51
|
Tsukui T, Capdevila J, Tamura K, Ruiz-Lozano P, Rodriguez-Esteban C, Yonei-Tamura S, Magallón J, Chandraratna RA, Chien K, Blumberg B, Evans RM, Belmonte JC. Multiple left-right asymmetry defects in Shh(-/-) mutant mice unveil a convergence of the shh and retinoic acid pathways in the control of Lefty-1. Proc Natl Acad Sci U S A 1999; 96:11376-81. [PMID: 10500184 PMCID: PMC18041 DOI: 10.1073/pnas.96.20.11376] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Asymmetric expression of Sonic hedgehog (Shh) in Hensen's node of the chicken embryo plays a key role in the genetic cascade that controls left-right asymmetry, but its involvement in left-right specification in other vertebrates remains unclear. We show that mouse embryos lacking Shh display a variety of laterality defects, including pulmonary left isomerism, alterations of heart looping, and randomization of axial turning. Expression of the left-specific gene Lefty-1 is absent in Shh(-/-) embryos, suggesting that the observed laterality defects could be the result of the lack of Lefty-1. We also demonstrate that retinoic acid (RA) controls Lefty-1 expression in a pathway downstream or parallel to Shh. Further, we provide evidence that RA controls left-right development across vertebrate species. Thus, the roles of Shh and RA in left-right specification indeed are conserved among vertebrates, and the Shh and RA pathways converge in the control of Lefty-1.
Collapse
Affiliation(s)
- T Tsukui
- The Salk Institute for Biological Studies, Gene Expression Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037-1099, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Takeuchi T, Kojima M, Nakajima K, Kondo S. jumonji gene is essential for the neurulation and cardiac development of mouse embryos with a C3H/He background. Mech Dev 1999; 86:29-38. [PMID: 10446263 DOI: 10.1016/s0925-4773(99)00100-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The recessive mutant mouse jumonji (jmj), obtained by a gene trap strategy, shows neural tube defects in approximately half of homozygous embryos with a BALB/cA and 129/Ola mixed background, but no neural tube defects with BALB/cA, C57BL/6J, and DBA/2J backgrounds. Here, we show that neural tube and cardiac defects are observed in all embryos with a C3H/HeJ background. In addition, abnormal groove formation and prominent flexure are observed on the neural plate with full penetrance, suggesting that abnormal groove formation leads to neural tube defects. We found morphogenetic abnormalities in the bulbus cordis (future outflow tract and the right ventricle) of homozygous embryo hearts. Moreover, myocytes in the ventricular trabeculae show hyperplasia with cells filling the ventricles. Together with the observation that the jmj gene is expressed in the neural epithelium of the head neural plate and in myocytes in the bulbus cordis and trabeculae, the results show that the jmj gene plays essential roles in the normal development of the neural plate, morphogenesis of bulbus cordis, and proliferation of trabecular myocytes on a C3H/He background.
Collapse
Affiliation(s)
- T Takeuchi
- Mitsubishi Kasei Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194-8511, Japan.
| | | | | | | |
Collapse
|
53
|
Xavier-Neto J, Neville CM, Shapiro MD, Houghton L, Wang GF, Nikovits W, Stockdale FE, Rosenthal N. A retinoic acid-inducible transgenic marker of sino-atrial development in the mouse heart. Development 1999; 126:2677-87. [PMID: 10331979 DOI: 10.1242/dev.126.12.2677] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To study the specification of inflow structures in the heart we generated transgenic animals harboring the human alkaline phosphatase (HAP) gene driven by the proximal 840 bp of a quail SMyHC3 promoter. In transgenic mice, the SMyHC3-HAP reporter was expressed in posterior heart precursors at 8.25 dpc, in sinus venosa and in the atrium at 8.5 and 9.0 dpc, and in the atria from 10.5 dpc onwards. SMyHC3-HAP transgene expression overlapped synthesis and endogenous response to retinoic acid (RA) in the heart, as determined by antibodies directed against a key RA synthetic enzyme and by staining of RAREhsplacZ transgenic animals. A single pulse of all-trans RA administered to pregnant mice at 7.5, but not after 8.5, dpc induced cardiac dismorphology, ranging from complete absence of outflow tract and ventricles to hearts with reduced ventricles expressing both SMyHC3-HAP and ventricular markers. Blockade of RA synthesis with disulfiram inhibited RA-induced transcription and produced hearts lacking the atrial chamber. This study defines a novel marker for atrial-restricted transcription in the developing mouse heart. It also suggests that atrial-specific gene expression is controlled by localized synthesis of RA, and that exclusion of RA from ventricular precursors is essential for correct specification of the ventricles.
Collapse
Affiliation(s)
- J Xavier-Neto
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Naya FJ, Wu C, Richardson JA, Overbeek P, Olson EN. Transcriptional activity of MEF2 during mouse embryogenesis monitored with a MEF2-dependent transgene. Development 1999; 126:2045-52. [PMID: 10207130 DOI: 10.1242/dev.126.10.2045] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The four members of the MEF2 family of MADS-box transcription factors, MEF2-A, MEF2-B, MEF2-C and MEF2-D, are expressed in overlapping patterns in developing muscle and neural cell lineages during embryogenesis. However, during late fetal development and postnatally, MEF2 transcripts are also expressed in a wide range of cell types. Because MEF2 expression is controlled by translational and post-translational mechanisms, it has been unclear whether the presence of MEF2 transcripts in the embryo reflects transcriptionally active MEF2 proteins. To define the temporospatial expression pattern of transcriptionally active MEF2 proteins during mouse embryogenesis, we generated transgenic mice harboring a lacZ reporter gene controlled by three tandem copies of the MEF2 site and flanking sequences from the desmin enhancer, which is active in cardiac, skeletal and smooth muscle cells. Expression of this MEF2-dependent transgene paralleled expression of MEF2 mRNAs in developing myogenic lineages and regions of the adult brain. However, it was not expressed in other cell types that express MEF2 transcripts. Tandem copies of the MEF2 site from the c-jun promoter directed expression in a similar pattern to the desmin MEF2 site, suggesting that transgene expression reflects the presence of transcriptionally active MEF2 proteins, rather than other factors specific for DNA sequences flanking the MEF2 site. These results demonstrate the presence of transcriptionally active MEF2 proteins in the early muscle and neural cell lineages during embryogenesis and argue against the existence of lineage-restricted MEF2 cofactors that discriminate between MEF2 sites with different immediate flanking sequences. The discordance between MEF2 mRNA expression and MEF2 transcriptional activity in nonmuscle cell types of embryos and adults also supports the notion that post-transcriptional mechanisms regulate the expression of MEF2 proteins.
Collapse
Affiliation(s)
- F J Naya
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd., Dallas, TX 75235-9148, USA
| | | | | | | | | |
Collapse
|
55
|
Hirota H, Chen J, Betz UA, Rajewsky K, Gu Y, Ross J, Müller W, Chien KR. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 1999; 97:189-98. [PMID: 10219240 DOI: 10.1016/s0092-8674(00)80729-1] [Citation(s) in RCA: 480] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biomechanical stress is a major stimulus for cardiac hypertrophy and the transition to heart failure. By generating mice that harbor a ventricular restricted knockout of the gp130 cytokine receptor via Cre-IoxP-mediated recombination, we demonstrate a critical role for a gp130-dependent myocyte survival pathway in the transition to heart failure. Such conditional mutant mice have normal cardiac structure and function, but during aortic pressure overload, these mice display rapid onset of dilated cardiomyopathy and massive induction of myocyte apoptosis versus the control mice that exhibit compensatory hypertrophy. Thus, cardiac myocyte apoptosis is a critical point in the transition between compensatory cardiac hypertrophy and heart failure. gp130-dependent cytokines may represent a novel therapeutic strategy for preventing in vivo heart failure.
Collapse
Affiliation(s)
- H Hirota
- UCSD-Salk NHLBI Program in Molecular Medicine, Department of Medicine, La Jolla 920093, USA
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Qian Q, Kuo L, Yu YT, Rottman JN. A concise promoter region of the heart fatty acid-binding protein gene dictates tissue-appropriate expression. Circ Res 1999; 84:276-89. [PMID: 10024301 DOI: 10.1161/01.res.84.3.276] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The heart fatty acid-binding protein (HFABP) is a member of a family of binding proteins with distinct tissue distributions and diverse roles in fatty acid metabolism, trafficking, and signaling. Other members of this family have been shown to possess concise promoter regions that direct appropriate tissue-specific expression. The basis for the specific expression of the HFABP has not been previously evaluated, and the mechanisms governing expression of metabolic genes in the heart are not completely understood. We used transient and permanent transfections in ventricular myocytes, skeletal myocytes, and nonmyocytic cells to map regulatory elements in the HFABP promoter, and audited results in transgenic mice. Appropriate tissue-specific expression in cell culture and in transgenic mice was dictated by 1.2 kb of the 5'-flanking sequence of FABP3, the HFABP gene. Comparison of orthologous murine and human genomic sequences demonstrated multiple regions of near-identity within this promoter region, including a CArG-like element close to the TATA box. Binding and transactivation studies demonstrated that this element can function as an atypical myocyte enhancer-binding factor 2 site. Interactions with adjacent sites are likely to be necessary for fully appropriate, tissue-specific, developmental and metabolic regulation.
Collapse
Affiliation(s)
- Q Qian
- Departments of Internal Medicine (Cardiology), Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | |
Collapse
|
57
|
Reecy JM, Li X, Yamada M, DeMayo FJ, Newman CS, Harvey RP, Schwartz RJ. Identification of upstream regulatory regions in the heart-expressed homeobox gene Nkx2-5. Development 1999; 126:839-49. [PMID: 9895330 DOI: 10.1242/dev.126.4.839] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nkx2-5 marks the earliest recognizable cardiac progenitor cells, and is activated in response to inductive signals involved in lineage specification. Nkx2-5 is also expressed in the developing foregut, thyroid, spleen, stomach and tongue. One approach to elucidate the signals involved in cardiogenesis was to examine the transcriptional regulation of early lineage markers such as Nkx2-5. We generated F0 transgenic mice, which carry Nkx2-5 flanking sequences linked to a lacZ reporter gene. We identified multiple regulatory regions located within the proximal 10.7 kb of the Nkx2-5 gene. In addition to a proximal promoter, we identified a second promoter and a novel upstream exon that could participate in the regulation of Nkx2-5 transcription. Although used rarely in normal development, this novel exon could be spliced into the Nkx2-5 coding region in several ways, thereby potentially creating novel Nkx2-5 protein isoforms, whose transcriptional activity is greatly diminished as compared to wild-type Nkx2-5. An enhancer that directs expression in pharynx, spleen, thyroid and stomach was identified within 3.5 kb of exon 1 between the coding exon 1 and the novel upstream exon 1a. Two or more enhancers upstream of exon 1a were capable of driving expression in the cardiac crescent, throughout the myocardium of the early heart tube, then in the outflow tract and right ventricle of the looped heart tube. A negative element was also located upstream of exon1a, which interacted in complex ways with enhancers to direct correct spatial expression. In addition, potential autoregulatory elements can be cooperatively stimulated by Nkx2-5 and GATA-4. Our results demonstrate that a complex suite of interacting regulatory domains regulate Nkx2-5 transcription. Dissection of these elements should reveal essential features of cardiac induction and positive and negative signaling within the cardiac field.
Collapse
Affiliation(s)
- J M Reecy
- Department of Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
58
|
Black BL, Olson EN. Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 1999; 14:167-96. [PMID: 9891782 DOI: 10.1146/annurev.cellbio.14.1.167] [Citation(s) in RCA: 806] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metazoans contain multiple types of muscle cells that share several common properties, including contractility, excitability, and expression of overlapping sets of muscle structural genes that mediate these functions. Recent biochemical and genetic studies have demonstrated that members of the myocyte enhancer factor-2 (MEF2) family of MADS (MCM1, agamous, deficiens, serum response factor)-box transcription factors play multiple roles in muscle cells to control myogenesis and morphogenesis. Like other MADS-box proteins, MEF2 proteins act combinatorially through protein-protein interactions with other transcription factors to control specific sets of target genes. Genetic studies in Drosophila have also begun to reveal the upstream elements of myogenic regulatory hierarchies that control MEF2 expression during development of skeletal, cardiac, and visceral muscle lineages. Paradoxically, MEF2 factors also regulate cell proliferation by functioning as endpoints for a variety of growth factor-regulated intracellular signaling pathways that are antagonistic to muscle differentiation. We discuss the diverse functions of this family of transcription factors, the ways in which they are regulated, and their mechanisms of action.
Collapse
Affiliation(s)
- B L Black
- Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas 75235-9148, USA.
| | | |
Collapse
|
59
|
Franco D, Markman MM, Wagenaar GT, Ya J, Lamers WH, Moorman AF. Myosin light chain 2a and 2v identifies the embryonic outflow tract myocardium in the developing rodent heart. Anat Rec (Hoboken) 1999; 254:135-46. [PMID: 9892427 DOI: 10.1002/(sici)1097-0185(19990101)254:1<135::aid-ar17>3.0.co;2-s] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The embryonic heart consists of five segments comprising the fast-conducting atrial and ventricular segments flanked by slow-conducting segments, i.e. inflow tract, atrioventricular canal and outflow tract. Although the incorporation of the flanking segments into the definitive atrial and ventricular chambers with development is generally accepted now, the contribution of the outflow tract myocardium to the definitive ventricles remained controversial mainly due to the lack of appropriate markers. For that reason we performed a detailed study of the pattern of expression of myosin light chain (MLC) 2a and 2v by in situ hybridization and immunohistochemistry during rat and mouse heart development. Expression of MLC2a mRNA displays a postero-anterior gradient in the tubular heart. In the embryonic heart it is down-regulated in the ventricular compartment and remains high in the outflow tract, atrioventricular canal, atria and inflow tract myocardium. MLC2v is strongly expressed in the ventricular myocardium and distinctly lower in the outflow tract and atrioventricular canal. The co-expression of MLC2a and MLC2v in the outflow tract and atrioventricular canal, together with the single expression in the atrial (MLC2a) and ventricular (MLC2v) myocardium, permits the delineation of their boundaries. With development, myocardial cells are observed in the lower endocardial ridges that share MLC2a and MLC2v expression with the myocardial cells of the outflow tract. In neonates, MLC2a continues to be expressed around both right and left semilunar valves, the outlet septum and the non-trabeculated right ventricular outlet. These findings demonstrate the contribution of the outflow tract to the definitive ventricles and demonstrate that the outlet septum is derived from outflow tract myocardium.
Collapse
Affiliation(s)
- D Franco
- Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
60
|
Lien CL, Wu C, Mercer B, Webb R, Richardson JA, Olson EN. Control of early cardiac-specific transcription of Nkx2-5 by a GATA-dependent enhancer. Development 1999; 126:75-84. [PMID: 9834187 DOI: 10.1242/dev.126.1.75] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The homeobox gene Nkx2-5 is the earliest known marker of the cardiac lineage in vertebrate embryos. Nkx2-5 expression is first detected in mesodermal cells specified to form heart at embryonic day 7.5 in the mouse and expression is maintained throughout the developing and adult heart. In addition to the heart, Nkx2-5 is transiently expressed in the developing pharynx, thyroid and stomach. To investigate the mechanisms that initiate cardiac transcription during embryogenesis, we analyzed the Nkx2-5 upstream region for regulatory elements sufficient to direct expression of a lacZ transgene in the developing heart of transgenic mice. We describe a cardiac enhancer, located about 9 kilobases upstream of the Nkx2-5 gene, that fully recapitulates the expression pattern of the endogenous gene in cardiogenic precursor cells from the onset of cardiac lineage specification and throughout the linear and looping heart tube. Thereafter, as the atrial and ventricular chambers become demarcated, enhancer activity becomes restricted to the developing right ventricle. Transcription of Nkx2-5 in pharynx, thyroid and stomach is controlled by regulatory elements separable from the cardiac enhancer. This distal cardiac enhancer contains a high-affinity binding site for the cardiac-restricted zinc finger transcription factor GATA4 that is essential for transcriptional activity. These results reveal a novel GATA-dependent mechanism for activation of Nkx2-5 transcription in the developing heart and indicate that regulation of Nkx2-5 is controlled in a modular manner, with multiple regulatory regions responding to distinct transcriptional networks in different compartments of the developing heart.
Collapse
Affiliation(s)
- C L Lien
- Departments of Molecular Biology and Oncology and Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75235-9148, USA
| | | | | | | | | | | |
Collapse
|
61
|
Searcy RD, Vincent EB, Liberatore CM, Yutzey KE. A GATA-dependent nkx-2.5 regulatory element activates early cardiac gene expression in transgenic mice. Development 1998; 125:4461-70. [PMID: 9778505 DOI: 10.1242/dev.125.22.4461] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
nkx-2.5 is one of the first genes expressed in the developing heart of early stage vertebrate embryos. Cardiac expression of nkx-2.5 is maintained throughout development and nkx-2.5 also is expressed in the developing pharyngeal arches, spleen, thyroid and tongue. Genomic sequences flanking the mouse nkx-2.5 gene were analyzed for early developmental regulatory activity in transgenic mice. Approximately 3 kb of 5′ flanking sequence is sufficient to activate gene expression in the cardiac crescent as early as E7.25 and in limited regions of the developing heart at later stages. Expression also was detected in the developing spleen anlage at least 24 hours before the earliest reported spleen marker and in the pharyngeal pouches and their derivatives including the thyroid. The observed expression pattern from the −3 kb construct represents a subset of the endogenous nkx-2.5 expression pattern which is evidence for compartment-specific nkx-2.5 regulatory modules. A 505 bp regulatory element was identified that contains multiple GATA, NKE, bHLH, HMG and HOX consensus binding sites. This element is sufficient for gene activation in the cardiac crescent and in the heart outflow tract, pharynx and spleen when linked directly to lacZ or when positioned adjacent to the hsp68 promoter. Mutation of paired GATA sites within this element eliminates gene activation in the heart, pharynx and spleen primordia of transgenic embryos. The dependence of this nkx-2. 5 regulatory element on GATA sites for gene activity is evidence for a GATA-dependent regulatory mechanism controlling nkx-2.5 gene expression. The presence of consensus binding sites for other developmentally important regulatory factors within the 505 bp distal element suggests that combinatorial interactions between multiple regulatory factors are responsible for the initial activation of nkx-2.5 in the cardiac, thyroid and spleen primordia.
Collapse
Affiliation(s)
- R D Searcy
- Division of Molecular Cardiovascular Biology, The Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
62
|
Mjaatvedt CH, Yamamura H, Capehart AA, Turner D, Markwald RR. The Cspg2 gene, disrupted in the hdf mutant, is required for right cardiac chamber and endocardial cushion formation. Dev Biol 1998; 202:56-66. [PMID: 9758703 DOI: 10.1006/dbio.1998.9001] [Citation(s) in RCA: 253] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The heart defect (hdf) mouse is a recessive lethal that arose from a transgene insertional mutation on chromosome 13. Embryos homozygous for the transgene die in utero by embryonic day 10.5 postcoitus and exhibit specific defects along the anterior-posterior cardiac axis. The future right ventricle and conus/truncus of the single heart tube fail to form and the endocardial cushions in the atrioventricular and conus/truncus regions are absent. Because the hdf mouse mutation provided the opportunity to identify a gene required for endocardial cushion formation and for specification or maintenance of the anterior most segments of the heart, we initiated studies to further characterize the phenotype, clone the insertion site, and identify the gene disrupted. Chromosome mapping studies first identified the gene, Cspg2 (versican), as a candidate hdf gene. In addition, an antibody recognizing a glycosaminoglycan epitope on versican was found to be positive by immunohistochemistry in the extracellular matrix of normal wild-type embryonic hearts, but absent in homozygous hearts. Expression analysis of the Cspg2 gene showed that the 6/8, 6/9, and 7/9 Cspg2 exon boundaries were present in mRNA of normal wild-type embryonic hearts but absent in the homozygous mutant embryos. DNA sequence flanking the transgene was used to isolate from a normal mouse library overlapping genomic DNA segments that span the transgene insertion site. The contiguous genomic DNA segment was found to contain exon 7 of the Cspg2 in a position 3' to the transgene insertion site. These four separate lines of evidence support the hypothesis that Cspg2 is the gene disrupted by the transgene insertion in the hdf mouse line. The findings of this study and our previous studies of the hdf insertional mutant mouse have shown that normal expression of the Cspg2 gene is required for the successful development of the endocardial cushion swellings and the embryonic heart segments that give rise to the right ventricle and conus/truncus in the outlet of the looped heart.
Collapse
Affiliation(s)
- C H Mjaatvedt
- Department of Cell Biology and Anatomy, Medical University of South Carolina, 171 Ashley Avenue, Charleston, South Carolina, 29425, USA.
| | | | | | | | | |
Collapse
|
63
|
Wang GF, Nikovits W, Schleinitz M, Stockdale FE. A positive GATA element and a negative vitamin D receptor-like element control atrial chamber-specific expression of a slow myosin heavy-chain gene during cardiac morphogenesis. Mol Cell Biol 1998; 18:6023-34. [PMID: 9742119 PMCID: PMC109188 DOI: 10.1128/mcb.18.10.6023] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/1998] [Accepted: 07/13/1998] [Indexed: 11/20/2022] Open
Abstract
We have used the slow myosin heavy chain (MyHC) 3 gene to study the molecular mechanisms that control atrial chamber-specific gene expression. Initially, slow MyHC 3 is uniformly expressed throughout the tubular heart of the quail embryo. As cardiac development proceeds, an anterior-posterior gradient of slow MyHC 3 expression develops, culminating in atrial chamber-restricted expression of this gene following chamberization. Two cis elements within the slow MyHC 3 gene promoter, a GATA-binding motif and a vitamin D receptor (VDR)-like binding motif, control chamber-specific expression. The GATA element of the slow MyHC 3 is sufficient for expression of a heterologous reporter gene in both atrial and ventricular cardiomyocytes, and expression of GATA-4, but not Nkx2-5 or myocyte enhancer factor 2C, activates reporter gene expression in fibroblasts. Equivalent levels of GATA-binding activity were found in extracts of atrial and ventricular cardiomyocytes from embryonic chamberized hearts. These observations suggest that GATA factors positively regulate slow MyHC 3 gene expression throughout the tubular heart and subsequently in the atria. In contrast, an inhibitory activity, operating through the VDR-like element, increased in ventricular cardiomyocytes during the transition of the heart from a tubular to a chambered structure. Overexpression of the VDR, acting via the VDR-like element, duplicates the inhibitory activity in ventricular but not in atrial cardiomyocytes. These data suggest that atrial chamber-specific expression of the slow MyHC 3 gene is achieved through the VDR-like inhibitory element in ventricular cardiomyocytes at the time distinct atrial and ventricular chambers form.
Collapse
Affiliation(s)
- G F Wang
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305-5115, USA
| | | | | | | |
Collapse
|
64
|
Di Lisi R, Millino C, Calabria E, Altruda F, Schiaffino S, Ausoni S. Combinatorial cis-acting elements control tissue-specific activation of the cardiac troponin I gene in vitro and in vivo. J Biol Chem 1998; 273:25371-80. [PMID: 9738004 DOI: 10.1074/jbc.273.39.25371] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cardiac troponin I gene is one of the few sarcomeric protein genes exclusively expressed in cardiac muscle. We show here that this specificity is controlled by a proximal promoter (-230/+16) in transfected cardiac cells in culture, in the adult hearts, and in transgenic animals. Functional analysis indicates that MEF2/Oct-1, Sp1, and GATA regulatory elements are required for optimal gene activation because selective mutations produce weak or inactive promoters. MEF2 and Oct-1 transcription factors bind to the same A/T-rich element. A mutation that blocks this binding markedly reduces gene activation in vivo and in vitro, and overexpression of MEF2A, MEF2C, and MEF2D in noncardiac cells transactivates the cardiac troponin I promoter. Disruption of these elements inactivates the cardiac troponin I promoter in cultured cardiac cells but has a less important role in transfected adult heart. Moreover, nuclear extracts from an almost pure population of adult cardiac cells contain much lower levels of GATA binding activity compared with fetal cardiac cells. These findings point to a differential role of GATA factors in the maintenance of gene expression in the adult heart as compared with the activation of cardiac genes in fetal cardiomyocytes. Overexpression of GATA family members transactivates the cardiac troponin I promoter, and GATA-5 and GATA-6 are stronger transactivators than GATA-4, a property apparently unique to the cardiac troponin I promoter. Transgenic mice carrying the -230/+126 base pair promoter express beta-galactosidase reporter gene in the heart both at early stages of cardiogenesis and in the adult animals. These results indicate that the ability of the cardiac troponin I proximal promoter to target expression of a downstream gene in the heart is also maintained when the transgene is integrated into the genome.
Collapse
Affiliation(s)
- R Di Lisi
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
| | | | | | | | | | | |
Collapse
|
65
|
Henderson DJ, Copp AJ. Versican expression is associated with chamber specification, septation, and valvulogenesis in the developing mouse heart. Circ Res 1998; 83:523-32. [PMID: 9734475 DOI: 10.1161/01.res.83.5.523] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The versican (PG-M) gene encodes a chondroitin sulfate proteoglycan that is nonpermissive for cell migration and appears in association with slow cell proliferation and cytodifferentiation. Using the techniques of in situ hybridization and immunocytochemistry on sectioned mouse embryos, we found that the mRNA and protein for versican show similar distributions and are expressed in a dynamic pattern during development of the heart. Versican exhibits generalized expression in the tubular heart but becomes rapidly downregulated in the atrium and exhibits higher transcript levels on the right side of the ventricular chamber than the left, before the onset of ventricular septation. Versican is expressed strongly in the trabeculated ventricular myocardium, whereas the compact proliferative zone has lower transcript abundance. It is expressed in the outer layers and on the crest of the ventricular septum and is prominent on the mesenchymal cap of the primary atrial septum. Versican is particularly strongly expressed in the endocardial cushions of the atrioventricular and outflow tract regions and in the atrioventricular, semilunar, and venous valves. This study raises the possibility that versican may be involved in specification of the ventricular chambers, in growth and fusion of the atrial and ventricular septa, and in the transformation from epithelium to mesenchyme that characterizes development of the endocardial cushions. Versican may be a key participant in cardiogenesis, responding to the many diffusible signals that mediate interactions between the developing endocardium and myocardium.
Collapse
Affiliation(s)
- D J Henderson
- Neural Development Unit, Institute of Child Health, University College London, UK.
| | | |
Collapse
|
66
|
Griscelli F, Gilardi-Hebenstreit P, Hanania N, Franz WM, Opolon P, Perricaudet M, Ragot T. Heart-specific targeting of beta-galactosidase by the ventricle-specific cardiac myosin light chain 2 promoter using adenovirus vectors. Hum Gene Ther 1998; 9:1919-28. [PMID: 9741430 DOI: 10.1089/hum.1998.9.13-1919] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adenoviruses are attractive vectors for gene transfer into cardiac muscle. However, their promiscuous tissue tropism, which leads to an ectopic expression of the transgene, is a considerable limitation. To restrict expression to cardiomyocytes, we have constructed two recombinant adenoviruses (Ad-MLC2-250betagal and Ad-MLC2-2100betagal) containing the beta-galactosidase reporter gene under the control of the 250- or 2100-bp rat ventricle-specific cardiac myosin light chain-2v promoter (MLC-2v). Our in vitro and in vivo data have evidenced that the 2100-bp promoter allows stronger beta-galactosidase activity than the 250-bp promoter and that the deleted promoter allows a weak beta-galactosidase expression in skeletal muscle-derived cells in vitro. In contrast to the in vitro results, the highly deleted MLC-2v promoter of 250 pb conserved its heart specificity in in ovo and in vivo when introduced into the adenovirus genome, indicating that the specificity of this promoter is neither altered by the inverted terminal repeat nor by the enhancer of the Ela promoter, both of which located in the 5' flanking region of the promoter. Systemic injections of both recombinant adenoviruses into chicken embryos showed beta-galactosidase expression mainly in the right ventricle of the heart. We have confirmed the cardiac specificity of both promoters in mammalian species after injection of both recombinant adenoviruses into the heart of adult rats in vivo. The comparison of both promoters in vitro and in vivo has shown that the 250-bp MLC-2v promoter is 80% less active than the 2100-bp MLC-2v promoter and has enabled us to conclude that the MLC-2v promoter of 2100 bp is the most appropriate for efficient expression of a reporter gene or a therapeutic cardiac gene (e.g., SERCA2a or minidystrophin gene).
Collapse
Affiliation(s)
- F Griscelli
- CNRS UMR 1582, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
67
|
Patterson KD, Cleaver O, Gerber WV, Grow MW, Newman CS, Krieg PA. Homeobox genes in cardiovascular development. Curr Top Dev Biol 1998; 40:1-44. [PMID: 9673847 DOI: 10.1016/s0070-2153(08)60363-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As summarized earlier, a surprisingly large number of different homeobox genes are expressed in the developing heart. Some are clearly important, as demonstrated by mouse gene ablation studies. For example, knockout of Nkx2-5 or Hoxa-3 function is embryonic lethal due to defects in cardiovascular development. However, gene ablation studies indicate that other homeobox genes that show cardiovascular expression are either not required for heart development or their function is effectively complemented by a redundant gene activity. Given the number of closely related homeobox genes that are expressed in the heart (and the rate at which new genes are being discovered), this is very likely to be the case for at least some homeobox gene activities. At present little is known of the precise mechanism of action of homeobox genes in embryonic development. This statement applies to homeobox genes in general, not just to genes involved in cardiovascular development. There is a popular view that homeobox genes are master regulators that control expression of a large number of downstream genes. In at least some cases, e.g., the eyeless gene of Drosophila (Holder et al., 1995), homeobox genes appear to be capable of activating and maintaining a very complex developmental program. Significantly, the eyeless gene is able to initiate eye development at numerous ectopic locations. Increasing evidence, however, suggests that genes of this type may be rather rare. Certainly there is no evidence to date that any of the homeobox genes expressed in the heart are able to initiate the complete heart development pathway. This is probably best understood in the case of the tinman gene in Drosophila, which, although absolutely required for heart development, is not capable of initiating the cardiac development pathway in ectopic locations (Bodmer, 1993). This conclusion is supported by studies of the vertebrate tinman-related gene Nkx2-5. Gene ablation studies show that Nkx2-5 is essential for correct cardiac development (Lyons et al., 1995) but is not able to initiate the regulatory pathway leading to cardiac development when expressed ectopically (Cleaver et al., 1996; Chen and Fishman, 1996). If most homeodomain proteins are not direct regulators of a differentiation pathway, what is their role during organogenesis? The cardiovascular homeobox gene about which most is known at the mechanistic level is gax (Smith et al., 1997). A number of experiments indicate that the Gax protein is involved in the regulation of cell proliferation and that it interacts with components of the cell cycle regulation machinery. Indeed, over recent years, the idea that at least some homeobox genes play their role in organogenesis through regulation of proliferation has been developed in some detail by Duboule (1995). Further evidence that this mechanism of homeobox activity is important, especially during organogenesis, comes from studies of the Hox11 homeobox gene, which is absolutely required for development of the spleen in mouse (Roberts et al., 1994). Studies indicate that Hox11 is able to interact with at least two different protein phosphatases, PP2A and PP1, which in turn, are involved in cell cycle regulation (Kawabe et al., 1997). It is quite clear that research in future years will need to focus on the precise mode of action of the different homeodomain proteins if we are to understand their role in the development of the cardiovascular system.
Collapse
Affiliation(s)
- K D Patterson
- Institute for Cellular and Molecular Biology, University of Texas, Austin 78712, USA
| | | | | | | | | | | |
Collapse
|
68
|
Lee Y, Shioi T, Kasahara H, Jobe SM, Wiese RJ, Markham BE, Izumo S. The cardiac tissue-restricted homeobox protein Csx/Nkx2.5 physically associates with the zinc finger protein GATA4 and cooperatively activates atrial natriuretic factor gene expression. Mol Cell Biol 1998; 18:3120-9. [PMID: 9584153 PMCID: PMC108894 DOI: 10.1128/mcb.18.6.3120] [Citation(s) in RCA: 211] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Specification and differentiation of the cardiac muscle lineage appear to require a combinatorial network of many factors. The cardiac muscle-restricted homeobox protein Csx/Nkx2.5 (Csx) is expressed in the precardiac mesoderm as well as the embryonic and adult heart. Targeted disruption of Csx causes embryonic lethality due to abnormal heart morphogenesis. The zinc finger transcription factor GATA4 is also expressed in the heart and has been shown to be essential for heart tube formation. GATA4 is known to activate many cardiac tissue-restricted genes. In this study, we tested whether Csx and GATA4 physically associate and cooperatively activate transcription of a target gene. Coimmunoprecipitation experiments demonstrate that Csx and GATA4 associate intracellularly. Interestingly, in vitro protein-protein interaction studies indicate that helix III of the homeodomain of Csx is required to interact with GATA4 and that the carboxy-terminal zinc finger of GATA4 is necessary to associate with Csx. Both regions are known to directly contact the cognate DNA sequences. The promoter-enhancer region of the atrial natriuretic factor (ANF) contains several putative Csx binding sites and consensus GATA4 binding sites. Transient-transfection assays indicate that Csx can activate ANF reporter gene expression to the same extent that GATA4 does in a DNA binding site-dependent manner. Coexpression of Csx and GATA4 synergistically activates ANF reporter gene expression. Mutational analyses suggest that this synergy requires both factors to fully retain their transcriptional activities, including the cofactor binding activity. These results demonstrate the first example of homeoprotein and zinc finger protein interaction in vertebrates to cooperatively regulate target gene expression. Such synergistic interaction among tissue-restricted transcription factors may be an important mechanism to reinforce tissue-specific developmental pathways.
Collapse
Affiliation(s)
- Y Lee
- Cardiovascular Research Center, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
Chen J, Kubalak SW, Chien KR. Ventricular muscle-restricted targeting of the RXRalpha gene reveals a non-cell-autonomous requirement in cardiac chamber morphogenesis. Development 1998; 125:1943-9. [PMID: 9550726 DOI: 10.1242/dev.125.10.1943] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mouse embryos lacking the retinoic acid receptor gene RXR(alpha) die in midgestation from hypoplastic development of the myocardium of the ventricular chambers and consequent cardiac failure. In this study, we address the issue of whether the RXRalpha gene is required in the cardiomyocyte lineage by generating mice that harbor a ventricular restricted deficiency in RXRalpha at the earliest stages of ventricular chamber specification. We first created a conditional ('floxed') allele of RXRalpha by flanking a required exon of the gene with loxP recombination sequences. To achieve ventricular myocardium-specific gene targeting, and to avoid potential transgenic artifacts, we employed a knock-in strategy to place cre recombinase coding sequences into the myosin light chain 2v (MLC2v) genomic locus, a gene which in the heart is expressed exclusively in ventricular cardiomyocytes at the earliest stages of ventricular specification. Crossing the MLC2v-cre allele with the floxed RXRalpha gene resulted in embryos in which approximately 80% of the ventricular cardiomyocytes lacked RXRalpha function, and yet which displayed a completely normal phenotype, without evidence of the wide spectrum of congenital heart disease phenotype seen in RXRa−/− embryos, and normal adult viability. We conclude that the RXRalpha mutant phenotype is not cell autonomous for the cardiomyocyte lineage, and suggest that RXRalpha functions in a neighboring compartment of the developing heart to generate a signal that is required for ventricular cardiomyocyte development and chamber maturation.
Collapse
Affiliation(s)
- J Chen
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
70
|
Tran CM, Sucov HM. The RXRalpha gene functions in a non-cell-autonomous manner during mouse cardiac morphogenesis. Development 1998; 125:1951-6. [PMID: 9550727 DOI: 10.1242/dev.125.10.1951] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Germline mutation in mice of the retinoic acid receptor gene RXRalpha results in a proliferative failure of cardiomyocytes, which leads to an underdeveloped ventricular chamber and midgestation lethality. Mutation of the cell cycle regulator N-myc gene also leads to an apparently identical phenotype. In this study, we demonstrate by chimera analysis that the cardiomyocyte phenotype in RXRalpha−/− embryos is a non-cell-autonomous phenotype. In chimeric embryos made with embryonic stem cells lacking RXRalpha, cardiomyocytes deficient in RXRalpha develop normally and contribute to the ventricular chamber wall in a normal manner. Because the ventricular hypoplastic phenotype reemerges in highly chimeric embryos, we conclude that RXRalpha functions in a non-myocyte lineage of the heart to induce cardiomyocyte proliferation and accumulation, in a manner that is quantitatively sensitive. We further show that RXRalpha is not epistatic to N-myc, and that RXRalpha and N-myc regulate convergent obligate pathways of cardiomyocyte maturation.
Collapse
Affiliation(s)
- C M Tran
- Institute for Genetic Medicine, University of Southern California School of Medicine, Los Angeles, CA 90033, USA
| | | |
Collapse
|
71
|
Abstract
Recent discoveries have led to a greater appreciation of the diverse mechanisms that underlie cardiac morphogenesis. Genetic strategies (primarily gene targeting approaches in mice) have significantly broadened research in cardiovascular developmental biology by illuminating new pathways involved in heart development and by allowing the genetic evaluation of pathways that have previously been implicated in these events. Advances have also been made using biochemical and cell- and tissue-based approaches. This review summarizes the author's interpretation of current trends in the effort to understand the molecular basis of cardiac-development, with an emphasis on insights obtained from genetic models.
Collapse
Affiliation(s)
- H M Sucov
- Department of Cell and Neurobiology, University of Southern California School of Medicine, Los Angeles 90033, USA.
| |
Collapse
|
72
|
Scheller T, Kraev A, Skinner S, Carafoli E. Cloning of the multipartite promoter of the sodium-calcium exchanger gene NCX1 and characterization of its activity in vascular smooth muscle cells. J Biol Chem 1998; 273:7643-9. [PMID: 9516469 DOI: 10.1074/jbc.273.13.7643] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sodium-calcium exchange activity is mediated by proteins encoded in a small gene family, of which the gene NCX1 is ubiquitously expressed in mammalian tissues. In this study, the multipartite promoter of this gene was analyzed in the human and rat genomes by means of DNA cloning, reverse transcriptase-polymerase chain reaction, and transient transfection of fusion constructs with the firefly luciferase gene into cultured rat aortic smooth muscle cells. The gene-proximal promoter, located 30 kilobase pairs (kb) away from the first coding exon 2, has features of a GC-rich housekeeping promoter and is apparently always active; in specific tissues, however, it is augmented by one or two additional promoters, located either within 1.5 kb upstream of it, or 35 kb upstream. The gene proximal promoter shows the highest activity in aortic smooth muscle cells. In mammalian species transcripts from all three promoters undergo splicing via an intermediate, containing two noncoding exons, of which the downstream one is normally not present in the terminal splicing product.
Collapse
Affiliation(s)
- T Scheller
- Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland
| | | | | | | |
Collapse
|
73
|
Chen J, Kubalak SW, Minamisawa S, Price RL, Becker KD, Hickey R, Ross J, Chien KR. Selective requirement of myosin light chain 2v in embryonic heart function. J Biol Chem 1998; 273:1252-6. [PMID: 9422794 DOI: 10.1074/jbc.273.2.1252] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Two major myosin light chain 2 isoforms are coexpressed in the early stages of murine cardiogenesis, a cardiac ventricular isoform and a cardiac atrial isoform, each of which is tightly regulated in a muscle cell-type-specific manner during embryogenesis (Chien, K. R., Zhu, H., Knowlton, K. U., Miller-Hance, W., van Bilsen, M., O'Brien, T. X., and Evans, S. M. (1993) Annu. Rev. Physiol. 55, 77-95). We have disrupted myosin light chain 2v gene in mice and monitored in vivo cardiac function in living myosin light chain 2v -/- embryos. The mutant embryos die at approximately embryonic day 12.5. In mutant ventricles, the myosin light chain 2a protein level is increased and reaches levels comparable to the myosin light chain 2v in the ventricles of wild type littermates and is appropriately incorporated into the thick filaments of mutant embryonic hearts. However, despite the substitution of myosin light chain 2a, ultrastructural analysis revealed defects in sarcomeric assembly and an embryonic form of dilated cardiomyopathy characterized by a significantly reduced left ventricular ejection fraction in mutant embryos compared with wild type littermates. We conclude that myosin light chain 2v may have a unique function in the maintenance of cardiac contractility and ventricular chamber morphogenesis during mammalian cardiogenesis and that a chamber-specific combinatorial code for sarcomeric assembly may exist that ultimately requires myosin light chain 2v in ventricular muscle cells.
Collapse
Affiliation(s)
- J Chen
- Department of Medicine, University of California at San Diego, School of Medicine, La Jolla, California 92093-0613, USA
| | | | | | | | | | | | | | | |
Collapse
|
74
|
He CZ, Burch JB. The chicken GATA-6 locus contains multiple control regions that confer distinct patterns of heart region-specific expression in transgenic mouse embryos. J Biol Chem 1997; 272:28550-6. [PMID: 9353318 DOI: 10.1074/jbc.272.45.28550] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The GATA-6 transcription factor is expressed in cardiogenic cells and during subsequent stages of heart development in diverse vertebrate species. To gain insights into the molecular events that govern this heart-restricted expression, we isolated the chicken GATA-6 gene and used several approaches to screen for associated control regions. Our analysis of two chicken GATA-6/lacZ constructs in transgenic mouse embryos was particularly revealing. One GATA-6/lacZ construct, which has 1.5 kilobase pairs of upstream sequences along with the promoter and first intron, was expressed exclusively in the atrioventricular canal region of the heart. This expression pattern is novel and appears to mark specialized myocardial cells that induce underlying endocardial cells to initiate valve formation. The other GATA-6/lacZ construct, which has an additional 7.7 kilobase pairs of upstream sequences, was expressed in the ventricle and outflow tract in addition to the atrioventricular canal. The failure of these GATA-6 control regions to function as enhancers in transfected cardiac myocyte cultures underscores the importance of using transgenic approaches to elucidate transcriptional controls that function in the developing heart. Although the endogenous GATA-6 gene is expressed throughout the heart, our results indicate that this is effected in a heart region-specific manner.
Collapse
Affiliation(s)
- C Z He
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | |
Collapse
|
75
|
Abstract
During heart formation in all vertebrate species, the linear heart tube undergoes rightward looping followed by the formation of the atrial and ventricular chambers. The direction of cardiac looping is determined in part by the asymmetric expression of members of the transforming growth factor beta family across the left-right axis of the embryo. The basic helix-loop-helix (bHLH) transcription factors dHAND and eHAND are expressed in the heart tube within specific cardiogenic precursors destined to form the right and left ventricular regions, respectively, and loss-of-function experiments have demonstrated the importance of these factors for looping morphogenesis and ventricular development. We propose a model in which the HAND gene products interpret asymmetric positional information in the developing heart and participate in transcriptional programmes that control development of the right and left ventricular compartments of the heart.
Collapse
|
76
|
Abstract
Heart formation provides an excellent model for studying the molecular basis of cell determination in vertebrate embryos. By combining molecular assays with the experimental approaches of classic embryology, a model for the cell signalling events that initiate cardiogenesis is emerging. Studies of chick, amphibian, and fish embryos demonstrate the inductive role of dorso-anterior endoderm in specifying the cardiac fate of adjacent mesoderm. A consequence of this signalling is the onset of cardiomyogenesis and several transcription factors--Nkx2-5-related, HAND, GATA and MEF-2 families--contribute to these events.
Collapse
Affiliation(s)
- T Mohun
- National Institute for Medical Research, Ridgeway, Mill Hill, London, UK.
| | | |
Collapse
|
77
|
Franco D, Kelly R, Lamers WH, Buckingham M, Moorman AF. Regionalized transcriptional domains of myosin light chain 3f transgenes in the embryonic mouse heart: morphogenetic implications. Dev Biol 1997; 188:17-33. [PMID: 9245508 DOI: 10.1006/dbio.1997.8622] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Within the embryonic heart, five segments can be distinguished: two fast-conducting atrial and ventricular compartments flanked by slow-conducting segments, the inflow tract, the atrioventricular canal, and the outflow tract. These compartments assume morphological identity as a result of looping of the linear heart tube. Subsequently, the formation of interatrial, interventricular, and outflow tract septa generates a four-chambered heart. The lack of markers that distinguish right and left compartments within the heart has prevented a precise understanding of these processes. Transgenic mice carrying an nlacZ reporter gene under transcriptional control of regulatory sequences from the MLC1F/3F gene provide specific markers to investigate such regionalization. Our results show that transgene expression is restricted to distinct regions of the myocardium: beta-galactosidase activity in 3F-nlacZ-2E mice is confined predominantly to the embryonic right atrium, atrioventricular canal, and left ventricle, whereas, in 3F-nlacZ-9 mice, the transgene is expressed in both atrial and ventricular segments (right/left) and in the atrioventricular canal, but not in the inflow and outflow tracts. These lines of mice illustrate that distinct embryonic cardiac regions have different transcriptional specificities and provide early markers of myocardial subdivisions. Regional differences in transgene expression are not detected in the linear heart tube but become apparent as the heart begins to loop. Subsequent regionalization of transgene expression provides new insights into later morphogenetic events, including the development of the atrioventricular canal and the fate of the outflow tract.
Collapse
Affiliation(s)
- D Franco
- Department of Anatomy and Embryology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
78
|
Biben C, Harvey RP. Homeodomain factor Nkx2-5 controls left/right asymmetric expression of bHLH gene eHand during murine heart development. Genes Dev 1997; 11:1357-69. [PMID: 9192865 DOI: 10.1101/gad.11.11.1357] [Citation(s) in RCA: 221] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
One of the first morphological manifestations of left/right (L/R) asymmetry in mammalian embryos is a pronounced rightward looping of the linear heart tube. The direction of looping is thought to be controlled by signals from an embryonic L/R axial system. We report here that morphological L/R asymmetry in the murine heart first became apparent at the linear tube stage as a leftward displacement of its caudal aspect. Beginning at the same stage, the basic helix-loop-helix (bHLH) factor gene eHand was expressed in a strikingly left-dominant pattern in myocardium, reflecting an intrinsic molecular asymmetry. In hearts of embryos lacking the homeobox gene Nkx2-5, which do not loop, left-sided eHand expression was abolished. However, expression was unaffected in Sc1-/- hearts that loop poorly because of hematopoietic insufficiency, and was right-sided in hearts of inv/inv embryos that display situs inversus. The data predict that eHand expression is enhanced in descendants of the left heart progenitor pool as one response to inductive signaling from the L/R axial system, and that eHand controls intrinsic morphogenetic pathways essential for looping. One aspect of the intrinsic response to L/R information falls under Nkx2-5 homeobox control.
Collapse
Affiliation(s)
- C Biben
- The Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Victoria, Australia
| | | |
Collapse
|
79
|
Srivastava D, Thomas T, Lin Q, Kirby ML, Brown D, Olson EN. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet 1997; 16:154-60. [PMID: 9171826 DOI: 10.1038/ng0697-154] [Citation(s) in RCA: 502] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
dHAND and eHAND are related basic helix-loop-helix (bHLH) transcription factors that are expressed in mesodermal and neural crest-derived structures of the developing heart. In contrast to their homogeneous expression during avian cardiogenesis, during mouse heart development we show that dHAND and eHAND are expressed in a complementary fashion and are restricted to segments of the heart tube fated to form the right and left ventricles, respectively. dHAND and eHAND represent the earliest cardiac chamber-specific transcription factors yet identified. Targeted gene deletion of dHAND in mouse embryos resulted in embryonic lethality at embryonic day 10.5 from heart failure. Our description of the cardiac phenotype of dHAND mutant embryos is the first demonstration of a single gene controlling the formation of the mesodermally derived right ventricle and the neural crest-derived aortic arches and reveals a novel cardiogenic subprogramme for right ventricular development.
Collapse
Affiliation(s)
- D Srivastava
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas 75235-9148, USA.
| | | | | | | | | | | |
Collapse
|
80
|
Yamamura H, Zhang M, Markwald RR, Mjaatvedt CH. A heart segmental defect in the anterior-posterior axis of a transgenic mutant mouse. Dev Biol 1997; 186:58-72. [PMID: 9188753 DOI: 10.1006/dbio.1997.8559] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A recessive lethal insertional mutation on chromosome 13 has been identified in a transgenic mouse line that displays a segmental form of cardiac defect along the anterior-posterior axis in all homozygous mice identified. The most anterior segment (future conus and right ventricle) of the single heart tube fails to develop normally and the endocardial cushions in both the conus and the atrioventricular regions are missing. Analysis of the beta-galactosidase reporter portion of the transgene during embryonic development shows a segmental expression of activity primarily in the defective outlet of the primitive heart. In addition to expression in the heart tube, hemizygous embryos show transgene expression in the chondrogenic regions of first and second branchial arches, the appendicular skeleton, and the dermal papillae of the vibrissae. The restricted pattern of beta-galactosidase expression in the heart can be disrupted with retinoic acid exposure and extended posteriorly along the anterior-posterior axis in hemizygous mice. Although cushion mesenchyme fail to form in the homozygous mutant, the myocardial and endothelial cells explanted from the mutant atrioventricular, but not the conus, are capable of forming mesenchyme in vitro. Mice trisomic for chromosome 13 have also been shown to display segmental anomalies associated with the anterior primitive outlet segments of the heart. Our data show that this insertional mutation identifies a new gene locus, hdf (heart defect), on mouse chromosome 13 that may be required for mechanisms that initially establish and/or maintain continued development of the anterior limb of the developing heart. The hdf mouse mutation also provides a new model system to evaluate the molecular requirements of normal endocardial cushion formation and the segmental interactions that form the adult heart.
Collapse
Affiliation(s)
- H Yamamura
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | |
Collapse
|
81
|
Kimura S, Abe K, Suzuki M, Ogawa M, Yoshioka K, Kaname T, Miike T, Yamamura K. A 900 bp genomic region from the mouse dystrophin promoter directs lacZ reporter expression only to the right heart of transgenic mice. Dev Growth Differ 1997; 39:257-65. [PMID: 9227892 DOI: 10.1046/j.1440-169x.1997.t01-2-00001.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In order to study the regulatory mechanism of developmental and tissue-specific expression of the muscle type dystrophin gene in mice, transgenic mice were generated carrying the 900 bp genomic fragment derived from the muscle type dystrophin promoter region fused to the bacterial lacZ gene. Six independent transgenic mouse lines showed specific reporter gene expression in the right heart, but not in skeletal or smooth muscle. The reporter gene expression was first detected in the presumptive right ventricle of the embryos at 8.5 days post coitum and the expression continued only in the right ventricle throughout the development and at the adult stage. The results indicate that the 900 bp genomic fragment contains the regulatory element required for expression of dystrophin only in the right heart, suggesting that distinct elements are responsible for the expression in the left and right compartments of the heart, and/or in skeletal and smooth muscle cells. Based on these findings, the relationship between defects in muscle type promoter and the diseases caused by abnormal dystrophin expression is discussed.
Collapse
Affiliation(s)
- S Kimura
- Institute of Molecular Embryology and Genetics, Kumamoto University School of Medicine, Kumamoto 862, Japan
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
Our goal here is to set out the types of unitary decisions made by heart progenitor cells, from their appearance in the heart field until they form the simple heart tube. This provides a context to evaluate cell fate, lineage and, finally, morphogenetic decisions that configure global heart form and function. Some paradigms for cellular differentiation and for pattern generation may be borrowed from invertebrates, but neither Drosophila nor Caenorhabditis elegans suffice to unravel higher order decisions. Genetic analyses in mouse and zebrafish may provide one entrance to these pathways.
Collapse
Affiliation(s)
- M C Fishman
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown 02129, USA.
| | | |
Collapse
|
83
|
Kelly R, Buckingham M. Manipulating myosin light chain 2 isoforms in vivo: a transgenic approach to understanding contractile protein diversity. Circ Res 1997; 80:751-3. [PMID: 9130457 DOI: 10.1161/01.res.80.5.751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
84
|
Ruiz-Lozano P, Doevendans P, Brown A, Gruber PJ, Chien KR. Developmental expression of the murine spliceosome-associated protein mSAP49. Dev Dyn 1997; 208:482-90. [PMID: 9097020 DOI: 10.1002/(sici)1097-0177(199704)208:4<482::aid-aja4>3.0.co;2-e] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have isolated the mouse homologue of human spliceosome-associated protein SAP49, mSAP49. mSAP49 contains two RNA recognition motifs (RRM) in the N terminus of the predicted amino acid sequence, and a highly basic C terminus rich in glycine/proline. mSAP49 displayed a plastic of expression in cardiac development. In the adult mouse, mSAP49 is widely distributed, although it was found at relatively lower levels in the heart. In situ hybridization analysis of mSAP49 mRNA distribution in staged mouse embryos showed that mSAP49 onset occurs later in the heart than in other embryonic tissues. While mSAP49 expression was found at day 10.0 postconception (pc) in the optic eminence, optic vesicle, hindbrain, and somites, it was not in cardiac structures. mSAP49 was detected in the ventricles at day 11.5, and at day 13.5 it was also detected in the atria. Northern analysis showed that mSAP49 mRNA displayed a peak of expression in the heart at days 14.0-15.0 pc, and its abundance decayed in the adult. This dynamic pattern of cardiac expression suggests that mSAP49 may be contributing to a change in the ratio of spliceosome components during cardiac growth and development, which may have consequences for tissue-specific splicing, RNA stabilization, or translation.
Collapse
Affiliation(s)
- P Ruiz-Lozano
- Department of Medicine, University of California, San Diego, La Jolla, USA
| | | | | | | | | |
Collapse
|
85
|
Morrisey EE, Ip HS, Tang Z, Parmacek MS. GATA-4 activates transcription via two novel domains that are conserved within the GATA-4/5/6 subfamily. J Biol Chem 1997; 272:8515-24. [PMID: 9079680 DOI: 10.1074/jbc.272.13.8515] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
GATA-4 is one of the earliest developmental markers of the precardiac mesoderm, heart, and gut and has been shown to activate regulatory elements controlling transcription of genes encoding cardiac-specific proteins. To elucidate the molecular mechanisms underlying the transcriptional activity of the GATA-4 protein, structure-function analyses were performed. These analyses revealed that the C-terminal zinc finger and adjacent basic domain of GATA-4 is bifunctional, modulating both DNA-binding and nuclear localization activities. The N terminus of the protein encodes two independent transcriptional Activation Domains (amino acids 1-74 and amino acids 130-177). Amino acid residues were identified within each domain that are required for transcriptional activation. Finally, we have shown that regions of Xenopus GATA-5 and -6 corresponding to Activation Domains I and II, respectively, function as potent transcriptional activators. The identification and functional characterization of two evolutionarily conserved transcriptional Activation Domains within the GATA-4/5/6 subfamily suggests that each of these domains modulates critical functions in the transcriptional regulatory program(s) encoded by GATA-4, -5, and -6 during vertebrate development. As such these data provide novel insights into the molecular mechanisms that control development of the heart.
Collapse
Affiliation(s)
- E E Morrisey
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
86
|
Morrisey EE, Ip HS, Tang Z, Lu MM, Parmacek MS. GATA-5: a transcriptional activator expressed in a novel temporally and spatially-restricted pattern during embryonic development. Dev Biol 1997; 183:21-36. [PMID: 9119112 DOI: 10.1006/dbio.1996.8485] [Citation(s) in RCA: 191] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Members of the GATA family of zinc finger transcription factors regulate critical steps of cellular differentiation during vertebrate development. In the studies described in this report, we have isolated and functionally characterized the murine GATA-5 cDNA and protein and defined the temporal and spatial pattern of GATA-5 gene expression during mammalian development. The amino terminus of the mouse GATA-5 protein shares high level amino acid sequence identity with the murine GATA-4 and -6 proteins, but not with other members of the GATA family. GATA-5 binds to the functionally important CEF-1 nuclear protein binding site in the cardiac-specific slow/cardiac troponin C (cTnC) transcriptional enhancer and overexpression of GATA-5 transactivates the cTnC enhancer in noncardiac muscle cell lines. During embryonic and postnatal development, the pattern of GATA-5 gene expression differs significantly from that of other GATA family members. In the primitive streak embryo, GATA-5 mRNA is detectable in the precardiac mesoderm. Within the embryonic heart, the GATA-5 gene is expressed within the atrial and ventricular chambers (ED 9.5), becomes restricted to the atrial endocardium (ED 12.5), and is subsequently not expressed in the heart during late fetal and postnatal development. Moreover, coincident with the earliest steps in lung development, only the GATA-5 gene is expressed within the pulmonary mesenchyme. Finally, the GATA-5 gene is expressed in tissue-restricted subsets of smooth muscle cells (SMCs), including bronchial SMCs and SMCs in the bladder wall. These data are consistent with a model in which GATA-5 performs a unique temporally and spatially restricted function in the embryonic heart and lung. Moreover, these data suggest that GATA-5 may play an important role in the transcriptional program(s) that underlies smooth muscle cell diversity.
Collapse
Affiliation(s)
- E E Morrisey
- Department of Medicine, University of Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
87
|
Zou Y, Evans S, Chen J, Kuo HC, Harvey RP, Chien KR. CARP, a cardiac ankyrin repeat protein, is downstream in the Nkx2-5 homeobox gene pathway. Development 1997; 124:793-804. [PMID: 9043061 DOI: 10.1242/dev.124.4.793] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To identify the molecular pathways that guide cardiac ventricular chamber specification, maturation and morphogenesis, we have sought to characterize factors that regulate the expression of the ventricular myosin light chain-2 gene, one of the earliest markers of ventricular regionalization during mammalian cardiogenesis. Previously, our laboratory identified a 28 bp HF-la/MEF-2 element in the MLC-2v promoter region, which confers cardiac ventricular chamber-specific gene expression during murine cardiogenesis, and showed that the ubiquitous transcription factor YB-1 binds to the HF-la site in conjunction with a co-factor. In a search for interacting co-factors, a nuclear ankyrin-like repeat protein CARP (cardiac ankyrin repeat protein) was isolated from a rat neonatal heart cDNA library by yeast two-hybrid screening, using YB-1 as the bait. Co-immunoprecipitation and GST-CARP pulldown studies reveal that CARP forms a physical complex with YB-1 in cardiac myocytes and immunostaining shows that endogenous CARP is localized in the cardiac myocyte nucleus. Co-transfection assays indicate that CARP can negatively regulate an HF-1-TK minimal promoter in an HF-1 sequence-dependent manner in cardiac myocytes, and CARP displays a transcriptional inhibitory activity when fused to a GAL4 DNA-binding domain in both cardiac and noncardiac cell context. Northern analysis revealed that carp mRNA is highly enriched in the adult heart, with only trace levels in skeletal muscle. During murine embryogenesis, endogenous carp expression was first clearly detected as early as E8.5 specifically in heart and is regulated temporally and spatially in the myocardium. Nkx2-5, the murine homologue of Drosophila gene tinman was previously shown to be required for heart tube looping morphogenesis and ventricular chamber-specific myosin light chain-2 expression during mammalian heart development. In Nkx2-5(−/−)embryos, carp expression was found to be significantly and selectively reduced as assessed by both whole-mount in situ hybridizations and RNase protection assays, suggesting that carp is downstream of the homeobox gene Nkx2-5 in the cardiac regulatory network. Co-transfection assays using a dominant negative mutant Nkx2-5 construct with CARP promoter-luciferase reporter constructs in cardiac myocytes confirms that Nkx2-5 either directly or indirectly regulates carp at the transcriptional level. Finally, a carp promoter-lacZ transgene, which displays cardiac-specific expression in wild-type and Nkx2-5(+/−) background, was also significantly reduced in Nkx2-5(−/−) embryos, indicating that Nkx2-5 either directly or indirectly regulates carp promoter activity during in vivo cardiogenesis as well as in cultured cardiac myocytes. Thus, CARP is a YB-1 associated factor and represents the first identified cardiac-restricted downstream regulatory gene in the homeobox gene Nkx2-5 pathway and may serve as a negative regulator of HF-1-dependent pathways for ventricular muscle gene expression.
Collapse
Affiliation(s)
- Y Zou
- American Heart Association-Bugher Foundation Center for Molecular Biology, Department of Medicine, University of California, San Diego, La Jolla 92093, USA
| | | | | | | | | | | |
Collapse
|
88
|
Abstract
This review summarizes recent studies of the cellular and molecular events involved in the determination and differentiation of cardiac myocytes in vertebrate embryos. Fate-mapping studies in mouse, chick, amphibian and zebrafish embryos suggest that cardiac muscle precursors are specified shortly before or at the time of gastrulation. Nuclear factors, such as dHAND, aryl hydrocarbon receptor, GATA-6, Nkx-2.3, growth arrest homeobox (Gax) and cardiac adriamycin responsive protein (CARP), which have recently been described as playing a role in the commitment and/or differentiation of cardiac myocytes are discussed.
Collapse
Affiliation(s)
- G E Lyons
- Department of Anatomy, University of Wisconsin Medical School, 1300 University Avenue, Madison, 53706, USA.
| |
Collapse
|