR) regulate the behavioral sequence necessary for cuticle shedding. Recent reports have documented functions for ETHR signaling in adult Drosophila melanogaster. In this study, we report that ETHR silencing in local interneurons of the antennal lobes and fruitless neurons leads to sharply increased rates of male-male courtship. RNAseq analysis of ETHR knockdown flies reveals differential expression of genes involved in axon guidance, courtship behavior and chemosensory functions. Our findings indicate an important role for ETHR in regulation of Drosophila courtship behavior through chemosensory processing in the antennal lobe.
Collapse
Affiliation(s)
- Sonali A Deshpande
- Department of Entomology, University of California, Riverside, CA 92521, United States
| | - Matthew Meiselman
- Graduate Program in Cell, Molecular, and Developmental Biology, University of California, Riverside, CA 92521, United States
| | - Robert H Hice
- Department of Entomology, University of California, Riverside, CA 92521, United States
| | - Peter Arensburger
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA 917684, United States
| | - Crisalejandra Rivera-Perez
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | - Do-Hyoung Kim
- Department of Entomology, University of California, Riverside, CA 92521, United States
| | - Rachel L Croft
- Cell Biology and Neuroscience, University of California, Riverside, CA 92521, United States
| | - Fernando Gabriel Noriega
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | - Michael E Adams
- Department of Entomology, University of California, Riverside, CA 92521, United States; Cell Biology and Neuroscience, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
60
|
Li G, Sun QZ, Liu XY, Zhang J, Dou W, Niu JZ, Wang JJ. Expression dynamics of key ecdysteroid and juvenile hormone biosynthesis genes imply a coordinated regulation pattern in the molting process of a spider mite, Tetranychus urticae. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 78:361-372. [PMID: 31254229 DOI: 10.1007/s10493-019-00396-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
In insects, the ecdysteroid 20-hydroxyecdysone coordinates with juvenile hormone (JH) to regulate the process of molting, development and metamorphosis; however, this interaction is still unclear in the mites. In this study, we investigated the gene related to ecdysteroid and JH biosynthesis pathways, including four ecdysteroid and 11 JH biosynthesis genes. We examined their expression patterns during molting of different developmental stages of the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), an important agricultural pest that feeds on more than 1100 plant species. The expression of ecdysteroid biosynthesis Halloween genes exhibited a positive zigzag-like pattern, with a peak after 8 h of molting and a drop 8 h after entering each quiescent stage. In contrast, JH biosynthesis genes expression displayed a negative zigzag-like pattern, with a peak at 8 h after entering each quiescent stage and a drop after 8 h of each molting. These opposite patterns imply that ecdysteroid and JH expression is coordinated during the developmental transition. Our data provide an initial perspective on the co-expression of ecdysteroid and JH biosynthesis genes to regulate this important developmental process in the two-spotted spider mite.
Collapse
Affiliation(s)
- Gang Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Qin-Zhe Sun
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Xun-Yan Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jun Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
61
|
Mao Y, Li Y, Gao H, Lin X. The Direct Interaction between E93 and Kr-h1 Mediated Their Antagonistic Effect on Ovary Development of the Brown Planthopper. Int J Mol Sci 2019; 20:ijms20102431. [PMID: 31100930 PMCID: PMC6566557 DOI: 10.3390/ijms20102431] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 11/22/2022] Open
Abstract
The juvenile hormone (JH) signalling and ecdysone signalling pathways are crucial endocrine signalling pathways that orchestrate the metamorphosis of insects. The metamorphic process, the morphological change from the immature to adult forms, is orchestrated by the dramatic reduction of JH and downstream transcription factors. The Krüppel-homologue 1 (Kr-h1), a downstream transcription factor of the JH signalling pathway, represses E93 expression with an anti-metamorphic effect. However, the biochemical interaction between Kr-h1 and E93 and how the interaction regulates ovary development, a sensitive readout for endocrine regulation, remain unknown. In brown planthopper, Nilaparvata lugens, we found that the downregulation of Kr-h1 partially recovered the deteriorating effect of E93 knock-down on metamorphosis. Dual knock down of E93 and Kr-h1 increased ovary development and the number of eggs laid when compared to the effects of the knock down of E93 alone, indicating that the knock down of Kr-h1 partially recovered the deteriorating effect of the E93 knock-down on ovary development. In summary, our results indicated that E93 and Kr-h1 have antagonistic effects on regulating metamorphosis and ovary development. We tested the biochemical interaction between these two proteins and found that these molecules interact directly. Kr-h1 V and E93 II undergo strong and specific interactions, indicating that the potential interacting domain may be located in these two regions. We inferred that the nuclear receptor interaction motif (NR-box) and helix-turn-helix DNA binding motifs of the pipsqueak family (RHF1) are candidate domains responsible for the protein–protein interaction between E93 and Kr-h1. Moreover, the HA-tagged E93 and FLAG-tagged Kr-h1 were co-localized in the nucleus, and the expression of E93 was increased when Kr-h1 was downregulated, supporting that these two proteins may interact antagonistically. JH and ecdysone signalling are critical for the control of ovary development and pest populations. Our result is important for understanding the interactions between E93 and related proteins, which makes it possible to identify potential targets and develop new pesticides for pest management.
Collapse
Affiliation(s)
- Yiwen Mao
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Yan Li
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Han Gao
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Xinda Lin
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
62
|
Setiawan L, Pan X, Woods AL, O'Connor MB, Hariharan IK. The BMP2/4 ortholog Dpp can function as an inter-organ signal that regulates developmental timing. Life Sci Alliance 2018; 1:e201800216. [PMID: 30515478 PMCID: PMC6243201 DOI: 10.26508/lsa.201800216] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022] Open
Abstract
Increased local trapping of morphogens within tissues as they grow would reduce circulating levels and can therefore provide a systemic readout of the status of their growth and maturation. Developmental transitions are often triggered by a neuroendocrine axis and can be contingent upon multiple organs achieving sufficient growth and maturation. How the neurodendocrine axis senses the size and maturity of peripheral organs is not known. In Drosophila larvae, metamorphosis is triggered by a sharp increase in the level of the steroid hormone ecdysone, secreted by the prothoracic gland (PG). Here, we show that the BMP2/4 ortholog Dpp can function as a systemic signal to regulate developmental timing. Dpp from peripheral tissues, mostly imaginal discs, can reach the PG and inhibit ecdysone biosynthesis. As the discs grow, reduced Dpp signaling in the PG is observed, consistent with the possibility that Dpp functions in a checkpoint mechanism that prevents metamorphosis when growth is insufficient. Indeed, upon starvation early in the third larval instar, reducing Dpp signaling in the PG abrogates the critical-weight checkpoint which normally prevents pupariation under these conditions. We suggest that increased local trapping of morphogen within tissues as they grow would reduce circulating levels and hence provide a systemic readout of their growth status.
Collapse
Affiliation(s)
- Linda Setiawan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Xueyang Pan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Alexis L Woods
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
63
|
A cell surface protein controls endocrine ring gland morphogenesis and steroid production. Dev Biol 2018; 445:16-28. [PMID: 30367846 DOI: 10.1016/j.ydbio.2018.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
Abstract
Identification of signals for systemic adaption of hormonal regulation would help to understand the crosstalk between cells and environmental cues contributing to growth, metabolic homeostasis and development. Physiological states are controlled by precise pulsatile hormonal release, including endocrine steroids in human and ecdysteroids in insects. We show in Drosophila that regulation of genes that control biosynthesis and signaling of the steroid hormone ecdysone, a central regulator of developmental progress, depends on the extracellular matrix protein Obstructor-A (Obst-A). Ecdysone is produced by the prothoracic gland (PG), where sensory neurons projecting axons from the brain integrate stimuli for endocrine control. By defining the extracellular surface, Obst-A promotes morphogenesis and axonal growth in the PG. This process requires Obst-A-matrix reorganization by Clathrin/Wurst-mediated endocytosis. Our data identifies the extracellular matrix as essential for endocrine ring gland function, which coordinates physiology, axon morphogenesis, and developmental programs. As Obst-A and Wurst homologs are found among all arthropods, we propose that this mechanism is evolutionary conserved.
Collapse
|
64
|
Qu Z, Bendena WG, Nong W, Siggens KW, Noriega FG, Kai ZP, Zang YY, Koon AC, Chan HYE, Chan TF, Chu KH, Lam HM, Akam M, Tobe SS, Lam Hui JH. MicroRNAs regulate the sesquiterpenoid hormonal pathway in Drosophila and other arthropods. Proc Biol Sci 2018; 284:rspb.2017.1827. [PMID: 29237851 DOI: 10.1098/rspb.2017.1827] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022] Open
Abstract
Arthropods comprise the majority of all described animal species, and understanding their evolution is a central question in biology. Their developmental processes are under the precise control of distinct hormonal regulators, including the sesquiterpenoids juvenile hormone (JH) and methyl farnesoate. The control of the synthesis and mode of action of these hormones played important roles in the evolution of arthropods and their adaptation to diverse habitats. However, the precise roles of non-coding RNAs, such as microRNAs (miRNAs), controlling arthropod hormonal pathways are unknown. Here, we investigated the miRNA regulation of the expression of the juvenile hormone acid methyltransferase gene (JHAMT), which encodes a rate-determining sesquiterpenoid biosynthetic enzyme. Loss of function of the miRNA bantam in the fly Drosophila melanogaster increased JHAMT expression, while overexpression of the bantam repressed JHAMT expression and resulted in pupal lethality. The male genital organs of the pupae were malformed, and exogenous sesquiterpenoid application partially rescued the genital deformities. The role of the bantam in the regulation of sesquiterpenoid biosynthesis was validated by transcriptomic, qPCR and hormone titre (JHB3 and JH III) analyses. In addition, we found a conserved set of miRNAs that interacted with JHAMT, and the sesquiterpenoid receptor methoprene-tolerant (Met) in different arthropod lineages, including insects (fly, mosquito and beetle), crustaceans (water flea and shrimp), myriapod (centipede) and chelicerate (horseshoe crab). This suggests that these miRNAs might have conserved roles in the post-transcriptional regulation of genes in sesquiterpenoid pathways across the Panarthropoda. Some of the identified lineage-specific miRNAs are potential targets for the development of new strategies in aquaculture and agricultural pest control.
Collapse
Affiliation(s)
- Zhe Qu
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | | | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | | | - Fernando G Noriega
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Zhen-Peng Kai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Yang-Yang Zang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Alex C Koon
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Ho Yin Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Ting Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Hon Ming Lam
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Michael Akam
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada M5S 3G5
| | - Jerome Ho Lam Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| |
Collapse
|
65
|
Yue Y, Yang RL, Wang WP, Zhou QH, Chen EH, Yuan GR, Wang JJ, Dou W. Involvement of Met and Kr-h1 in JH-Mediated Reproduction of Female Bactrocera dorsalis (Hendel). Front Physiol 2018; 9:482. [PMID: 29780329 PMCID: PMC5945869 DOI: 10.3389/fphys.2018.00482] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/16/2018] [Indexed: 12/23/2022] Open
Abstract
Juvenile hormone (JH) prevents metamorphosis during insect larval stages and promotes adult reproductive processes. Krüppel-homolog 1 (Kr-h1), a zinc finger transcription factor assumed to be induced by JH via the JH receptor methoprene-tolerant (Met), mediates the antimetamorphic effect of JH in insects, but its function in JH-mediated reproductive processes has not been fully explored. In this study, Met and Kr-h1 involved in the JH signaling pathway were first cloned and identified from the oriental fruit fly, Bactrocera dorsalis, an important pest infesting fruit and vegetables worldwide. Subsequent spatiotemporal expression analysis revealed that Met and Kr-h1 were both highly expressed in 7-day-old adults and fat body of female adults, respectively. Treatment with a JH analog (methoprene) significantly induced the expression of JH signaling and vitellogenin (Vg) genes and accelerated ovary development. RNA interference (RNAi) further revealed that either Met or Kr-h1 depletion at the adult stage of B. dorsalis impeded ovary development, with significantly lower egg production noted as well. In addition, rescue through methoprene application after RNAi stimulated the expression of JH signaling and Vg genes. Although there were still differences in ovary phenotype between rescued insects and the pre-RNAi control, ovary redevelopment with a larger surface area was observed, consistent with the spatiotemporal expression and phenotypes recorded in the original methoprene experiment. Our data reveal the involvement of Met and Kr-h1 in insect vitellogenesis and egg production, thus indicating the crucial role of the JH signaling pathway in insect reproduction.
Collapse
Affiliation(s)
- Yong Yue
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Rui-Lin Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei-Ping Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qi-Hao Zhou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
66
|
Riddiford LM, Truman JW, Nern A. Juvenile hormone reveals mosaic developmental programs in the metamorphosing optic lobe of Drosophila melanogaster. Biol Open 2018; 7:bio.034025. [PMID: 29618455 PMCID: PMC5936066 DOI: 10.1242/bio.034025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The development of the adult optic lobe (OL) of Drosophila melanogaster is directed by a wave of ingrowth of the photoreceptors over a 2-day period at the outset of metamorphosis, which is accompanied by the appearance of the pupal-specific transcription factor Broad-Z3 (Br-Z3) and expression of early drivers in OL neurons. During this time, there are pulses of ecdysteroids that time the metamorphic events. At the outset, the transient appearance of juvenile hormone (JH) prevents precocious development of the OL caused by the ecdysteroid peak that initiates pupariation, but the artificial maintenance of JH after this time misdirects subsequent development. Axon ingrowth, Br-Z3 appearance and the expression of early drivers were unaffected, but aspects of later development such as the dendritic expansion of the lamina monopolar neurons and the expression of late drivers were suppressed. This effect of the exogenous JH mimic (JHM) pyriproxifen is lost by 24 h after pupariation. Part of this effect of JHM is due to its suppression of the appearance of ecdysone receptor EcR-B1 that occurs after pupation and during early adult development. Summary: Developmental gradients and steroid surges interact during optic lobe development. Early, ectopic juvenile hormone treatment alters steroid receptor levels, suppresses late events but not early events linked to developmental gradients.
Collapse
Affiliation(s)
- Lynn M Riddiford
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
67
|
Antagonistic actions of juvenile hormone and 20-hydroxyecdysone within the ring gland determine developmental transitions in Drosophila. Proc Natl Acad Sci U S A 2017; 115:139-144. [PMID: 29255055 PMCID: PMC5776822 DOI: 10.1073/pnas.1716897115] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In vertebrates, steroid hormones regulate developmental transition from juveniles to adults. Insect steroid hormone, 20-hydroxyecdysone (20E), coordinates with juvenile hormone (JH) to regulate metamorphosis; however, the precise cross-talk mechanism is not well understood. Here, we report that JH and 20E antagonize each other’s biosynthesis in a major endocrine organ of Drosophila larvae: JH suppresses ecdysone biosynthesis and inhibits metamorphosis, whereas 20E suppresses JH biosynthesis and promotes metamorphosis. These data answer a long-standing question on how the mutual antagonism between the two major insect hormones regulates metamorphosis and may help to understand the hormonal regulation of developmental transition in mammals. In both vertebrates and insects, developmental transition from the juvenile stage to adulthood is regulated by steroid hormones. In insects, the steroid hormone, 20-hydroxyecdysone (20E), elicits metamorphosis, thus promoting this transition, while the sesquiterpenoid juvenile hormone (JH) antagonizes 20E signaling to prevent precocious metamorphosis during the larval stages. However, not much is known about the mechanisms involved in cross-talk between these two hormones. In this study, we discovered that in the ring gland (RG) of Drosophila larvae, JH and 20E control each other’s biosynthesis. JH induces expression of a Krüppel-like transcription factor gene Kr-h1 in the prothoracic gland (PG), a portion of the RG that produces the 20E precursor ecdysone. By reducing both steroidogenesis autoregulation and PG size, high levels of Kr-h1 in the PG inhibit ecdysteriod biosynthesis, thus maintaining juvenile status. JH biosynthesis is prevented by 20E in the corpus allatum, the other portion of the RG that produces JH, to ensure the occurrence of metamorphosis. Hence, antagonistic actions of JH and 20E within the RG determine developmental transitions in Drosophila. Our study proposes a mechanism of cross-talk between the two major hormones in the regulation of insect metamorphosis.
Collapse
|
68
|
Ge L, Gu H, Huang B, Song Q, Stanley D, Liu F, Yang GQ, Wu JC. An adenylyl cyclase like-9 gene (NlAC9) influences growth and fecundity in the brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). PLoS One 2017; 12:e0189214. [PMID: 29236776 PMCID: PMC5728565 DOI: 10.1371/journal.pone.0189214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/21/2017] [Indexed: 02/03/2023] Open
Abstract
The cAMP/PKA intracellular signaling pathway is launched by adenylyl cyclase (AC) conversion of adenosine triphosphate (ATP) to 3', 5'-cyclic AMP (cAMP) and cAMP-dependent activation of PKA. Although this pathway is very well known in insect physiology, there is little to no information on it in some very small pest insects, such as the brown planthopper (BPH), Nilaparvata lugens Stål. BPH is a destructive pest responsible for tremendous crop losses in rice cropping systems. We are investigating the potentials of novel pest management technologies from RNA interference perspective. Based on analysis of transcriptomic data, the BPH AC like-9 gene (NlAC9) was up-regulated in post-mating females, which led us to pose the hypothesis that NlAC9 is a target gene that would lead to reduced BPH fitness and populations. Targeting NlAC9 led to substantially decreased soluble ovarian protein content, yeast-like symbiont abundance, and vitellogenin gene expression, accompanied with stunted ovarian development and body size. Eggs laid were decreased and oviposition period shortened. Taken together, our findings indicated that NlAC9 exerted pronounced effects on female fecundity, growth and longevity, which strongly supports our hypothesis.
Collapse
Affiliation(s)
- LinQuan Ge
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou P.R. China
| | - HaoTian Gu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou P.R. China
| | - Bo Huang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou P.R. China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States of America
| | - David Stanley
- USDA/Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, Missouri, United States of America
| | - Fang Liu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou P.R. China
| | - Guo-Qing Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou P.R. China
| | - Jin-Cai Wu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou P.R. China
| |
Collapse
|
69
|
Zhang W, Ma L, Xiao H, Liu C, Chen L, Wu S, Liang G. Identification and characterization of genes involving the early step of Juvenile Hormone pathway in Helicoverpa armigera. Sci Rep 2017; 7:16542. [PMID: 29185447 PMCID: PMC5707400 DOI: 10.1038/s41598-017-16319-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/09/2017] [Indexed: 12/17/2022] Open
Abstract
Juvenile hormones (JHs) are crucial regulators for multiple physiological processes in insects. In the current study, 10 genes in mevalonate pathway involved in JH biosynthesis were identified from Helicoverpa armigera. Tissue-specific expression analysis showed that six genes were highly expressed in the head which contained the JH biosynthetic gland (corpora allata). Temporal expression pattern showed that 10 of 12 genes were highly transcribed in the late 2nd-instar when the in vivo JH titer reached the peak, indicating a tight correlation between JH titer and the transcription of JH synthetic pathway genes. Moreover, ingestion of methoprene, a JH analogue, significantly suppressed the transcription of nine JH biosynthetic genes and caused a feedback upregulation of the JH degradation enzyme. Particularly, the Acetoacetyl CoA thiolase (HaAce) and Farnesyl diphosphate synthase gene 4 (HaFpps4) showed high transcript abundance, and their temporal expressions keep pace with JH fluctuations. Further study by RNAi showed that knockdown of HaFpps4 caused the decrease of JH titer, led to a negative effect on the transcript levels of other genes in JH pathway, and resulted in molting disturbance in larvae. Altogether, these results contribute to our understanding of JH biosynthesis in H. armigera and provide target genes for pest control based on JH-dependent regulation.
Collapse
Affiliation(s)
- Wanna Zhang
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, 330045, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Long Ma
- Jiangxi Key Laboratory of Bioprocess Engineering, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Haijun Xiao
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shaolong Wu
- China Tobacco Midsouth Agricultural Experimental Station, Changsha, 410128, China
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
70
|
Kumar M, Mohanty AK, Sreenivasamurthy SK, Dey G, Advani J, Pinto SM, Kumar A, Prasad TSK. Response to Blood Meal in the Fat Body of Anopheles stephensi Using Quantitative Proteomics: Toward New Vector Control Strategies Against Malaria. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:520-530. [PMID: 28873011 DOI: 10.1089/omi.2017.0092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Malaria remains a grand challenge for disruptive innovation in global health therapeutics and diagnostics. Anopheles stephensi is one of the major vectors of malaria in Asia. Vector and transmission control are key focus areas in the fight against malaria, a field of postgenomics research where proteomics can play a substantive role. Moreover, to identify novel strategies to control the vector population, it is necessary to understand the vector life processes at a global and molecular scale. In this context, fat body is a vital organ required for vitellogenesis, vector immunity, vector physiology, and vector-parasite interaction. Given its central role in energy metabolism, vitellogenesis, and immune function, the proteome profile of the fat body and the impact of blood meal (BM) ingestion on the protein abundances of this vital organ have not been investigated so far. Therefore, using a proteomics approach, we identified the proteins expressed in the fat body of An. stephensi and their differential expression in response to BM ingestion. In all, we identified 3,218 proteins in the fat body using high-resolution mass spectrometry, of which 483 were found to be differentially expressed in response to the BM ingestion. Bioinformatics analysis of these proteins underscored their role in amino acid metabolism, vitellogenesis, lipid transport, signal peptide processing, mosquito immunity, and oxidation-reduction processes. Interestingly, we identified five novel genes, which were found to be differentially expressed upon BM ingestion. Proteins that exhibited altered expression in the present study are potential targets for vector control strategies and development of transmission blocking vaccines in the fight against malaria.
Collapse
Affiliation(s)
- Manish Kumar
- 1 Institute of Bioinformatics , Bangalore, India .,2 Manipal University , Manipal, India
| | | | | | - Gourav Dey
- 1 Institute of Bioinformatics , Bangalore, India .,2 Manipal University , Manipal, India
| | - Jayshree Advani
- 1 Institute of Bioinformatics , Bangalore, India .,2 Manipal University , Manipal, India
| | - Sneha M Pinto
- 4 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India
| | - Ashwani Kumar
- 3 National Institute of Malaria Research (ICMR) , Panjim, India
| | - Thottethodi Subrahmanya Keshava Prasad
- 1 Institute of Bioinformatics , Bangalore, India .,4 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India .,5 NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences , Bangalore, India
| |
Collapse
|
71
|
Inui T, Daimon T. Implantation assays using the integument of early stage Bombyx larvae: Insights into the mechanisms underlying the acquisition of competence for metamorphosis. JOURNAL OF INSECT PHYSIOLOGY 2017; 100:35-42. [PMID: 28522416 DOI: 10.1016/j.jinsphys.2017.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/28/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
It is widely accepted that the anti-metamorphic action of insect juvenile hormones (JHs) is required to inhibit larval-pupal metamorphosis. However, recent studies using RNAi or knockout techniques reveal that larval status may be maintained independently of JHs during the early larval stages. To investigate why larvae of very early instars do not have competence to metamorphose and how they acquire this competence through larval development, we revisited the classic experiments of Piepho (ca. 1930s) and performed implantation assays using the integument of very young larvae of the silkworm, Bombyx mori. Here, we demonstrate that when the integuments of neonate larvae or newly molted second instar larvae are implanted into last instar host larvae, they are able to directly produce pupal cuticle at the time of pupal metamorphosis of the host. To investigate whether the pupal commitment of implants from the neonate first instar larvae is repressed by JHs, the integuments of Met1 knockout larvae lacking a functional JH receptor were implanted into penultimate instar larvae. We found that the implants of Met1 knockout neonate larvae produced patched pupal cuticles after the host larval molt, whereas those of the wild-type strain produced only larval cuticle without any trace of pupal cuticle. Taken together, our results suggest that the epidermis of very early instar larvae can be pupally committed when provided with unidentified blood-borne factor(s) present in final-instar larvae, and that JHs can block the action of that factor(s) to prolong the feeding period until larvae attain a size appropriate for metamorphosis.
Collapse
Affiliation(s)
- Tomohiro Inui
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takaaki Daimon
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
72
|
Baumann AA, Texada MJ, Chen HM, Etheredge JN, Miller DL, Picard S, Warner R, Truman JW, Riddiford LM. Genetic tools to study juvenile hormone action in Drosophila. Sci Rep 2017; 7:2132. [PMID: 28522854 PMCID: PMC5437021 DOI: 10.1038/s41598-017-02264-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/10/2017] [Indexed: 12/04/2022] Open
Abstract
The insect juvenile hormone receptor is a basic helix-loop-helix (bHLH), Per-Arnt-Sim (PAS) domain protein, a novel type of hormone receptor. In higher flies like Drosophila, the ancestral receptor germ cell-expressed (gce) gene has duplicated to yield the paralog Methoprene-tolerant (Met). These paralogous receptors share redundant function during development but play unique roles in adults. Some aspects of JH function apparently require one receptor or the other. To provide a foundation for studying JH receptor function, we have recapitulated endogenous JH receptor expression with single cell resolution. Using Bacteria Artificial Chromosome (BAC) recombineering and a transgenic knock-in, we have generated a spatiotemporal expressional atlas of Met and gce throughout development. We demonstrate JH receptor expression in known JH target tissues, in which temporal expression corresponds with periods of hormone sensitivity. Larval expression largely supports the notion of functional redundancy. Furthermore, we provide the neuroanatomical distribution of JH receptors in both the larval and adult central nervous system, which will serve as a platform for future studies regarding JH action on insect behavior.
Collapse
Affiliation(s)
- A A Baumann
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, 21047, USA. .,University of Tennessee, College of Veterinary Medicine, Knoxville, TN, 37996, USA.
| | - M J Texada
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, 21047, USA
| | - H M Chen
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, 21047, USA
| | - J N Etheredge
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, 21047, USA
| | - D L Miller
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, 21047, USA.,National Institute of Neurological Disease and Stroke, NIH, Bethesda, MD, 20892, USA
| | - S Picard
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, 21047, USA
| | - R Warner
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, 21047, USA
| | - J W Truman
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, 21047, USA.,Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, 98250, USA
| | - L M Riddiford
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, 21047, USA.,Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, 98250, USA
| |
Collapse
|
73
|
Sun Y, Huang S, Wang S, Guo D, Ge C, Xiao H, Jie W, Yang Q, Teng X, Li F. Large-scale identification of differentially expressed genes during pupa development reveals solute carrier gene is essential for pupal pigmentation in Chilo suppressalis. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:117-125. [PMID: 28041944 DOI: 10.1016/j.jinsphys.2016.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/22/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
Insects undergo metamorphosis, involving an abrupt change in body structure through cell growth and differentiation. Rice stem stripped borer (SSB), Chilo suppressalis, is one of the most destructive rice pests. However, little is known about the regulation mechanism of metamorphosis development in this notorious insect pest. Here, we studied the expression of 22,197 SSB genes at seven time points during pupa development with a customized microarray, identifying 622 differentially expressed genes (DEG) during pupa development. Gene ontology (GO) analysis of these DEGs indicated that the genes related to substance metabolism were highly expressed in the early pupa, which participate in the physiological processes of larval tissue disintegration at these stages. In comparison, highly expressed genes in the late pupal stages were mainly associated with substance biosynthesis, consistent with adult organ formation at these stages. There were 27 solute carrier (SLC) genes that were highly expressed during pupa development. We knocked down SLC22A3 at the prepupal stage, demonstrating that silencing SLC22A3 induced a deficiency in pupa stiffness and pigmentation. The RNAi-treated individuals had white and soft pupa, suggesting that this gene has an essential role in pupal development.
Collapse
Affiliation(s)
- Yang Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuijin Huang
- Institute of Plant Protection, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
| | - Shuping Wang
- Technical Centre for Animal Plant and Food Inspection and Quarantine, Shanghai Entry-exit Inspection and Quarantine Bureau, Shanghai 200135, China
| | - Dianhao Guo
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Ge
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huamei Xiao
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wencai Jie
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiupu Yang
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaolu Teng
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Li
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
74
|
Akitomo S, Egi Y, Nakamura Y, Suetsugu Y, Oishi K, Sakamoto K. Genome-wide microarray screening for Bombyx mori genes related to transmitting the determination outcome of whether to produce diapause or nondiapause eggs. INSECT SCIENCE 2017; 24:187-193. [PMID: 26596800 DOI: 10.1111/1744-7917.12297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
The bivoltine silkworm Bombyx mori (Lepidoptera: Bombycidae) exhibits a maternally controlled embryonic diapause. Maternal silkworms decide whether to lay diapause or nondiapause eggs depending on environmental factors such as the temperature and photoperiod during the egg and larval stages, and then induce diapause eggs during the pupal stage. However, little is known about the molecular mechanism that conveys the outcome of whether to produce diapause or nondiapause eggs from the egg or larval stages to the pupal stage. This study used microarray analysis to investigate differentially expressed genes in the larval brains of diapause- and nondiapause-egg producers, to which bivoltine silkworms were destined by thermal or photic stimulation during the egg stage. The cytochrome P450 18a1 and Krüppel homolog 1 genes were upregulated in producers of diapause eggs compared with those of nondiapause eggs under both experimental conditions. Cytochrome P450 18a1 encodes a key enzyme for steroid hormone inactivation and Krüppel homolog 1 is an early juvenile hormone-inducible gene that mediates the repression of metamorphosis. The upregulation of these genes during the larval stage might be involved in the signaling pathway that transmits information about the diapause program from the egg stage to the pupal stage in the silkworm.
Collapse
Affiliation(s)
- Shion Akitomo
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yuichi Egi
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yuki Nakamura
- Insect Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Japan
| | - Yoshitaka Suetsugu
- Insect Genome Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences (NIAS), Tsukuba, Japan
| | - Katsutaka Oishi
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | | |
Collapse
|
75
|
He Q, Zhang Y, Zhang X, Xu D, Dong W, Li S, Wu R. Nucleoporin Nup358 facilitates nuclear import of Methoprene-tolerant (Met) in an importin β- and Hsp83-dependent manner. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 81:10-18. [PMID: 27979731 DOI: 10.1016/j.ibmb.2016.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/11/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
The bHLH-PAS transcription factor, Methoprene-tolerant (Met)1, functions as a juvenile hormone (JH) receptor and transduces JH signals by directly binding to E-box like motifs in the regulatory regions of JH response genes. Nuclear localization of Met is crucial for its transcriptional activity. Our previous studies have shown that the chaperone protein Hsp83 facilitates JH-induced Met nuclear import in Drosophila melanogaster. However, the exact molecular mechanisms of Met nuclear transport are not fully elucidated. Using DNA affinity chromatography, we have previously detected binding of the nucleoporin Nup358, in the presence of JH, to the JH response region (JHRR) sequences isolated from the Krüppel-homolog 1 (Kr-h1) promoter. Here, we have demonstrated that Nup358 regulates JH-Hsp83-induced Met nuclear localization. RNAi-mediated knockdown of Nup358 expression in Drosophila fat body perturbs Met nuclear transport during the 3 h after initiation of wandering, when the JH titer is high. The accompanying reduced expression of the transport receptor importin β in Nup358 RNAi flies could be one of the reasons accounting for Met mislocalization. Furthermore, a tetratricopeptide repeat (TPR) domain at the N-terminal end of Nup358 interacts with Hsp83 and is indispensable for Met nuclear localization. Overexpression of the TPR domain in Drosophila fat body prevents Met nuclear localization resulting in a decrease in JHRR-driven reporter activity and Kr-h1 expression. These data show that Nup358 facilitates JH-induced Met nuclear transport in a manner dependent on importin β and Hsp83.
Collapse
Affiliation(s)
- Qianyu He
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yuanxi Zhang
- Environmental Monitoring Center Station, DaQing Environmental Protection Agency, Daqing 163316, China
| | - Xu Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - DanDan Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Wentao Dong
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Sheng Li
- The Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Sciences and School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
76
|
Zhang Z, Liu X, Shiotsuki T, Wang Z, Xu X, Huang Y, Li M, Li K, Tan A. Depletion of juvenile hormone esterase extends larval growth in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 81:72-79. [PMID: 28057597 DOI: 10.1016/j.ibmb.2017.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/13/2016] [Accepted: 01/01/2017] [Indexed: 06/06/2023]
Abstract
Two major hormones, juvenile hormone (JH) and 20-hydroxyecdysone (20E), regulate insect growth and development according to their precisely coordinated titres, which are controlled by both biosynthesis and degradation pathways. Juvenile hormone esterase (JHE) is the primary JH-specific degradation enzyme that plays a key role in regulating JH titers, along with JH epoxide hydrolase (JHEH) and JH diol kinase (JHDK). In the current study, a loss-of-function analysis of JHE in the silkworm, Bombyx mori, was performed by targeted gene disruption using the transgenic CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/RNA-guided Cas9 nucleases) system. Depletion of B. mori JHE (BmJHE) resulted in the extension of larval stages, especially the penultimate and ultimate larval stages, without deleterious effects to silkworm physiology. The expression of JHEH and JHDK was upregulated in mutant animals, indicating the existence of complementary routes in the JH metabolism pathway in which inactivation of one enzyme will activate other enzymes. RNA-Seq analysis of mutant animals revealed that genes involved in protein processing in the endoplasmic reticulum and in amino acid metabolism were affected by BmJHE depletion. Depletion of JHE and subsequent delayed JH metabolism activated genes in the TOR pathway, which are ultimately responsible for extending larval growth. The transgenic Cas9 system used in the current study provides a promising approach for analysing the actions of JH, especially in nondrosophilid insects. Furthermore, prolonging larval stages produced larger larvae and cocoons, which is greatly beneficial to silk production.
Collapse
Affiliation(s)
- Zhongjie Zhang
- School of Life Science, East China Normal University, Shanghai 200062, China; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaojing Liu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Takahiro Shiotsuki
- Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Zhisheng Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xia Xu
- School of Life Science, East China Normal University, Shanghai 200062, China
| | - Yongping Huang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Muwang Li
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu, China
| | - Kai Li
- School of Life Science, East China Normal University, Shanghai 200062, China.
| | - Anjiang Tan
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
77
|
Schiesari L, Andreatta G, Kyriacou CP, O’Connor MB, Costa R. The Insulin-Like Proteins dILPs-2/5 Determine Diapause Inducibility in Drosophila. PLoS One 2016; 11:e0163680. [PMID: 27689881 PMCID: PMC5045170 DOI: 10.1371/journal.pone.0163680] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 09/12/2016] [Indexed: 01/28/2023] Open
Abstract
Diapause is an actively induced dormancy that has evolved in Metazoa to resist environmental stresses. In temperate regions, many diapausing insects overwinter at low temperatures by blocking embryonic, larval or adult development. Despite its Afro-tropical origin, Drosophila melanogaster migrated to temperate regions of Asia and Europe where females overwinter as adults by arresting gonadal development (reproductive diapause) at temperatures <13°C. Recent work in D. melanogaster has implicated the developmental hormones dILPs-2 and/or dILP3, and dILP5, homologues of vertebrate insulin/insulin-like growth factors (IGFs), in reproductive arrest. However, polymorphisms in timeless (tim) and couch potato (cpo) dramatically affect diapause inducibility and these dILP experiments could not exclude this common genetic variation contributing to the diapause phenotype. Here, we apply an extensive genetic dissection of the insulin signaling pathway which allows us to see both enhancements and reductions in egg development that are independent of tim and cpo variations. We show that a number of manipulations dramatically enhance diapause to ~100%. These include ablating, or reducing the excitability of the insulin-producing cells (IPCs) that express dILPs-2,3,5 employing the dilp2,3,5-/- triple mutant, desensitizing insulin signaling using a chico mutation, or inhibiting dILP2 and 5 in the hemolymph by over-expressing Imaginal Morphogenesis Protein-Late 2 (Imp-L2). In addition, triple mutant dilp2,3,5-/- females maintain high levels of diapause even when temperatures are raised in adulthood to 19°C. However at 22°C, these females all show egg development revealing that the effects are conditional on temperature and not a general female sterility. In contrast, over-expression of dilps-2/5 or enhancing IPC excitability, led to levels of ovarian arrest that approached zero, underscoring dILPs-2 and 5 as key antagonists of diapause.
Collapse
Affiliation(s)
- Luca Schiesari
- Department of Biology, University of Padova, Padova, Italy
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States of America
| | | | | | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, United States of America
| | - Rodolfo Costa
- Department of Biology, University of Padova, Padova, Italy
- * E-mail:
| |
Collapse
|
78
|
Vogeler S, Bean TP, Lyons BP, Galloway TS. Dynamics of nuclear receptor gene expression during Pacific oyster development. BMC DEVELOPMENTAL BIOLOGY 2016; 16:33. [PMID: 27680968 PMCID: PMC5041327 DOI: 10.1186/s12861-016-0129-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 08/11/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Nuclear receptors are a highly conserved set of ligand binding transcription factors, with essential roles regulating aspects of vertebrate and invertebrate biology alike. Current understanding of nuclear receptor regulated gene expression in invertebrates remains sparse, limiting our ability to elucidate gene function and the conservation of developmental processes across phyla. Here, we studied nuclear receptor expression in the early life stages of the Pacific oyster, Crassostrea gigas, to identify at which specific key stages nuclear receptors are expressed RESULTS: We used quantitative RT-PCR to determine the expression profiles of 34 nuclear receptors, revealing three developmental key stages, during which nuclear receptor expression is dynamically regulated: embryogenesis, mid development from gastrulation to trochophore larva, and late larval development prior to metamorphosis. Clustering of nuclear receptor expression patterns demonstrated that transcriptional regulation was not directly related to gene phylogeny, suggesting closely related genes may have distinct functions. Expression of gene homologs of vertebrate retinoid receptors suggests participation in organogenesis and shell-formation, as they are highly expressed at the gastrulation and trochophore larval initial shell formation stages. The ecdysone receptor homolog showed high expression just before larval settlement, suggesting a potential role in metamorphosis. CONCLUSION Throughout early oyster development nuclear receptors exhibited highly dynamic expression profiles, which were not confined by gene phylogeny. These results provide fundamental information on the presence of nuclear receptors during key developmental stages, which aids elucidation of their function in the developmental process. This understanding is essential as ligand sensing nuclear receptors can be disrupted by xenobiotics, a mode of action through which anthropogenic environmental pollutants have been found to mediate effects.
Collapse
Affiliation(s)
- Susanne Vogeler
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
- Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| | - Tim P. Bean
- Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| | - Brett P. Lyons
- Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| | - Tamara S. Galloway
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
| |
Collapse
|
79
|
Mhashilkar AS, Vankayala SL, Liu C, Kearns F, Mehrotra P, Tzertzinis G, Palli SR, Woodcock HL, Unnasch TR. Identification of Ecdysone Hormone Receptor Agonists as a Therapeutic Approach for Treating Filarial Infections. PLoS Negl Trop Dis 2016; 10:e0004772. [PMID: 27300294 PMCID: PMC4907521 DOI: 10.1371/journal.pntd.0004772] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/21/2016] [Indexed: 11/27/2022] Open
Abstract
Background A homologue of the ecdysone receptor has previously been identified in human filarial parasites. As the ecdysone receptor is not found in vertebrates, it and the regulatory pathways it controls represent attractive potential chemotherapeutic targets. Methodology/ Principal Findings Administration of 20-hydroxyecdysone to gerbils infected with B. malayi infective larvae disrupted their development to adult stage parasites. A stable mammalian cell line was created incorporating the B. malayi ecdysone receptor ligand-binding domain, its heterodimer partner and a secreted luciferase reporter in HEK293 cells. This was employed to screen a series of ecdysone agonist, identifying seven agonists active at sub-micromolar concentrations. A B. malayi ecdysone receptor ligand-binding domain was developed and used to study the ligand-receptor interactions of these agonists. An excellent correlation between the virtual screening results and the screening assay was observed. Based on both of these approaches, steroidal ecdysone agonists and the diacylhydrazine family of compounds were identified as a fruitful source of potential receptor agonists. In further confirmation of the modeling and screening results, Ponasterone A and Muristerone A, two compounds predicted to be strong ecdysone agonists stimulated expulsion of microfilaria and immature stages from adult parasites. Conclusions The studies validate the potential of the B. malayi ecdysone receptor as a drug target and provide a means to rapidly evaluate compounds for development of a new class of drugs against the human filarial parasites. The human filarial parasites are the causative agents of two neglected tropical diseases targeted for elimination by the international community. The current elimination programs rely upon the mass distribution of a limited number of drugs, leaving the programs open to failure in the event that resistance develops. Thus, there is a critical need for novel chemotherapeutic agents to supplement the current arsenal. The filarial parasites are ecdysozoans, whose developmental processes are controlled by a master regulator, the ecdysone receptor. Here we validate the potential of the filarial ecdysone receptor as a chemotherapeutic target and report the development of high throughput and virtual screening assays that may be used to compounds that target it.
Collapse
Affiliation(s)
- Amruta S. Mhashilkar
- Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Sai L. Vankayala
- Department of Chemistry, University of South Florida, Tampa, Florida, United States of America
| | - Canhui Liu
- Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
| | - Fiona Kearns
- Department of Chemistry, University of South Florida, Tampa, Florida, United States of America
| | - Priyanka Mehrotra
- Department of Chemistry, University of South Florida, Tampa, Florida, United States of America
| | - George Tzertzinis
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Subba R. Palli
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
| | - H. Lee Woodcock
- Department of Chemistry, University of South Florida, Tampa, Florida, United States of America
| | - Thomas R. Unnasch
- Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
80
|
Wijesekera TP, Saurabh S, Dauwalder B. Juvenile Hormone Is Required in Adult Males for Drosophila Courtship. PLoS One 2016; 11:e0151912. [PMID: 27003411 PMCID: PMC4803231 DOI: 10.1371/journal.pone.0151912] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/07/2016] [Indexed: 11/18/2022] Open
Abstract
Juvenile Hormone (JH) has a prominent role in the regulation of insect development. Much less is known about its roles in adults, although functions in reproductive maturation have been described. In adult females, JH has been shown to regulate egg maturation and mating. To examine a role for JH in male reproductive behavior we created males with reduced levels of Juvenile Hormone Acid O-Methyl Transferase (JHAMT) and tested them for courtship. JHAMT regulates the last step of JH biosynthesis in the Corpora Allata (CA), the organ of JH synthesis. Males with reduced levels of JHAMT showed a reduction in courtship that could be rescued by application of Methoprene, a JH analog, shortly before the courtship assays were performed. In agreement with this, reducing JHAMT conditionally in mature flies led to courtship defects that were rescuable by Methoprene. The same result was also observed when the CA were conditionally ablated by the expression of a cellular toxin. Our findings demonstrate that JH plays an important physiological role in the regulation of male mating behavior.
Collapse
Affiliation(s)
- Thilini P. Wijesekera
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States of America
| | - Sumit Saurabh
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States of America
| | - Brigitte Dauwalder
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
81
|
Niwa YS, Niwa R. Transcriptional regulation of insect steroid hormone biosynthesis and its role in controlling timing of molting and metamorphosis. Dev Growth Differ 2016; 58:94-105. [PMID: 26667894 PMCID: PMC11520982 DOI: 10.1111/dgd.12248] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/11/2015] [Accepted: 10/11/2015] [Indexed: 01/11/2023]
Abstract
The developmental transition from juvenile to adult is often accompanied by many systemic changes in morphology, metabolism, and reproduction. Curiously, both mammalian puberty and insect metamorphosis are triggered by a pulse of steroid hormones, which can harmonize gene expression profiles in the body and thus orchestrate drastic biological changes. However, understanding of how the timing of steroid hormone biosynthesis is regulated at the molecular level is poor. The principal insect steroid hormone, ecdysteroid, is biosynthesized from dietary cholesterol in the specialized endocrine organ called the prothoracic gland. The periodic pulses of ecdysteroid titers determine the timing of molting and metamorphosis. To date, at least nine families of ecdysteroidogenic enzyme genes have been identified. Expression levels of these genes correlate well with ecdysteroid titers, indicating that the transcriptional regulatory network plays a critical role in regulating the ecdysteroid biosynthesis pathway. In this article, we summarize the transcriptional regulation of ecdysteroid biosynthesis. We first describe the development of prothoracic gland cells during Drosophila embryogenesis, and then provide an overview of the transcription factors that act in ecdysteroid biosynthesis and signaling. We also discuss the external signaling pathways that target these transcriptional regulators. Furthermore, we describe conserved and/or diverse aspects of steroid hormone biosynthesis in insect species as well as vertebrates.
Collapse
Affiliation(s)
- Yuko S Niwa
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Ryusuke Niwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
- PRESTO, Japan Science and Technology Agency, Honcho 4-1-8, Kawaguchi, 332-0012, Saitama, Japan
| |
Collapse
|
82
|
Jindra M, Bellés X, Shinoda T. Molecular basis of juvenile hormone signaling. CURRENT OPINION IN INSECT SCIENCE 2015; 11:39-46. [PMID: 28285758 DOI: 10.1016/j.cois.2015.08.004] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 05/23/2023]
Abstract
Despite important roles played by juvenile hormone (JH) in insects, the mechanisms underlying its action were until recently unknown. A breakthrough has been the demonstration that the bHLH-PAS protein Met is an intracellular receptor for JH. Binding of JH to Met triggers dimerization of Met with its partner protein Tai, and the resulting complex induces transcription of target genes. In addition, JH can potentiate this response by phosphorylating Met and Tai via cell membrane, second-messenger signaling. An important gene induced by the JH-Met-Tai complex is Kr-h1, which inhibits metamorphosis. Kr-h1 represses an 'adult specifier' gene E93. The action of this JH-activated pathway in maintaining the juvenile status is dispensable during early postembryonic development when larvae/nymphs lack competence to metamorphose.
Collapse
Affiliation(s)
- Marek Jindra
- Biology Center, Czech Academy of Sciences, Branisovska 31, Ceske Budejovice 37005, Czech Republic.
| | - Xavier Bellés
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Passeig Marítim 37, 08003 Barcelona, Spain
| | - Tetsuro Shinoda
- National Institute of Agrobiological Sciences, Ohwashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
83
|
Vallejo DM, Juarez-Carreño S, Bolivar J, Morante J, Dominguez M. A brain circuit that synchronizes growth and maturation revealed through Dilp8 binding to Lgr3. Science 2015; 350:aac6767. [PMID: 26429885 DOI: 10.1126/science.aac6767] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/24/2015] [Indexed: 01/20/2023]
Abstract
Body-size constancy and symmetry are signs of developmental stability. Yet, it is unclear exactly how developing animals buffer size variation. Drosophila insulin-like peptide Dilp8 is responsive to growth perturbations and controls homeostatic mechanisms that coordinately adjust growth and maturation to maintain size within the normal range. Here we show that Lgr3 is a Dilp8 receptor. Through the use of functional and adenosine 3',5'-monophosphate assays, we defined a pair of Lgr3 neurons that mediate homeostatic regulation. These neurons have extensive axonal arborizations, and genetic and green fluorescent protein reconstitution across synaptic partners show that these neurons connect with the insulin-producing cells and prothoracicotropic hormone-producing neurons to attenuate growth and maturation. This previously unrecognized circuit suggests how growth and maturation rate are matched and co-regulated according to Dilp8 signals to stabilize organismal size.
Collapse
Affiliation(s)
- Diana M Vallejo
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientifícas and Universidad Miguel Hernández, Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Sergio Juarez-Carreño
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientifícas and Universidad Miguel Hernández, Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Jorge Bolivar
- Departamento de Biomedicina, Biotecnología y Salud Pública, Facultad de Ciencias, Universidad de Cadiz, Poligono Rio San Pedro s/n, 11510 Puerto Real, Spain
| | - Javier Morante
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientifícas and Universidad Miguel Hernández, Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain.
| | - Maria Dominguez
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientifícas and Universidad Miguel Hernández, Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain.
| |
Collapse
|
84
|
Boulan L, Milán M, Léopold P. The Systemic Control of Growth. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a019117. [PMID: 26261282 DOI: 10.1101/cshperspect.a019117] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Growth is a complex process that is intimately linked to the developmental program to form adults with proper size and proportions. Genetics is an important determinant of growth, as exemplified by the role of local diffusible molecules setting up organ proportions. In addition, organisms use adaptive responses allowing modulating the size of individuals according to environmental cues, for example, nutrition. Here, we describe some of the physiological principles participating in the determination of final individual size.
Collapse
Affiliation(s)
- Laura Boulan
- University of Nice-Sophia Antipolis, 06108 Nice, France CNRS, University of Nice-Sophia Antipolis, 06108 Nice, France INSERM, University of Nice-Sophia Antipolis, 06108 Nice, France
| | - Marco Milán
- 5ICREA, Parc Cientific de Barcelona, 08028 Barcelona, Spain
| | - Pierre Léopold
- University of Nice-Sophia Antipolis, 06108 Nice, France CNRS, University of Nice-Sophia Antipolis, 06108 Nice, France INSERM, University of Nice-Sophia Antipolis, 06108 Nice, France
| |
Collapse
|
85
|
Yadav P, Choudhury D, Sadanandappa MK, Sharma VK. Extent of mismatch between the period of circadian clocks and light/dark cycles determines time-to-emergence in fruit flies. INSECT SCIENCE 2015; 22:569-577. [PMID: 24668961 DOI: 10.1111/1744-7917.12126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/03/2014] [Indexed: 06/03/2023]
Abstract
Circadian clocks time developmental stages of fruit flies Drosophila melanogaster, while light/dark (LD) cycles delimit emergence of adults, conceding only during the "allowed gate." Previous studies have revealed that time-to-emergence can be altered by mutations in the core clock gene period (per), or by altering the length of LD cycles. Since this evidence came from studies on genetically manipulated flies, or on flies maintained under LD cycles with limited range of periods, inferences that can be drawn are limited. Moreover, the extent of shortening or lengthening of time-to-emergence remains yet unknown. In order to pursue this further, we assayed time-to-emergence of D. melanogaster under 12 different LD cycles as well as in constant light (LL) and constant dark conditions (DD). Time-to-emergence in flies occurred earlier under LL than in LD cycles and DD. Among the LD cycles, time-to-emergence occurred earlier under T4-T8, followed by T36-T48, and then T12-T32, suggesting that egg-to-emergence duration in flies becomes shorter when the length of LD cycles deviates from 24 h, bearing a strong positive and a marginally negative correlation with day length, for values shorter and longer than 24 h, respectively. These results suggest that the extent of mismatch between the period of circadian clocks and environmental cycles determines the time-to-emergence in Drosophila.
Collapse
Affiliation(s)
- Pankaj Yadav
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, Karnataka, India
| | - Deepak Choudhury
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, Karnataka, India
| | - Madhumala K Sadanandappa
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, Karnataka, India
| | - Vijay Kumar Sharma
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, Karnataka, India
| |
Collapse
|
86
|
Herboso L, Oliveira MM, Talamillo A, Pérez C, González M, Martín D, Sutherland JD, Shingleton AW, Mirth CK, Barrio R. Ecdysone promotes growth of imaginal discs through the regulation of Thor in D. melanogaster. Sci Rep 2015. [PMID: 26198204 PMCID: PMC4510524 DOI: 10.1038/srep12383] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Animals have a determined species-specific body size that results from the combined action of hormones and signaling pathways regulating growth rate and duration. In Drosophila, the steroid hormone ecdysone controls developmental transitions, thereby regulating the duration of the growth period. Here we show that ecdysone promotes the growth of imaginal discs in mid-third instar larvae, since imaginal discs from larvae with reduced or no ecdysone synthesis are smaller than wild type due to smaller and fewer cells. We show that insulin-like peptides are produced and secreted normally in larvae with reduced ecdysone synthesis, and upstream components of insulin/insulin-like signaling are activated in their discs. Instead, ecdysone appears to regulate the growth of imaginal discs via Thor/4E-BP, a negative growth regulator downstream of the insulin/insulin-like growth factor/Tor pathways. Discs from larvae with reduced ecdysone synthesis have elevated levels of Thor, while mutations in Thor partially rescue their growth. The regulation of organ growth by ecdysone is evolutionarily conserved in hemimetabolous insects, as shown by our results obtained using Blattella germanica. In summary, our data provide new insights into the relationship between components of the insulin/insulin-like/Tor and ecdysone pathways in the control of organ growth.
Collapse
Affiliation(s)
- Leire Herboso
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | - Marisa M Oliveira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Ana Talamillo
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | - Coralia Pérez
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | - Monika González
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| | - David Martín
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | | | | | - Christen K Mirth
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Rosa Barrio
- CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Bizkaia, Spain
| |
Collapse
|
87
|
Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle. Proc Natl Acad Sci U S A 2015. [PMID: 26195792 DOI: 10.1073/pnas.1506645112] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Insect juvenile hormones (JHs) prevent precocious metamorphosis and allow larvae to undergo multiple rounds of status quo molts. However, the roles of JHs during the embryonic and very early larval stages have not been fully understood. We generated and characterized knockout silkworms (Bombyx mori) with null mutations in JH biosynthesis or JH receptor genes using genome-editing tools. We found that embryonic growth and morphogenesis are largely independent of JHs in Bombyx and that, even in the absence of JHs or JH signaling, pupal characters are not formed in first- or second-instar larvae, and precocious metamorphosis is induced after the second instar at the earliest. We also show by mosaic analysis that a pupal specifier gene broad, which is dramatically up-regulated in the late stage of the last larval instar, is essential for pupal commitment in the epidermis. Importantly, the mRNA expression level of broad, which is thought to be repressed by JHs, remained at very low basal levels during the early larval instars of JH-deficient or JH signaling-deficient knockouts. Therefore, our study suggests that the long-accepted paradigm that JHs maintain the juvenile status throughout larval life should be revised because the larval status can be maintained by a JH-independent mechanism in very early larval instars. We propose that the lack of competence for metamorphosis during the early larval stages may result from the absence of an unidentified broad-inducing factor, i.e., a competence factor.
Collapse
|
88
|
Jindra M, Uhlirova M, Charles JP, Smykal V, Hill RJ. Genetic Evidence for Function of the bHLH-PAS Protein Gce/Met As a Juvenile Hormone Receptor. PLoS Genet 2015; 11:e1005394. [PMID: 26161662 PMCID: PMC4498814 DOI: 10.1371/journal.pgen.1005394] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/26/2015] [Indexed: 12/31/2022] Open
Abstract
Juvenile hormones (JHs) play a major role in controlling development and reproduction in insects and other arthropods. Synthetic JH-mimicking compounds such as methoprene are employed as potent insecticides against significant agricultural, household and disease vector pests. However, a receptor mediating effects of JH and its insecticidal mimics has long been the subject of controversy. The bHLH-PAS protein Methoprene-tolerant (Met), along with its Drosophila melanogaster paralog germ cell-expressed (Gce), has emerged as a prime JH receptor candidate, but critical evidence that this protein must bind JH to fulfill its role in normal insect development has been missing. Here, we show that Gce binds a native D. melanogaster JH, its precursor methyl farnesoate, and some synthetic JH mimics. Conditional on this ligand binding, Gce mediates JH-dependent gene expression and the hormone's vital role during development of the fly. Any one of three different single amino acid mutations in the ligand-binding pocket that prevent binding of JH to the protein block these functions. Only transgenic Gce capable of binding JH can restore sensitivity to JH mimics in D. melanogaster Met-null mutants and rescue viability in flies lacking both Gce and Met that would otherwise die at pupation. Similarly, the absence of Gce and Met can be compensated by expression of wild-type but not mutated transgenic D. melanogaster Met protein. This genetic evidence definitively establishes Gce/Met in a JH receptor role, thus resolving a long-standing question in arthropod biology.
Collapse
Affiliation(s)
- Marek Jindra
- Biology Center, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Food and Nutrition Flagship, North Ryde, New South Wales, Australia
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jean-Philippe Charles
- Centre des Sciences du Gout et de l’Alimentation (CSGA), CNRS 6265, INRA 1324, Université Bourgogne-Franche-Comté, Dijon, France
| | - Vlastimil Smykal
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Ronald J. Hill
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Food and Nutrition Flagship, North Ryde, New South Wales, Australia
| |
Collapse
|
89
|
Wen D, Rivera-Perez C, Abdou M, Jia Q, He Q, Liu X, Zyaan O, Xu J, Bendena WG, Tobe SS, Noriega FG, Palli SR, Wang J, Li S. Methyl farnesoate plays a dual role in regulating Drosophila metamorphosis. PLoS Genet 2015; 11:e1005038. [PMID: 25774983 PMCID: PMC4361637 DOI: 10.1371/journal.pgen.1005038] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 01/28/2015] [Indexed: 11/18/2022] Open
Abstract
Corpus allatum (CA) ablation results in juvenile hormone (JH) deficiency and pupal lethality in Drosophila. The fly CA produces and releases three sesquiterpenoid hormones: JH III bisepoxide (JHB3), JH III, and methyl farnesoate (MF). In the whole body extracts, MF is the most abundant sesquiterpenoid, followed by JHB3 and JH III. Knockout of JH acid methyl transferase (jhamt) did not result in lethality; it decreased biosynthesis of JHB3, but MF biosynthesis was not affected. RNAi-mediated reduction of 3-hydroxy-3-methylglutaryl CoA reductase (hmgcr) expression in the CA decreased biosynthesis and titers of the three sesquiterpenoids, resulting in partial lethality. Reducing hmgcr expression in the CA of the jhamt mutant further decreased MF titer to a very low level, and caused complete lethality. JH III, JHB3, and MF function through Met and Gce, the two JH receptors, and induce expression of Kr-h1, a JH primary-response gene. As well, a portion of MF is converted to JHB3 in the hemolymph or peripheral tissues. Topical application of JHB3, JH III, or MF precluded lethality in JH-deficient animals, but not in the Met gce double mutant. Taken together, these experiments show that MF is produced by the larval CA and released into the hemolymph, from where it exerts its anti-metamorphic effects indirectly after conversion to JHB3, as well as acting as a hormone itself through the two JH receptors, Met and Gce.
Collapse
Affiliation(s)
- Di Wen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Life Science, Qiannan Normal College for Nationalities, Duyun, Guizhou, China
| | - Crisalejandra Rivera-Perez
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
| | - Mohamed Abdou
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| | - Qiangqiang Jia
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qianyu He
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xi Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ola Zyaan
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
| | - Jingjing Xu
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, Kentucky, United States of America
| | | | - Stephen S. Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Fernando G. Noriega
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
| | - Subba R. Palli
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (JW); (SL)
| | - Sheng Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (JW); (SL)
| |
Collapse
|
90
|
Carvalho MJA, Mirth CK. Coordinating morphology with behavior during development: an integrative approach from a fly perspective. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
91
|
Li Z, Ge X, Ling L, Zeng B, Xu J, Aslam AFM, You L, Palli SR, Huang Y, Tan A. CYP18A1 regulates tissue-specific steroid hormone inactivation in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 54:33-41. [PMID: 25173591 PMCID: PMC4692384 DOI: 10.1016/j.ibmb.2014.08.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 05/22/2023]
Abstract
Insect development and metamorphosis are regulated by two major hormones, juvenile hormone and ecdysteroids. Despite being the key regulator of insect developmental transitions, the metabolic pathway of the primary steroid hormone, 20-hydroxyecdysone (20E), especially its inactivation pathway, is still not completely elucidated. A cytochrome P450 enzyme, CYP18A1, has been shown to play key roles in insect steroid hormone inactivation through 26-hydroxylation. Here, we identified two CYP18 (BmCYP18A1 and BmCYP18B1) orthologs in the lepidopteran model insect, Bombyx mori. Interestingly, BmCYP18A1 gene is predominantly expressed in the middle silk gland (MSG) while BmCYP18B1 expresses ubiquitously in B. mori. BmCYP18A1 is induced by 20E in vitro, suggesting its role in 20E metabolism. Using the binary Gal4/UAS transgenic system, we ectopically overexpressed BmCYP18A1 in a MSG-specific manner with a Sericin1-Gal4 (Ser-Gal4) driver or in a ubiquitous manner with an Actin3-Gal4 (A3-Gal4) driver. Ectopic overexpression of BmCYP18A1 in MSG or in all tissues resulted in developmental arrestment of transgenic animals during the final instar larval stage. The 20E titers in the transgenic animals expressing BmCYP18A1 were lower compared to the levels in the control animals. Although the biological significance of MSG-specific expression of BmCYP18A1 is unclear, our results provide the first evidence that BmCYP18A1, which is conserved in most arthropods, is involved in a tissue-specific steroid hormone inactivation in B. mori.
Collapse
Affiliation(s)
- Zhiqian Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xie Ge
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Baosheng Zeng
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Abu F M Aslam
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lang You
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, S-225 Agriculture Science Center North, University of Kentucky, Lexington, KY 40546, USA
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Anjiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
92
|
Mirth CK, Shingleton AW. The roles of juvenile hormone, insulin/target of rapamycin, and ecydsone signaling in regulating body size in Drosophila. Commun Integr Biol 2014; 7:971568. [PMID: 26842847 PMCID: PMC4594587 DOI: 10.4161/cib.29240] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 05/15/2014] [Accepted: 05/15/2014] [Indexed: 01/13/2023] Open
Abstract
Understanding how organisms regulate their body size has interested biologists for
decades. Recent work has shown that both insulin/target of rapamycin (TOR) signaling and
the steroid hormone ecdysone act to regulate rates of growth and the duration of the
growth period in the fruit fly, Drosophila melanogaster. Our recent work
has uncovered a third level of interaction, whereby juvenile hormone (JH) regulates levels
of both ecdysone and insulin/TOR signaling to control growth rates. These studies
highlight a complex network of interactions involved in regulating body and organ
size.
Collapse
Affiliation(s)
- Christen Kerry Mirth
- Development, Evolution, and the Environment Laboratory; Instituto Gulbenkian de Ciência ; Oeiras, Portugal
| | | |
Collapse
|
93
|
He Q, Wen D, Jia Q, Cui C, Wang J, Palli SR, Li S. Heat shock protein 83 (Hsp83) facilitates methoprene-tolerant (Met) nuclear import to modulate juvenile hormone signaling. J Biol Chem 2014; 289:27874-85. [PMID: 25122763 DOI: 10.1074/jbc.m114.582825] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Juvenile hormone (JH) receptors, methoprene-tolerant (Met) and Germ-cell expressed (Gce), transduce JH signals to induce Kr-h1 expression in Drosophila. Dual luciferase assay identified a 120-bp JH response region (JHRR) in the Kr-h1α promoter. Both in vitro and in vivo experiments revealed that Met and Gce transduce JH signals to induce Kr-h1 expression through the JHRR. DNA affinity purification identified chaperone protein Hsp83 as one of the proteins bound to the JHRR in the presence of JH. Interestingly, Hsp83 physically interacts with PAS-B and basic helix-loop-helix domains of Met, and JH induces Met-Hsp83 interaction. As determined by immunohistochemistry, Met is mainly distributed in the cytoplasm of fat body cells of the larval when the JH titer is low and JH induces Met nuclear import. Hsp83 was accumulated in the cytoplasm area adjunct to the nucleus in the presence of JH and Met/Gce. Loss-of-function of Hsp83 attenuated JH binding and JH-induced nuclear import of Met, resulting in a decrease in the JHRR-driven reporter activity leading to reduction of Kr-h1 expression. These data show that Hsp83 facilitates the JH-induced nuclear import of Met that induces Kr-h1 expression through the JHRR.
Collapse
Affiliation(s)
- Qianyu He
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China, the College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Di Wen
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiangqiang Jia
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chunlai Cui
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jian Wang
- the Department of Entomology, University of Maryland, College Park, Maryland 20742, and
| | - Subba R Palli
- the Department of Entomology, College of Agriculture, University of Kentucky, Lexington, Kentucky 40546
| | - Sheng Li
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China,
| |
Collapse
|
94
|
Deng H, Kerppola TK. Visualization of the Drosophila dKeap1-CncC interaction on chromatin illumines cooperative, xenobiotic-specific gene activation. Development 2014; 141:3277-88. [PMID: 25063457 DOI: 10.1242/dev.110528] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interactions among transcription factors control their physiological functions by regulating their binding specificities and transcriptional activities. We implement a strategy to visualize directly the genomic loci that are bound by multi-protein complexes in single cells in Drosophila. This method is based on bimolecular fluorescence complementation (BiFC) analysis of protein interactions on polytene chromosomes. Drosophila Keap1 (dKeap1)-CncC complexes localized to the nucleus and bound chromatin loci that were not bound preferentially by dKeap1 or CncC when they were expressed separately. dKeap1 and CncC binding at these loci was enhanced by phenobarbital, but not by tert-butylhydroquinone (tBHQ) or paraquat. Endogenous dKeap1 and CncC activated transcription of the Jheh (Jheh1, Jheh2, Jheh3) and dKeap1 genes at these loci, whereas CncC alone activated other xenobiotic response genes. Ectopic dKeap1 expression increased CncC binding at the Jheh and dKeap1 gene loci and activated their transcription, whereas dKeap1 inhibited CncC binding at other xenobiotic response gene loci and suppressed their transcription. The combinatorial chromatin-binding specificities and transcriptional activities of dKeap1-CncC complexes mediated the selective activation of different sets of genes by different xenobiotic compounds, in part through feed-forward activation of dKeap1 transcription.
Collapse
Affiliation(s)
- Huai Deng
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0650, USA
| | - Tom K Kerppola
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0650, USA
| |
Collapse
|
95
|
Pecot MY, Chen Y, Akin O, Chen Z, Tsui CYK, Zipursky SL. Sequential axon-derived signals couple target survival and layer specificity in the Drosophila visual system. Neuron 2014; 82:320-33. [PMID: 24742459 PMCID: PMC4304384 DOI: 10.1016/j.neuron.2014.02.045] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2014] [Indexed: 12/12/2022]
Abstract
Neural circuit formation relies on interactions between axons and cells within the target field. While it is well established that target-derived signals act on axons to regulate circuit assembly, the extent to which axon-derived signals control circuit formation is not known. In the Drosophila visual system, anterograde signals numerically match R1-R6 photoreceptors with their targets by controlling target proliferation and neuronal differentiation. Here we demonstrate that additional axon-derived signals selectively couple target survival with layer specificity. We show that Jelly belly (Jeb) produced by R1-R6 axons interacts with its receptor, anaplastic lymphoma kinase (Alk), on budding dendrites to control survival of L3 neurons, one of three postsynaptic targets. L3 axons then produce Netrin, which regulates the layer-specific targeting of another neuron within the same circuit. We propose that a cascade of axon-derived signals, regulating diverse cellular processes, provides a strategy for coordinating circuit assembly across different regions of the nervous system.
Collapse
Affiliation(s)
- Matthew Y Pecot
- Department of Biological Chemistry, The Howard Hughes Medical Institute, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Chen
- Department of Biological Chemistry, The Howard Hughes Medical Institute, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Orkun Akin
- Department of Biological Chemistry, The Howard Hughes Medical Institute, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhenqing Chen
- Department of Biology, New York University, New York, NY 10003, USA
| | - C Y Kimberly Tsui
- Department of Biological Chemistry, The Howard Hughes Medical Institute, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - S Lawrence Zipursky
- Department of Biological Chemistry, The Howard Hughes Medical Institute, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
96
|
Yadav P, Thandapani M, Sharma VK. Interaction of light regimes and circadian clocks modulate timing of pre-adult developmental events in Drosophila. BMC DEVELOPMENTAL BIOLOGY 2014; 14:19. [PMID: 24885932 PMCID: PMC4040135 DOI: 10.1186/1471-213x-14-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 05/07/2014] [Indexed: 01/24/2023]
Abstract
Background Circadian clocks have been postulated to regulate development time in several species of insects including fruit flies Drosophila melanogaster. Previously we have reported that selection for faster pre-adult development reduces development time (by ~19 h or ~11%) and clock period (by ~0.5 h), suggesting a role of circadian clocks in the regulation of development time in D. melanogaster. We reasoned that these faster developing flies could serve as a model to study stage-specific interaction of circadian clocks and developmental events with the environmental light/dark (LD) conditions. We assayed the duration of three pre-adult stages in the faster developing (FD) and control (BD) populations under a variety of light regimes that are known to modulate circadian clocks and pre-adult development time of Drosophila to examine the role of circadian clocks in the timing of pre-adult developmental stages. Results We find that the duration of pre-adult stages was shorter under constant light (LL) and short period light (L)/dark (D) cycles (L:D = 10:10 h; T20) compared to the standard 24 h day (L:D = 12:12 h; T24), long LD cycles (L:D = 14:14 h; T28) and constant darkness (DD). The difference in the duration of pre-adult stages between the FD and BD populations was significantly smaller under the three LD cycles and LL compared to DD, possibly due to the fact that clocks of both FD and BD flies are driven at the same pace in the three LD regimes owing to circadian entrainment, or are rendered dysfunctional under LL. Conclusions These results suggest that interaction between light regimes and circadian clocks regulate the duration of pre-adult developmental stages in fruit flies D. melanogaster.
Collapse
Affiliation(s)
| | | | - Vijay Kumar Sharma
- Chronobiology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, P, O, Jakkur, Bangalore, Karnataka 560064, India.
| |
Collapse
|
97
|
Juvenile hormone regulates body size and perturbs insulin signaling in Drosophila. Proc Natl Acad Sci U S A 2014; 111:7018-23. [PMID: 24778227 DOI: 10.1073/pnas.1313058111] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The role of juvenile hormone (JH) in regulating the timing and nature of insect molts is well-established. Increasing evidence suggests that JH is also involved in regulating final insect size. Here we elucidate the developmental mechanism through which JH regulates body size in developing Drosophila larvae by genetically ablating the JH-producing organ, the corpora allata (CA). We found that larvae that lack CA pupariated at smaller sizes than control larvae due to a reduced larval growth rate. Neither the timing of the metamorphic molt nor the duration of larval growth was affected by the loss of JH. Further, we show that the effects of JH on growth rate are dependent on the forkhead box O transcription factor (FOXO), which is negatively regulated by the insulin-signaling pathway. Larvae that lacked the CA had elevated levels of FOXO activity, whereas a loss-of-function mutation of FOXO rescued the effects of CA ablation on final body size. Finally, the effect of JH on growth appears to be mediated, at least in part, via ecdysone synthesis in the prothoracic gland. These results indicate a role of JH in regulating growth rate via the ecdysone- and insulin-signaling pathways.
Collapse
|
98
|
Ono H. Ecdysone differentially regulates metamorphic timing relative to 20-hydroxyecdysone by antagonizing juvenile hormone in Drosophila melanogaster. Dev Biol 2014; 391:32-42. [PMID: 24727669 DOI: 10.1016/j.ydbio.2014.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 11/30/2022]
Abstract
In insects, a steroid hormone, 20-hydroxyecdysone (20E), plays important roles in the regulation of developmental transitions by initiating signaling cascades via the ecdysone receptor (EcR). Although 20E has been well characterized as the molting hormone, its precursor ecdysone (E) has been considered to be a relatively inactive compound because it has little or no effect on classic EcR mediated responses. I found that feeding E to wild-type third instar larvae of Drosophila melanogaster accelerates the metamorphic timing, which results in elevation of lethality during metamorphosis and reduced body size, while 20E has only a minor effect. The addition of a juvenile hormone analog (JHA) to E impeded their precocious pupariation and thereby rescued the reduced body size. The ability of JHA impeding the effect of E was not observed in the Methoprene-tolerant (Met) and germ-cell expressed (gce) double mutant animals lacking JH signaling, indicating that antagonistic action of JH against E is transduced via a primary JH receptor, Met, or a product of its homolog, Gce. I also found that L3 larvae are susceptible to E around the time when they reach their minimum viable weight. These results indicate that E, and not just 20E, is also essential for proper regulation of developmental timing and body size. Furthermore, the precocious pupariation triggered by E is impeded by the action of JH to ensure that animals attain body size to survive metamorphosis.
Collapse
Affiliation(s)
- Hajime Ono
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
99
|
Smykal V, Daimon T, Kayukawa T, Takaki K, Shinoda T, Jindra M. Importance of juvenile hormone signaling arises with competence of insect larvae to metamorphose. Dev Biol 2014; 390:221-30. [PMID: 24662045 DOI: 10.1016/j.ydbio.2014.03.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 11/16/2022]
Abstract
Juvenile hormone (JH) postpones metamorphosis of insect larvae until they have attained an appropriate stage and size. Then, during the final larval instar, a drop in JH secretion permits a metamorphic molt that transforms larvae to adults either directly (hemimetaboly) or via a pupal stage (holometaboly). In both scenarios, JH precludes metamorphosis by activating the Kr-h1 gene through a JH receptor, Methoprene-tolerant (Met). Removal of Met, Kr-h1, or JH itself triggers deleterious precocious metamorphosis. Although JH is thought to maintain the juvenile status throughout larval life, various methods of depleting JH failed to induce metamorphosis in early-instar larvae. To determine when does JH signaling become important for the prevention of precocious metamorphosis, we chose the hemimetabolous bug, Pyrrhocoris apterus, and the holometabolous silkworm, Bombyx mori. Both species undergo a fixed number of five larval instars. Pyrrhocoris larvae subjected to RNAi-mediated knockdown of Met or Kr-h1 underwent precocious adult development when treated during the fourth (penultimate) instar, but younger larvae proved increasingly resistant to loss of either gene. The earliest instar developing minor signs of precocious metamorphosis was the third. Therefore, the JH-response genes may not be required to maintain the larval program during the first two larval instars. Next, we examined Bombyx mod mutants that cannot synthesize authentic, epoxidized forms of JH. Although mod larvae expressed Kr-h1 mRNA at severely reduced levels since hatching, they only entered metamorphosis by pupating after four, rarely three instars. Based on findings in Pyrrhocoris and Bombyx, we propose that insect postembryonic development is initially independent of JH. Only later, when larvae gain competence to enter metamorphosis, JH signaling becomes necessary to prevent precocious metamorphosis and to optimize growth.
Collapse
Affiliation(s)
- Vlastimil Smykal
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic; Department of Molecular Biology, Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Takaaki Daimon
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Takumi Kayukawa
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Keiko Takaki
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic
| | - Tetsuro Shinoda
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan
| | - Marek Jindra
- Biology Center, Academy of Sciences of the Czech Republic, 37005 Ceske Budejovice, Czech Republic; Animal, Food and Health Sciences Division, Commonwealth Scientific and Industrial Research Organization, North Ryde, NSW 2113, Australia.
| |
Collapse
|
100
|
Nijhout HF, Riddiford LM, Mirth C, Shingleton AW, Suzuki Y, Callier V. The developmental control of size in insects. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2014; 3:113-34. [PMID: 24902837 PMCID: PMC4048863 DOI: 10.1002/wdev.124] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mechanisms that control the sizes of a body and its many parts remain among the great puzzles in developmental biology. Why do animals grow to a species-specific body size, and how is the relative growth of their body parts controlled to so they grow to the right size, and in the correct proportion with body size, giving an animal its species-characteristic shape? Control of size must involve mechanisms that somehow assess some aspect of size and are upstream of mechanisms that regulate growth. These mechanisms are now beginning to be understood in the insects, in particular in Manduca sexta and Drosophila melanogaster. The control of size requires control of the rate of growth and control of the cessation of growth. Growth is controlled by genetic and environmental factors. Insulin and ecdysone, their receptors, and intracellular signaling pathways are the principal genetic regulators of growth. The secretion of these growth hormones, in turn, is controlled by complex interactions of other endocrine and molecular mechanisms, by environmental factors such as nutrition, and by the physiological mechanisms that sense body size. Although the general mechanisms of growth regulation appear to be widely shared, the mechanisms that regulate final size can be quite diverse.
Collapse
|