51
|
Shimizu H, Fujisawa T. Peduncle of Hydra and the heart of higher organisms share a common ancestral origin. Genesis 2003; 36:182-6. [PMID: 12929088 DOI: 10.1002/gene.10213] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The heart is assumed to have evolved as the organ for pumping blood. Here we report a pumping phenomenon in Hydra, a member of the phylum Cnidaria. We find that the peduncle, lower quarter of the body column, stores most of the gastrovascular fluid when the animal is an elongate form. Upon contraction of the polyp, the peduncle contracts and transfers the fluid into the rest of the cavity. We also find that Hydra RFamide III, a homolog of cardioexcitatory RFamide neuropeptides in higher organisms, elevates this transfer activity. Further, CnNk-2, a homolog of a cardiomuscular tissue marker Nkx-2.5, is expressed in the endodermal tissue of the peduncle. These observations indicate that the transfer of fluid by the peduncle has a similar neurological and genetic basis to the pumping of blood by the heart, suggesting that the Hydra peduncle and the heart of higher organisms share a common ancestral origin.
Collapse
Affiliation(s)
- Hiroshi Shimizu
- Department of Developmental Genetics, National Institute of Genetics, Mishima, Japan.
| | | |
Collapse
|
52
|
Kuchenthal CA, Chen W, Okkema PG. Multiple enhancers contribute to expression of the NK-2 homeobox gene ceh-22 in C. elegans pharyngeal muscle. Genesis 2001; 31:156-66. [PMID: 11783006 DOI: 10.1002/gene.10018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene expression in the pharyngeal muscles of C. elegans is regulated in part by the NK-2 family homeodomain factor CEH-22, which is structurally and functionally related to Drosophila Tinman and the vertebrate Nkx2-5 factors. ceh-22 is expressed exclusively in the pharyngeal muscles and is the earliest gene known to be expressed in this tissue. Here we characterize the ceh-22 promoter region in transgenic C. elegans. A 1.9-kb fragment upstream of ceh-22 is sufficient to regulate reporter gene expression in a pattern identical to the endogenous gene. Within this promoter we identified two transcriptional enhancers and characterized their cell type and temporal specificity. The distal enhancer becomes active in the pharynx near the time that ceh-22 expression initiates; however, it becomes active more broadly later in development. The proximal enhancer becomes active after the onset of ceh-22 expression, but it is active specifically in the ceh-22-expressing pharyngeal muscles. We suggest these enhancers respond to distinct signals that initiate and maintain ceh-22 gene expression. Proximal enhancer activity requires a short segment containing a CEH-22 responsive element, suggesting that CEH-22 autoregulates its own expression.
Collapse
Affiliation(s)
- C A Kuchenthal
- Department of Biological Sciences and the Laboratory for Molecular Biology, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|
53
|
Tanaka M, Schinke M, Liao HS, Yamasaki N, Izumo S. Nkx2.5 and Nkx2.6, homologs of Drosophila tinman, are required for development of the pharynx. Mol Cell Biol 2001; 21:4391-8. [PMID: 11390666 PMCID: PMC87098 DOI: 10.1128/mcb.21.13.4391-4398.2001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nkx2.5 and Nkx2.6 are murine homologs of Drosophila tinman. Their genes are expressed in the ventral region of the pharynx at early stages of embryogenesis. However, no abnormalities in the pharynges of embryos with mutations in either Nkx2.5 or Nkx2.6 have been reported. To examine the function of Nkx2.5 and Nkx2.6 in the formation of the pharynx, we generated and analyzed Nkx2.5 and Nkx2.6 double-mutant mice. Interestingly, in the double-mutant embryos, the pharynx did not form properly. Pharyngeal endodermal cells were largely missing, and the mutant pharynx was markedly dilated. Moreover, we observed enhanced apoptosis and reduced proliferation in pharyngeal endodermal cells of the double-mutant embryos. These results demonstrated a critical role of the NK-2 homeobox genes in the differentiation, proliferation, and survival of pharyngeal endodermal cells. Furthermore, the development of the atrium was less advanced in the double-mutant embryos, indicating that these two genes are essential for both pharyngeal and cardiac development.
Collapse
Affiliation(s)
- M Tanaka
- Cardiovascular Division, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
54
|
Gower NJ, Temple GR, Schein JE, Marra M, Walker DS, Baylis HA. Dissection of the promoter region of the inositol 1,4,5-trisphosphate receptor gene, itr-1, in C. elegans: a molecular basis for cell-specific expression of IP3R isoforms. J Mol Biol 2001; 306:145-57. [PMID: 11237590 DOI: 10.1006/jmbi.2000.4388] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors in Caenorhabditis elegans are encoded by a single gene, itr-1. This provides a powerful system in which to dissect the mechanisms that control the tissue-specific expression of molecules that determine the specificity of calcium signalling. We first identified the Caenorhabditis briggsae orthologue of itr-1, Cbitr-1. Comparison of the two itr-1 genes revealed that the chromosomal organisation, gene structure and predicted cDNA and protein sequences were all conserved. The conserved gene structure supports the hypothesis that the itr-1 gene has three promoters, each of which gives rise to an alternative mRNA and hence unique protein. To test this and to identify the roles of the three putative promoters (pA, pB and pC) in regulating itr-1 expression we fused each promoter to the green fluorescent protein gene and identified their expression patterns. Introduction of these transgenes into C. elegans identified unique and defined patterns of green fluorescent protein expression directed by each promoter: pA directs expression in the pharyngeal terminal bulb, the rectal epithelial cells and vulva; pB directs expression in the motor neurone PDA, the amphid socket cells and the spermatheca; pC directs expression in the spermathecal valve, uterine sheath cells, pharyngeal isthmus and intestine. Thus tissue-specific expression of itr-1 variants is directed by three promoters and this results in adjacent cells in the same tissue containing different inositol trisphosphate receptor isoforms. Within pA, four short regions (pA-A to pA-D) of sequence conservation between C. elegans and C. briggsae were identified. Deletion analysis demonstrated that the region containing pA-C is required for expression in the terminal bulb and rectal epithelial cells and the region containing pA-D is required for expression in the vulva. pA-C includes sequences similar to the binding sites for transcription factors that have been demonstrated to be important in pharyngeal development and gene expression.
Collapse
Affiliation(s)
- N J Gower
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | | | | | | | | | | |
Collapse
|
55
|
Thatcher JD, Fernandez AP, Beaster-Jones L, Haun C, Okkema PG. The Caenorhabditis elegans peb-1 gene encodes a novel DNA-binding protein involved in morphogenesis of the pharynx, vulva, and hindgut. Dev Biol 2001; 229:480-93. [PMID: 11203704 DOI: 10.1006/dbio.2000.9978] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gene expression in the Caenorhabditis elegans pharynx is regulated in part by organ-specific signals, which in the myo-2 gene target a regulatory sequence called the C sub-element. C sub-element activity requires the organ specification factor PHA-4, a winged-helix transcription factor expressed in all pharyngeal cells. To identify additional factors involved in pharyngeal organogenesis, we performed a yeast one-hybrid screen for C sub-element binding proteins. Here we describe the novel factor PEB-1, which is coexpressed with PHA-4 in many pharyngeal cell types, including muscles, epithelial cells, marginal cells, and glands, but is undetectable in the pharyngeal nervous system. PEB-1 is also detected outside the pharynx in cells surrounding the rectum and vulva, as well as in the germ line. Reduction of peb-1 function using RNAi results in morphological defects in the somatic tissues in which peb-1 is expressed. We have mapped the PEB-1 DNA-binding domain to a 158-residue region, which is unrelated to known DNA-binding proteins but shares some sequence similarity to the Drosophila Mod(mdg4) proteins. PEB-1 specifically recognizes a site in the C subelement that partially overlaps the PHA-4 binding site. Both the PEB-1 and the PHA-4 binding sites are necessary for strong C sub-element enhancer activity in some cells in which these factors are coexpressed. In contrast the PEB-1 site is dispensable for C sub-element activity in pharyngeal neurons. We propose that PEB-1 functions with PHA-4 to activate target gene expression in cells in which they are coexpressed.
Collapse
Affiliation(s)
- J D Thatcher
- Department of Biological Sciences (M/C 567), University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, Illinois 60607, USA
| | | | | | | | | |
Collapse
|
56
|
Manuel M, Le Parco Y. Homeobox gene diversification in the calcareous sponge, Sycon raphanus. Mol Phylogenet Evol 2000; 17:97-107. [PMID: 11020308 DOI: 10.1006/mpev.2000.0822] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Knowledge of the developmental mechanisms in living basal metazoan phyla is crucial for understanding the genetic bases of morphological evolution in early animal history. We looked for homeobox genes in the calcareous sponge, Sycon raphanus, using the polymerase chain reaction. Partial sequences of eight homeoboxes were recovered, five of which are assignable to the NK-2 class of homeoboxes. The three remaining sequences are related members of a new class of homeoboxes, the Sycox class, showing limited similarity to bilaterian Lbx, Hlx, HEX, En, and Cad classes. Among the five NK-2 class homeoboxes are four closely related sequences occupying a divergent position within the class, the remaining one on the contrary showing high sequence similarity with members of the NK-2 family, a particular subgroup within the NK-2 class, previously known only from the Bilateria. This suggests that diversification of the NK-2 class occurred early in metazoan history. Altogether, the results reveal an unexpected diversification of homeobox genes in S. raphanus.
Collapse
Affiliation(s)
- M Manuel
- Laboratoire Diversité et Fonctionnement des Ecosystèmes Marins Côtiers (DIMAR CNRS UMR-6540), Centre d'Océanologie de Marseille, Université de la Méditerranée, Station Marine d'Endoume, Marseille, 13007, France.
| | | |
Collapse
|
57
|
Quimby BB, Lamitina T, L'Hernault SW, Corbett AH. The mechanism of ran import into the nucleus by nuclear transport factor 2. J Biol Chem 2000; 275:28575-82. [PMID: 10889207 DOI: 10.1074/jbc.m005055200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small GTPase Ran is essential for virtually all nucleocytoplasmic transport events. It is hypothesized that Ran drives vectorial transport of macromolecules into and out of the nucleus via the establishment of a Ran gradient between the cytoplasm and nucleoplasm. Although Ran shuttles between the nucleus and cytoplasm, it is concentrated in the nucleus at steady state. We show that nuclear transport factor 2 (NTF2) is required to concentrate Ran in the nucleus in the budding yeast, Saccharomyces cerevisiae. To analyze the mechanism of Ran import into the nucleus by NTF2, we use mutants in a variety of nuclear transport factors along with biochemical analyses of NTF2 complexes. We find that Ran remains concentrated in the nucleus when importin-mediated protein import is disrupted and demonstrate that NTF2 does not form a stable complex with the transport receptor, importin-beta. Consistent with a critical role for NTF2 in establishing and maintaining the Ran gradient, we show that NTF2 is required for early embryogenesis in Caenorhabditis elegans. Our data distinguish between two possible mechanisms for Ran import by NTF2 and demonstrate that Ran import is independent from importin-beta-mediated protein import.
Collapse
Affiliation(s)
- B B Quimby
- Department of Biochemistry, Emory University School of Medicine and the Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
58
|
Tanaka M, Kasahara H, Bartunkova S, Schinke M, Komuro I, Inagaki H, Lee Y, Lyons GE, Izumo S. Vertebrate homologs of tinman and bagpipe: roles of the homeobox genes in cardiovascular development. DEVELOPMENTAL GENETICS 2000; 22:239-49. [PMID: 9621431 DOI: 10.1002/(sici)1520-6408(1998)22:3<239::aid-dvg6>3.0.co;2-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In Drosophila, dorsal mesodermal specification is regulated by the homeobox genes tinman and bagpipe. Vertebrate homologs of tinman and bagpipe have been isolated in various species. Moreover, there are at least four different genes related to tinman in the vertebrate, which indicates that this gene has been duplicated during evolution. One of the murine homologs of tinman is the cardiac homeobox gene Csx or Nkx2.5. Gene targeting of Csx/Nkx2.5 showed that this gene is required for completion of the looping morphogenesis of the heart. However, it is not essential for the specification of the heart cell lineage. Early cardiac development might therefore be regulated by other genes, which may act either independently or in concert with Csx/Nkx2.5. Possible candidates might be other members of the NK2 class of homeobox proteins like Tix/Nkx2.6, Nkx2.3, nkx2.7, or cNkx2.8. Murine Tix/Nkx2.6 mRNA has been detected in the heart and pharyngeal endoderm (this study). Xenopus XNkx2.3 and chicken cNkx2.3 are expressed in the heart as well as in pharyngeal and gut endoderm. In contrast, murine Nkx2.3 is expressed in the gut and pharyngeal arches but not the heart. In zebrafish and chicken, two new NK-2 class homeoproteins, nkx2.7 and cNkx2.8, have been identified. Zebrafish nkx2.7 is expressed in both, the heart and pharyngeal endoderm. In the chicken, cNkx2.8 is expressed in the heart primordia and the primitive heart tube and becomes undetectable after looping. No murine homologs of nkx2.7 or cNkx2.8 have been found so far. The overlapping expression pattern of NK2 class homeobox genes in the heart and the pharynx may suggest a common origin of these two organs. In the Drosophila genome, the tinman gene is linked to another NK family gene named bagpipe. A murine homolog of bagpipe, Bax/Nkx3.1, is expressed in somites, blood vessels, and the male reproductive system during embryogenesis (this study), suggesting that this gene's function may be relevant for the development of these organs. A bagpipe homolog in Xenopus, Xbap, is expressed in the gut masculature and a region of the facial cartilage during development. In this paper, we discuss molecular mechanisms of cardiovascular development with particular emphasis on roles of transcription factors.
Collapse
Affiliation(s)
- M Tanaka
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
The Caenorhabditis elegans embryo undergoes a series of stereotyped cell cleavages that generates the organs and tissues necessary for an animal to survive. Here we review two models of embryonic patterning, one that is lineage-based, and one that focuses on domains of organ and tissue precursors. Our evolving view of C. elegans embryogenesis suggests that this animal develops by mechanisms that are qualitatively similar to those used by other animals.
Collapse
Affiliation(s)
- M Labouesse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP163, 67404 Illkirch Cedex, France.
| | | |
Collapse
|
60
|
Newman-Smith ED, Rothman JH. The maternal-to-zygotic transition in embryonic patterning of Caenorhabditis elegans. Curr Opin Genet Dev 1998; 8:472-80. [PMID: 9729725 DOI: 10.1016/s0959-437x(98)80120-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Maternal factors laid down in the oocyte regulate blastomere identities in the early Caenorhabditis elegans embryo by activating zygotic patterning genes and restricting their expression to the appropriate lineages. A number of early-acting zygotic genes that specify various cell fates have been identified recently and their temporal and spatial regulation by maternal factors has begun to be elucidated.
Collapse
Affiliation(s)
- E D Newman-Smith
- Department of Molecular, Cellular and Developmental Biology, University of California-Santa Barbara 93106, USA.
| | | |
Collapse
|
61
|
Horner MA, Quintin S, Domeier ME, Kimble J, Labouesse M, Mango SE. pha-4, an HNF-3 homolog, specifies pharyngeal organ identity in Caenorhabditis elegans. Genes Dev 1998; 12:1947-52. [PMID: 9649499 PMCID: PMC316969 DOI: 10.1101/gad.12.13.1947] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/1998] [Accepted: 04/28/1998] [Indexed: 11/25/2022]
Abstract
To build complex organs, embryos have evolved mechanisms that integrate the development of cells unrelated to one another by cell type or ancestry. Here we show that the pha-4 locus establishes organ identity for the Caenorhabditis elegans pharynx. In pha-4 mutants, pharyngeal cells are transformed into ectoderm. Conversely, ectopic pha-4 expression produces excess pharyngeal cells. pha-4 encodes an HNF-3 homolog selectively expressed in the nascent digestive tract, including all pharynx precursors at the time they are restricted to a pharyngeal fate. We suggest that pha-4 is a key component of a transcription-based mechanism to endow cells with pharyngeal organ identity.
Collapse
Affiliation(s)
- M A Horner
- Huntsman Cancer Institute, Center for Children, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112 USA
| | | | | | | | | | | |
Collapse
|
62
|
Kalb JM, Lau KK, Goszczynski B, Fukushige T, Moons D, Okkema PG, McGhee JD. pha-4 is Ce-fkh-1, a fork head/HNF-3alpha, beta, gamma homolog that functions in organogenesis of the C. elegans pharynx. Development 1998; 125:2171-80. [PMID: 9584117 DOI: 10.1242/dev.125.12.2171] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The C. elegans Ce-fkh-1 gene has been cloned on the basis of its sequence similarity to the winged-helix DNA binding domain of the Drosophila fork head and mammalian HNF-3alpha, beta, gamma genes, and mutations in the zygotically active pha-4 gene have been shown to block formation of the pharynx (and rectum) at an early stage in embryogenesis. In the present paper, we show that Ce-fkh-1 and pha-4 are the same gene. We show that PHA-4 protein is present in nuclei of essentially all pharyngeal cells, of all five cell types. PHA-4 protein first appears close to the point at which a cell lineage will produce only pharyngeal cells, independently of cell type. We show that PHA-4 binds directly to a ‘pan-pharyngeal enhancer element’ previously identified in the promoter of the pharyngeal myosin myo-2 gene; in transgenic embryos, ectopic PHA-4 activates ectopic myo-2 expression. We also show that ectopic PHA-4 can activate ectopic expression of the ceh-22 gene, a pharyngeal-specific NK-2-type homeodomain protein previously shown to bind a muscle-specific enhancer near the PHA-4 binding site in the myo-2 promoter. We propose that it is the combination of pha-4 and regulatory molecules such as ceh-22 that produces the specific gene expression patterns during pharynx development. Overall, pha-4 can be described as an ‘organ identity factor’, completely necessary for organ formation, present in all cells of the organ from the earliest stages, capable of integrating upstream developmental pathways (in this case, the two distinct pathways that produce the anterior and posterior pharynx) and participating directly in the transcriptional regulation of organ specific genes. Finally, we note that the distribution of PHA-4 protein in C. elegans embryos is remarkably similar to the distribution of the fork head protein in Drosophila embryos: high levels in the foregut/pharynx and hindgut/rectum; low levels in the gut proper. Moreover, we show that pha-4 expression in the C. elegans gut is regulated by elt-2, a C. elegans gut-specific GATA-factor and possible homolog of the Drosophila gene serpent, which influences fork head expression in the fly gut. Overall, our results provide evidence for a highly conserved pathway regulating formation of the digestive tract in all (triploblastic) metazoa.
Collapse
Affiliation(s)
- J M Kalb
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Health Sciences Centre, Room 2265, NW, Calgary, Alberta, CANADA T2N 4N1.
| | | | | | | | | | | | | |
Collapse
|
63
|
Haun C, Alexander J, Stainier DY, Okkema PG. Rescue of Caenorhabditis elegans pharyngeal development by a vertebrate heart specification gene. Proc Natl Acad Sci U S A 1998; 95:5072-5. [PMID: 9560230 PMCID: PMC20215 DOI: 10.1073/pnas.95.9.5072] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Development of pharyngeal muscle in nematodes and cardiac muscle in vertebrates and insects involves the related homeobox genes ceh-22, nkx2.5, and tinman, respectively. To determine whether the nematode and vertebrate genes perform similar functions, we examined activity of the zebrafish nkx2.5 gene in transgenic Caenorhabditis elegans. Here, we report that ectopic expression of nkx2.5 in C. elegans body wall muscle can directly activate expression of both the endogenous myo-2 gene, a ceh-22 target normally expressed only in pharyngeal muscle, and a synthetic reporter construct controlled by a multimerized CEH-22 binding site. nkx2.5 also efficiently rescues a ceh-22 mutant when expressed in pharyngeal muscle. Together, these results indicate that nkx2.5 and ceh-22 provide a single conserved molecular function. Further, they suggest that an evolutionarily conserved mechanism underlies heart development in vertebrates and insects and pharyngeal development in nematodes.
Collapse
Affiliation(s)
- C Haun
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
64
|
Harfe BD, Fire A. Muscle and nerve-specific regulation of a novel NK-2 class homeodomain factor in Caenorhabditis elegans. Development 1998; 125:421-9. [PMID: 9425137 DOI: 10.1242/dev.125.3.421] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have identified a new Caenorhabditis elegans NK-2 class homeobox gene, designated ceh-24. Distinct cis-acting elements generate a complex neuronal and mesodermal expression pattern. A promoter-proximal enhancer mediates expression in a single pharyngeal muscle, the donut-shaped m8 cell at the posterior end of the pharynx. A second mesodermal enhancer is active in a set of eight nonstriated vulval muscles used in egg laying. Activation in the egg laying muscles requires an ‘NdE-box’ consensus motif (CATATG) which is related to, but distinct from, the standard E-box motif bound by the MyoD family of transcriptional activators. Ectodermal expression of ceh-24 is limited to a subset of sublateral motor neurons in the head of the animal; this activity requires a cis-acting activator element that is distinct from the control elements for pharyngeal and vulval muscle expression. Activation of ceh-24 in each of the three cell types coincides with the onset of differentiation. Using a set of transposon-induced null mutations, we show that ceh-24 is not essential for the formation of any of these cells. Although ceh-24 mutants have no evident defects under laboratory conditions, the pattern of ceh-24 activity is apparently important for Rhabditid nematodes: the related species C. briggsae contains a close homologue of C. elegans ceh-24 including a highly conserved and functionally equivalent set of cis-acting control signals.
Collapse
Affiliation(s)
- B D Harfe
- Carnegie Institution of Washington, Department of Embryology, Baltimore, MD 21210, USA
| | | |
Collapse
|