51
|
Xue M, Huang N, Luo Y, Yang X, Wang Y, Fang M. Combined Transcriptomics and Metabolomics Identify Regulatory Mechanisms of Porcine Vertebral Chondrocyte Development In Vitro. Int J Mol Sci 2024; 25:1189. [PMID: 38256262 PMCID: PMC10816887 DOI: 10.3390/ijms25021189] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Porcine body length is closely related to meat production, growth, and reproductive performance, thus playing a key role in the profitability of the pork industry. Cartilage development is critical to longitudinal elongation of individual vertebrae. This study isolated primary porcine vertebral chondrocytes (PVCs) to clarify the complex mechanisms of elongation. We used transcriptome and target energy metabolome technologies to confirm crucial genes and metabolites in primary PVCs at different differentiation stages (0, 4, 8, and 12 days). Pairwise comparisons of the four stages identified 4566 differentially expressed genes (DEGs). Time-series gene cluster and functional analyses of these DEGs revealed four clusters related to metabolic processes, cartilage development, vascular development, and cell cycle regulation. We constructed a transcriptional regulatory network determining chondrocyte maturation. The network indicated that significantly enriched transcription factor (TF) families, including zf-C2H2, homeobox, TF_bZIP, and RHD, are important in cell cycle and differentiation processes. Further, dynamic network biomarker (DNB) analysis revealed that day 4 was the tipping point for chondrocyte development, consistent with morphological and metabolic changes. We found 24 DNB DEGs, including the TFs NFATC2 and SP7. Targeted energy metabolome analysis showed that most metabolites were elevated throughout chondrocyte development; notably, 16 differentially regulated metabolites (DRMs) were increased at three time points after cell differentiation. In conclusion, integrated metabolome and transcriptome analyses highlighted the importance of amino acid biosynthesis in chondrocyte development, with coordinated regulation of DEGs and DRMs promoting PVC differentiation via glucose oxidation. These findings reveal the regulatory mechanisms underlying PVC development and provide an important theoretical reference for improving pork production.
Collapse
Affiliation(s)
- Mingming Xue
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.X.); (Y.L.); (X.Y.)
| | - Ning Huang
- Sanya Research Institute, China Agricultural University, Sanya 572025, China; (N.H.); (Y.W.)
| | - Yabiao Luo
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.X.); (Y.L.); (X.Y.)
| | - Xiaoyang Yang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.X.); (Y.L.); (X.Y.)
| | - Yubei Wang
- Sanya Research Institute, China Agricultural University, Sanya 572025, China; (N.H.); (Y.W.)
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.X.); (Y.L.); (X.Y.)
- Sanya Research Institute, China Agricultural University, Sanya 572025, China; (N.H.); (Y.W.)
| |
Collapse
|
52
|
Morillo-Bernal J, Pizarro-García P, Moreno-Bueno G, Cano A, Mazón MJ, Eraso P, Portillo F. HuR (ELAVL1) Stabilizes SOX9 mRNA and Promotes Migration and Invasion in Breast Cancer Cells. Cancers (Basel) 2024; 16:384. [PMID: 38254873 PMCID: PMC10813878 DOI: 10.3390/cancers16020384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
RNA-binding proteins play diverse roles in cancer, influencing various facets of the disease, including proliferation, apoptosis, angiogenesis, senescence, invasion, epithelial-mesenchymal transition (EMT), and metastasis. HuR, a known RBP, is recognized for stabilizing mRNAs containing AU-rich elements (AREs), although its complete repertoire of mRNA targets remains undefined. Through a bioinformatics analysis of the gene expression profile of the Hs578T basal-like triple-negative breast cancer cell line with silenced HuR, we have identified SOX9 as a potential HuR-regulated target. SOX9 is a transcription factor involved in promoting EMT, metastasis, survival, and the maintenance of cancer stem cells (CSCs) in triple-negative breast cancer. Ribonucleoprotein immunoprecipitation assays confirm a direct interaction between HuR and SOX9 mRNA. The half-life of SOX9 mRNA and the levels of SOX9 protein decreased in cells lacking HuR. Cells silenced for HuR exhibit reduced migration and invasion compared to control cells, a phenotype similar to that described for SOX9-silenced cells.
Collapse
Affiliation(s)
- Jesús Morillo-Bernal
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
| | - Patricia Pizarro-García
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
| | - Gema Moreno-Bueno
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28029 Madrid, Spain
- Fundación MD Anderson Internacional, 28033 Madrid, Spain
| | - Amparo Cano
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María J. Mazón
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
| | - Pilar Eraso
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
| | - Francisco Portillo
- Departamento de Bioquímica UAM, Instituto de Investigaciones Biomédicas Sols-Morreale, CSIC-UAM, 28029 Madrid, Spain; (J.M.-B.); (P.P.-G.); (G.M.-B.); (A.C.); (M.J.M.); (P.E.)
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
53
|
Altundag Ö, Öteyaka MÖ, Çelebi-Saltik B. Co- and Triaxial Electrospinning for Stem Cell-based Bone Regeneration. Curr Stem Cell Res Ther 2024; 19:865-878. [PMID: 37594104 DOI: 10.2174/1574888x18666230818094216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Bone tissue is composed of organic minerals and cells. It has the capacity to heal for certain minor damages, but when the bone defects surpass the critical threshold, they need fixing. Bone regeneration through natural and synthetic biodegradable materials requires various steps, such as manufacturing methods and materials selection. A successful biodegradable bone graft should have a high surface area/ volume ratio, strength, and a biocompatible, porous structure capable of promoting cell adhesion, proliferation, and differentiation. Considering these requirements, the electrospinning technique is promising for creating functional nano-sized scaffolds. The multi-axial methods, such as coaxial and triaxial electrospinning, are the most popular techniques to produce double or tri-layered scaffolds, respectively. Recently, stem cell culture on scaffolds and the application of osteogenic differentiation protocols on these scaffolds have opened new possibilities in the field of biomaterials research. This review discusses an overview of the progress in coaxial and triaxial technology through biodegradable composite bone materials. The review also carefully elaborates the osteogenic differentiation using stem cells and their performance with nano-sized scaffolds.
Collapse
Affiliation(s)
- Özlem Altundag
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Mustafa Özgür Öteyaka
- Department of Electronic and Automation, Mechatronic Program, Eskisehir Vocational School, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| |
Collapse
|
54
|
Zappa F, Intartaglia D, Guarino AM, De Cegli R, Wilson C, Salierno FG, Polishchuk E, Sorrentino NC, Conte I, De Matteis MA. Role of trafficking protein particle complex 2 in medaka development. Traffic 2024; 25:e12924. [PMID: 37963679 DOI: 10.1111/tra.12924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023]
Abstract
The skeletal dysplasia spondyloepiphyseal dysplasia tarda (SEDT) is caused by mutations in the TRAPPC2 gene, which encodes Sedlin, a component of the trafficking protein particle (TRAPP) complex that we have shown previously to be required for the export of type II collagen (Col2) from the endoplasmic reticulum. No vertebrate model for SEDT has been generated thus far. To address this gap, we generated a Sedlin knockout animal by mutating the orthologous TRAPPC2 gene (olSedl) of Oryzias latipes (medaka) fish. OlSedl deficiency leads to embryonic defects, short size, diminished skeletal ossification and altered Col2 production and secretion, resembling human defects observed in SEDT patients. Moreover, SEDT knock-out animals display photoreceptor degeneration and gut morphogenesis defects, suggesting a key role for Sedlin in the development of these organs. Thus, by studying Sedlin function in vivo, we provide evidence for a mechanistic link between TRAPPC2-mediated membrane trafficking, Col2 export, and developmental disorders.
Collapse
Affiliation(s)
- Francesca Zappa
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli (Naples), Italy
| | - Daniela Intartaglia
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli (Naples), Italy
| | - Andrea M Guarino
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli (Naples), Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli (Naples), Italy
| | - Cathal Wilson
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli (Naples), Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Elena Polishchuk
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli (Naples), Italy
| | - Nicolina Cristina Sorrentino
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli (Naples), Italy
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli (Naples), Italy
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Maria Antonietta De Matteis
- Telethon Institute of Genetics and Medicine, TIGEM, Pozzuoli (Naples), Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
55
|
Raman R, Bahri MA, Degueldre C, Caetano da Silva C, Sanchez C, Ostertag A, Collet C, Cohen-Solal M, Plenevaux A, Henrotin Y, Muller M. A Zebrafish Mutant in the Extracellular Matrix Protein Gene efemp1 as a Model for Spinal Osteoarthritis. Animals (Basel) 2023; 14:74. [PMID: 38200805 PMCID: PMC10778253 DOI: 10.3390/ani14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Osteoarthritis is a degenerative articular disease affecting mainly aging animals and people. The extracellular matrix protein Efemp1 was previously shown to have higher turn-over and increased secretion in the blood serum, urine, and subchondral bone of knee joints in osteoarthritic patients. Here, we use the zebrafish as a model system to investigate the function of Efemp1 in vertebrate skeletal development and homeostasis. Using in situ hybridization, we show that the efemp1 gene is expressed in the brain, the pharyngeal arches, and in the chordoblasts surrounding the notochord at 48 hours post-fertilization. We generated an efemp1 mutant line, using the CRISPR/Cas9 method, that produces a severely truncated Efemp1 protein. These mutant larvae presented a medially narrower chondrocranium at 5 days, which normalized later at day 10. At age 1.5 years, µCT analysis revealed an increased tissue mineral density and thickness of the vertebral bodies, as well as a decreased distance between individual vertebrae and ruffled borders of the vertebral centra. This novel defect, which has, to our knowledge, never been described before, suggests that the efemp1 mutant represents the first zebrafish model for spinal osteoarthritis.
Collapse
Affiliation(s)
- Ratish Raman
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium;
| | - Mohamed Ali Bahri
- GIGA CRC In Vivo Imaging, University of Liege, Sart Tilman, 4000 Liège, Belgium; (M.A.B.); (C.D.); (A.P.)
| | - Christian Degueldre
- GIGA CRC In Vivo Imaging, University of Liege, Sart Tilman, 4000 Liège, Belgium; (M.A.B.); (C.D.); (A.P.)
| | - Caroline Caetano da Silva
- Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France; (C.C.d.S.); (A.O.); (C.C.); (M.C.-S.)
| | - Christelle Sanchez
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, University of Liège, 4000 Liège, Belgium; (C.S.); (Y.H.)
| | - Agnes Ostertag
- Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France; (C.C.d.S.); (A.O.); (C.C.); (M.C.-S.)
| | - Corinne Collet
- Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France; (C.C.d.S.); (A.O.); (C.C.); (M.C.-S.)
- UF de Génétique Moléculaire, Hôpital Robert Debré, APHP, F-75019 Paris, France
| | - Martine Cohen-Solal
- Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France; (C.C.d.S.); (A.O.); (C.C.); (M.C.-S.)
| | - Alain Plenevaux
- GIGA CRC In Vivo Imaging, University of Liege, Sart Tilman, 4000 Liège, Belgium; (M.A.B.); (C.D.); (A.P.)
| | - Yves Henrotin
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, University of Liège, 4000 Liège, Belgium; (C.S.); (Y.H.)
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium;
| |
Collapse
|
56
|
Chen Y, Mehmood K, Chang YF, Tang Z, Li Y, Zhang H. The molecular mechanisms of glycosaminoglycan biosynthesis regulating chondrogenesis and endochondral ossification. Life Sci 2023; 335:122243. [PMID: 37949211 DOI: 10.1016/j.lfs.2023.122243] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Disorders of chondrocyte differentiation and endochondral osteogenesis are major underlying factors in skeletal developmental disorders, including tibial dysplasia (TD), osteoarthritis (OA), chondrodysplasia (ACH), and multiple epiphyseal dysplasia (MED). Understanding the cellular and molecular pathogenesis of these disorders is crucial for addressing orthopedic diseases resulting from impaired glycosaminoglycan synthesis. Glycosaminoglycan is a broad term that refers to the glycan component of proteoglycan macromolecules. It is an essential component of the cartilage extracellular matrix and plays a vital role in various biological processes, including gene transcription, signal transduction, and chondrocyte differentiation. Recent studies have demonstrated that glycosaminoglycan biosynthesis plays a regulatory role in chondrocyte differentiation and endochondral osteogenesis by modulating various growth factors and signaling molecules. For instance, glycosaminoglycan is involved in mediating pathways such as Wnt, TGF-β, FGF, Ihh-PTHrP, and O-GlcNAc glycosylation, interacting with transcription factors SOX9, BMPs, TGF-β, and Runx2 to regulate chondrocyte differentiation and endochondral osteogenesis. To propose innovative approaches for addressing orthopedic diseases caused by impaired glycosaminoglycan biosynthesis, we conducted a comprehensive review of the molecular mechanisms underlying chondrocyte glycosaminoglycan biosynthesis, which regulates chondrocyte differentiation and endochondral osteogenesis. Our analysis considers the role of genes, glycoproteins, and associated signaling pathways during chondrogenesis and endochondral ossification.
Collapse
Affiliation(s)
- Yongjian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Yung-Fu Chang
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
57
|
Tsumaki N. Destruction and regeneration in bone and cartilage. Inflamm Regen 2023; 43:62. [PMID: 38093386 PMCID: PMC10717906 DOI: 10.1186/s41232-023-00313-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Affiliation(s)
- Noriyuki Tsumaki
- Department of Tissue Biochemistry, Graduate School of Medicine, Osaka University, Osaka, Japan.
- Department of Tissue Biochemistry, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka, Japan.
| |
Collapse
|
58
|
Iqbal M, Waqas M, Mo Q, Shahzad M, Zeng Z, Qamar H, Mehmood K, Kulyar MFEA, Nawaz S, Li J. Baicalin inhibits apoptosis and enhances chondrocyte proliferation in thiram-induced tibial dyschondroplasia in chickens by regulating Bcl-2/Caspase-9 and Sox-9/Collagen-II expressions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115689. [PMID: 37992645 DOI: 10.1016/j.ecoenv.2023.115689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
Avian tibial dyschondroplasia (TD) is a skeletal disease affecting fast growing chickens, resulting in non-mineralized avascular cartilage. This metabolic disorder is characterized by lameness and reduced growth performance causing economic losses. The aim of this study was to investigate the protective effects of baicalin against TD caused by thiram exposure. A total of two hundred and forty (n = 240) one day-old broiler chickens were uniformly and randomly allocated into three different groups (n = 80) viz. control, TD, and baicalin groups. All chickens received standard feed, however, to induce TD, the TD and baicalin groups received thiram (tetramethylthiuram disulfide) at a rate of 50 mg/kg feed from days 4-7. The thiram induction in TD and baicalin groups resulted in lameness, high mortality, and enlarged growth-plate, poor production performance, reduction in ALP, GSH-Px, SOD, and T-AOC levels, and increased AST and ALT, and MDA levels. Furthermore, histopathological results showed less vascularization, and mRNA and protein expression levels of Sox-9, Col-II, and Bcl-2 showed significant downward trend, while caspase-9 displayed significant up-regulation in TD-affected chickens. After the TD induction, the baicalin group was orally administered with baicalin at a rate of 200 mg/kg from days 8-18. Baicalin administration increased the vascularization, and chondrocytes with intact nuclei, alleviated lameness, decreased GP size, increased productive capacity, and restored the liver antioxidant enzymes and serum biochemical levels. Furthermore, baicalin significantly up-regulated the gene and protein expressions of Sox-9, Col-II, and Bcl-2, and significantly down-regulated the expression of caspase-9 (p < 0.05). Therefore, the obtained results suggest that baicalin could be a possible choice in thiram toxicity alleviation by regulating apoptosis and chondrocyte proliferation in thiram-induced tibial dyschondroplasia.
Collapse
Affiliation(s)
- Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Waqas
- Department of Veterinary Clinical Sciences, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Poonch 12350, Azad Jammu and Kashmir, Pakistan
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Shahzad
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Zhibo Zeng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hammad Qamar
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | | | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
59
|
Xu Y, Park SH, Gye MC. Head dysgenesis and disruption of cranial neural crest stem cells behaviour by 4-octylphenol in fire-bellied toad Bombina orientalis embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122697. [PMID: 37804908 DOI: 10.1016/j.envpol.2023.122697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/18/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
Alkylphenolic endocrine disruptors (Eds) have been known to affect development of the descendants of multipotent neural crest cells (NCCs) in amphibian embryos. To unravel the mechanism of head dysgenesis induced by alkylphenols in amphibians, the effect of 4-octylphenol (OP) on the differentiation of cranial NCCs in developing embryos and tadpoles, ex vivo NC explant, and isolated NCCs was examined in fire-bellied toad Bombina orientalis with 0, 1, 2, 5, 10, 25 and 50 μM concentrations. Following OP treatment, head cartilages were frequently absent together with the decreased col2a1 mRNA level in tadpoles. While the lipid hydroperoxide (LPO), endoplasmic reticulum stress (ERS), apoptosis, and DNA fragmentation were significantly increased in stage 22 neulurae and heads of stage 45 tadpoles. In stage 22 neulurae, OP decreased sox9 mRNA, the master transcription factor for chondrogenic differentiation and increased undifferentiated NCC markers. The ectopic NCCs were found in endoderm while mesodermal SOX10(+) cells were decreased. In cranial NCCs isolated from stage 22 embryos, OP treatment decreased cellular survival and increased apoptosis, epithelial-mesenchymal transition (EMT) and cell migration. In chondrogenic induced cranial NC explants, OP treatment decreased SOX9(+) chondrocytes and cartilage development. Together, OP potentiated oxidative damage, apoptosis, EMT, and ectopic migration of NCCs. Considering that tissue differentiation requires stem cells to activate the molecular mechanism of differentiation at the correct location during embryonic development, these changes caused by OP may inhibit sox9-dependent chondrogenic differentiation of cranial NCCs, leading to head dysgenesis in B. orientalis embryos. Therefore, developing multipotent NCCs could be an important target of OP, provides new direction for the estimation of the risk of EDs exposure in human and wildlife animals.
Collapse
Affiliation(s)
- Yang Xu
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seung Hyun Park
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Myung Chan Gye
- Department of Life Science and Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
60
|
Tan S, Qiu Y, Xiong H, Wang C, Chen Y, Wu W, Yang Z, Zhao F. Mussel-inspired cortical bone-adherent bioactive composite hydrogels promote bone augmentation through sequential regulation of endochondral ossification. Mater Today Bio 2023; 23:100843. [PMID: 37942424 PMCID: PMC10628777 DOI: 10.1016/j.mtbio.2023.100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
Endochondral ossification (ECO) plays an integral part in bone augmentation, which undergoes sequential processes including mesenchymal stem cells (MSC) condensation, chondrocyte differentiation, chondrocyte hypertrophy, and mineralized bone formation. Thus, accelerating these steps will speed up the osteogenesis process through ECO. Herein, inspired by the marine mussels' adhesive mechanism, a bioactive glass-dopamine (BG-Dopa) hydrogel was prepared by distributing the micro-nano BG to aldehyde modified hyaluronic acid with dopamine-modified gelatin. By in vitro and in vivo experiments, we confirm that after implanting in the bone augmentation position, the hydrogel can adhere to the cortical bone surface firmly without sliding. Moreover, the condensation and hypertrophy of stem cells were accelerated at the early stage of ECO. Whereafter, the osteogenic differentiation of the hypertrophic chondrocytes was promoted, which lead to accelerating the late stage of ECO process to achieve more bone augmentation. This experiment provides a new idea for the design of bone augmentation materials.
Collapse
Affiliation(s)
- Shuyi Tan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yonghao Qiu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Huacui Xiong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Chunhui Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yifan Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Wangxi Wu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Zhen Yang
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, China
| | - Fujian Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
61
|
Chagin AS, Chu TL. The Origin and Fate of Chondrocytes: Cell Plasticity in Physiological Setting. Curr Osteoporos Rep 2023; 21:815-824. [PMID: 37837512 PMCID: PMC10724094 DOI: 10.1007/s11914-023-00827-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 10/16/2023]
Abstract
PURPOSE OF REVIEW Here, we discuss the origin of chondrocytes, their destiny, and their plasticity in relationship to bone growth, articulation, and formation of the trabeculae. We also consider these processes from a biological, clinical, and evolutionary perspective. RECENT FINDINGS Chondrocytes, which provide the template for the formation of most bones, are responsible for skeletal growth and articulation during postnatal life. In recent years our understanding of the fate of these cells has changed dramatically. Current evidence indicates a paradoxical situation during skeletogenesis, with some cells of mesenchymal condensation differentiating directly into osteoblasts, whereas others of the same kind give rise to highly similar osteoblasts via a complex process of differentiation involving several chondrocyte intermediates. The situation becomes even more paradoxical during postnatal growth when stem cells in the growth plate produce differentiated, functional progenies, which thereafter presumably dedifferentiate into another type of stem cell. Such a remarkable transition from one cell type to another under postnatal physiological conditions provides a fascinating example of cellular plasticity that may have valuable clinical implications.
Collapse
Affiliation(s)
- Andrei S Chagin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden.
| | - Tsz Long Chu
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
62
|
Chen N, Wu RW, Lam Y, Chan WC, Chan D. Hypertrophic chondrocytes at the junction of musculoskeletal structures. Bone Rep 2023; 19:101698. [PMID: 37485234 PMCID: PMC10359737 DOI: 10.1016/j.bonr.2023.101698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 07/25/2023] Open
Abstract
Hypertrophic chondrocytes are found at unique locations at the junction of skeletal tissues, cartilage growth plate, articular cartilage, enthesis and intervertebral discs. Their role in the skeleton is best understood in the process of endochondral ossification in development and bone fracture healing. Chondrocyte hypertrophy occurs in degenerative conditions such as osteoarthritis. Thus, the role of hypertrophic chondrocytes in skeletal biology and pathology is context dependent. This review will focus on hypertrophic chondrocytes in endochondral ossification, in which they exist in a transient state, but acting as a central regulator of differentiation, mineralization, vascularization and conversion to bone. The amazing journey of a chondrocyte from being entrapped in the extracellular matrix environment to becoming proliferative then hypertrophic will be discussed. Recent studies on the dynamic changes and plasticity of hypertrophic chondrocytes have provided new insights into how we view these cells, not as terminally differentiated but as cells that can dedifferentiate to more progenitor-like cells in a transition to osteoblasts and adipocytes, as well as a source of skeletal stem and progenitor cells residing in the bone marrow. This will provide a foundation for studies of hypertrophic chondrocytes at other skeletal sites in development, tissue maintenance, pathology and therapy.
Collapse
Affiliation(s)
- Ning Chen
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Robin W.H. Wu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Yan Lam
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Wilson C.W. Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen 518053, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
63
|
Brito VGB, Bell-Hensley A, McAlinden A. MicroRNA-138: an emerging regulator of skeletal development, homeostasis, and disease. Am J Physiol Cell Physiol 2023; 325:C1387-C1400. [PMID: 37842749 PMCID: PMC10861148 DOI: 10.1152/ajpcell.00382.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Noncoding microRNAs are powerful epigenetic regulators of cellular processes by their ability to target and suppress expression of numerous protein-coding mRNAs. This multitargeting function is a unique and complex feature of microRNAs. It is now well-described that microRNAs play important roles in regulating the development and homeostasis of many cell/tissue types, including those that make up the skeletal system. In this review, we focus on microRNA-138 (miR-138) and its effects on regulating bone and cartilage cell differentiation and function. In addition to its reported role as a tumor suppressor, miR-138 appears to function as an inhibitor of osteoblast differentiation. This review provides additional information on studies that have attempted to alter miR-138 expression in vivo as a means to dampen ectopic calcification or alter bone mass. However, a review of the published literature on miR-138 in cartilage reveals a number of contradictory and inconclusive findings with respect to regulating chondrogenesis and chondrocyte catabolism. This highlights the need for more research in understanding the role of miR-138 in cartilage biology and disease. Interestingly, a number of studies in other systems have reported miR-138-mediated effects in dampening inflammation and pain responses. Future studies will reveal if a multifunctional role of miR-138 involving suppression of ectopic bone, inflammation, and pain will be beneficial in skeletal conditions such as osteoarthritis and heterotopic ossification.
Collapse
Affiliation(s)
- Victor Gustavo Balera Brito
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Austin Bell-Hensley
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospital for Children, St. Louis, Missouri, United States
| |
Collapse
|
64
|
Lin YW, Kao HJ, Chen WT, Kao CF, Wu JY, Chen YT, Lee YC. Cell-based screen identifies porphyrins as FGFR3 activity inhibitors with therapeutic potential for achondroplasia and cancer. JCI Insight 2023; 8:e171257. [PMID: 37824212 PMCID: PMC10721322 DOI: 10.1172/jci.insight.171257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023] Open
Abstract
Overactive fibroblast growth factor receptor 3 (FGFR3) signaling drives pathogenesis in a variety of cancers and a spectrum of short-limbed bone dysplasias, including the most common form of human dwarfism, achondroplasia (ACH). Targeting FGFR3 activity holds great promise as a therapeutic approach for treatment of these diseases. Here, we established a receptor/adaptor translocation assay system that can specifically monitor FGFR3 activation, and we applied it to identify FGFR3 modulators from complex natural mixtures. An FGFR3-suppressing plant extract of Amaranthus viridis was identified from the screen, and 2 bioactive porphyrins, pheophorbide a (Pa) and pyropheophorbide a, were sequentially isolated from the extract and functionally characterized. Further analysis showed that Pa reduced excessive FGFR3 signaling by decreasing its half-life in FGFR3-overactivated multiple myeloma cells and chondrocytes. In an ex vivo culture system, Pa alleviated defective long bone growth in humanized ACH mice (FGFR3ACH mice). Overall, our study presents an approach to discovery and validation of plant extracts or drug candidates that target FGFR3 activation. The compounds identified by this approach may have applications as therapeutics for FGFR3-associated cancers and skeletal dysplasias.
Collapse
Affiliation(s)
- Yun-Wen Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hsiao-Jung Kao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Ting Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Yi-Ching Lee
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
65
|
Jaswal AP, Kumar B, Roelofs AJ, Iqbal SF, Singh AK, Riemen AHK, Wang H, Ashraf S, Nanasaheb SV, Agnihotri N, De Bari C, Bandyopadhyay A. BMP signaling: A significant player and therapeutic target for osteoarthritis. Osteoarthritis Cartilage 2023; 31:1454-1468. [PMID: 37392862 DOI: 10.1016/j.joca.2023.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/25/2023] [Accepted: 05/18/2023] [Indexed: 07/03/2023]
Abstract
OBJECTIVE To explore the significance of BMP signaling in osteoarthritis (OA) etiology, and thereafter propose a disease-modifying therapy for OA. METHODS To examine the role of the BMP signaling in pathogenesis of OA, an Anterior Cruciate Ligament Transection (ACLT) surgery was performed to incite OA in C57BL/6J mouse line at postnatal day 120 (P120). Thereafter, to investigate whether activation of BMP signaling is necessary and sufficient to induce OA, we have used conditional gain- and loss-of-function mouse lines in which BMP signaling can be activated or depleted, respectively, upon intraperitoneal injection of tamoxifen. Finally, we locally inhibited BMP signaling through intra-articular injection of LDN-193189 pre- and post-onset surgically induced OA. The majority of the investigation has been conducted using micro-CT, histological staining, and immuno histochemistry to assess the disease etiology. RESULTS Upon induction of OA, depletion of SMURF1-an intra-cellular BMP signaling inhibitor in articular cartilage coincided with the activation of BMP signaling, as measured by pSMAD1/5/9 expression. In mouse articular cartilage, the BMP gain-of-function mutation is sufficient to induce OA even without surgery. Further, genetic, or pharmacological BMP signaling suppression also prevented pathogenesis of OA. Interestingly, inflammatory indicators were also significantly reduced upon LDN-193189 intra-articular injection which inhibited BMP signaling and slowed OA progression post onset. CONCLUSION Our findings showed that BMP signaling is crucial to the etiology of OA and inhibiting BMP signaling locally can be a potent strategy for alleviating OA.
Collapse
Affiliation(s)
- Akrit Pran Jaswal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Bhupendra Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Anke J Roelofs
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Sayeda Fauzia Iqbal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Amaresh Kumar Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Anna H K Riemen
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Hui Wang
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Sadaf Ashraf
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Sanap Vaibhav Nanasaheb
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Nitin Agnihotri
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Cosimo De Bari
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Amitabha Bandyopadhyay
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
66
|
Nguyen JKB, Gómez-Picos P, Liu Y, Ovens K, Eames BF. Common features of cartilage maturation are not conserved in an amphibian model. Dev Dyn 2023; 252:1375-1390. [PMID: 37083105 DOI: 10.1002/dvdy.594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/04/2023] [Accepted: 04/09/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Mouse, chick, and zebrafish undergo a highly conserved program of cartilage maturation during endochondral ossification (bone formation via a cartilage template). Standard histological and molecular features of cartilage maturation are chondrocyte hypertrophy, downregulation of the chondrogenic markers Sox9 and Col2a1, and upregulation of Col10a1. We tested whether cartilage maturation is conserved in an amphibian, the western clawed frog Xenopus tropicalis, using in situ hybridization for standard markers and a novel laser-capture microdissection RNAseq data set. We also functionally tested whether thyroid hormone drives cartilage maturation in X tropicalis, as it does in other vertebrates. RESULTS The developing frog humerus mostly followed the standard progression of cartilage maturation. Chondrocytes gradually became hypertrophic as col2a1 and sox9 were eventually down-regulated, but col10a1 was not up-regulated. However, the expression levels of several genes associated with the early formation of cartilage, such as acan, sox5, and col9a2, remained highly expressed even as humeral chondrocytes matured. Greater deviances were observed in head cartilages, including the ceratohyal, which underwent hypertrophy within hours of becoming cartilaginous, maintained relatively high levels of col2a1 and sox9, and lacked col10a1 expression. Interestingly, treating frog larvae with thyroid hormone antagonists did not specifically reduce head cartilage hypertrophy, resulting rather in a global developmental delay. CONCLUSION These data reveal that basic cartilage maturation features in the head, and to a lesser extent in the limb, are not conserved in X tropicalis. Future work revealing how frogs deviate from the standard cartilage maturation program might shed light on both evolutionary and health studies.
Collapse
Affiliation(s)
- Jason K B Nguyen
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Patsy Gómez-Picos
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yiwen Liu
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Katie Ovens
- Department of Computer Science, University of Calgary, Calgary, Alberta, Canada
| | - B Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
67
|
Zecca PA, Reguzzoni M, Borgese M, Protasoni M, Filibian M, Raspanti M. Investigating the interfaces of the epiphyseal plate: An integrated approach of histochemistry, microtomography and SEM. J Anat 2023; 243:870-877. [PMID: 37391907 PMCID: PMC10557393 DOI: 10.1111/joa.13924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/24/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023] Open
Abstract
We investigated the interfaces of the epiphyseal plate with over- and underlying bone segments using an integrated approach of histochemistry, microtomography and scanning electron microscopy (SEM) to overcome the inherent limitations of sections-based techniques. Microtomography was able to provide an unobstructed, frontal view of large expanses of the two bone surfaces facing the growth plate, while SEM observation after removal of the soft matrix granted an equally unhindered access with a higher resolution. The two interfaces appeared widely dissimilar. On the diaphyseal side the hypertrophic chondrocytes were arranged in tall columns packed in a sort of compact palisade; the interposed extracellular matrix was actively calcifying into a thick mineralized crust growing towards the epiphysis. Behind the mineralization front, histochemical data revealed a number of surviving cartilage islets which were being slowly remodelled into bone. In contrast, the epiphyseal side of the cartilage consisted of a relatively quiescent reserve zone whose mineralization was marginal in amount and discontinuous in extension; the epiphyseal bone consisted of a loose trabecular meshwork, with ample vascular spaces opening directly into the non-mineralized cartilage. On both sides the calcification process took place through the formation of spheroidal bodies 1-2 μm wide which gradually grew by apposition and coalesced into a solid mass, in a way distinctly different from that of bone and other calcified tissues.
Collapse
Affiliation(s)
| | | | - Marina Borgese
- Department of Medicine & SurgeryInsubria UniversityVareseItaly
| | | | - Marta Filibian
- Centro Grandi StrumentiUniversity of PaviaPaviaItaly
- Istituto Nazionale di Fisica Nucleare, Pavia UnitPaviaItaly
| | - Mario Raspanti
- Department of Medicine & SurgeryInsubria UniversityVareseItaly
| |
Collapse
|
68
|
Kováč J, Priščáková P, Gbelcová H, Heydari A, Žiaran S. Bioadhesive and Injectable Hydrogels and Their Correlation with Mesenchymal Stem Cells Differentiation for Cartilage Repair: A Mini-Review. Polymers (Basel) 2023; 15:4228. [PMID: 37959908 PMCID: PMC10648146 DOI: 10.3390/polym15214228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Injectable bioadhesive hydrogels, known for their capacity to carry substances and adaptability in processing, offer great potential across various biomedical applications. They are especially promising in minimally invasive stem cell-based therapies for treating cartilage damage. This approach harnesses readily available mesenchymal stem cells (MSCs) to differentiate into chondrocytes for cartilage regeneration. In this review, we investigate the relationship between bioadhesion and MSC differentiation. We summarize the fundamental principles of bioadhesion and discuss recent trends in bioadhesive hydrogels. Furthermore, we highlight their specific applications in conjunction with stem cells, particularly in the context of cartilage repair. The review also encompasses a discussion on testing methods for bioadhesive hydrogels and direct techniques for differentiating MSCs into hyaline cartilage chondrocytes. These approaches are explored within both clinical and laboratory settings, including the use of genetic tools. While this review offers valuable insights into the interconnected aspects of these topics, it underscores the need for further research to fully grasp the complexities of their relationship.
Collapse
Affiliation(s)
- Ján Kováč
- Medical Vision, Záhradnícka 55, 821 08 Bratislava, Slovakia; (J.K.); (P.P.); (H.G.); (A.H.)
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Petra Priščáková
- Medical Vision, Záhradnícka 55, 821 08 Bratislava, Slovakia; (J.K.); (P.P.); (H.G.); (A.H.)
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Helena Gbelcová
- Medical Vision, Záhradnícka 55, 821 08 Bratislava, Slovakia; (J.K.); (P.P.); (H.G.); (A.H.)
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Abolfazl Heydari
- Medical Vision, Záhradnícka 55, 821 08 Bratislava, Slovakia; (J.K.); (P.P.); (H.G.); (A.H.)
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia
| | - Stanislav Žiaran
- Medical Vision, Záhradnícka 55, 821 08 Bratislava, Slovakia; (J.K.); (P.P.); (H.G.); (A.H.)
- Department of Urology, Faculty of Medicine, Comenius University, Limbová 5, 833 05 Bratislava, Slovakia
| |
Collapse
|
69
|
Wen X, Wang Y, Gu Y. Transferrin promotes chondrogenic differentiation in condylar growth through inducing autophagy via ULK1-ATG16L1 axis. Clin Sci (Lond) 2023; 137:1431-1449. [PMID: 37694282 DOI: 10.1042/cs20230544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023]
Abstract
Skeletal mandibular hypoplasia (SMH) is one of the most common skeletal craniofacial deformities in orthodontics, which was often accompanied by impaired chondrogenesis and increasing apoptosis of condylar chondrocytes. Therefore, protecting chondrocytes from apoptosis and promoting chondrogenesis in condylar growth is vital for treatment of SMH patients. Transferrin (TF) was highly expressed in condylar cartilage of newborn mice and was gradually declined as the condyle ceased growing. Interestingly, serum level of TF in SMH patients was significantly lower than normal subjects. Hence, the aim of our study was to investigate the effect of TF on survival and differentiation of chondrocytes and condylar growth. First, we found that TF protected chondrogenic cell line ATDC5 cells from hypoxia-induced apoptosis and promoted proliferation and chondrogenic differentiation in vitro. Second, TF promoted chondrogenic differentiation and survival through activating autophagic flux. Inhibiting autophagic flux markedly blocked the effects of TF. Third, TF significantly activated ULK1-ATG16L1 axis. Silencing either transferrin receptor (TFRC), ULK1/2 or ATG16 significantly blocked the autophagic flux induced by TF, as well as its effect on anti-apoptosis and chondrogenic differentiation. Furthermore, we established an organoid culture model of mandible ex vivo and found that TF significantly promoted condylar growth. Taken together, our study unraveled a novel function of TF in condylar growth that TF protected chondrocytes from hypoxia-induced apoptosis and promoted chondrogenic differentiation through inducing autophagy via ULK1-ATG16L1 axis, which demonstrated that TF could be a novel growth factor of condylar growth and shed new light on developing treatment strategy of SMH patients.
Collapse
Affiliation(s)
- Xi Wen
- Department of Orthodontics, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Yan Gu
- Department of Orthodontics, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| |
Collapse
|
70
|
Pan D, Zhong J, Zhang J, Dong H, Zhao D, Zhang H, Yao B. Function and regulation of nuclear factor 1 X-type on chondrocyte proliferation and differentiation. Gene 2023; 881:147620. [PMID: 37433356 DOI: 10.1016/j.gene.2023.147620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Nuclear factor 1 X-type (Nfix) is a transcription factor related to mental and physical development. However, very few studies have reported the effects of Nfix on cartilage. This study aims to reveal the influence of Nfix on the proliferation and differentiation of chondrocytes, and to explore its potential action mechanism. We isolated primary chondrocytes from the costal cartilage of newborn C57BL/6 mice and with Nfix overexpression or silencing treatment. We used Alcian blue staining and found that Nfix overexpression significantly promoted ECM synthesis in chondrocytes while silencing inhibited ECM synthesis. Using RNA-seq technology to study the expression pattern of Nfix in primary chondrocytes. We found that Nfix overexpression significantly up-regulated genes that are related to chondrocyte proliferation and extracellular matrix (ECM) synthesis and significantly down-regulated genes related to chondrocyte differentiation and ECM degradation. Nfix silencing, however, significantly up-regulated genes associated with cartilage catabolism and significantly down-regulated genes associated with cartilage growth promotion. Furthermore, Nfix exerted a positive regulatory effect on Sox9, and we propose that Nfix may promote chondrocyte proliferation and inhibit differentiation by stimulating Sox9 and its downstream genes. Our findings suggest that Nfix may be a potential target for the regulation of chondrocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Daian Pan
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Jinghong Zhong
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Jingcheng Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Haisi Dong
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - He Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China; Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Baojin Yao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
71
|
Pan D, Zhong J, Zhang J, Dong H, Zhao D, Zhang H, Yao B. Function and regulation of nuclear factor 1 X-type on chondrocyte proliferation and differentiation. Gene 2023; 881:147620. [DOI: org/10.1016/j.gene.2023.147620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
|
72
|
Holling T, Brylka L, Scholz T, Bierhals T, Herget T, Meinecke P, Schinke T, Oheim R, Kutsche K. TMCO3, a Putative K + :Proton Antiporter at the Golgi Apparatus, Is Important for Longitudinal Growth in Mice and Humans. J Bone Miner Res 2023; 38:1334-1349. [PMID: 37554015 DOI: 10.1002/jbmr.4827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 08/10/2023]
Abstract
Isolated short stature, defined as short stature without any other abnormalities, is a common heterogeneous condition in children. Exome sequencing identified the homozygous nonsense variant c.1832G>A/p.(Trp611*) in TMCO3 in two sisters with isolated short stature. Radiological studies, biochemical measurements, assessment of the skeletal status, and three-dimensional bone microarchitecture revealed no relevant skeletal and bone abnormalities in both sisters. The homozygous TMCO3 variant segregated with short stature in the family. TMCO3 transcript levels were reduced by ~50% in leukocyte-derived RNA of both sisters compared with controls, likely due to nonsense-mediated mRNA decay. In primary urinary cells of heterozygous family members, we detected significantly reduced TMCO3 protein levels. TMCO3 is functionally uncharacterized. We ectopically expressed wild-type TMCO3 in HeLa and ATDC5 chondrogenic cells and detected TMCO3 predominantly at the Golgi apparatus, whereas the TMCO3W611* mutant did not reach the Golgi. Coordinated co-expression of TMCO3W611* -HA and EGFP in HeLa cells confirmed intrinsic instability and/or degradation of the mutant. Tmco3 is expressed in all relevant mouse skeletal cell types. Highest abundance of Tmco3 was found in chondrocytes of the prehypertrophic zone in mouse and minipig growth plates where it co-localizes with a Golgi marker. Knockdown of Tmco3 in differentiated ATDC5 cells caused reduced and increased expression of Pthlh and Ihh, respectively. Measurement of long bones in Tmco3tm1b(KOMP)Wtsi knockout mice revealed significant shortening of forelimbs and hindlimbs. TMCO3 is a potential member of the monovalent cation:proton antiporter 2 (CPA2) family. By in silico tools and homology modeling, TMCO3 is predicted to have an N-terminal secretory signal peptide, forms a dimer localized to the membrane, and is organized in a dimerization and a core domain. The core domain contains the CPA2 motif essential for K+ binding and selectivity. Collectively, our data demonstrate that loss of TMCO3 causes growth defects in both humans and mice. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Tess Holling
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tasja Scholz
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Theresia Herget
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Meinecke
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
73
|
Wei J, Baptista-Hon DT, Wang Z, Li G, Herrler T, Dai C, Liu K, Yu B, Chen X, Yang M, Han D, Gao Y, Huang RL, Guo L, Zhang K, Li Q. Bioengineered human tissue regeneration and repair using endogenous stem cells. Cell Rep Med 2023; 4:101156. [PMID: 37586324 PMCID: PMC10439273 DOI: 10.1016/j.xcrm.2023.101156] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/30/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
We describe a general approach to produce bone and cartilaginous structures utilizing the self-regenerative capacity of the intercostal rib space to treat a deformed metacarpophalangeal joint and microtia. Anatomically precise 3D molds were positioned on the perichondro-periosteal or perichondral flap of the intercostal rib without any other exogenous elements. We find anatomically precise metacarpal head and auricle constructs within the implanted molds after 6 months. The regenerated metacarpal head was used successfully to surgically repair the deformed metacarpophalangeal joint. Auricle reconstructive surgery in five unilateral microtia patients yielded good aesthetic and functional results. Long-term follow-up revealed the auricle constructs were safe and stable. Single-cell RNA sequencing analysis reveal early infiltration of a cell population consistent with mesenchymal stem cells, followed by IL-8-stimulated differentiation into chondrocytes. Our results demonstrate the repair and regeneration of tissues using only endogenous factors and a viable treatment strategy for bone and tissue structural defects.
Collapse
Affiliation(s)
- Jiao Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Daniel T Baptista-Hon
- University Hospital and Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macau, China; Zhuhai International Eye Center, Zhuhai People's Hospital and the First Affiliated Hospital of Faculty of Medicine, Macau University of Technology, Zhuhai, Guangdong, China; Department of Bioinformatics and AI, Guangzhou Laboratory, Guangzhou, China; School of Medicine, University of Dundee, Dundee, UK
| | - Zi Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Gen Li
- Department of Bioinformatics and AI, Guangzhou Laboratory, Guangzhou, China; Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tanja Herrler
- Department of Hand Surgery, Trauma Center Murnau, 82418 Murnau, Germany
| | - Chuanchang Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Baofu Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaoxue Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Mei Yang
- Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Dong Han
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yuanxu Gao
- University Hospital and Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macau, China
| | - Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lifei Guo
- Division of Plastic Surgery, Lahey Hospital and Medical Center, Burlington, VT 01808, USA.
| | - Kang Zhang
- University Hospital and Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macau, China; Zhuhai International Eye Center, Zhuhai People's Hospital and the First Affiliated Hospital of Faculty of Medicine, Macau University of Technology, Zhuhai, Guangdong, China; Department of Bioinformatics and AI, Guangzhou Laboratory, Guangzhou, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
74
|
Zhou P, Yang H, Zhang M, Liu J, Yu J, Yu S, Liu Q, Zhang Y, Xie M, Xu X, Liu J, Wang M. CaSR modulates proliferation of the superficial zone cells in temporomandibular joint cartilage via the PTHrP nuclear localization sequence. FASEB J 2023; 37:e23004. [PMID: 37440279 DOI: 10.1096/fj.202300037rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 07/14/2023]
Abstract
The superficial zone cells in mandibular condylar cartilage are proliferative. The present purpose was to delineate the relation of calcium-sensing receptor (CaSR) and parathyroid hormone-related peptide nuclear localization sequence (PTHrP87-139 ), and their role in the proliferation behaviors of the superficial zone cells. A gain- and loss-of-function strategy were used in an in vitro fluid flow shear stress (FFSS) model and an in vivo bilateral elevation bite model which showed mandibular condylar cartilage thickening. CaSR and PTHrP87-139 were modulated through treating the isolated superficial zone cells with activator/SiRNA and via deleting CaSR or parathyroid hormone-related peptide (PTHrP) gene in mice with the promoter gene of proteoglycan 4 (Prg4-CreERT2 ) in the tamoxifen-inducible pattern with or without additional injection of Cinacalcet, the CaSR agonist, or PTHrP87-139 peptide. FFSS stimulated CaSR and PTHrP expression, and accelerated proliferation of the Prg4-expressing superficial zone cells, in which process CaSR acted as an up-streamer of PTHrP. Proteoglycan 4 specific knockout of CaSR or PTHrP reduced the cartilage thickness, suppressed the proliferation and early differentiation of the superficial zone cells, and inhibited cartilage thickening and matrix production promoted by bilateral elevation bite. Injections of CaSR agonist Cinacalcet could not improve the phenotype caused by PTHrP mutation. Injections of PTHrP87-139 peptide rescued the cartilage from knockout of CaSR gene. CaSR modulates proliferation of the superficial zone cells in mandibular condylar cartilage through activation of PTHrP nuclear localization sequence. Our data support the therapeutic target of CaSR in promoting PTHrP production in superficial zone cartilage.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Oral Anatomy and Physiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- School of Stomatology, Jiamusi University, Jiamusi, China
| | - Hongxu Yang
- Department of Oral Anatomy and Physiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Mian Zhang
- Department of Oral Anatomy and Physiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jinqiang Liu
- Department of Oral Anatomy and Physiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jia Yu
- Department of Oral Anatomy and Physiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Shibin Yu
- Department of Oral Anatomy and Physiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Qian Liu
- Department of Oral Anatomy and Physiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yuejiao Zhang
- Department of Oral Anatomy and Physiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- School of Stomatology, Jiamusi University, Jiamusi, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Mianjiao Xie
- Department of Oral Anatomy and Physiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xiaojie Xu
- College of Life Sciences, Northwest University, Xi'an, China
| | - Jiguang Liu
- School of Stomatology, Jiamusi University, Jiamusi, China
| | - Meiqing Wang
- Department of Oral Anatomy and Physiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| |
Collapse
|
75
|
Rothschild SC, Row RH, Martin BL, Clements WK. Sclerotome is compartmentalized by parallel Shh and Bmp signaling downstream of CaMKII. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550086. [PMID: 37503202 PMCID: PMC10370206 DOI: 10.1101/2023.07.21.550086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The sclerotome in vertebrates comprises an embryonic population of cellular progenitors that give rise to diverse adult tissues including the axial skeleton, ribs, intervertebral discs, connective tissue, and vascular smooth muscle. In the thorax, this cell population arises in the ventromedial region of each of the segmented tissue blocks known as somites. How and when sclerotome adult tissue fates are specified and how the gene signatures that predate those fates are regulated has not been well studied. We have identified a previously unknown role for Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) in regulating sclerotome patterning in zebrafish. Mechanistically, CaMKII regulates the activity of parallel signaling inputs that pattern sclerotome gene expression. In one downstream arm, CaMKII regulates distribution of the established sclerotome-inductive morphogen sonic hedgehog (Shh), and thus Shh-dependent sclerotome genes. In the second downstream arm, we show a previously unappreciated inductive requirement for Bmp signaling, where CaMKII activates expression of bmp4 and consequently Bmp activity. Bmp activates expression of a second subset of stereotypical sclerotome genes, while simultaneously repressing Shh-dependent markers. Our work demonstrates that CaMKII promotes parallel Bmp and Shh signaling as a mechanism to first promote global sclerotome specification, and that these pathways subsequently regionally activate and refine discrete compartmental genetic programs. Our work establishes how the earliest unique gene signatures that likely drive distinct cell behaviors and adult fates arise within the sclerotome.
Collapse
|
76
|
Yao W, Kulyar MFEA, Ding Y, Du H, Hong J, Loon KS, Nawaz S, Li J. The Effect of miR-140-5p with HDAC4 towards Growth and Differentiation Signaling of Chondrocytes in Thiram-Induced Tibial Dyschondroplasia. Int J Mol Sci 2023; 24:10975. [PMID: 37446153 DOI: 10.3390/ijms241310975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
There is evidence to suggest that microRNA-140-5p (miR-140), which acts as a suppressor, is often elevated and has a role in various malignancies. Nevertheless, neither the function nor the mechanisms in chondrocytes linked with bone disorders, e.g., tibial dyschondroplasia (TD), have been satisfactorily established. The purpose of this study was to look into the role of microRNA-140-5p (miR-140) and its interaction with HDAC4 in chondrocytes, as well as the implications for tibial dyschondroplasia (TD), with a particular focus on the relationship between low miR-140 expression and poor pathologic characteristics, as well as its physiological effects on chondrocyte growth, differentiation, and chondrodysplasia. In this investigation, we discovered that TD had a reduced expression level of the miR-140. There was a correlation between low miR-140 expression, poor pathologic characteristics, and the short overall survival of chondrocytes. Our findings show an aberrant reduction in miR-140 expression, and HDAC4 overexpression caused disengagement in resting and proliferation zones. This further resulted in uncontrolled cell proliferation, differentiation, and chondrodysplasia. Mechanistically, HDAC4 inhibited the downstream transcription factors MEF2C and Runx2 and interacted with Col-Ⅱ, Col-X, and COMP. However, miR-140 binding to the 3'-UTR of HDAC4 resulted in the growth and differentiation of chondrocytes. Moreover, the expression of HDAC4 through LMK-235 was significantly decreased, and the expression was significantly increased under ITSA-1, referring to a positive feedback circuit of miR-140 and HDAC4 for endochondral bone ossification. Furthermore, as a prospective treatment, the flavonoids of Rhizoma drynariae (TFRD) therapy increased the expression of miR-140. Compared to the TD group, TFRD treatment increased the expression of growth-promoting and chondrocyte differentiation markers, implying that TFRD can promote chondrocyte proliferation and differentiation in the tibial growth plate. Hence, directing this circuit may represent a promising target for chondrocyte-related bone disorders and all associated pathological bone conditions.
Collapse
Affiliation(s)
- Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, USA
| | - Muhammad Fakhar-E-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanmei Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Haitao Du
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiajia Hong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Kyein San Loon
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
77
|
Shigley C, Trivedi J, Meghani O, Owens BD, Jayasuriya CT. Suppressing Chondrocyte Hypertrophy to Build Better Cartilage. Bioengineering (Basel) 2023; 10:741. [PMID: 37370672 DOI: 10.3390/bioengineering10060741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Current clinical strategies for restoring cartilage defects do not adequately consider taking the necessary steps to prevent the formation of hypertrophic tissue at injury sites. Chondrocyte hypertrophy inevitably causes both macroscopic and microscopic level changes in cartilage, resulting in adverse long-term outcomes following attempted restoration. Repairing/restoring articular cartilage while minimizing the risk of hypertrophic neo tissue formation represents an unmet clinical challenge. Previous investigations have extensively identified and characterized the biological mechanisms that regulate cartilage hypertrophy with preclinical studies now beginning to leverage this knowledge to help build better cartilage. In this comprehensive article, we will provide a summary of these biological mechanisms and systematically review the most cutting-edge strategies for circumventing this pathological hallmark of osteoarthritis.
Collapse
Affiliation(s)
- Christian Shigley
- The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Jay Trivedi
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Ozair Meghani
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Brett D Owens
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
- Division of Sports Surgery, Department of Orthopaedic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Chathuraka T Jayasuriya
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| |
Collapse
|
78
|
Shen F, Huang X, He G, Shi Y. The emerging studies on mesenchymal progenitors in the long bone. Cell Biosci 2023; 13:105. [PMID: 37301964 DOI: 10.1186/s13578-023-01039-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/01/2023] [Indexed: 06/12/2023] Open
Abstract
Mesenchymal progenitors (MPs) are considered to play vital roles in bone development, growth, bone turnover, and repair. In recent years, benefiting from advanced approaches such as single-cell sequence, lineage tracing, flow cytometry, and transplantation, multiple MPs are identified and characterized in several locations of bone, including perichondrium, growth plate, periosteum, endosteum, trabecular bone, and stromal compartment. However, although great discoveries about skeletal stem cells (SSCs) and progenitors are present, it is still largely obscure how the varied landscape of MPs from different residing sites diversely contribute to the further differentiation of osteoblasts, osteocytes, chondrocytes, and other stromal cells in their respective destiny sites during development and regeneration. Here we discuss recent findings on MPs' origin, differentiation, and maintenance during long bone development and homeostasis, providing clues and models of how the MPs contribute to bone development and repair.
Collapse
Affiliation(s)
- Fangyuan Shen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaobin Huang
- Department of Oral and Maxillofacial Surgery/Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guangxu He
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, NO. 139 Middle Renmin Road, Changsha, Hunan, China.
| | - Yu Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
79
|
Taieb M, Ghannoum D, Barré L, Ouzzine M. Xylosyltransferase I mediates the synthesis of proteoglycans with long glycosaminoglycan chains and controls chondrocyte hypertrophy and collagen fibers organization of in the growth plate. Cell Death Dis 2023; 14:355. [PMID: 37296099 PMCID: PMC10256685 DOI: 10.1038/s41419-023-05875-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/06/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Genetic mutations in the Xylt1 gene are associated with Desbuquois dysplasia type II syndrome characterized by sever prenatal and postnatal short stature. However, the specific role of XylT-I in the growth plate is not completely understood. Here, we show that XylT-I is expressed and critical for the synthesis of proteoglycans in resting and proliferative but not in hypertrophic chondrocytes in the growth plate. We found that loss of XylT-I induces hypertrophic phenotype-like of chondrocytes associated with reduced interterritorial matrix. Mechanistically, deletion of XylT-I impairs the synthesis of long glycosaminoglycan chains leading to the formation of proteoglycans with shorter glycosaminoglycan chains. Histological and Second Harmonic Generation microscopy analysis revealed that deletion of XylT-I accelerated chondrocyte maturation and prevents chondrocytes columnar organization and arrangement in parallel of collagen fibers in the growth plate, suggesting that XylT-I controls chondrocyte maturation and matrix organization. Intriguingly, loss of XylT-I induced at embryonic stage E18.5 the migration of progenitor cells from the perichondrium next to the groove of Ranvier into the central part of epiphysis of E18.5 embryos. These cells characterized by higher expression of glycosaminoglycans exhibit circular organization then undergo hypertrophy and death creating a circular structure at the secondary ossification center location. Our study revealed an uncovered role of XylT-I in the synthesis of proteoglycans and provides evidence that the structure of glycosaminoglycan chains of proteoglycans controls chondrocyte maturation and matrix organization.
Collapse
Affiliation(s)
- Mahdia Taieb
- UMR 7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, BP 20199, 54505, Vandoeuvre-lès-Nancy, CEDEX, France
| | - Dima Ghannoum
- UMR 7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, BP 20199, 54505, Vandoeuvre-lès-Nancy, CEDEX, France
| | - Lydia Barré
- UMR 7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, BP 20199, 54505, Vandoeuvre-lès-Nancy, CEDEX, France
| | - Mohamed Ouzzine
- UMR 7365 CNRS-University of Lorraine, Biopôle, Faculty of Medicine, BP 20199, 54505, Vandoeuvre-lès-Nancy, CEDEX, France.
| |
Collapse
|
80
|
Choi SH, Lee K, Han H, Mo H, Jung H, Ryu Y, Nam Y, Rim YA, Ju JH. Prochondrogenic effect of decellularized extracellular matrix secreted from human induced pluripotent stem cell-derived chondrocytes. Acta Biomater 2023:S1742-7061(23)00317-3. [PMID: 37295627 DOI: 10.1016/j.actbio.2023.05.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Cartilage is mainly composed of chondrocytes and the extracellular matrix (ECM), which exchange important biochemical and biomechanical signals necessary for differentiation and homeostasis. Human articular cartilage has a low ability for regeneration because it lacks blood vessels, nerves, and lymphatic vessels. Currently, cell therapeutics, including stem cells, provide a promising strategy for cartilage regeneration and treatment; however, there are various hurdles to overcome, such as immune rejection and teratoma formation. In this study, we assessed the applicability of the stem cell-derived chondrocyte ECM for cartilage regeneration. Human induced pluripotent stem cell (hiPSC)-derived chondrocytes (iChondrocytes) were differentiated, and decellularized ECM (dECM) was successfully isolated from cultured chondrocytes. Isolated dECM enhanced in vitro chondrogenesis of iPSCs when recellularized. Implanted dECM also restored osteochondral defects in a rat osteoarthritis model. A possible association with the glycogen synthase kinase-3 beta (GSK3β) pathway demonstrated the fate-determining importance of dECM in regulating cell differentiation. Collectively, we suggested the prochondrogenic effect of hiPSC-derived cartilage-like dECM and offered a promising approach as a non-cellular therapeutic for articular cartilage reconstruction without cell transplantation. STATEMENT OF SIGNIFICANCE: Human articular cartilage has low ability for regeneration and cell culture-based therapeutics could aid cartilage regeneration. Yet, the applicability of human induced pluripotent stem cell-derived chondrocyte (iChondrocyte) extracellular matrix (ECM) has not been elucidated. Therefore, we first differentiated iChondrocytes and isolated the secreted ECM by decellularization. Recellularization was performed to confirm the pro-chondrogenic effect of the decellularized ECM (dECM). In addition, we confirmed the possibility of cartilage repair by transplanting the dECM into the cartilage defect in osteochondral defect rat knee joint. We believe that our proof-of-concept study will serve as a basis for investigating the potential of dECM obtained from iPSC-derived differentiated cells as a non-cellular resource for tissue regeneration and other future applications.
Collapse
Affiliation(s)
- Si Hwa Choi
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea
| | | | - Heeju Han
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea
| | - Hyunkyung Mo
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea
| | | | - YoungWoo Ryu
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea
| | | | - Yeri Alice Rim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea.
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea; YiPSCELL, Inc., Seoul, South Korea; Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
81
|
Zhang Q, Li Q, Wang Y, Zhang Y, Peng R, Wang Z, Zhu B, Xu L, Gao X, Chen Y, Gao H, Hu J, Qian C, Ma M, Duan R, Li J, Zhang L. Characterization of Chromatin Accessibility in Fetal Bovine Chondrocytes. Animals (Basel) 2023; 13:1875. [PMID: 37889831 PMCID: PMC10251841 DOI: 10.3390/ani13111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 10/29/2023] Open
Abstract
Despite significant advances of the bovine epigenome investigation, new evidence for the epigenetic basis of fetal cartilage development remains lacking. In this study, the chondrocytes were isolated from long bone tissues of bovine fetuses at 90 days. The Assay for Transposase-Accessible Chromatin with high throughput sequencing (ATAC-seq) and transcriptome sequencing (RNA-seq) were used to characterize gene expression and chromatin accessibility profile in bovine chondrocytes. A total of 9686 open chromatin regions in bovine fetal chondrocytes were identified and 45% of the peaks were enriched in the promoter regions. Then, all peaks were annotated to the nearest gene for Gene Ontology (GO) and Kyoto Encylopaedia of Genes and Genomes (KEGG) analysis. Growth and development-related processes such as amide biosynthesis process (GO: 0043604) and translation regulation (GO: 006417) were enriched in the GO analysis. The KEGG analysis enriched endoplasmic reticulum protein processing signal pathway, TGF-β signaling pathway and cell cycle pathway, which are closely related to protein synthesis and processing during cell proliferation. Active transcription factors (TFs) were enriched by ATAC-seq, and were fully verified with gene expression levels obtained by RNA-seq. Among the top50 TFs from footprint analysis, known or potential cartilage development-related transcription factors FOS, FOSL2 and NFY were found. Overall, our data provide a theoretical basis for further determining the regulatory mechanism of cartilage development in bovine.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Qian Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Yahui Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Yapeng Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Ruiqi Peng
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Zezhao Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Bo Zhu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Lingyang Xu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Xue Gao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Yan Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Huijiang Gao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Junwei Hu
- Academy of Pingliang Red Cattle, 492 South Ring Road, Kongtong District, Pingliang 744000, China; (J.H.); (C.Q.); (M.M.); (R.D.)
| | - Cong Qian
- Academy of Pingliang Red Cattle, 492 South Ring Road, Kongtong District, Pingliang 744000, China; (J.H.); (C.Q.); (M.M.); (R.D.)
| | - Minghao Ma
- Academy of Pingliang Red Cattle, 492 South Ring Road, Kongtong District, Pingliang 744000, China; (J.H.); (C.Q.); (M.M.); (R.D.)
| | - Rui Duan
- Academy of Pingliang Red Cattle, 492 South Ring Road, Kongtong District, Pingliang 744000, China; (J.H.); (C.Q.); (M.M.); (R.D.)
| | - Junya Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Lupei Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
- Academy of Pingliang Red Cattle, 492 South Ring Road, Kongtong District, Pingliang 744000, China; (J.H.); (C.Q.); (M.M.); (R.D.)
| |
Collapse
|
82
|
Fan M, Qiang L, Wang Y, Liu Y, Zhuang H, Guo R, Ben Y, Li Q, Zheng P. 3D bioprinted hydrogel/polymer scaffold with factor delivery and mechanical support for growth plate injury repair. Front Bioeng Biotechnol 2023; 11:1210786. [PMID: 37324424 PMCID: PMC10265638 DOI: 10.3389/fbioe.2023.1210786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: Growth plate injury is a significant challenge in clinical practice, as it could severely affect the limb development of children, leading to limb deformity. Tissue engineering and 3D bioprinting technology have great potential in the repair and regeneration of injured growth plate, but there are still challenges associated with achieving successful repair outcomes. Methods: In this study, GelMA hydrogel containing PLGA microspheres loaded with chondrogenic factor PTH(1-34) was combined with BMSCs and Polycaprolactone (PCL) to develop the PTH(1-34)@PLGA/BMSCs/GelMA-PCL scaffold using bio-3D printing technology. Results: The scaffold exhibited a three-dimensional interconnected porous network structure, good mechanical properties, biocompatibility, and was suitable for cellchondrogenic differentiation. And a rabbit model of growth plate injury was appliedto validate the effect of scaffold on the repair of injured growth plate. The resultsshowed that the scaffold was more effective than injectable hydrogel in promotingcartilage regeneration and reducing bone bridge formation. Moreover, the addition ofPCL to the scaffold provided good mechanical support, significantly reducing limbdeformities after growth plate injury compared with directly injected hydrogel. Discussion: Accordingly, our study demonstrates the feasibility of using 3D printed scaffolds for treating growth plate injuries and could offer a new strategy for the development of growth plate tissue engineering therapy.
Collapse
Affiliation(s)
- Minjie Fan
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Qiang
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yiwei Wang
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yihao Liu
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanjie Zhuang
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ruoyi Guo
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yulong Ben
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiang Li
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pengfei Zheng
- Department of Orthopaedic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
83
|
Velentza L, Wickström M, Kogner P, Ohlsson C, Zaman F, Sävendahl L. Pharmacological inhibition of BCL-2 with the FDA-approved drug venetoclax impairs longitudinal bone growth. Sci Rep 2023; 13:8054. [PMID: 37198212 DOI: 10.1038/s41598-023-34965-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023] Open
Abstract
Treatment-related skeletal complications are common in childhood cancer patients and survivors. Venetoclax is a BCL-2 inhibitor that has shown efficacy in hematological malignancies in adults and is being investigated in pediatric cancer clinical trials as a promising therapeutic modality. Venetoclax triggers cell death in cancer cells, but whether it exerts similar effects in normal bone cells, is unknown. Chondrogenic ATDC5 cells, E20 fetal rat metatarsal bones, and human growth plate biopsies were treated with different concentrations of venetoclax. Female NMRI nu/nu mice were treated with venetoclax or vehicle for 15 days. Mice were X-rayed at baseline and at the end of the experiment to assess longitudinal bone growth and body weight was monitored throughout the study. Histomorphometric and immunohistochemical analyses were performed to evaluate treatment effects on the growth plate cartilage. Venetoclax decreased the viability of chondrocytes and impaired the growth of ex vivo cultured metatarsals while reducing the height of the resting/proliferative zone and the hypertrophic cell size. When tested in vivo, venetoclax suppressed bone growth and reduced growth plate height. Our experimental data suggest that venetoclax directly targets growth plate chondrocytes suppressing bone growth and we, therefore, encourage careful monitoring of longitudinal bone growth if treating growing children with venetoclax.
Collapse
Affiliation(s)
- Lilly Velentza
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet, Visionsgatan 4, BioClinicum J9:30, SE-171 64, Stockholm, Sweden.
| | - Malin Wickström
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Farasat Zaman
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet, Visionsgatan 4, BioClinicum J9:30, SE-171 64, Stockholm, Sweden
| | - Lars Sävendahl
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institutet, Visionsgatan 4, BioClinicum J9:30, SE-171 64, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
84
|
Almubarak A, Zhang Q, Zhang CH, Lassar AB, Kume T, Berry FB. Foxc1 and Foxc2 function in osteochondral progenitors for the progression through chondrocyte hypertrophy and mineralization of the primary ossification center. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538325. [PMID: 37162896 PMCID: PMC10168324 DOI: 10.1101/2023.04.26.538325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The forkhead box transcription factor genes Foxc1 and Foxc2 are expressed in the condensing mesenchyme of the developing skeleton prior to the onset of chondrocyte differentiation. To determine the roles of these transcription factors in limb development we deleted both Foxc1 and Foxc2 in lateral plate mesoderm using the Prx1-cre mouse line. Resulting compound homozygous mice died shortly after birth with exencephaly, and malformations to this sternum and limb skeleton. Notably distal limb structures were preferentially affected, with the autopods displaying reduced or absent mineralization. The radius and tibia bowed and the ulna and fibula were reduced to an unmineralized rudimentary structure. Molecular analysis revealed reduced expression of Ihh leading to reduced proliferation and delayed chondrocyte hypertrophy at E14.5. At later ages, Prx1-cre;Foxc1Δ/ Δ;Foxc2 Δ / Δ embryos exhibited restored Ihh expression and an expanded COLX-positive hypertrophic chondrocyte region, indicating a delayed exit and impaired remodeling of the hypertrophic chondrocytes. Osteoblast differentiation and mineralization were disrupted at the osteochondral junction and in the primary ossification center (POC). Levels of OSTEOPONTIN were elevated in the POC of compound homozygous mutants, while expression of Phex was reduced, indicating that impaired OPN processing by PHEX may underlie the mineralization defect we observe. Together our findings suggest that Foxc1 and Foxc2 act at different stages of endochondral ossification. Initially these genes act during the onset of chondrogenesis leading to the formation of hypertrophic chondrocytes. At later stages Foxc1 and Foxc2 are required for remodeling of HC and for Phex expression required for mineralization of the POC.
Collapse
Affiliation(s)
- Asra Almubarak
- Department of Medical Genetics, University of Alberta, Edmonton AB Canada
| | - Qiuwan Zhang
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 240 Longwood Ave, Boston, MA. 02115
| | - Cheng-Hai Zhang
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 240 Longwood Ave, Boston, MA. 02115
| | - Andrew B. Lassar
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 240 Longwood Ave, Boston, MA. 02115
| | - Tsutomu Kume
- Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Department of Medicine, Northwestern University, Chicago, Illinois
| | - Fred B Berry
- Department of Medical Genetics, University of Alberta, Edmonton AB Canada
- Department of Surgery, University of Alberta, Edmonton AB, Canada
| |
Collapse
|
85
|
Yang X, Lin Y, Chen T, Hu W, Li P, Qiu X, Yang B, Liang A, Gao W. YTHDF1 Enhances Chondrogenic Differentiation by Activating the Wnt/β-Catenin Signaling Pathway. Stem Cells Dev 2023; 32:115-130. [PMID: 36647682 DOI: 10.1089/scd.2022.0216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cartilage is derived from the chondrogenic differentiation of stem cells, for which the regulatory mechanism has not been fully elucidated. N6-methyladenosine (m6A) messenger RNA (mRNA) methylation is the most common posttranscriptional modification in eukaryotic mRNAs and is mediated by m6A regulators. However, whether m6A regulators play roles in chondrogenic differentiation is unknown. Herein, we aim to determine the role of a main m6A reader protein, YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), in chondrogenic differentiation regulation. Western blotting (WB) assays found that the expression of YTHDF1 increased during chondrogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). The results of quantitative polymerase chain reaction, WB, immunohistochemistry, and Alcian blue staining revealed that overexpression of YTHDF1 increased cartilage matrix synthesis and the expression of chondrogenic markers when hBMSCs, ATDC5 cells, or C3H10T1/2 cells were induced to undergo chondrogenesis. Conversely, chondrogenesis was clearly inhibited when YTHDF1 was knocked down in hBMSCs, ATDC5 cells, or C3H10T1/2 cells. Further RNA sequencing and molecular biology experiments found that YTHDF1 activated the Wnt/β-catenin signaling pathway during chondrogenic differentiation. Finally, the effects of overexpression and knockdown of YTHDF1 on chondrogenic differentiation were reversed by inhibiting or activating β-catenin activity. Therefore, we demonstrated that YTDHF1 promoted chondrogenic differentiation through activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiaoming Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Youxi Lin
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Taiqiu Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Wenjun Hu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Pengfei Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Xuemei Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Bo Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| | - Anjing Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Wenjie Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
86
|
Qin T, Zhang G, Zheng Y, Li S, Yuan Y, Li Q, Hu M, Si H, Wei G, Gao X, Cui X, Xia B, Ren J, Wang K, Ba H, Liu Z, Heller R, Li Z, Wang W, Huang J, Li C, Qiu Q. A population of stem cells with strong regenerative potential discovered in deer antlers. Science 2023; 379:840-847. [PMID: 36821675 DOI: 10.1126/science.add0488] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/10/2023] [Indexed: 02/25/2023]
Abstract
The annual regrowth of deer antlers provides a valuable model for studying organ regeneration in mammals. We describe a single-cell atlas of antler regrowth. The earliest-stage antler initiators were mesenchymal cells that express the paired related homeobox 1 gene (PRRX1+ mesenchymal cells). We also identified a population of "antler blastema progenitor cells" (ABPCs) that developed from the PRRX1+ mesenchymal cells and directed the antler regeneration process. Cross-species comparisons identified ABPCs in several mammalian blastema. In vivo and in vitro ABPCs displayed strong self-renewal ability and could generate osteochondral lineage cells. Last, we observed a spatially well-structured pattern of cellular and gene expression in antler growth center during the peak growth stage, revealing the cellular mechanisms involved in rapid antler elongation.
Collapse
Affiliation(s)
- Tao Qin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Guokun Zhang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
| | - Yi Zheng
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Shengyou Li
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yuan Yuan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qingjie Li
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| | - Mingliang Hu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huazhe Si
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Guanning Wei
- School of Life Sciences, Jilin University, Changchun 130012, Jilin, China
| | - Xueli Gao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xinxin Cui
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Bing Xia
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jing Ren
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
| | - Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hengxing Ba
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
| | - Zhen Liu
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
| | - Rasmus Heller
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, N 2200 Copenhagen, Denmark
| | - Zhipeng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
87
|
Lin SC, Yu G, Lee YC, Song JH, Song X, Zhang J, Panaretakis T, Logothetis CJ, Komatsu Y, Yu-Lee LY, Wang G, Lin SH. Endothelial-to-osteoblast transition in normal mouse bone development. iScience 2023; 26:105994. [PMID: 36798441 PMCID: PMC9926118 DOI: 10.1016/j.isci.2023.105994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/23/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Metastatic prostate cancer (PCa) in bone induces bone-forming lesions. We have previously shown that PCa-induced bone originates from endothelial cells (ECs) that have undergone EC-to-osteoblast (OSB) transition. Here, we investigated whether EC-to-OSB transition also occurs during normal bone formation. We developed an EC and OSB dual-color reporter mouse (DRM) model that marks EC-OSB hybrid cells with red and green fluorescent proteins. We observed EC-to-OSB transition (RFP and GFP co-expression) in both endochondral and intramembranous bone formation during embryonic development and in adults. Co-expression was confirmed in cells isolated from DRM. Bone marrow- and lung-derived ECs underwent transition to OSBs and mineralization in osteogenic medium. RNA-sequencing revealed GATA family transcription factors were upregulated in EC-OSB hybrid cells and knockdown of GATA3 inhibited BMP4-induced mineralization. Our findings support that EC-to-OSB transition occurs during normal bone development and suggest a new paradigm regarding the endothelial origin of OSBs.
Collapse
Affiliation(s)
- Song-Chang Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guoyu Yu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu-Chen Lee
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian H. Song
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christopher J. Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yoshihiro Komatsu
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Li-Yuan Yu-Lee
- Departments of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
88
|
Emami A, Namdari H, Parvizpour F, Arabpour Z. Challenges in osteoarthritis treatment. Tissue Cell 2023; 80:101992. [PMID: 36462384 DOI: 10.1016/j.tice.2022.101992] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
Osteoarthritis (OA) is the most common form of arthritis and a degenerative joint cartilage disease that is the most common cause of disability in the world among the elderly. It leads to social, psychological, and economic costs with financial consequences. The principles of OA treatment are to reduce pain and stiffness as well as maintain function. In recent years, due to a better understanding of the underlying pathophysiology of OA, a number of potential therapeutic advances have been made, which include tissue engineering, immune system manipulation, surgical technique, pharmacological, and non-pharmacological treatments. Despite this, there is still no certain cure for OA, and different OA treatments are usually considered in relation to the stage of the disease. The purpose of the present review is to summarize and discuss the latest results of new treatments for OA and potential targets for future research.
Collapse
Affiliation(s)
- Asrin Emami
- Iranian tissue bank and research center, Tehran University of Medical Sciences, Tehran, Iran
| | - Haideh Namdari
- Iranian tissue bank and research center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Parvizpour
- Iranian tissue bank and research center, Tehran University of Medical Sciences, Tehran, Iran; Molecular Medicine department, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Zohreh Arabpour
- Iranian tissue bank and research center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
89
|
Csukasi F, Bosakova M, Barta T, Martin JH, Arcedo J, Barad M, Rico-Llanos GA, Zieba J, Becerra J, Krejci P, Duran I, Krakow D. Skeletal diseases caused by mutations in PTH1R show aberrant differentiation of skeletal progenitors due to dysregulation of DEPTOR. Front Cell Dev Biol 2023; 10:963389. [PMID: 36726589 PMCID: PMC9885499 DOI: 10.3389/fcell.2022.963389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Alterations in the balance between skeletogenesis and adipogenesis is a pathogenic feature in multiple skeletal disorders. Clinically, enhanced bone marrow adiposity in bones impairs mobility and increases fracture risk, reducing the quality of life of patients. The molecular mechanism that underlies the balance between skeletogenesis and adipogenesis is not completely understood but alterations in skeletal progenitor cells' differentiation pathway plays a key role. We recently demonstrated that parathyroid hormone (PTH)/PTH-related peptide (PTHrP) control the levels of DEPTOR, an inhibitor of the mechanistic target of rapamycin (mTOR), and that DEPTOR levels are altered in different skeletal diseases. Here, we show that mutations in the PTH receptor-1 (PTH1R) alter the differentiation of skeletal progenitors in two different skeletal genetic disorders and lead to accumulation of fat or cartilage in bones. Mechanistically, DEPTOR controls the subcellular localization of TAZ (transcriptional co-activator with a PDZ-binding domain), a transcriptional regulator that governs skeletal stem cells differentiation into either bone and fat. We show that DEPTOR regulation of TAZ localization is achieved through the control of Dishevelled2 (DVL2) phosphorylation. Depending on nutrient availability, DEPTOR directly interacts with PTH1R to regulate PTH/PTHrP signaling or it forms a complex with TAZ, to prevent its translocation to the nucleus and therefore inhibit its transcriptional activity. Our data point DEPTOR as a key molecule in skeletal progenitor differentiation; its dysregulation under pathologic conditions results in aberrant bone/fat balance.
Collapse
Affiliation(s)
- Fabiana Csukasi
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Malaga, Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Tomas Barta
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czechia
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jorge H. Martin
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
| | - Jesus Arcedo
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Malaga, Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
| | - Maya Barad
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
| | - Gustavo A. Rico-Llanos
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Malaga, Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Jennifer Zieba
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
| | - Jose Becerra
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Malaga, Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Ivan Duran
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Malaga, Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Deborah Krakow
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Human Genetics, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
90
|
Kablar B. Skeletal Muscle's Role in Prenatal Inter-organ Communication: A Phenogenomic Study with Qualitative Citation Analysis. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:1-19. [PMID: 37955769 DOI: 10.1007/978-3-031-38215-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Gene targeting in mice allows for a complete elimination of skeletal (striated or voluntary) musculature in the body, from the beginning of its development, resulting in our ability to study the consequences of this ablation on other organs. Here I focus on the relationship between the muscle and lung, motor neurons, skeleton, and special senses. Since the inception of my independent laboratory, in 2000, with my team, we published more than 30 papers (and a book chapter), nearly 400 pages of data, on these specific relationships. Here I trace, using Web of Science, nearly 600 citations of this work, to understand its impact. The current report contains a summary of our work and its impact, NCBI's Gene Expression Omnibus accession numbers of all our microarray data, and three clear future directions doable by anyone using our publicly available data. Together, this effort furthers our understanding of inter-organ communication during prenatal development.
Collapse
Affiliation(s)
- Boris Kablar
- Department of Medical Neuroscience, Anatomy and Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
91
|
Qian Z, Liu Z, Feng Z, Cai Z, Qiu Y, Zhu Z. Blocking circadian clock factor Rev-erbα inhibits growth plate chondrogenesis via up-regulating MAPK-ERK1/2 pathway. Cell Cycle 2023; 22:73-84. [PMID: 35938533 PMCID: PMC9769450 DOI: 10.1080/15384101.2022.2109106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence indicated circadian clock gene Rev-erbα was involved in cartilage metabolism, however the contribution of Rev-erbα to growth plate chondrogenesis remains unknown. Here, we found that Rev-erbα exhibited the spatiotemporal expression model in growth plate. Moreover, Rev-erbα antagonist SR8278 inhibited longitudinal elongation of metatarsal bone ex vivo. And morphological analysis exhibited SR8278 led to the reduced height of growth plate and hypertrophic zone. Furthermore, blocking Rev-erbα suppressed the proliferation and hypertrophic differentiation of chondrocytes in growth plate. Similarly, knock-down Rev-erbα inhibited the proliferation and differentiation of primary chondrocytes in vitro. The mechanistic study indicated that knock-down Rev-erbα up-regulated MAPK-ERK1/2 pathway in chondrocytes. However, restraint of MAPK-ERK1/2 pathway alleviated partially SR8278-inhibited longitudinal elongation of metatarsal bone and growth plate development. Therefore, our results provide evidence of the vital role of Rev-erbα on growth plate chondrogenesis.
Collapse
Affiliation(s)
- Zhuang Qian
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhen Liu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhenhua Feng
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhenning Cai
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China,Yong Qiu Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China,CONTACT Zezhang Zhu
| |
Collapse
|
92
|
Brown S, Malik S, Aljammal M, O'Flynn A, Hobbs C, Shah M, Roberts SJ, Logan MPO. The Prrx1eGFP Mouse Labels the Periosteum During Development and a Subpopulation of Osteogenic Periosteal Cells in the Adult. JBMR Plus 2022; 7:e10707. [PMID: 36751415 PMCID: PMC9893263 DOI: 10.1002/jbm4.10707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 11/24/2022] Open
Abstract
The identity of the cells that form the periosteum during development is controversial with current dogma suggesting these are derived from a Sox9-positive progenitor. Herein, we characterize a newly created Prrx1eGFP reporter transgenic mouse line during limb formation and postnatally. Interestingly, in the embryo Prrx1eGFP-labeled cells become restricted around the Sox9-positive cartilage anlage without themselves becoming Sox9-positive. In the adult, the Prrx1eGFP transgene live labels a subpopulation of cells within the periosteum that are enriched at specific sites, and this population is diminished in aged mice. The green fluorescent protein (GFP)-labeled subpopulation can be isolated using fluorescence-activated cell sorting (FACS) and represents approximately 8% of all isolated periosteal cells. The GFP-labeled subpopulation is significantly more osteogenic than unlabeled, GFP-negative periosteal cells. In addition, the osteogenic and chondrogenic capacity of periosteal cells in vitro can be extended with the addition of fibroblast growth factor (FGF) to the expansion media. We provide evidence to suggest that osteoblasts contributing to cortical bone formation in the embryo originate from Prrx1eGFP-positive cells within the perichondrium, which possibly piggyback on invading vascular cells and secrete new bone matrix. In summary, the Prrx1eGFP mouse is a powerful tool to visualize and isolate periosteal cells and to quantify their properties in the embryo and adult. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sarah Brown
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonUK
| | - Saif Malik
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonUK
| | - Maria Aljammal
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonUK
| | - Aine O'Flynn
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonUK
| | - Carl Hobbs
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonUK
| | | | - Scott J Roberts
- UCB PharmaSloughUK,Department of Comparative Biomedical SciencesRoyal Veterinary CollegeLondonUK
| | - Malcolm PO Logan
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonUK
| |
Collapse
|
93
|
Abou-Jaoude A, Courtes M, Badique L, Elhaj Mahmoud D, Abboud C, Mlih M, Justiniano H, Milbach M, Lambert M, Lemle A, Awan S, Terrand J, Niemeier A, Barbero A, Houard X, Boucher P, Matz RL. ShcA promotes chondrocyte hypertrophic commitment and osteoarthritis in mice through RunX2 nuclear translocation and YAP1 inactivation. Osteoarthritis Cartilage 2022; 30:1365-1375. [PMID: 35840017 DOI: 10.1016/j.joca.2022.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/17/2022] [Accepted: 07/05/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Chondrocyte hypertrophic differentiation, a key process in endochondral ossification, is also a feature of osteoarthritis leading to cartilage destruction. Here we investigated the role of the adaptor protein Src homology and Collagen A (ShcA) in chondrocyte differentiation and osteoarthritis. METHODS Mice ablated for ShcA in osteochondroprogenitor cells were generated by crossing mice carrying the Twist2-Cre transgene with ShcAflox/flox mice. Their phenotype (n = 5 to 14 mice per group) was characterized using histology, immuno-histology and western-blot. To identify the signaling mechanisms involved, in vitro experiments were conducted on wild type and ShcA deficient chondrocytes (isolated from n = 4 to 7 littermates) and the chondroprogenitor cell line ATDC5 (n = 4 independent experiments) using western-blot, cell fractionation and confocal microscopy. RESULTS Deletion of ShcA decreases the hypertrophic zone of the growth plate (median between group difference -11.37% [95% confidence interval -17.34 to -8.654]), alters the endochondral ossification process, and leads to dwarfism (3 months old male mice nose-to-anus length -1.48 cm [-1.860 to -1.190]). ShcA promotes ERK1/2 activation, nuclear translocation of RunX2, the master transcription factor for chondrocyte hypertrophy, while maintaining the Runx2 inhibitor, YAP1, in its cytosolic inactive form. This leads to hypertrophic commitment and expression of markers of hypertrophy, such as Collagen X. In addition, loss of ShcA protects from age-related osteoarthritis development in mice (2 years old mice OARSI score -6.67 [-14.25 to -4.000]). CONCLUSION This study reveals ShcA as a new player in the control of chondrocyte hypertrophic differentiation and its deletion slows down osteoarthritis development.
Collapse
Affiliation(s)
- A Abou-Jaoude
- UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France.
| | - M Courtes
- UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France.
| | - L Badique
- UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France.
| | - D Elhaj Mahmoud
- UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France.
| | - C Abboud
- UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France.
| | - M Mlih
- UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France.
| | - H Justiniano
- UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France.
| | - M Milbach
- UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France.
| | - M Lambert
- UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France.
| | - A Lemle
- UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France.
| | - S Awan
- UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France.
| | - J Terrand
- UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France.
| | - A Niemeier
- Department of Biochemistry and Molecular Cell Biology and Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - A Barbero
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.
| | - X Houard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.
| | - P Boucher
- UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France.
| | - R L Matz
- UMR INSERM S_1109 University of Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
94
|
Wang F, Rummukainen P, Pehkonen M, Säämänen AM, Heino TJ, Kiviranta R. Mesenchymal cell-derived Wnt1 signaling regulates subchondral bone remodeling but has no effects on the development of growth plate or articular cartilage in mice. Bone 2022; 163:116497. [PMID: 35863746 DOI: 10.1016/j.bone.2022.116497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/13/2022] [Accepted: 07/13/2022] [Indexed: 11/15/2022]
Abstract
Chondrocyte differentiation is a principal progress in endochondral ossification and in the formation of secondary ossification center (SOC) during the long bone development. We have previously reported that targeted deletion of Wnt1 in mesenchymal progenitors (Wnt1Prrx-/-) leads to spontaneous fractures and severe osteopenia in mouse long bones, suggesting that Wnt1 is a key regulator of bone metabolism. However, the effect of Wnt1 on the regulation of cartilage development and chondrocyte differentiation remained unknown. In this study, WNT1 protein expression was observed in lateral superficial cartilage and growth plate pre-hypertrophic chondrocytes in mice. Wnt1 mRNA expression was detected in epiphyseal cartilage from E16.5 to 3 month-old mice. Detailed histological analyses revealed that the average thickness and chondrocyte density of proximal tibial articular cartilage and growth plate were unchanged between Wnt1Prrx-/- and control mice. However, μCT analysis of tibial epiphyses showed that the subchondral bone mass was reduced in Wnt1Prrx-/- mice compared to control mice, as demonstrated by decreased bone volume, trabecular number, trabecular thickness, and increased trabecular separation in Wnt1Prrx-/- mice. Mechanistically, histomorphometric analyses showed that the reduced subchondral bone mass in Wnt1Prrx-/- mice was due to impaired bone formation and enhanced bone resorption. In vitro, exogenous Wnt1 inhibited chondrogenesis and chondrocyte hypertrophy in both cell autonomous and juxtacrine manners, while matrix mineralization and the expression of Mmp13, Mmp9 and Opn were induced in a juxtacrine manner. Taken together, mesenchymal cell-derived Wnt1 is an important regulator of subchondral bone remodeling, although it has no effect on the regulation of growth plate or articular cartilage.
Collapse
Affiliation(s)
- Fan Wang
- Institute of Biomedicine, University of Turku, Turku, Finland.
| | | | - Matias Pehkonen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Terhi J Heino
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Riku Kiviranta
- Institute of Biomedicine, University of Turku, Turku, Finland; Department of Endocrinology, Division of Medicine, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
95
|
Simonds MM, Sullivan KE, Brescia AC. Single-cell analysis reveals heterogeneity of juvenile idiopathic arthritis fibroblast-like synoviocytes with implications for disease subtype. Arthritis Res Ther 2022; 24:225. [PMID: 36167601 PMCID: PMC9513865 DOI: 10.1186/s13075-022-02913-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
Background Fibroblast-like synoviocytes (FLS) play a crucial role in JIA pathogenesis; however, the mechanisms by which they contribute to disease progression are not well described. Previous studies demonstrated that rheumatoid arthritis FLS are heterogeneous, and subpopulations with transformed, aggressive phenotypes cause invasive and destructive disease activity. We employ single-cell RNA-sequencing (scRNA-seq) to investigate JIA FLS heterogeneity and gene expression that distinguishes JIA subtypes. Methods JIA FLS cell lines from three persistent oligoarticular, three pre-extension oligoarticular, and three polyarticular subtypes were cultured. scRNA-seq was performed by Genewiz according to 10 × Genomics Chromium protocols. SeuratR package was used for QC, analysis, and exploration of data. Results FLS are heterogeneous and have characteristics of fibroblasts, chondrocytes, and smooth muscle cells. The chondrocyte-like subpopulation is the predominant cell type and percentages of this subpopulation increase with disease severity. Despite overlapping subpopulations, the chondrocyte-like cells have unique genetic fingerprints that distinguish between JIA subtypes. LRRC15, GREM1, and GREM2 are overexpressed in chondrocyte-like cells from persistent oligoarticular JIA FLS compared to pre-extension oligoarticular JIA FLS. S100A4, TIMP3, and NBL1 are overexpressed in pre-extension oligoarticular JIA FLS compared to polyarticular JIA FLS. CRLF1, MFAP5, and TNXB are overexpressed in persistent oligoarticular JIA FLS compared to polyarticular JIA FLS. Conclusions We found biologically relevant differences in gene expression between JIA subtypes that support a critical role for FLS in pathogenesis. We also demonstrate that gene expression within the chondrocyte-like subpopulation can be used to distinguish between these subtypes. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02913-8.
Collapse
Affiliation(s)
- Megan M Simonds
- Nemours Biomedical Research, Nemours Children's Health, Delaware, 1701 Rockland Rd, Wilmington, DE, 19803, USA.
| | - Kathleen E Sullivan
- Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | |
Collapse
|
96
|
Chen Y, Wu J, Zhang S, Gao W, Liao Z, Zhou T, Li Y, Su D, Liu H, Yang X, Su P, Xu C. Hnrnpk maintains chondrocytes survival and function during growth plate development via regulating Hif1α-glycolysis axis. Cell Death Dis 2022; 13:803. [PMID: 36127325 PMCID: PMC9489716 DOI: 10.1038/s41419-022-05239-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 01/23/2023]
Abstract
The harmonious functioning of growth plate chondrocytes is crucial for skeletogenesis. These cells rely on an appropriate intensity of glycolysis to maintain survival and function in an avascular environment, but the underlying mechanism is poorly understood. Here we show that Hnrnpk orchestrates growth plate development by maintaining the appropriate intensity of glycolysis in chondrocytes. Ablating Hnrnpk causes the occurrence of dwarfism, exhibiting damaged survival and premature differentiation of growth plate chondrocytes. Furthermore, Hnrnpk deficiency results in enhanced transdifferentiation of hypertrophic chondrocytes and increased bone mass. In terms of mechanism, Hnrnpk binds to Hif1a mRNA and promotes its degradation. Deleting Hnrnpk upregulates the expression of Hif1α, leading to the increased expression of downstream glycolytic enzymes and then exorbitant glycolysis. Our study establishes an essential role of Hnrnpk in orchestrating the survival and differentiation of chondrocytes, regulating the Hif1α-glycolysis axis through a post-transcriptional mechanism during growth plate development.
Collapse
Affiliation(s)
- Yuyu Chen
- grid.412615.50000 0004 1803 6239Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Jinna Wu
- grid.410737.60000 0000 8653 1072Department of Breast Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095 China
| | - Shun Zhang
- grid.412615.50000 0004 1803 6239Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Wenjie Gao
- grid.412536.70000 0004 1791 7851Department of Orthopaedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120 China
| | - Zhiheng Liao
- grid.412615.50000 0004 1803 6239Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Taifeng Zhou
- grid.412615.50000 0004 1803 6239Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Yongyong Li
- grid.412615.50000 0004 1803 6239Precision Medicine Institute, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Deying Su
- grid.284723.80000 0000 8877 7471Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Hengyu Liu
- grid.412615.50000 0004 1803 6239Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Xiaoming Yang
- grid.412632.00000 0004 1758 2270Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Peiqiang Su
- grid.412615.50000 0004 1803 6239Department of Spine Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| | - Caixia Xu
- grid.412615.50000 0004 1803 6239Research Center for Translational Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| |
Collapse
|
97
|
Hojo H, Saito T, He X, Guo Q, Onodera S, Azuma T, Koebis M, Nakao K, Aiba A, Seki M, Suzuki Y, Okada H, Tanaka S, Chung UI, McMahon AP, Ohba S. Runx2 regulates chromatin accessibility to direct the osteoblast program at neonatal stages. Cell Rep 2022; 40:111315. [PMID: 36070691 PMCID: PMC9510047 DOI: 10.1016/j.celrep.2022.111315] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/31/2022] [Accepted: 08/15/2022] [Indexed: 12/12/2022] Open
Abstract
The transcriptional regulator Runx2 (runt-related transcription factor 2) has essential but distinct roles in osteoblasts and chondrocytes in skeletal development. However, Runx2-mediated regulatory mechanisms underlying the distinctive programming of osteoblasts and chondrocytes are not well understood. Here, we perform an integrative analysis to investigate Runx2-DNA binding and chromatin accessibility ex vivo using neonatal osteoblasts and chondrocytes. We find that Runx2 engages with cell-type-distinct chromatin-accessible regions, potentially interacting with different combinations of transcriptional regulators, forming cell-type-specific hotspots, and potentiating chromatin accessibility. Genetic analysis and direct cellular reprogramming studies suggest that Runx2 is essential for establishment of chromatin accessibility in osteoblasts. Functional enhancer studies identify an Sp7 distal enhancer driven by Runx2-dependent binding and osteoblast-specific chromatin accessibility, contributing to normal osteoblast differentiation. Our findings provide a framework for understanding the regulatory landscape encompassing Runx2-mediated and cell-type-distinct enhancer networks that underlie the specification of osteoblasts. Hojo et al. investigate the gene-regulatory landscape underlying specification of skeletal cell types in neonatal mice. Runx2, an osteoblast determinant, engages with cell-type-distinct chromatin-accessible regions and is essential for establishment of chromatin accessibility in osteoblasts. The study provides insights into enhancer networks in skeletal development.
Collapse
Affiliation(s)
- Hironori Hojo
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8655, Japan.
| | - Taku Saito
- Orthopedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Xinjun He
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Qiuyu Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Michinori Koebis
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazuki Nakao
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Hiroyuki Okada
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Orthopedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Sakae Tanaka
- Orthopedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Ung-Il Chung
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8655, Japan
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Shinsuke Ohba
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; Department of Oral Anatomy and Developmental Biology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
98
|
Zhang N, Xu L, Song H, Bu C, Kang J, Zhang C, Yang X, Han F. Tracking of Stem Cells from Human Exfoliated Deciduous Teeth Labeled with Molday ION Rhodamine-B during Periodontal Bone Regeneration in Rats. Int J Stem Cells 2022; 16:93-107. [PMID: 36042010 PMCID: PMC9978830 DOI: 10.15283/ijsc21204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 05/09/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives Chronic periodontitis can lead to alveolar bone resorption and eventually tooth loss. Stem cells from exfoliated deciduous teeth (SHED) are appropriate bone regeneration seed cells. To track the survival, migration, and differentiation of the transplanted SHED, we used super paramagnetic iron oxide particles (SPIO) Molday ION Rhodamine-B (MIRB) to label and monitor the transplanted cells while repairing periodontal bone defects. Methods and Results We determined an appropriate dose of MIRB for labeling SHED by examining the growth and osteogenic differentiation of labeled SHED. Finally, SHED was labeled with 25 μg Fe/ml MIRB before being transplanted into rats. Magnetic resonance imaging was used to track SHED survival and migration in vivo due to a low-intensity signal artifact caused by MIRB. HE and immunohistochemical analyses revealed that both MIRB-labeled and unlabeled SHED could promote periodontal bone regeneration. The colocalization of hNUC and MIRB demonstrated that SHED transplanted into rats could survive in vivo. Furthermore, some MIRB-positive cells expressed the osteoblast and osteocyte markers OCN and DMP1, respectively. Enzyme-linked immunosorbent assay revealed that SHED could secrete protein factors, such as IGF-1, OCN, ALP, IL-4, VEGF, and bFGF, which promote bone regeneration. Immunofluorescence staining revealed that the transplanted SHED was surrounded by a large number of host-derived Runx2- and Col II-positive cells that played important roles in the bone healing process. Conclusions SHED could promote periodontal bone regeneration in rats, and the survival of SHED could be tracked in vivo by labeling them with MIRB. SHED are likely to promote bone healing through both direct differentiation and paracrine mechanisms.
Collapse
Affiliation(s)
- Nan Zhang
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng People’s Hospital, Liaocheng, China,Co-Correspondence to Nan Zhang, The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng People’s Hospital, 67 Dongchang West Road, Liaocheng 252000, China, Tel: +86-635-827-8427, Fax: +86-635-827-2732, E-mail:
| | - Li Xu
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng People’s Hospital, Liaocheng, China
| | - Hao Song
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng People’s Hospital, Liaocheng, China
| | - Chunqing Bu
- Department of MRI, Liaocheng People’s Hospital, Liaocheng, China
| | - Jie Kang
- Department of Stomatology, Liaocheng People’s Hospital, Liaocheng, China
| | - Chuanchen Zhang
- Department of MRI, Liaocheng People’s Hospital, Liaocheng, China
| | - Xiaofei Yang
- Department of Orthopedics, Liaocheng People’s Hospital, Liaocheng, China
| | - Fabin Han
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng People’s Hospital, Liaocheng, China,The Translational Research Laboratory of Stem Cells and Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,Correspondence to Fabin Han, The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng People’s Hospital, 67 Dongchang West Road, Liaocheng 252000, China, Tel: +86-635-827-8427, Fax: +86-635-827-2732, E-mail:
| |
Collapse
|
99
|
Yu X, Xu X, Dong W, Yang C, Luo Y, He Y, Jiang C, Wu Y, Wang J. DDIT3/CHOP mediates the inhibitory effect of ER stress on chondrocyte differentiation by AMPKα-SIRT1 pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119265. [PMID: 35381294 DOI: 10.1016/j.bbamcr.2022.119265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Endoplasmic reticulum (ER) stress is an evolutionarily conserved cellular stress response related to multiple diseases, including temporomandibular joint (TMJ) cartilage-related diseases. Recent studies have indicated that DDIT3/CHOP (a downstream transcription factor of ER stress) is an important effector in mediating ER stress to inhibit chondrogenesis. However, the underlying mechanism by which DDIT3 regulates chondrogenesis remains unclear. In this study, tunicamycin (an ER stress agonist)-induced ER stress inhibited chondrocyte differentiation and matrix synthesis in vitro and led to an osteoarthritis-like phenotype in mouse TMJ cartilage. Meanwhile, DDIT3 expression in chondrocytes was robustly upregulated. Loss-of-function experiments validated the inhibiting effect of DDIT3 on chondrocyte differentiation and matrix synthesis. Mechanistically, the inhibiting effect was attributed to the direct and indirect regulatory effect of DDIT3 on SIRT1 (sirtuin1, silent mating type information regulation protein type 1, a member of NAD+ dependent class III histone deacetylases). On one hand, DDIT3 directly promoted the transcription of SIRT1. On the other hand, DDIT3 indirectly increased the expression of SIRT1 by promoting AMPKα phosphorylation and activation. Furthermore, activation of AMPKα or SIRT1 with the corresponding agonist AICAR or resveratrol in the DDIT3-knockdown cells partially restored the inhibiting effect of DDIT3 on chondrocyte differentiation and matrix synthesis. Collectively, these novel findings indicate that DDIT3 regulates the inhibitory effect of ER stress on chondrocyte differentiation and matrix synthesis partially via the AMPKα-SIRT1 pathway. A thorough understanding of ER stress in regulating chondrocyte homeostasis and its role in the onset of osteoarthritis may be promising to develop therapeutic targets and prevent condyle cartilage destruction.
Collapse
Affiliation(s)
- Xijie Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xiaoxiao Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Chang Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Yao Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Ying He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Chenxi Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Yanru Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
100
|
Zhang D, Deng X, Liu Y, Zhang Y, Wang H, Zhang M, Fang Q, Yi C, Zhao X, Ma T, Wu C, Chen J. MMP-10 Deficiency Effects Differentiation and Death of Chondrocytes Associated with Endochondral Osteogenesis in an Endemic Osteoarthritis. Cartilage 2022; 13:19476035221109226. [PMID: 35818290 PMCID: PMC9280830 DOI: 10.1177/19476035221109226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The objective of this study was to determine the matrix metalloproteinase-10 (MMP-10) expression pattern and to assess how it contributes to endochondral osteogenesis in Kashin-Beck disease (KBD). DESIGN The cartilages of KBD patients, Sprague-Dawley rats fed with selenium (Se)-deficient diet and/or T-2 toxin, and ATDC5 cells were used in this study. ATDC5 cells were induced into hypertrophic chondrocytes using a 1% insulin-transferrin-selenium (ITS) culture medium for 21 days. The expressions of MMP-10 in the cartilages were visualized by immunohistochemistry. The messenger RNA (mRNA) and protein expression levels were determined by real-time polymerase chain reaction (RT-PCR) and Western blotting. MMP-10 short hairpin RNA (shRNA) was transfected into hypertrophic chondrocytes to knock down the gene expression of MMP-10. Meanwhile, the cell death of MMP-10-knockdown chondrocyte was detected using flow cytometry. RESULTS The expression of MMP-10 was decreased in the growth plates of children with KBD. A decreased expression of MMP-10 also was observed in the growth plates of rats fed with an Se-deficient diet and/or T-2 toxin exposure. The mRNA and protein expression levels of MMP-10 increased during the chondrogenic differentiation of ATDC5 cells. MMP-10 knockdown in hypertrophic chondrocytes significantly decreased the gene and protein expression of collagen type II (Col II), Col X, Runx2, and MMP-13. Besides, the percentage of cell apoptosis was significantly increased after MMP-10 knockdown in hypertrophic chondrocytes. CONCLUSION MMP-10 deficiency disrupts chondrocyte terminal differentiation and induces the chondrocyte's death, which impairs endochondral osteogenesis in the pathogenesis of KBD.
Collapse
Affiliation(s)
- Dan Zhang
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xian, China
- Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an, China
| | - Xingxing Deng
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xian, China
- Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an, China
| | - Yinan Liu
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xian, China
- Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an, China
| | - Ying Zhang
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xian, China
- Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an, China
| | - Hui Wang
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xian, China
- Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an, China
| | - Meng Zhang
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xian, China
- Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an, China
| | - Qian Fang
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xian, China
- Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an, China
| | - Chengfen Yi
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xian, China
- Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an, China
| | - Xiaoru Zhao
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xian, China
- Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an, China
| | - Tianyou Ma
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xian, China
- Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an, China
| | - Cuiyan Wu
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xian, China
- Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an, China
- Cuiyan Wu, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China.
| | - Jinghong Chen
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xian, China
- Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People’s Republic of China, Xi’an, China
- Jinghong Chen, School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China.
| |
Collapse
|