51
|
Neto F, Klaus-Bergmann A, Ong YT, Alt S, Vion AC, Szymborska A, Carvalho JR, Hollfinger I, Bartels-Klein E, Franco CA, Potente M, Gerhardt H. YAP and TAZ regulate adherens junction dynamics and endothelial cell distribution during vascular development. eLife 2018; 7:31037. [PMID: 29400648 PMCID: PMC5814147 DOI: 10.7554/elife.31037] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/02/2018] [Indexed: 12/15/2022] Open
Abstract
Formation of blood vessel networks by sprouting angiogenesis is critical for tissue growth, homeostasis and regeneration. How endothelial cells arise in adequate numbers and arrange suitably to shape functional vascular networks is poorly understood. Here we show that YAP/TAZ promote stretch-induced proliferation and rearrangements of endothelial cells whilst preventing bleeding in developing vessels. Mechanistically, YAP/TAZ increase the turnover of VE-Cadherin and the formation of junction associated intermediate lamellipodia, promoting both cell migration and barrier function maintenance. This is achieved in part by lowering BMP signalling. Consequently, the loss of YAP/TAZ in the mouse leads to stunted sprouting with local aggregation as well as scarcity of endothelial cells, branching irregularities and junction defects. Forced nuclear activity of TAZ instead drives hypersprouting and vascular hyperplasia. We propose a new model in which YAP/TAZ integrate mechanical signals with BMP signaling to maintain junctional compliance and integrity whilst balancing endothelial cell rearrangements in angiogenic vessels.
Collapse
Affiliation(s)
- Filipa Neto
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Vascular Biology Laboratory, Lincoln's Inn Fields Laboratories, London Research Institute - Cancer Research UK, London, United Kingdom
| | - Alexandra Klaus-Bergmann
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Berlin, Germany
| | - Yu Ting Ong
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Silvanus Alt
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Anne-Clémence Vion
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Berlin, Germany
| | - Anna Szymborska
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Berlin, Germany
| | - Joana R Carvalho
- Vascular Morphogenesis Laboratory, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | | | - Eireen Bartels-Klein
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Berlin, Germany
| | - Claudio A Franco
- Vascular Morphogenesis Laboratory, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Michael Potente
- DZHK (German Center for Cardiovascular Research), Berlin, Germany.,Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Holger Gerhardt
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.,Vascular Biology Laboratory, Lincoln's Inn Fields Laboratories, London Research Institute - Cancer Research UK, London, United Kingdom.,DZHK (German Center for Cardiovascular Research), Berlin, Germany.,Vascular Patterning Laboratory, Vesalius Research Center, Leuven, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
52
|
Krispin S, Stratman AN, Melick CH, Stan RV, Malinverno M, Gleklen J, Castranova D, Dejana E, Weinstein BM. Growth Differentiation Factor 6 Promotes Vascular Stability by Restraining Vascular Endothelial Growth Factor Signaling. Arterioscler Thromb Vasc Biol 2017; 38:353-362. [PMID: 29284606 DOI: 10.1161/atvbaha.117.309571] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 12/05/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The assembly of a functional vascular system requires a coordinated and dynamic transition from activation to maturation. High vascular endothelial growth factor activity promotes activation, including junction destabilization and cell motility. Maturation involves junctional stabilization and formation of a functional endothelial barrier. The identity and mechanism of action of prostabilization signals are still mostly unknown. Bone morphogenetic protein receptors and their ligands have important functions during embryonic vessel assembly and maturation. Previous work has suggested a role for growth differentiation factor 6 (GDF6; bone morphogenetic protein 13) in vascular integrity although GDF6's mechanism of action was not clear. Therefore, we sought to further explore the requirement for GDF6 in vascular stabilization. APPROACH AND RESULTS We investigated the role of GDF6 in promoting endothelial vascular integrity in vivo in zebrafish and in cultured human umbilical vein endothelial cells in vitro. We report that GDF6 promotes vascular integrity by counteracting vascular endothelial growth factor activity. GDF6-deficient endothelium has increased vascular endothelial growth factor signaling, increased vascular endothelial-cadherin Y658 phosphorylation, vascular endothelial-cadherin delocalization from cell-cell interfaces, and weakened endothelial cell adherence junctions that become prone to vascular leak. CONCLUSIONS Our results suggest that GDF6 promotes vascular stabilization by restraining vascular endothelial growth factor signaling. Understanding how GDF6 affects vascular integrity may help to provide insights into hemorrhage and associated vascular pathologies in humans.
Collapse
Affiliation(s)
- Shlomo Krispin
- From the Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD (S.K., A.N.S., C.H.M., J.G., D.C., B.M.W.); Departments of Biochemistry and Cell Biology and of Pathology, Geisel School of Medicine at Dartmouth College, Lebanon, NH (R.V.S.); Vascular Biology Program, IFOM, FIRC Institute of Molecular Oncology Foundation, Milan, Italy (M.M., E.D.); and Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (E.D.)
| | - Amber N Stratman
- From the Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD (S.K., A.N.S., C.H.M., J.G., D.C., B.M.W.); Departments of Biochemistry and Cell Biology and of Pathology, Geisel School of Medicine at Dartmouth College, Lebanon, NH (R.V.S.); Vascular Biology Program, IFOM, FIRC Institute of Molecular Oncology Foundation, Milan, Italy (M.M., E.D.); and Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (E.D.)
| | - Chase H Melick
- From the Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD (S.K., A.N.S., C.H.M., J.G., D.C., B.M.W.); Departments of Biochemistry and Cell Biology and of Pathology, Geisel School of Medicine at Dartmouth College, Lebanon, NH (R.V.S.); Vascular Biology Program, IFOM, FIRC Institute of Molecular Oncology Foundation, Milan, Italy (M.M., E.D.); and Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (E.D.)
| | - Radu V Stan
- From the Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD (S.K., A.N.S., C.H.M., J.G., D.C., B.M.W.); Departments of Biochemistry and Cell Biology and of Pathology, Geisel School of Medicine at Dartmouth College, Lebanon, NH (R.V.S.); Vascular Biology Program, IFOM, FIRC Institute of Molecular Oncology Foundation, Milan, Italy (M.M., E.D.); and Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (E.D.)
| | - Matteo Malinverno
- From the Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD (S.K., A.N.S., C.H.M., J.G., D.C., B.M.W.); Departments of Biochemistry and Cell Biology and of Pathology, Geisel School of Medicine at Dartmouth College, Lebanon, NH (R.V.S.); Vascular Biology Program, IFOM, FIRC Institute of Molecular Oncology Foundation, Milan, Italy (M.M., E.D.); and Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (E.D.)
| | - Jamie Gleklen
- From the Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD (S.K., A.N.S., C.H.M., J.G., D.C., B.M.W.); Departments of Biochemistry and Cell Biology and of Pathology, Geisel School of Medicine at Dartmouth College, Lebanon, NH (R.V.S.); Vascular Biology Program, IFOM, FIRC Institute of Molecular Oncology Foundation, Milan, Italy (M.M., E.D.); and Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (E.D.)
| | - Daniel Castranova
- From the Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD (S.K., A.N.S., C.H.M., J.G., D.C., B.M.W.); Departments of Biochemistry and Cell Biology and of Pathology, Geisel School of Medicine at Dartmouth College, Lebanon, NH (R.V.S.); Vascular Biology Program, IFOM, FIRC Institute of Molecular Oncology Foundation, Milan, Italy (M.M., E.D.); and Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (E.D.)
| | - Elisabetta Dejana
- From the Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD (S.K., A.N.S., C.H.M., J.G., D.C., B.M.W.); Departments of Biochemistry and Cell Biology and of Pathology, Geisel School of Medicine at Dartmouth College, Lebanon, NH (R.V.S.); Vascular Biology Program, IFOM, FIRC Institute of Molecular Oncology Foundation, Milan, Italy (M.M., E.D.); and Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (E.D.)
| | - Brant M Weinstein
- From the Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD (S.K., A.N.S., C.H.M., J.G., D.C., B.M.W.); Departments of Biochemistry and Cell Biology and of Pathology, Geisel School of Medicine at Dartmouth College, Lebanon, NH (R.V.S.); Vascular Biology Program, IFOM, FIRC Institute of Molecular Oncology Foundation, Milan, Italy (M.M., E.D.); and Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (E.D.).
| |
Collapse
|
53
|
Ruiz S, Chandakkar P, Zhao H, Papoin J, Chatterjee PK, Christen E, Metz CN, Blanc L, Campagne F, Marambaud P. Tacrolimus rescues the signaling and gene expression signature of endothelial ALK1 loss-of-function and improves HHT vascular pathology. Hum Mol Genet 2017; 26:4786-4798. [PMID: 28973643 PMCID: PMC5886173 DOI: 10.1093/hmg/ddx358] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/09/2017] [Accepted: 09/11/2017] [Indexed: 01/02/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a highly debilitating and life-threatening genetic vascular disorder arising from endothelial cell (EC) proliferation and hypervascularization, for which no cure exists. Because HHT is caused by loss-of-function mutations in bone morphogenetic protein 9 (BMP9)-ALK1-Smad1/5/8 signaling, interventions aimed at activating this pathway are of therapeutic value. We interrogated the whole-transcriptome in human umbilical vein ECs (HUVECs) and found that ALK1 signaling inhibition was associated with a specific pro-angiogenic gene expression signature, which included a significant elevation of DLL4 expression. By screening the NIH clinical collections of FDA-approved drugs, we identified tacrolimus (FK-506) as the most potent activator of ALK1 signaling in BMP9-challenged C2C12 reporter cells. In HUVECs, tacrolimus activated Smad1/5/8 and opposed the pro-angiogenic gene expression signature associated with ALK1 loss-of-function, by notably reducing Dll4 expression. In these cells, tacrolimus also inhibited Akt and p38 stimulation by vascular endothelial growth factor, a major driver of angiogenesis. In the BMP9/10-immunodepleted postnatal retina-a mouse model of HHT vascular pathology-tacrolimus activated endothelial Smad1/5/8 and prevented the Dll4 overexpression and hypervascularization associated with this model. Finally, tacrolimus stimulated Smad1/5/8 signaling in C2C12 cells expressing BMP9-unresponsive ALK1 HHT mutants and in HHT patient blood outgrowth ECs. Tacrolimus repurposing has therefore therapeutic potential in HHT.
Collapse
Affiliation(s)
- Santiago Ruiz
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease
| | | | - Haitian Zhao
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease
| | | | - Prodyot K Chatterjee
- Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Erica Christen
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease
| | - Christine N Metz
- Center for Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
- Hofstra Northwell School of Medicine, Hempstead, NY 11549, USA
| | - Lionel Blanc
- Center for Autoimmune and Musculoskeletal Disorders
- Hofstra Northwell School of Medicine, Hempstead, NY 11549, USA
| | - Fabien Campagne
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine
- Department of Physiology and Biophysics, The Weill Cornell Medical College, New York, NY 10021, USA
| | - Philippe Marambaud
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease
- Hofstra Northwell School of Medicine, Hempstead, NY 11549, USA
| |
Collapse
|
54
|
Roman BL, Hinck AP. ALK1 signaling in development and disease: new paradigms. Cell Mol Life Sci 2017; 74:4539-4560. [PMID: 28871312 PMCID: PMC5687069 DOI: 10.1007/s00018-017-2636-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/01/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022]
Abstract
Activin A receptor like type 1 (ALK1) is a transmembrane serine/threonine receptor kinase in the transforming growth factor-beta receptor family that is expressed on endothelial cells. Defects in ALK1 signaling cause the autosomal dominant vascular disorder, hereditary hemorrhagic telangiectasia (HHT), which is characterized by development of direct connections between arteries and veins, or arteriovenous malformations (AVMs). Although previous studies have implicated ALK1 in various aspects of sprouting angiogenesis, including tip/stalk cell selection, migration, and proliferation, recent work suggests an intriguing role for ALK1 in transducing a flow-based signal that governs directed endothelial cell migration within patent, perfused vessels. In this review, we present an updated view of the mechanism of ALK1 signaling, put forth a unified hypothesis to explain the cellular missteps that lead to AVMs associated with ALK1 deficiency, and discuss emerging roles for ALK1 signaling in diseases beyond HHT.
Collapse
Affiliation(s)
- Beth L Roman
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, 130 DeSoto St, Pittsburgh, PA, 15261, USA.
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
55
|
Abstract
Correct organization of the vascular tree requires the balanced activities of several signaling pathways that regulate tubulogenesis and vascular branching, elongation, and pruning. When this balance is lost, the vessels can be malformed and fragile, and they can lose arteriovenous differentiation. In this review, we concentrate on the transforming growth factor (TGF)-β/bone morphogenetic protein (BMP) pathway, which is one of the most important and complex signaling systems in vascular development. Inactivation of these pathways can lead to altered vascular organization in the embryo. In addition, many vascular malformations are related to deregulation of TGF-β/BMP signaling. Here, we focus on two of the most studied vascular malformations that are induced by deregulation of TGF-β/BMP signaling: hereditary hemorrhagic telangiectasia (HHT) and cerebral cavernous malformation (CCM). The first of these is related to loss-of-function mutation of the TGF-β/BMP receptor complex and the second to increased signaling sensitivity to TGF-β/BMP. In this review, we discuss the potential therapeutic targets against these vascular malformations identified so far, as well as their basis in general mechanisms of vascular development and stability.
Collapse
Affiliation(s)
- Sara I Cunha
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.)
| | - Peetra U Magnusson
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.)
| | - Elisabetta Dejana
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.).
| | - Maria Grazia Lampugnani
- From the Department of Immunology, Genetics, and Pathology, Uppsala University, Sweden (S.I.C., P.U.M., E.D.); FIRC Institute of Molecular Oncology, Milan, Italy (E.D., M.G.L.); and Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy (M.G.L.)
| |
Collapse
|
56
|
Poduri A, Chang AH, Raftrey B, Rhee S, Van M, Red-Horse K. Endothelial cells respond to the direction of mechanical stimuli through SMAD signaling to regulate coronary artery size. Development 2017; 144:3241-3252. [PMID: 28760815 DOI: 10.1242/dev.150904] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/22/2017] [Indexed: 02/01/2023]
Abstract
How mechanotransduction intersects with chemical and transcriptional factors to shape organogenesis is an important question in developmental biology. This is particularly relevant to the cardiovascular system, which uses mechanical signals from flowing blood to stimulate cytoskeletal and transcriptional responses that form a highly efficient vascular network. Using this system, artery size and structure are tightly regulated, but the underlying mechanisms are poorly understood. Here, we demonstrate that deletion of Smad4 increased the diameter of coronary arteries during mouse embryonic development, a phenotype that followed the initiation of blood flow. At the same time, the BMP signal transducers SMAD1/5/8 were activated in developing coronary arteries. In a culture model of blood flow-induced shear stress, human coronary artery endothelial cells failed to align when either BMPs were inhibited or SMAD4 was depleted. In contrast to control cells, SMAD4-deficient cells did not migrate against the direction of shear stress and increased proliferation rates specifically under flow. Similar alterations were seen in coronary arteries in vivo Thus, endothelial cells perceive the direction of blood flow and respond through SMAD signaling to regulate artery size.
Collapse
Affiliation(s)
- Aruna Poduri
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Andrew H Chang
- Department of Biology, Stanford University, Stanford, CA 94305, USA.,Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Brian Raftrey
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Siyeon Rhee
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Mike Van
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
57
|
Abstract
Bone morphogenetic protein (BMP)9 and BMP10 are high affinity ligands for activin receptor-like kinase 1 (ALK1), a type I BMP receptor mainly expressed on vascular endothelial cells (ECs). ALK1-mediated BMP9/BMP10 signalling pathways have emerged as essential in EC biology and in angiogenesis. Several genetic mutations in the genes encoding the ligands and receptors of this pathway have been reported in two cardiovascular diseases, pulmonary arterial hypertension (PAH) and hereditary haemorrhagic telangiectasia (HHT). Administration of recombinant BMP9 reverses experimental PAH in preclinical rodent models. Dalantercept, an Fc-fusion protein of the extracellular domain of ALK1 and a ligand trap for BMP9 and BMP10, is in phase II clinical trials for anti-tumour angiogenesis. Understanding the regulation of BMP9 and BMP10, at both gene and protein levels, under physiological and pathological conditions, will reveal essential information and potential novel prognostic markers for the BMP9/BMP10-targeted therapies.
Collapse
|
58
|
Mitrofan CG, Appleby SL, Nash GB, Mallat Z, Chilvers ER, Upton PD, Morrell NW. Bone morphogenetic protein 9 (BMP9) and BMP10 enhance tumor necrosis factor-α-induced monocyte recruitment to the vascular endothelium mainly via activin receptor-like kinase 2. J Biol Chem 2017. [PMID: 28646109 PMCID: PMC5566526 DOI: 10.1074/jbc.m117.778506] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bone morphogenetic proteins 9 and 10 (BMP9/BMP10) are circulating cytokines with important roles in endothelial homeostasis. The aim of this study was to investigate the roles of BMP9 and BMP10 in mediating monocyte-endothelial interactions using an in vitro flow adhesion assay. Herein, we report that whereas BMP9/BMP10 alone had no effect on monocyte recruitment, at higher concentrations both cytokines synergized with tumor necrosis factor-α (TNFα) to increase recruitment to the vascular endothelium. The BMP9/BMP10-mediated increase in monocyte recruitment in the presence of TNFα was associated with up-regulated expression levels of E-selectin, vascular cell adhesion molecule (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1) on endothelial cells. Using siRNAs to type I and II BMP receptors and the signaling intermediaries (Smads), we demonstrated a key role for ALK2 in the BMP9/BMP10-induced surface expression of E-selectin, and both ALK1 and ALK2 in the up-regulation of VCAM-1 and ICAM-1. The type II receptors, BMPR-II and ACTR-IIA were both required for this response, as was Smad1/5. The up-regulation of cell surface adhesion molecules by BMP9/10 in the presence of TNFα was inhibited by LDN193189, which inhibits ALK2 but not ALK1. Furthermore, LDN193189 inhibited monocyte recruitment induced by TNFα and BMP9/10. BMP9/10 increased basal IκBα protein expression, but did not alter p65/RelA levels. Our findings suggest that higher concentrations of BMP9/BMP10 synergize with TNFα to induce the up-regulation of endothelial selectins and adhesion molecules, ultimately resulting in increased monocyte recruitment to the vascular endothelium. This process is mediated mainly via the ALK2 type I receptor, BMPR-II/ACTR-IIA type II receptors, and downstream Smad1/5 signaling.
Collapse
Affiliation(s)
- Claudia-Gabriela Mitrofan
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ and
| | - Sarah L Appleby
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ and
| | - Gerard B Nash
- the Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Ziad Mallat
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ and
| | - Edwin R Chilvers
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ and
| | - Paul D Upton
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ and
| | - Nicholas W Morrell
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ and
| |
Collapse
|
59
|
Ronca R, Benkheil M, Mitola S, Struyf S, Liekens S. Tumor angiogenesis revisited: Regulators and clinical implications. Med Res Rev 2017. [PMID: 28643862 DOI: 10.1002/med.21452] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since Judah Folkman hypothesized in 1971 that angiogenesis is required for solid tumor growth, numerous studies have been conducted to unravel the angiogenesis process, analyze its role in primary tumor growth, metastasis and angiogenic diseases, and to develop inhibitors of proangiogenic factors. These studies have led in 2004 to the approval of the first antiangiogenic agent (bevacizumab, a humanized antibody targeting vascular endothelial growth factor) for the treatment of patients with metastatic colorectal cancer. This approval launched great expectations for the use of antiangiogenic therapy for malignant diseases. However, these expectations have not been met and, as knowledge of blood vessel formation accumulates, many of the original paradigms no longer hold. Therefore, the regulators and clinical implications of angiogenesis need to be revisited. In this review, we discuss recently identified angiogenesis mediators and pathways, new concepts that have emerged over the past 10 years, tumor resistance and toxicity associated with the use of currently available antiangiogenic treatment and potentially new targets and/or approaches for malignant and nonmalignant neovascular diseases.
Collapse
Affiliation(s)
- Roberto Ronca
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mohammed Benkheil
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Stefania Mitola
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Sandra Liekens
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| |
Collapse
|
60
|
Franco CA, Gerhardt H. Blood flow boosts BMP signaling to keep vessels in shape. J Cell Biol 2017; 214:793-5. [PMID: 27672213 PMCID: PMC5037414 DOI: 10.1083/jcb.201609038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 11/22/2022] Open
Abstract
Bone morphogenic proteins (BMPs) and blood flow regulate vascular remodeling and homeostasis. In this issue, Baeyens et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201603106) show that blood flow sensitizes endothelial cells to BMP9 signaling by triggering Alk1/ENG complexing to suppress cell proliferation and to recruit mural cells, thereby establishing endothelial quiescence.
Collapse
Affiliation(s)
- Claudio A Franco
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Holger Gerhardt
- Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany Department of Oncology, Vascular Patterning Laboratory, Vesalius Research Center, 3000 Leuven, Belgium German Center for Cardiovascular Research, 13347 Berlin, Germany Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
61
|
Vascular heterogeneity and specialization in development and disease. Nat Rev Mol Cell Biol 2017; 18:477-494. [PMID: 28537573 DOI: 10.1038/nrm.2017.36] [Citation(s) in RCA: 421] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Blood and lymphatic vessels pervade almost all body tissues and have numerous essential roles in physiology and disease. The inner lining of these networks is formed by a single layer of endothelial cells, which is specialized according to the needs of the tissue that it supplies. Whereas the general mechanisms of blood and lymphatic vessel development are being defined with increasing molecular precision, studies of the processes of endothelial specialization remain mostly descriptive. Recent insights from genetic animal models illuminate how endothelial cells interact with each other and with their tissue environment, providing paradigms for vessel type- and organ-specific endothelial differentiation. Delineating these governing principles will be crucial for understanding how tissues develop and maintain, and how their function becomes abnormal in disease.
Collapse
|
62
|
Sørhus E, Incardona JP, Furmanek T, Goetz GW, Scholz NL, Meier S, Edvardsen RB, Jentoft S. Novel adverse outcome pathways revealed by chemical genetics in a developing marine fish. eLife 2017; 6:e20707. [PMID: 28117666 PMCID: PMC5302885 DOI: 10.7554/elife.20707] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/20/2017] [Indexed: 12/28/2022] Open
Abstract
Crude oil spills are a worldwide ocean conservation threat. Fish are particularly vulnerable to the oiling of spawning habitats, and crude oil causes severe abnormalities in embryos and larvae. However, the underlying mechanisms for these developmental defects are not well understood. Here, we explore the transcriptional basis for four discrete crude oil injury phenotypes in the early life stages of the commercially important Atlantic haddock (Melanogrammus aeglefinus). These include defects in (1) cardiac form and function, (2) craniofacial development, (3) ionoregulation and fluid balance, and (4) cholesterol synthesis and homeostasis. Our findings suggest a key role for intracellular calcium cycling and excitation-transcription coupling in the dysregulation of heart and jaw morphogenesis. Moreover, the disruption of ionoregulatory pathways sheds new light on buoyancy control in marine fish embryos. Overall, our chemical-genetic approach identifies initiating events for distinct adverse outcome pathways and novel roles for individual genes in fundamental developmental processes.
Collapse
Affiliation(s)
- Elin Sørhus
- Institute of Marine Research, Bergen, Norway
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - John P Incardona
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, United States
| | | | - Giles W Goetz
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, United States
| | - Nathaniel L Scholz
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, United States
| | | | | | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
- Department of Natural Sciences, University of Agder, Kristiansand, Norway
| |
Collapse
|
63
|
Wetzel-Strong SE, Detter MR, Marchuk DA. The pathobiology of vascular malformations: insights from human and model organism genetics. J Pathol 2016; 241:281-293. [PMID: 27859310 DOI: 10.1002/path.4844] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022]
Abstract
Vascular malformations may arise in any of the vascular beds present in the human body. These lesions vary in location, type, and clinical severity of the phenotype. In recent years, the genetic basis of several vascular malformations has been elucidated. This review will consider how the identification of the genetic factors contributing to different vascular malformations, with subsequent functional studies in animal models, has provided a better understanding of these factors that maintain vascular integrity in vascular beds, as well as their role in the pathogenesis of vascular malformations. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sarah E Wetzel-Strong
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matthew R Detter
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA.,Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
64
|
A mouse model of hereditary hemorrhagic telangiectasia generated by transmammary-delivered immunoblocking of BMP9 and BMP10. Sci Rep 2016; 5:37366. [PMID: 27874028 PMCID: PMC5118799 DOI: 10.1038/srep37366] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/27/2016] [Indexed: 01/03/2023] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a potentially life-threatening genetic vascular disorder caused by loss-of-function mutations in the genes encoding activin receptor-like kinase 1 (ALK1), endoglin, Smad4, and bone morphogenetic protein 9 (BMP9). Injections of mouse neonates with BMP9/10 blocking antibodies lead to HHT-like vascular defects in the postnatal retinal angiogenesis model. Mothers and their newborns share the same immunity through the transfer of maternal antibodies during lactation. Here, we investigated whether the transmammary delivery route could improve the ease and consistency of administering anti-BMP9/10 antibodies in the postnatal retinal angiogenesis model. We found that anti-BMP9/10 antibodies, when intraperitoneally injected into lactating dams, are efficiently transferred into the blood circulation of lactationally-exposed neonatal pups. Strikingly, pups receiving anti-BMP9/10 antibodies via lactation displayed consistent and robust vascular pathology in the retina, which included hypervascularization and defects in arteriovenous specification, as well as the presence of multiple and massive arteriovenous malformations. Furthermore, RNA-Seq analyses of neonatal retinas identified an increase in the key pro-angiogenic factor, angiopoietin-2, as the most significant change in gene expression triggered by the transmammary delivery of anti-BMP9/10 antibodies. Transmammary-delivered BMP9/10 immunoblocking in the mouse neonatal retina is therefore a practical, noninvasive, reliable, and robust model of HHT vascular pathology.
Collapse
|
65
|
Baeyens N, Larrivée B, Ola R, Hayward-Piatkowskyi B, Dubrac A, Huang B, Ross TD, Coon BG, Min E, Tsarfati M, Tong H, Eichmann A, Schwartz MA. Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia. J Cell Biol 2016; 214:807-16. [PMID: 27646277 PMCID: PMC5037412 DOI: 10.1083/jcb.201603106] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/30/2016] [Indexed: 11/27/2022] Open
Abstract
Morphogenesis of the vascular system is strongly modulated by mechanical forces from blood flow. Hereditary hemorrhagic telangiectasia (HHT) is an inherited autosomal-dominant disease in which arteriovenous malformations and telangiectasias accumulate with age. Most cases are linked to heterozygous mutations in Alk1 or Endoglin, receptors for bone morphogenetic proteins (BMPs) 9 and 10. Evidence suggests that a second hit results in clonal expansion of endothelial cells to form lesions with poor mural cell coverage that spontaneously rupture and bleed. We now report that fluid shear stress potentiates BMPs to activate Alk1 signaling, which correlates with enhanced association of Alk1 and endoglin. Alk1 is required for BMP9 and flow responses, whereas endoglin is only required for enhancement by flow. This pathway mediates both inhibition of endothelial proliferation and recruitment of mural cells; thus, its loss blocks flow-induced vascular stabilization. Identification of Alk1 signaling as a convergence point for flow and soluble ligands provides a molecular mechanism for development of HHT lesions.
Collapse
Affiliation(s)
- Nicolas Baeyens
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Bruno Larrivée
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511 Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Roxana Ola
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Brielle Hayward-Piatkowskyi
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Alexandre Dubrac
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Billy Huang
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Tyler D Ross
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Brian G Coon
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Elizabeth Min
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Maya Tsarfati
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511
| | - Haibin Tong
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511 Jilin Provincial Key Laboratory of Molecular Geriatric Medicine, Life Science Research Center, Beihua University, Jilin 132013, China
| | - Anne Eichmann
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Institut National de la Santé et de la Recherche Médicale U970, Paris Center for Cardiovascular Research, 75015 Paris, France
| | - Martin A Schwartz
- Department of Medicine (Cardiology), Yale University School of Medicine, New Haven, CT 06511 Department of Cell Biology, Yale University, New Haven, CT 06510 Department of Biomedical Engineering, Yale University, New Haven, CT 06510
| |
Collapse
|
66
|
Varadaraj A, Patel P, Serrao A, Bandyopadhay T, Lee NY, Jazaeri AA, Huang Z, Murphy SK, Mythreye K. Epigenetic Regulation of GDF2 Suppresses Anoikis in Ovarian and Breast Epithelia. Neoplasia 2016; 17:826-38. [PMID: 26678910 PMCID: PMC4681890 DOI: 10.1016/j.neo.2015.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/02/2015] [Accepted: 11/08/2015] [Indexed: 01/16/2023] Open
Abstract
Anoikis, a cell death mechanism triggered upon cell-matrix detachment, is regarded as a physiological suppressor of metastasis that can be regulated by a diverse array of signals. The protein encoded by GDF2 is BMP9 and is a member of the bone morphogenetic protein family and the transforming growth factor (TGF) β superfamily with emerging yet controversial roles in carcinogenesis. In an attempt to identify the function of growth and differentiation factor 2 (GDF2) in epithelial systems, we examined the signaling machinery that is involved and cell fate decisions in response to GDF2 in ovarian and breast epithelia. We find that GDF2 can robustly activate the SMAD1/5 signaling axis by increasing complex formation between the type I receptor serine threonine kinases activin receptor-like kinase (ALK) 3 and ALK6 and the type II receptor serine threonine kinase BMPRII. This activation is independent of cross talk with the SMAD2-transforming growth factor β pathway. By activating SMAD1/5, epithelial cells regulate anchorage-independent growth by increasing anoikis sensitivity that is dependent on GDF2’s ability to sustain the activation of SMAD1/5 via ALK3 and ALK6. Consistent with a role for GDF2 in promoting anoikis susceptibility, the analysis of cell lines and patient data suggests epigenetic silencing of GDF2 in cancer cell lines and increased promoter methylation in patients. These findings collectively indicate an antimetastatic role for GDF2 in ovarian and breast cancer. The work also implicates loss of GDF2 via promoter methylation-mediated downregulation in promotion of carcinogenesis with significant relevance for the use of epigenetic drugs currently in clinical trials.
Collapse
Affiliation(s)
- Archana Varadaraj
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia SC 29208
| | - Pratik Patel
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia SC 29208
| | - Anne Serrao
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia SC 29208
| | | | - Nam Y Lee
- Division of Pharmacology, College of Pharmacy, Columbus, OH 43210; Davis Heart and Lung Research Institute, Columbus, OH 43210
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center
| | - Zhiqing Huang
- Department of Gynecology and Oncology, Duke University, Durham NC 29210
| | - Susan K Murphy
- Department of Gynecology and Oncology, Duke University, Durham NC 29210
| | - Karthikeyan Mythreye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia SC 29208; Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, SC.
| |
Collapse
|
67
|
Rochon ER, Menon PG, Roman BL. Alk1 controls arterial endothelial cell migration in lumenized vessels. Development 2016; 143:2593-602. [PMID: 27287800 DOI: 10.1242/dev.135392] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/25/2016] [Indexed: 12/28/2022]
Abstract
Heterozygous loss of the arterial-specific TGFβ type I receptor, activin receptor-like kinase 1 (ALK1; ACVRL1), causes hereditary hemorrhagic telangiectasia (HHT). HHT is characterized by development of fragile, direct connections between arteries and veins, or arteriovenous malformations (AVMs). However, how decreased ALK1 signaling leads to AVMs is unknown. To understand the cellular mis-steps that cause AVMs, we assessed endothelial cell behavior in alk1-deficient zebrafish embryos, which develop cranial AVMs. Our data demonstrate that alk1 loss has no effect on arterial endothelial cell proliferation but alters arterial endothelial cell migration within lumenized vessels. In wild-type embryos, alk1-positive cranial arterial endothelial cells generally migrate towards the heart, against the direction of blood flow, with some cells incorporating into endocardium. In alk1-deficient embryos, migration against flow is dampened and migration in the direction of flow is enhanced. Altered migration results in decreased endothelial cell number in arterial segments proximal to the heart and increased endothelial cell number in arterial segments distal to the heart. We speculate that the consequent increase in distal arterial caliber and hemodynamic load precipitates the flow-dependent development of downstream AVMs.
Collapse
Affiliation(s)
- Elizabeth R Rochon
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | - Prahlad G Menon
- Department of Biomedical Engineering, Duquesne University, Pittsburgh, PA 15110, USA
| | - Beth L Roman
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| |
Collapse
|
68
|
Gkatzis K, Thalgott J, Dos-Santos-Luis D, Martin S, Lamandé N, Carette MF, Disch F, Snijder RJ, Westermann CJ, Mager JJ, Oh SP, Miquerol L, Arthur HM, Mummery CL, Lebrin F. Interaction Between ALK1 Signaling and Connexin40 in the Development of Arteriovenous Malformations. Arterioscler Thromb Vasc Biol 2016; 36:707-17. [PMID: 26821948 DOI: 10.1161/atvbaha.115.306719] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/20/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To determine the role of Gja5 that encodes for the gap junction protein connexin40 in the generation of arteriovenous malformations in the hereditary hemorrhagic telangiectasia type 2 (HHT2) mouse model. APPROACH AND RESULTS We identified GJA5 as a target gene of the bone morphogenetic protein-9/activin receptor-like kinase 1 signaling pathway in human aortic endothelial cells and importantly found that connexin40 levels were particularly low in a small group of patients with HHT2. We next took advantage of the Acvrl1(+/-) mutant mice that develop lesions similar to those in patients with HHT2 and generated Acvrl1(+/-); Gja5(EGFP/+) mice. Gja5 haploinsufficiency led to vasodilation of the arteries and rarefaction of the capillary bed in Acvrl1(+/-) mice. At the molecular level, we found that reduced Gja5 in Acvrl1(+/-) mice stimulated the production of reactive oxygen species, an important mediator of vessel remodeling. To normalize the altered hemodynamic forces in Acvrl1(+/-); Gja5(EGFP/+) mice, capillaries formed transient arteriovenous shunts that could develop into large malformations when exposed to environmental insults. CONCLUSIONS We identified GJA5 as a potential modifier gene for HHT2. Our findings demonstrate that Acvrl1 haploinsufficiency combined with the effects of modifier genes that regulate vessel caliber is responsible for the heterogeneity and severity of the disease. The mouse models of HHT have led to the proposal that 3 events-heterozygosity, loss of heterozygosity, and angiogenic stimulation-are necessary for arteriovenous malformation formation. Here, we present a novel 3-step model in which pathological vessel caliber and consequent altered blood flow are necessary events for arteriovenous malformation development.
Collapse
MESH Headings
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/metabolism
- Activin Receptors, Type II/genetics
- Activin Receptors, Type II/metabolism
- Animals
- Arteriovenous Malformations/enzymology
- Arteriovenous Malformations/genetics
- Arteriovenous Malformations/pathology
- Cells, Cultured
- Connexins/genetics
- Connexins/metabolism
- Disease Models, Animal
- Endothelial Cells/enzymology
- Genetic Predisposition to Disease
- Haploinsufficiency
- Humans
- Mice, Mutant Strains
- Mice, Transgenic
- Neovascularization, Pathologic
- Phenotype
- RNA Interference
- Reactive Oxygen Species/metabolism
- Retinal Vessels/enzymology
- Retinal Vessels/pathology
- Signal Transduction
- Telangiectasia, Hereditary Hemorrhagic/enzymology
- Telangiectasia, Hereditary Hemorrhagic/genetics
- Telangiectasia, Hereditary Hemorrhagic/pathology
- Transfection
- Vascular Remodeling
- Gap Junction alpha-5 Protein
Collapse
Affiliation(s)
- Konstantinos Gkatzis
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - Jérémy Thalgott
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - Damien Dos-Santos-Luis
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - Sabrina Martin
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - Noël Lamandé
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - Marie France Carette
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - Frans Disch
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - Repke J Snijder
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - Cornelius J Westermann
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - Johannes J Mager
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - S Paul Oh
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - Lucile Miquerol
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - Helen M Arthur
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - Christine L Mummery
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.)
| | - Franck Lebrin
- From the Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands (K.G., C.L.M.); CNRS Unité mixte de recherche 7241/INSERM U1050, Center for Interdisciplinary Research in Biology, Collège de France, Paris cedex 05, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); MEMOLIFE Laboratory of Excellence, Paris Sciences et Lettres Research University, Paris, France (J.T., D.D.-S.-L., S.M., N.L., F.L.); Department of Radiology, AP-HP, Tenon Hospital, Paris, France (M.F.C.); Sorbonne Universités, UPMC University, Paris, France (M.F.C.); St. Antonius Hospital, Nieuwegein, The Netherlands (F.D., R.J.S., C.J.W., J.J.M.); Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (S.P.O.); Aix Marseille Université, CNRS IBDM UMR 7288, Marseille cedex 09, France (L.M.); and Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom (H.M.A.).
| |
Collapse
|
69
|
Morrell NW, Bloch DB, ten Dijke P, Goumans MJTH, Hata A, Smith J, Yu PB, Bloch KD. Targeting BMP signalling in cardiovascular disease and anaemia. Nat Rev Cardiol 2016; 13:106-20. [PMID: 26461965 PMCID: PMC4886232 DOI: 10.1038/nrcardio.2015.156] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone morphogenetic proteins (BMPs) and their receptors, known to be essential regulators of embryonic patterning and organogenesis, are also critical for the regulation of cardiovascular structure and function. In addition to their contributions to syndromic disorders including heart and vascular development, BMP signalling is increasingly recognized for its influence on endocrine-like functions in postnatal cardiovascular and metabolic homeostasis. In this Review, we discuss several critical and novel aspects of BMP signalling in cardiovascular health and disease, which highlight the cell-specific and context-specific nature of BMP signalling. Based on advancing knowledge of the physiological roles and regulation of BMP signalling, we indicate opportunities for therapeutic intervention in a range of cardiovascular conditions including atherosclerosis and pulmonary arterial hypertension, as well as for anaemia of inflammation. Depending on the context and the repertoire of ligands and receptors involved in specific disease processes, the selective inhibition or enhancement of signalling via particular BMP ligands (such as in atherosclerosis and pulmonary arterial hypertension, respectively) might be beneficial. The development of selective small molecule antagonists of BMP receptors, and the identification of ligands selective for BMP receptor complexes expressed in the vasculature provide the most immediate opportunities for new therapies.
Collapse
Affiliation(s)
- Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Donald B Bloch
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Peter ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medicine Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Marie-Jose T H Goumans
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medicine Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, 500 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jim Smith
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Paul B Yu
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Kenneth D Bloch
- Anaesthesia Centre for Critical Care Research, Department of Anaesthesia, Critical Care and Pain Medicine, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
70
|
García de Vinuesa A, Abdelilah-Seyfried S, Knaus P, Zwijsen A, Bailly S. BMP signaling in vascular biology and dysfunction. Cytokine Growth Factor Rev 2015; 27:65-79. [PMID: 26823333 DOI: 10.1016/j.cytogfr.2015.12.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The vascular system is critical for developmental growth, tissue homeostasis and repair but also for tumor development. Bone morphogenetic protein (BMP) signaling has recently emerged as a fundamental pathway of the endothelium by regulating cardiovascular and lymphatic development and by being causative for several vascular dysfunctions. Two vascular disorders have been directly linked to impaired BMP signaling: pulmonary arterial hypertension and hereditary hemorrhagic telangiectasia. Endothelial BMP signaling critically depends on the cellular context, which includes among others vascular heterogeneity, exposure to flow, and the intertwining with other signaling cascades (Notch, WNT, Hippo and hypoxia). The purpose of this review is to highlight the most recent findings illustrating the clear need for reconsidering the role of BMPs in vascular biology.
Collapse
Affiliation(s)
- Amaya García de Vinuesa
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, Potsdam University, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam, Germany; Institute of Molecular Biology, Hannover Medical School, Carl-Neuberg Straße 1, D-30625 Hannover, Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universitaet Berlin, Berlin, Germany
| | - An Zwijsen
- VIB Center for the Biology of Disease, Leuven, Belgium; KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Sabine Bailly
- Institut National de la Santé et de la Recherche Médicale (INSERM, U1036), Grenoble F-38000, France; Commissariat à l'Énergie Atomique et aux Energies Alternatives, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire Biologie du Cancer et de l'Infection, Grenoble F-38000, France; Université Grenoble-Alpes, Grenoble F-38000, France.
| |
Collapse
|
71
|
Jiang H, Salmon RM, Upton PD, Wei Z, Lawera A, Davenport AP, Morrell NW, Li W. The Prodomain-bound Form of Bone Morphogenetic Protein 10 Is Biologically Active on Endothelial Cells. J Biol Chem 2015; 291:2954-66. [PMID: 26631724 PMCID: PMC4742757 DOI: 10.1074/jbc.m115.683292] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Indexed: 12/22/2022] Open
Abstract
BMP10 is highly expressed in the developing heart and plays essential roles in cardiogenesis. BMP10 deletion in mice results in embryonic lethality because of impaired cardiac development. In adults, BMP10 expression is restricted to the right atrium, though ventricular hypertrophy is accompanied by increased BMP10 expression in a rat hypertension model. However, reports of BMP10 activity in the circulation are inconclusive. In particular, it is not known whether in vivo secreted BMP10 is active or whether additional factors are required to achieve its bioactivity. It has been shown that high-affinity binding of the BMP10 prodomain to the mature ligand inhibits BMP10 signaling activity in C2C12 cells, and it was proposed that prodomain-bound BMP10 (pBMP10) complex is latent. In this study, we demonstrated that the BMP10 prodomain did not inhibit BMP10 signaling activity in multiple endothelial cells, and that recombinant human pBMP10 complex, expressed in mammalian cells and purified under native conditions, was fully active. In addition, both BMP10 in human plasma and BMP10 secreted from the mouse right atrium were fully active. Finally, we confirmed that active BMP10 secreted from mouse right atrium was in the prodomain-bound form. Our data suggest that circulating BMP10 in adults is fully active and that the reported vascular quiescence function of BMP10 in vivo is due to the direct activity of pBMP10 and does not require an additional activation step. Moreover, being an active ligand, recombinant pBMP10 may have therapeutic potential as an endothelial-selective BMP ligand, in conditions characterized by loss of BMP9/10 signaling.
Collapse
Affiliation(s)
- He Jiang
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ United Kingdom
| | - Richard M Salmon
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ United Kingdom
| | - Paul D Upton
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ United Kingdom
| | - Zhenquan Wei
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ United Kingdom
| | - Aleksandra Lawera
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ United Kingdom
| | - Anthony P Davenport
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ United Kingdom
| | - Nicholas W Morrell
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ United Kingdom
| | - Wei Li
- From the Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ United Kingdom
| |
Collapse
|
72
|
Ormiston ML, Upton PD, Li W, Morrell NW. The promise of recombinant BMP ligands and other approaches targeting BMPR-II in the treatment of pulmonary arterial hypertension. Glob Cardiol Sci Pract 2015; 2015:47. [PMID: 26779522 PMCID: PMC4710869 DOI: 10.5339/gcsp.2015.47] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022] Open
Abstract
Human genetic discoveries offer a powerful method to implicate pathways of major importance to disease pathobiology and hence provide targets for pharmacological intervention. The genetics of pulmonary arterial hypertension (PAH) strongly implicates loss-of-function of the bone morphogenetic protein type II receptor (BMPR-II) signalling pathway and moreover implicates the endothelial cell as a central cell type involved in disease initiation. We and others have described several approaches to restore BMPR-II function in genetic and non-genetic forms of PAH. Of these, supplementation of endothelial BMP9/10 signalling with exogenous recombinant ligand has been shown to hold considerable promise as a novel large molecule biopharmaceutical therapy. Here, we describe the mechanism of action and discuss potential additional effects of BMP ligand therapy.
Collapse
Affiliation(s)
- Mark L Ormiston
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, United Kingdom
| | - Paul D Upton
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, United Kingdom
| | - Wei Li
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, United Kingdom
| | - Nicholas W Morrell
- The Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, United Kingdom
| |
Collapse
|
73
|
Rostama B, Turner JE, Seavey GT, Norton CR, Gridley T, Vary CPH, Liaw L. DLL4/Notch1 and BMP9 Interdependent Signaling Induces Human Endothelial Cell Quiescence via P27KIP1 and Thrombospondin-1. Arterioscler Thromb Vasc Biol 2015; 35:2626-37. [PMID: 26471266 DOI: 10.1161/atvbaha.115.306541] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/05/2015] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Bone morphogenetic protein-9 (BMP9)/activin-like kinase-1 and delta-like 4 (DLL4)/Notch promote endothelial quiescence, and we aim to understand mechanistic interactions between the 2 pathways. We identify new targets that contribute to endothelial quiescence and test whether loss of Dll4(+/-) in adult vasculature alters BMP signaling. APPROACH AND RESULTS Human endothelial cells respond synergistically to BMP9 and DLL4 stimulation, showing complete quiescence and induction of HEY1 and HEY2. Canonical BMP9 signaling via activin-like kinase-1-Smad1/5/9 was disrupted by inhibition of Notch signaling, even in the absence of exogenous DLL4. Similarly, DLL4 activity was suppressed when the basal activin-like kinase-1-Smad1/5/9 pathway was inhibited, showing that these pathways are interdependent. BMP9/DLL4 required induction of P27(KIP1) for quiescence, although multiple factors are involved. To understand these mechanisms, we used proteomics data to identify upregulation of thrombospondin-1, which contributes to the quiescence phenotype. To test whether Dll4 regulates BMP/Smad pathways and endothelial cell phenotype in vivo, we characterized the vasculature of Dll4(+/-) mice, analyzing endothelial cells in the lung, heart, and aorta. Together with changes in endothelial structure and vascular morphogenesis, we found that loss of Dll4 was associated with a significant upregulation of pSmad1/5/9 signaling in lung endothelial cells. Because steady-state endothelial cell proliferation rates were not different in the Dll4(+/-) mice, we propose that the upregulation of pSmad1/5/9 signaling compensates to maintain endothelial cell quiescence in these mice. CONCLUSIONS DLL4/Notch and BMP9/activin-like kinase-1 signaling rely on each other's pathways for full activity. This represents an important mechanism of cross talk that enhances endothelial quiescence and sensitively coordinates cellular responsiveness to soluble and cell-tethered ligands.
Collapse
Affiliation(s)
- Bahman Rostama
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Jacqueline E Turner
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Guy T Seavey
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Christine R Norton
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Thomas Gridley
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Calvin P H Vary
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough
| | - Lucy Liaw
- From the Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough.
| |
Collapse
|
74
|
Palencia-Desai S, Rost MS, Schumacher JA, Ton QV, Craig MP, Baltrunaite K, Koenig AL, Wang J, Poss KD, Chi NC, Stainier DYR, Sumanas S. Myocardium and BMP signaling are required for endocardial differentiation. Development 2015; 142:2304-15. [PMID: 26092845 DOI: 10.1242/dev.118687] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 05/12/2015] [Indexed: 01/09/2023]
Abstract
Endocardial and myocardial progenitors originate in distinct regions of the anterior lateral plate mesoderm and migrate to the midline where they coalesce to form the cardiac tube. Endocardial progenitors acquire a molecular identity distinct from other vascular endothelial cells and initiate expression of specific genes such as nfatc1. Yet the molecular pathways and tissue interactions involved in establishing endocardial identity are poorly understood. The endocardium develops in tight association with cardiomyocytes. To test for a potential role of the myocardium in endocardial morphogenesis, we used two different zebrafish models deficient in cardiomyocytes: the hand2 mutant and a myocardial-specific genetic ablation method. We show that in hand2 mutants endocardial progenitors migrate to the midline but fail to assemble into a cardiac cone and do not express markers of differentiated endocardium. Endocardial differentiation defects were rescued by myocardial but not endocardial-specific expression of hand2. In metronidazole-treated myl7:nitroreductase embryos, myocardial cells were targeted for apoptosis, which resulted in the loss of endocardial nfatc1 expression. However, endocardial cells were present and retained expression of general vascular endothelial markers. We further identified bone morphogenetic protein (BMP) as a candidate myocardium-derived signal required for endocardial differentiation. Chemical and genetic inhibition of BMP signaling at the tailbud stage resulted in severe inhibition of endocardial differentiation while there was little effect on myocardial development. Heat-shock-induced bmp2b expression rescued endocardial nfatc1 expression in hand2 mutants and in myocardium-depleted embryos. Our results indicate that the myocardium is crucial for endocardial morphogenesis and differentiation, and identify BMP as a signal involved in endocardial differentiation.
Collapse
Affiliation(s)
- Sharina Palencia-Desai
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Megan S Rost
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jennifer A Schumacher
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Quynh V Ton
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael P Craig
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kristina Baltrunaite
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrew L Koenig
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jinhu Wang
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenneth D Poss
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Neil C Chi
- Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94158, USA
| | - Didier Y R Stainier
- Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94158, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
75
|
Rochon ER, Wright DS, Schubert MM, Roman BL. Context-specific interactions between Notch and ALK1 cannot explain ALK1-associated arteriovenous malformations. Cardiovasc Res 2015; 107:143-52. [PMID: 25969392 DOI: 10.1093/cvr/cvv148] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 05/07/2015] [Indexed: 01/17/2023] Open
Abstract
AIMS Notch and activin receptor-like kinase 1 (ALK1) have been implicated in arterial specification, angiogenic tip/stalk cell differentiation, and development of arteriovenous malformations (AVMs), and ALK1 can cooperate with Notch to up-regulate expression of Notch target genes in cultured endothelial cells. These findings suggest that Notch and ALK1 might collaboratively program arterial identity and prevent AVMs. We therefore sought to investigate the interaction between Notch and Alk1 signalling in the developing vertebrate vasculature. METHODS AND RESULTS We modulated Notch and Alk1 activities in zebrafish embryos and examined effects on Notch target gene expression and vascular morphology. Although Alk1 is not necessary for expression of Notch target genes in arterial endothelium, loss of Notch signalling unmasks a role for Alk1 in supporting hey2 and ephrinb2a expression in the dorsal aorta. In contrast, Notch and Alk1 play opposing roles in hey2 expression in cranial arteries and dll4 expression in all arterial endothelium, with Notch inducing and Alk1 repressing these genes. Although alk1 loss increases expression of dll4, AVMs in alk1 mutants could neither be phenocopied by Notch activation nor rescued by Dll4/Notch inhibition. CONCLUSION Control of Notch targets in arterial endothelium is context-dependent, with gene-specific and region-specific requirements for Notch and Alk1. Alk1 is not required for arterial identity, and perturbations in Notch signalling cannot account for alk1 mutant-associated AVMs. These data suggest that AVMs associated with ALK1 mutation are not caused by defective arterial specification or altered Notch signalling.
Collapse
Affiliation(s)
- Elizabeth R Rochon
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Daniel S Wright
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Max M Schubert
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Beth L Roman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, 130 DeSoto St, Pittsburgh, PA 15261, USA
| |
Collapse
|
76
|
Letteboer TGW, Benzinou M, Merrick CB, Quigley DA, Zhau K, Kim IJ, To MD, Jablons DM, van Amstel JKP, Westermann CJJ, Giraud S, Dupuis-Girod S, Lesca G, Berg JH, Balmain A, Akhurst RJ. Genetic variation in the functional ENG allele inherited from the non-affected parent associates with presence of pulmonary arteriovenous malformation in hereditary hemorrhagic telangiectasia 1 (HHT1) and may influence expression of PTPN14. Front Genet 2015; 6:67. [PMID: 25815003 PMCID: PMC4357294 DOI: 10.3389/fgene.2015.00067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/09/2015] [Indexed: 01/09/2023] Open
Abstract
HHT shows clinical variability within and between families. Organ site and prevalence of arteriovenous malformations (AVMs) depend on the HHT causative gene and on environmental and genetic modifiers. We tested whether variation in the functional ENG allele, inherited from the unaffected parent, alters risk for pulmonary AVM in HHT1 mutation carriers who are ENG haploinsufficient. Genetic association was found between rs10987746 of the wild type ENG allele and presence of pulmonary AVM [relative risk = 1.3 (1.0018-1.7424)]. The rs10987746-C at-risk allele associated with lower expression of ENG RNA in a panel of human lymphoblastoid cell lines (P = 0.004). Moreover, in angiogenically active human lung adenocarcinoma tissue, but not in uninvolved quiescent lung, rs10987746-C was correlated with expression of PTPN14 (P = 0.004), another modifier of HHT. Quantitative TAQMAN expression analysis in a panel of normal lung tissues from 69 genetically heterogeneous inter-specific backcross mice, demonstrated strong correlation between expression levels of Eng, Acvrl1, and Ptpn14 (r2 = 0.75-0.9, P < 1 × 10(-12)), further suggesting a direct or indirect interaction between these three genes in lung in vivo. Our data indicate that genetic variation within the single functional ENG gene influences quantitative and/or qualitative differences in ENG expression that contribute to risk of pulmonary AVM in HHT1, and provide correlative support for PTPN14 involvement in endoglin/ALK1 lung biology in vivo. PTPN14 has been shown to be a negative regulator of Yap/Taz signaling, which is implicated in mechanotransduction, providing a possible molecular link between endoglin/ALK1 signaling and mechanical stress. EMILIN2, which showed suggestive genetic association with pulmonary AVM, is also reported to interact with Taz in angiogenesis. Elucidation of the molecular mechanisms regulating these interactions in endothelial cells may ultimately provide more rational choices for HHT therapy.
Collapse
Affiliation(s)
- Tom G W Letteboer
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA ; Department of Medical Genetics, University Medical Centre Utrecht Utrecht, Netherlands
| | - Michael Benzinou
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA
| | - Christopher B Merrick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA ; Department of Clinical Genetics, University of Dundee Dundee, UK
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA
| | - Kechen Zhau
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA
| | - Il-Jin Kim
- Department of Surgery, University of California, San Francisco San Francisco, CA, USA
| | - Minh D To
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA ; Department of Surgery, University of California, San Francisco San Francisco, CA, USA
| | - David M Jablons
- Department of Surgery, University of California, San Francisco San Francisco, CA, USA
| | | | | | - Sophie Giraud
- Department of Medical Genetics, Lyon University Hospital Lyon, France
| | | | - Gaetan Lesca
- Department of Medical Genetics, Lyon University Hospital Lyon, France
| | - Jonathan H Berg
- Department of Clinical Genetics, University of Dundee Dundee, UK
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA ; Department of Biochemistry and Biophysics, University of California, San Francisco San Francisco, CA, USA ; Institute of Human Genetics, University of California, San Francisco San Francisco, CA, USA
| | - Rosemary J Akhurst
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA ; Institute of Human Genetics, University of California, San Francisco San Francisco, CA, USA ; Department of Anatomy, University of California, San Francisco San Francisco, CA, USA
| |
Collapse
|
77
|
Tillet E, Bailly S. Emerging roles of BMP9 and BMP10 in hereditary hemorrhagic telangiectasia. Front Genet 2015; 5:456. [PMID: 25620979 PMCID: PMC4288046 DOI: 10.3389/fgene.2014.00456] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/12/2014] [Indexed: 12/21/2022] Open
Abstract
Rendu-Osler-Weber syndrome, also known as hereditary hemorrhagic telangiectasia (HHT), is an autosomal dominant vascular disorder. Three genes are causally related to HHT: the ENG gene encoding endoglin, a co-receptor of the TGFβ family (HHT1), the ACVRL1 gene encoding ALK1 (activin receptor-like kinase 1), a type I receptor of the TGFβ family (HHT2), and the SMAD4 gene, encoding a transcription factor critical for this signaling pathway. Bone morphogenetic proteins (BMPs) are growth factors of the TGFβ family. Among them, BMP9 and BMP10 have been shown to bind directly with high affinity to ALK1 and endoglin, and BMP9 mutations have recently been linked to a vascular anomaly syndrome that has phenotypic overlap with HHT. BMP9 and BMP10 are both circulating cytokines in blood, and the current working model is that BMP9 and BMP10 maintain a quiescent endothelial state that is dependent on the level of ALK1/endoglin activation in endothelial cells. In accordance with this model, to explain the etiology of HHT we hypothesize that a deficient BMP9/BMP10/ALK1/endoglin pathway may lead to re-activation of angiogenesis or a greater sensitivity to an angiogenic stimulus. Resulting endothelial hyperproliferation and hypermigration may lead to vasodilatation and generation of an arteriovenous malformation (AVM). HHT would thus result from a defect in the angiogenic balance. This review will focus on the emerging role played by BMP9 and BMP10 in the development of this disease and the therapeutic approaches that this opens.
Collapse
Affiliation(s)
- Emmanuelle Tillet
- Inserm, U1036 , Grenoble, France ; Laboratoire Biologie du Cancer et de l'Infection, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'énergie atomique et aux énergies alternatives , Grenoble, France ; Université Grenoble-Alpes , Grenoble, France
| | - Sabine Bailly
- Inserm, U1036 , Grenoble, France ; Laboratoire Biologie du Cancer et de l'Infection, Institut de Recherches en Technologies et Sciences pour le Vivant, Commissariat à l'énergie atomique et aux énergies alternatives , Grenoble, France ; Université Grenoble-Alpes , Grenoble, France
| |
Collapse
|
78
|
Roman BL, Finegold DN. Genetic and Molecular Basis for Hereditary Hemorrhagic Telangiectasia. CURRENT GENETIC MEDICINE REPORTS 2014. [DOI: 10.1007/s40142-014-0061-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
79
|
Goetz JG, Steed E, Ferreira RR, Roth S, Ramspacher C, Boselli F, Charvin G, Liebling M, Wyart C, Schwab Y, Vermot J. Endothelial cilia mediate low flow sensing during zebrafish vascular development. Cell Rep 2014; 6:799-808. [PMID: 24561257 DOI: 10.1016/j.celrep.2014.01.032] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/20/2013] [Accepted: 01/23/2014] [Indexed: 11/16/2022] Open
Abstract
VIDEO ABSTRACT The pattern of blood flow has long been thought to play a significant role in vascular morphogenesis, yet the flow-sensing mechanism that is involved at early embryonic stages, when flow forces are low, remains unclear. It has been proposed that endothelial cells use primary cilia to sense flow, but this has never been tested in vivo. Here we show, by noninvasive, high-resolution imaging of live zebrafish embryos, that endothelial cilia progressively deflect at the onset of blood flow and that the deflection angle correlates with calcium levels in endothelial cells. We demonstrate that alterations in shear stress, ciliogenesis, or expression of the calcium channel PKD2 impair the endothelial calcium level and both increase and perturb vascular morphogenesis. Altogether, these results demonstrate that endothelial cilia constitute a highly sensitive structure that permits the detection of low shear forces during vascular morphogenesis.
Collapse
Affiliation(s)
- Jacky G Goetz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Emily Steed
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Rita R Ferreira
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Stéphane Roth
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Caroline Ramspacher
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Francesco Boselli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Gilles Charvin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Michael Liebling
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Claire Wyart
- Institut du Cerveau et de la Moelle Épinière (ICM), Hôpital de la Pitié-Salpêtrière, 75013 Paris, France; Inserm UMRS 1127, 75013 Paris, France; CNRS UMR 7225, 75013 Paris, France; UPMC University of Paris 06, 75005 Paris, France
| | - Yannick Schwab
- Electron Microscopy Core Facility, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
80
|
Wilkinson RN, van Eeden FJ. The Zebrafish as a Model of Vascular Development and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 124:93-122. [DOI: 10.1016/b978-0-12-386930-2.00005-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|