51
|
Murakami R, Okumura T, Uchiyama H. GATA factors as key regulatory molecules in the development of Drosophila endoderm. Dev Growth Differ 2005; 47:581-9. [PMID: 16316403 DOI: 10.1111/j.1440-169x.2005.00836.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Essential roles for GATA factors in the development of endoderm have been reported in various animals. A Drosophila GATA factor gene, serpent (srp, dGATAb, ABF), is expressed in the prospective endoderm, and loss of srp activity causes transformation of the prospective endoderm into ectodermal foregut and hindgut, indicating that srp acts as a selector gene to specify the developmental fate of the endoderm. While srp is expressed in the endoderm only during early stages, it activates a subsequent GATA factor gene, dGATAe, and the latter continues to be expressed specifically in the endoderm throughout life. dGATAe activates various functional genes in the differentiated endodermal midgut. An analogous mode of regulation has been reported in Caenorhabditis elegans, in which a pair of GATA genes, end-1/3, specifies endodermal fate, and a downstream pair of GATA genes, elt-2/7, activates genes in the differentiated endoderm. Functional homology of GATA genes in nature is apparently extendable to vertebrates, because endodermal GATA genes of C. elegans and Drosophila induce endoderm development in Xenopus ectoderm. These findings strongly imply evolutionary conservation of the roles of GATA factors in the endoderm across the protostomes and the deuterostomes.
Collapse
Affiliation(s)
- Ryutaro Murakami
- Department of Physics, Biology, and Informatics, Yamaguchi University, Yamaguchi 753-8512, Japan.
| | | | | |
Collapse
|
52
|
Maduro MF, Hill RJ, Heid PJ, Newman-Smith ED, Zhu J, Priess JR, Rothman JH. Genetic redundancy in endoderm specification within the genus Caenorhabditis. Dev Biol 2005; 284:509-22. [PMID: 15979606 DOI: 10.1016/j.ydbio.2005.05.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 05/14/2005] [Accepted: 05/16/2005] [Indexed: 11/22/2022]
Abstract
Specification of the endoderm precursor, the E cell, in Caenorhabditis elegans requires a genomic region called the Endoderm Determining Region (EDR). We showed previously that end-1, a gene within the EDR encoding a GATA-type transcription factor, restores endoderm specification to embryos deleted for the EDR and obtained evidence for genetic redundancy in this process. Here, we report molecular identification of end-3, a nearby paralog of end-1 in the EDR, and show that end-1 and end-3 together define the endoderm-specifying properties of the EDR. Both genes are expressed in the early E lineage and each is individually sufficient to specify endodermal fate in the E cell and in non-endodermal precursors when ectopically expressed. The loss of function of both end genes, but not either one alone, eliminates endoderm in nearly all embryos and results in conversion of E into a C-like mesectodermal precursor, similar to deletions of the EDR. While two putative end-1 null mutants display no overt phenotype, a missense mutation that alters a residue in the zinc finger domain of END-3 results in misspecification of E in approximately 9% of mutant embryos. We report that the EDR in C. briggsae, which is estimated to have diverged from C. elegans approximately 50--120 myr ago, contains three end-like genes, resulting from both the ancient duplication that produced end-1 and end-3 in C. elegans, and a more recent duplication of end-3 in the lineage specific to C. briggsae. Transgenes containing the C. briggsae end homologs show E lineage-specific expression and function in C. elegans, demonstrating their functional conservation. Moreover, RNAi experiments indicate that the C. briggsae end genes also function redundantly to specify endoderm. We propose that duplicated end genes have been maintained over long periods of evolution, owing in part to their synergistic function.
Collapse
Affiliation(s)
- Morris F Maduro
- Department of Molecular, Cellular and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Fukuda K, Kikuchi Y. Endoderm development in vertebrates: fate mapping, induction and regional specification. Dev Growth Differ 2005; 47:343-55. [PMID: 16109032 DOI: 10.1111/j.1440-169x.2005.00815.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The formation of the vertebrate body plan begins with the differentiation of cells into three germ layers: ectoderm, mesoderm and endoderm. Cells in the endoderm give rise to the epithelial lining of the digestive tract, associated glands and respiratory system. One of the fundamental problems in developmental biology is to elucidate how these three primary germ layers are established from the homologous population of cells in the early blastomere. To address this question, ectoderm and mesoderm development have been extensively analyzed, but study of endoderm development has only begun relatively recently. In this review, we focus on the 'where', 'when' and 'how' of endoderm development in four vertebrate model organisms: the zebrafish, Xenopus, chick and mouse. We discuss the classical fate mapping of the endoderm and the more recent progress in characterizing its induction, segregation and regional specification.
Collapse
Affiliation(s)
- Kimiko Fukuda
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | |
Collapse
|
54
|
Okumura T, Matsumoto A, Tanimura T, Murakami R. An endoderm-specific GATA factor gene, dGATAe, is required for the terminal differentiation of the Drosophila endoderm. Dev Biol 2005; 278:576-86. [PMID: 15680371 DOI: 10.1016/j.ydbio.2004.11.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 11/16/2004] [Accepted: 11/16/2004] [Indexed: 11/24/2022]
Abstract
GATA factors play an essential role in endodermal specification in both protostomes and deuterostomes. In Drosophila, the GATA factor gene serpent (srp) is critical for differentiation of the endoderm. However, the expression of srp disappears around stage 11, which is much earlier than overt differentiation occurs in the midgut, an entirely endodermal organ. We have identified another endoderm-specific Drosophila GATA factor gene, dGATAe. Expression of dGATAe is first detected at stage 8 in the endoderm, and its expression continues in the endodermal midgut throughout the life cycle. srp is required for expression of dGATAe, and misexpression of srp resulted in ectopic dGATAe expression. Embryos that either lacked dGATAe or were injected with double-stranded RNA (dsRNA) corresponding to dGATAe failed to express marker genes that are characteristic of differentiated midgut. Conversely, overexpression of dGATAe induced ectopic expression of endodermal markers even in the absence of srp activity. Transfection of the dGATAe cDNA also induced endodermal markers in Drosophila S2 cells. These studies provide an outline of the genetic pathway that establishes the endoderm in Drosophila. This pathway is triggered by sequential signaling through the maternal torso gene, a terminal gap gene, huckebein (hkb), and finally, two GATA factor genes, srp and dGATAe.
Collapse
Affiliation(s)
- Takashi Okumura
- Department of Physics, Biology, and Informatics, Yamaguchi University, Yamaguchi 753-8512, Japan
| | | | | | | |
Collapse
|
55
|
Guo M, Akiyama Y, House MG, Hooker CM, Heath E, Gabrielson E, Yang SC, Han Y, Baylin SB, Herman JG, Brock MV. Hypermethylation of the GATA genes in lung cancer. Clin Cancer Res 2005; 10:7917-24. [PMID: 15585625 DOI: 10.1158/1078-0432.ccr-04-1140] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE In lung cancer, DNA hypermethylation is known to be a common event. EXPERIMENTAL DESIGN Gene expression and methylation status of GATA-4, GATA-5, and GATA-6 were analyzed with cell lines and primary human lung cancers. Methylation profiles of primary lung cancers were analyzed and correlated with clinical as well as histopathological data. RESULTS Complete methylation was detected by methylation-specific PCR for both GATA-4 and GATA-5 in four cell lines (H358, DMS-53, A549, and H1299), all of which had no expression by reverse transcription-PCR analysis. Demethylation with 5-aza-2'deoxycytidine restored expression in each case. GATA-6 was ubiquitously expressed in all of the six cell lines. GATA-4 bisulfite sequencing revealed complete methylation of the GATA-4 promoter in H358 cells, correlating well with its lack of expression at the mRNA level. Only a few CpG sites showed methylation by bisulfite sequencing within the GATA-4 promoter in a cell line that expressed the gene. In 63 cases of primary lung cancers, GATA-4 and GATA-5 promoter methylation was detected in (42 of 63) 67% and (26 of 63) 41%, respectively. GATA-6 remained unmethylated both in cell lines and primary tumors. Six autopsy specimens of normal lung tissue showed no aberrant promoter hypermethylation for the GATA genes. Correlation of concomitant GATA-4 and GATA-5 methylation with clinicopathological parameters only found a statistically significant increase in methylation frequency with increasing patient age (P < 0.001). CONCLUSIONS These epigenetic changes in the GATA genes in lung cancer are tumor-specific, relate to the loss of GATA gene expression, and occur increasingly in the elderly.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Large Cell/genetics
- Carcinoma, Large Cell/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- DNA Methylation
- DNA, Neoplasm
- DNA-Binding Proteins/genetics
- Female
- GATA4 Transcription Factor
- GATA5 Transcription Factor
- GATA6 Transcription Factor
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Male
- Middle Aged
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Transcription Factors/genetics
- Tumor Cells, Cultured
- Zinc Fingers
Collapse
Affiliation(s)
- Mingzhou Guo
- Johns Hopkins Medical Institutions, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Chiao E, Leonard J, Dickinson K, Baker JC. High-throughput functional screen of mouse gastrula cDNA libraries reveals new components of endoderm and mesoderm specification. Genome Res 2005; 15:44-53. [PMID: 15632089 PMCID: PMC540274 DOI: 10.1101/gr.2993405] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This study describes a cross-species functional screen of mouse gastrula cDNA libraries for components of endoderm and mesoderm specification. Pools of 96 cDNAs from arrayed mouse gastrula cDNA libraries were transcribed into mRNA and injected into either the presumptive mesoderm or the ectoderm of one-cell Xenopus laevis embryos. Injected embryos were examined at gastrula stage by in situ hybridization with endoderm or mesoderm markers. Using this approach, we screened over 700 pools or approximately 60,000 cDNAs. We identified 17 unique cDNAs that function during mesoderm and/or endoderm specification and 16 that cause general morphology changes. Identified molecules fall into eight general functional groups as follows: cell cycle components (seven), transcription factors (four), extracellular secreted molecules (seven), transmembrane receptors (one), intracellular signaling components (five), microtubule components (two), metabolism molecules (three), and unknown (four). Several of the genes we identified would not have been predicted to be involved in endoderm or mesoderm specification, highlighting the usefulness of nonbiased screening approaches. This includes Otx2, which we show is a downstream target of Xsox17beta. The speed, low cost, and high efficiency of this cross-species screen makes it an ideal method for examining cDNAs from difficult-to-obtain sources. Therefore, this approach complements the current mouse molecular genetics systems and provides a powerful means for the genome-wide examination of mammalian gene function.
Collapse
Affiliation(s)
- Eric Chiao
- Department of Genetics, Stanford University Medical School, Stanford, California 94062, USA
| | | | | | | |
Collapse
|
57
|
Ritz-Laser B, Mamin A, Brun T, Avril I, Schwitzgebel VM, Philippe J. The Zinc Finger-Containing Transcription Factor Gata-4 Is Expressed in the Developing Endocrine Pancreas and Activates Glucagon Gene Expression. Mol Endocrinol 2005; 19:759-70. [PMID: 15539431 DOI: 10.1210/me.2004-0051] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AbstractGene inactivation studies have shown that members of the Gata family of transcription factors are critical for endoderm development throughout evolution. We show here that Gata-4 and/or Gata-6 are not only expressed in the adult exocrine pancreas but also in glucagonoma and insulinoma cell lines, whereas Gata-5 is restricted to the exocrine pancreas. During pancreas development, Gata-4 is expressed already at embryonic d 10.5 and colocalizes with early glucagon+ cells at embryonic d 12.5. Gata-4 was able to transactivate the glucagon gene both in heterologous BHK-21 (nonislet Syrian baby hamster kidney) and in glucagon-producing InR1G9 cells. Using gel-mobility shift assays, we identified a complex formed with nuclear extracts from InR1G9 cells on the G5 control element (−140 to −169) of the glucagon gene promoter as Gata-4. Mutation of the GATA binding site on G5 abrogated the transcriptional activation mediated by Gata-4 and reduced basal glucagon gene promoter activity in glucagon-producing cells by 55%. Furthermore, Gata-4 acted more than additively with Forkhead box A (hepatic nuclear factor-3) to trans-activate the glucagon gene promoter. We conclude that, besides its role in endoderm differentiation, Gata-4 might be implicated in the regulation of glucagon gene expression in the fetal pancreas and that Gata activity itself may be modulated by interactions with different cofactors.
Collapse
Affiliation(s)
- Beate Ritz-Laser
- Diabetes Unit, University Hospital Geneva, 24, rue Micheli-du-Crest, CH-1211 Geneva 14, Switzerland
| | | | | | | | | | | |
Collapse
|
58
|
Chen JA, Voigt J, Gilchrist M, Papalopulu N, Amaya E. Identification of novel genes affecting mesoderm formation and morphogenesis through an enhanced large scale functional screen in Xenopus. Mech Dev 2005; 122:307-31. [PMID: 15763210 DOI: 10.1016/j.mod.2004.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 10/22/2004] [Accepted: 11/13/2004] [Indexed: 10/25/2022]
Abstract
The formation of mesoderm is an important developmental process of vertebrate embryos, which can be broken down into several steps; mesoderm induction, patterning, morphogenesis and differentiation. Although mesoderm formation in Xenopus has been intensively studied, much remains to be learned about the molecular events responsible for each of these steps. Furthermore, the interplay between mesoderm induction, patterning and morphogenesis remains obscure. Here, we describe an enhanced functional screen in Xenopus designed for large-scale identification of genes controlling mesoderm formation. In order to improve the efficiency of the screen, we used a Xenopus tropicalis unique set of cDNAs, highly enriched in full-length clones. The screening strategy incorporates two mesodermal markers, Xbra and Xmyf-5, to assay for cell fate specification and patterning, respectively. In addition we looked for phenotypes that would suggest effects in morphogenesis, such as gastrulation defects and shortened anterior-posterior axis. Out of 1728 full-length clones we isolated 82 for their ability to alter the phenotype of tadpoles and/or the expression of Xbra and Xmyf-5. Many of the clones gave rise to similar misexpression phenotypes (synphenotypes) and many of the genes within each synphenotype group appeared to be involved in similar pathways. We determined the expression pattern of the 82 genes and found that most of the genes were regionalized and expressed in mesoderm. We expect that many of the genes identified in this screen will be important in mesoderm formation.
Collapse
Affiliation(s)
- Jun-An Chen
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK
| | | | | | | | | |
Collapse
|
59
|
Abstract
GATA factors regulate critical events in hematopoietic lineages (GATA-1/2/3), the heart and gut (GATA-4/5/6) and various other tissues. Transgenic approaches have revealed that GATA genes are regulated in a modular fashion by sets of enhancers that govern distinct temporal and/or spatial facets of the overall expression patterns. Efforts are underway to resolve how these GATA gene enhancers are themselves regulated in order to elucidate the genetic and molecular hierarchies that govern GATA expression in particular developmental contexts. These enhancers also afford a raft of tools that can be used to selectively perturb and probe various developmental events in transgenic animals.
Collapse
Affiliation(s)
- John B E Burch
- Cell and Developmental Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| |
Collapse
|
60
|
Ahmed N, Howard L, Woodland HR. Early endodermal expression of the Xenopus Endodermin gene is driven by regulatory sequences containing essential Sox protein-binding elements. Differentiation 2005; 72:171-84. [PMID: 15157240 DOI: 10.1111/j.1432-0436.2004.07204005.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Endodermin gene is expressed in the early endoderm and the Spemann organizer of Xenopus embryos. It has previously been shown to be a direct target of the early endodermal transcription factor Xsox17 (Clements et al., 2003, Mech Dev 120:337-348). Here we identify two adjacent control elements in the Endodermin promoter; these drive transcription of the gene in late-gastrula endoderm and contain consensus Sox-binding sites. We have analyzed one element in detail and show that it responds directly to Xsox17 and that the Sox sites are essential for endodermal expression in transgenic embryos. However, flanking regions on both sides are also essential, indicating that Xsox17 acts in concert with several DNA-binding partners.
Collapse
Affiliation(s)
- Nadeem Ahmed
- Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | | |
Collapse
|
61
|
Loose M, Patient R. A genetic regulatory network for Xenopus mesendoderm formation. Dev Biol 2004; 271:467-78. [PMID: 15223347 DOI: 10.1016/j.ydbio.2004.04.014] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 04/05/2004] [Accepted: 04/19/2004] [Indexed: 10/26/2022]
Abstract
We have constructed a genetic regulatory network (GRN) summarising the functional relationships between the transcription factors (TFs) and embryonic signals involved in Xenopus mesendoderm formation. It is supported by a relational database containing the experimental evidence and both are available in interactive form via the World Wide Web. This network highlights areas for further study and provides a framework for systematic interrogation of new data. Comparison with the equivalent network for the sea urchin identifies conserved features of the deuterostome ancestral pathway, including positive feedback loops, GATA factors, SoxB, Brachyury and a previously underemphasised role for beta-catenin. In contrast, some features central to one species have not yet been found in the other, for example, Krox and Otx in sea urchin, and Mix and Nodal in Xenopus. Such differences may represent evolved features or may eventually be resolved. For example, in Xenopus, Nodal-related genes are positively regulated by beta-catenin and at least one of them is repressed by Sox3, as is the uncharacterised early signal (ES) inducing endomesoderm in the sea urchin, suggesting that ES may be a Nodal-like TGF-beta. Wider comparisons of such networks will inform our understanding of developmental evolution.
Collapse
Affiliation(s)
- Matthew Loose
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | |
Collapse
|
62
|
Sun-Wada GH, Kamei Y, Wada Y, Futai M. Regulatory Elements Directing Gut Expression of the GATA6 Gene during Mouse Early Development. J Biochem 2004; 135:165-9. [PMID: 15047717 DOI: 10.1093/jb/mvh019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The GATA6 transcription factor, as well as GATA4 and GATA5, is expressed in a variety of mammalian tissues including the precardiac mesoderm and endoderm, and gut-related organs. Genetic studies have also implicated GATA factors as important regulators of gut endoderm development. Previously, we identified the promoter and a cardiac-specific enhancer of mouse GATA6 [Sun-Wada et al. (2000) J. Biochem. 127, 703-709], however, little is known about the regulatory elements that govern GATA6 expression in the primitive gut. Here, we identified a distal enhancer of the GATA6 gene directing expression in the gut by creating transgenic mice. A sequence of approximately 200 bp between -8.0 kb and -7.8 kb contains element(s) that enhance transcription in the gut during embryonic development, when linked to the hsp68 promoter/lacZ fusion gene. Our results also show that GATA6 expression is controlled by multiple regulatory regions including cardiac-specific and gut-specific enhancers.
Collapse
Affiliation(s)
- Ge-Hong Sun-Wada
- Division of Biological Sciences, The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047
| | | | | | | |
Collapse
|
63
|
Abstract
The intensity of research on pancreatic development has increased markedly in the past 5 years, primarily for two reasons: we now know that the insulin-producing beta-cells normally arise from an endodermally derived, pancreas-specified precursor cell, and successful transplants of islet cells have been performed, relieving patients with type I diabetes of symptoms for extended periods after transplantation. Combining in vitro beta-cell formation from a pancreatic biopsy of a diabetic patient or from other stem-cell sources followed by endocrine cell transplantation may be the most beneficial route for a future diabetes therapy. However, to achieve this, a thorough understanding of the genetic components regulating the development of beta-cells is required. The following review discusses our current understanding of the transcription factor networks necessary for pancreatic development and how several genetic interactions coming into play at the earliest stages of endodermal development gradually help to build the pancreatic organ. Developmental Dynamics 229:176-200, 2004.
Collapse
Affiliation(s)
- Jan Jensen
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Denver, Colorado, USA.
| |
Collapse
|
64
|
Stuckenholz C, Ulanch PE, Bahary N. From guts to brains: using zebrafish genetics to understand the innards of organogenesis. Curr Top Dev Biol 2004; 65:47-82. [PMID: 15642379 DOI: 10.1016/s0070-2153(04)65002-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Carsten Stuckenholz
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | |
Collapse
|
65
|
Mohun T, Latinkic B, Towers N, Kotecha S. Regulation of cardiac muscle differentiation in Xenopus laevis embryos. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 67:13-8. [PMID: 12858518 DOI: 10.1101/sqb.2002.67.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- T Mohun
- Division of Developmental Biology, National Institute for Medical Research, London, United Kingdom
| | | | | | | |
Collapse
|
66
|
Costa RMB, Mason J, Lee M, Amaya E, Zorn AM. Novel gene expression domains reveal early patterning of the Xenopus endoderm. Gene Expr Patterns 2003; 3:509-19. [PMID: 12915320 DOI: 10.1016/s1567-133x(03)00086-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The endoderm gives rise the respiratory and digestive tract epithelia as well as associated organs such as the liver, lungs and pancreas. Investigations examining the molecular basis of embryonic endodermal patterning and organogenesis have been hampered by the lack of regionally expressed molecular markers in the early endoderm. By differentially screening an arrayed cDNA library, combined with an in situ hybridization screen we identified 13 new genes regionally expressed in the early tailbud endoderm of the Xenopus embryo. The putative proteins encoded by these cDNAs include a cell surface transporter, secreted proteins, a protease, a protease inhibitor, an RNA-binding protein, a phosphatase inhibitor and several enzymes. We find that the expression of these genes falls into one of three re-occurring domains in the tailbud embryo; (1). a ventral midgut, (2). posterior to the midgut and (3). in the dorsal endoderm beneath the notochord. Several of these genes are also regionally expressed at gastrula and neurula stages and appear to mark territories that were previously only predicted by the endoderm fate map. This indicates that there is significant positional identity in the early endoderm long before stages 28-32 when regional specification of the endoderm is thought to occur. These new genes provide valuable tools for studying endodermal patterning and organogenesis in Xenopus.
Collapse
Affiliation(s)
- Ricardo M B Costa
- Wellcome Trust/Cancer Research UK Institute of Cancer and Developmental Biology, Tennis Court Road, Cambridge, CB2 1QR, UK
| | | | | | | | | |
Collapse
|
67
|
Clements D, Woodland HR. VegT induces endoderm by a self-limiting mechanism and by changing the competence of cells to respond to TGF-beta signals. Dev Biol 2003; 258:454-63. [PMID: 12798301 DOI: 10.1016/s0012-1606(03)00124-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The maternal determinant VegT is required for both endoderm and mesoderm formation by the Xenopus embryo. An important downstream mediator of VegT action is Xsox17, which has been proposed to be induced in cell-autonomous, then signal-dependent phases. We show that Xsox17 is a direct VegT target, but that direct induction of Xsox17 by VegT is rapidly inhibited. This inhibition is relieved by TGF- beta signalling, to which the future endoderm cell is sensitised by VegT, resulting in the observed dependence on cell contact for maintained Xsox17 expression. We propose that this change in regulation is a consequence of a VegT-induced repressor, inhibiting direct induction of early endoderm markers by VegT, and contributing to the formation of the boundary of the endodermal domain.
Collapse
Affiliation(s)
- Debbie Clements
- Department of Biological Sciences, University of Warwick, CV4 7AL, Coventry, UK
| | | |
Collapse
|
68
|
Abstract
The heart develops from two bilateral heart fields that are formed during early gastrulation. In recent years, signaling pathways that specify cardiac mesoderm have been extensively analyzed. In addition, a battery of transcription factors that regulate different aspects of cardiac morphogenesis and cytodifferentiation have been identified and characterized in model organisms. At the anterior pole, a secondary heart field is formed, which in its molecular make-up, appears to be similar to the primary heart field. The cardiac outflow tract and the right ventricle to a large extent are derivatives of this anterior heart field. Cardiac mesoderm receives positional information by which it is patterned along the three body axes. The molecular control of left-right axis development has received particular attention, and the underlying regulatory network begins to emerge. Cardiac chamber development involves the activation of a transcription program that is different from the one present in the primary heart field and regulates cardiac morphogenesis in a region-specific manner. This review also attempts to identify areas in which additional research is needed to fully understand early cardiac development.
Collapse
Affiliation(s)
- Thomas Brand
- Department of Cell and Molecular Biology, Technical University of Braunschweig, 38106 Braunschweig, Germany.
| |
Collapse
|
69
|
Pera EM, Martinez SL, Flanagan JJ, Brechner M, Wessely O, De Robertis EM. Darmin is a novel secreted protein expressed during endoderm development in Xenopus. Gene Expr Patterns 2003; 3:147-52. [PMID: 12711541 DOI: 10.1016/s1567-133x(03)00011-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Endoderm development is an area of intense interest in developmental biology, but progress has been hampered by the lack of specific markers for differentiated endodermal cells. In an unbiased secretion cloning screen of Xenopus gastrula embryos we isolated a novel gene, designated Darmin. Darmin encodes a secreted protein of 56 kDa containing a peptidase M20 domain characteristic of the glutamate carboxypeptidase group of zinc metalloproteases. We also identified homologous Darmin genes in other eukaryotes and in prokaryotes suggesting that Darmin is the founding member of a family of evolutionarily conserved proteins. Xenopus Darmin showed zygotic expression in the early endoderm and later became restricted to the midgut. By secretion cloning of Xenopus cleavage-stage embryos we isolated another novel protein, designated Darmin-related (Darmin-r) due to its sequence similarity with Darmin. Darmin-r was maternally expressed and showed at later stages expression in the lens and pronephric glomus. The endoderm-specific expression of Darmin makes this gene a useful marker for the study of endoderm development.
Collapse
Affiliation(s)
- Edgar M Pera
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | | | | | | | | | | |
Collapse
|
70
|
Clements D, Cameleyre I, Woodland HR. Redundant early and overlapping larval roles of Xsox17 subgroup genes in Xenopus endoderm development. Mech Dev 2003; 120:337-48. [PMID: 12591603 DOI: 10.1016/s0925-4773(02)00450-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have used antisense morpholino oligos to establish the developmental roles of three Xsox17 proteins in Xenopus development (Xsox17alpha(1), alpha(2) and beta). We show that their synthesis can be inhibited with modest amounts of oligo. The inhibition of each individually produces defects in late midgut development. Loss of activity of the Xsox17alpha proteins additionally inhibits hindgut formation, and inhibiting Xsox17alpha(1) disrupts foregut development with variable penetrance. When all Xsox17 activity is inhibited cell movements are halted during late gastrulation and the transcription of several endodermally expressed genes is reduced. Thus the Xsox17 proteins have redundant roles in early development of the endoderm and partly distinct roles during later organogenesis.
Collapse
Affiliation(s)
- Debbie Clements
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
71
|
Brand T, Andrée B, Schlange T. Molecular characterization of early cardiac development. Results Probl Cell Differ 2003; 38:215-38. [PMID: 12132397 DOI: 10.1007/978-3-540-45686-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Thomas Brand
- Institute of Biochemistry and Biotechnology, Department of Cell and Molecular Biology, Technical University of Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | | | | |
Collapse
|
72
|
D'Souza A, Lee M, Taverner N, Mason J, Carruthers S, Smith JC, Amaya E, Papalopulu N, Zorn AM. Molecular components of the endoderm specification pathway in Xenopus tropicalis. Dev Dyn 2003; 226:118-27. [PMID: 12508233 DOI: 10.1002/dvdy.10201] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Xenopus laevis has been instrumental in elucidating a conserved molecular pathway that regulates vertebrate endoderm specification. However, loss-of-function analysis is required to resolve the precise function of the genes involved. For such analysis, antisense oligos and possibly forward genetics are likely to be more effective in the diploid species Xenopus tropicalis than in the pseudotetraploid Xenopus laevis. Here we have isolated most of the tropicalis genes in the endoderm specification pathway, specifically, tVegT, tMixer, tMix, tBix, tGata6, tSox17alpha, tSox17beta, tFoxA1, tHex, and tCerberus, which lack the redundant copies that are found in laevis. In situ hybridization analysis has revealed identical expression patterns between the orthologous tropicalis and laevis endoderm genes, thus suggesting conserved genetic functions. Furthermore, we noted that the smaller tropicalis embryos gave better probe penetration than in laevis whole-mount in situ hybridizations-allowing us to visualize transcripts in the deep endoderm in tropicalis, which is difficult in laevis. This study illustrates how an entire genetic pathway can be quickly transferred from laevis to tropicalis due to high sequence conservation between the sister species and the large number of tropicalis-expressed sequence tags that are now available.
Collapse
Affiliation(s)
- Anjali D'Souza
- Cincinnati Children's Hospital Medical Center, Division of Developmental Biology, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Kumano G, Smith WC. The nodal target gene Xmenf is a component of an FGF-independent pathway of ventral mesoderm induction in Xenopus. Mech Dev 2002; 118:45-56. [PMID: 12351169 DOI: 10.1016/s0925-4773(02)00186-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The interplay of fibroblast growth factor (FGF) and nodal signaling in the Xenopus gastrula marginal zone specifies distinct populations of presumptive mesodermal cells. Cells in the vegetal marginal zone, making up the presumptive leading edge mesoderm, are exposed to nodal signaling, as evidenced by SMAD2 activation, but do not appear to be exposed to FGF signaling, as evidenced by the lack of MAP kinase (MAPK) activation. However, in the animal marginal zone, activation of both SMAD2 and MAPK occurs. The differential activation of these two signaling pathways in the marginal zone results in the vegetal and animal marginal zones expressing different genes at gastrulation, and subsequently having different fates, with the vegetal marginal zone contributing to ventral mesoderm (e.g. ventral blood island) and the animal marginal zone giving rise to dorsal fates (e.g. notochord and somite). We report here the cloning of a cDNA encoding a novel nuclear protein, Xmenf, that is expressed in the vegetal marginal zone. The expression of Xmenf is induced by nodal signaling and negatively regulated by FGF signaling. Results from animal cap studies indicate that Xmenf plays a role in the pathway of ventral mesoderm induction in the vegetal marginal zone.
Collapse
Affiliation(s)
- Gaku Kumano
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
74
|
Abstract
Detailed study of the ectoderm and mesoderm has led to increasingly refined understanding of molecular mechanisms that operate early in development to generate cellular diversity. More recently, a number of powerful studies have begun to characterize the molecular determinants of the endoderm, a germ layer previously neglected in developmental biology. Work in diverse model systems has converged on an integrated transcriptional and signaling pathway that serves to establish the vertebrate endoderm. A T-box transcription factor identified in Xenopus embryos, VegT, appears to function near the top of an endoderm-specifying transcriptional hierarchy. VegT activates and reinforces Nodal-related TGFbeta signaling and also induces expression of essential downstream transcriptional regulators, Mix-like paired-homeodomain and GATA factors. These proteins cooperate to regulate expression of a relay of HMG-box Sox-family transcription factors culminating with Sox 17, which may be an obligate mediator of vertebrate endoderm development. This review synthesizes findings in three vertebrate model organisms and discusses these genetic interactions in the context of the progressive acquisition of endodermal identity early in vertebrate development.
Collapse
Affiliation(s)
- Ramesh A Shivdasani
- Department of Adult Oncology and Cancer Biology, Dana-Faber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
75
|
Maduro MF, Rothman JH. Making worm guts: the gene regulatory network of the Caenorhabditis elegans endoderm. Dev Biol 2002; 246:68-85. [PMID: 12027435 DOI: 10.1006/dbio.2002.0655] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nematode Caenorhabditis elegans is a triploblastic ecdysozoan, which, although it contains too few cells during embryogenesis to create discernible germ "layers," deploys similar programs for germ layer differentiation used in animals with many more cells. The endoderm arises from a single progenitor, the E cell, and is selected from among three possible fates by a three-state combinatorial regulatory system involving intersecting cell-intrinsic and intercellular signals. The core gene regulatory cascade that drives endoderm development, extending from early maternal regulators to terminal differentiation genes, is characterized by activation of successive tiers of transcription factors, including a sequential cascade of redundant GATA transcription factors. Each tier is punctuated by a cell division, raising the possibility that intercession of one cell cycle round, or DNA replication, is required for activation of the next tier. The existence of each tier in the regulatory hierarchy is justified by the assignment of a unique task and each invariably performs at least two functions: to activate the regulators in the next tier and to perform one other activity distinct from that of the next tier. While the regulatory inputs that initiate endoderm development are highly divergent, they mobilize a gene regulatory network for endoderm development that appears to be common to all triploblastic metazoans. Genome-wide functional genomic approaches, including identification of >800 transcripts that exhibit the same regulatory patterns as a number of endoderm-specific genes, are contributing to elucidation of the complete endoderm gene regulatory network in C. elegans. Dissection of the architecture of the C. elegans endoderm network may provide insights into the evolutionary plasticity and origins of this germ layer.
Collapse
Affiliation(s)
- Morris F Maduro
- Department of MCD Biology and Neuroscience Research Institute, University of California, Santa Barbara 93106, USA
| | | |
Collapse
|
76
|
Affiliation(s)
- Didier Y R Stainier
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, University of California, San Francisco, San Francisco, California 94143-0448, USA.
| |
Collapse
|
77
|
Hayata T, Tanegashima K, Takahashi S, Sogame A, Asashima M. Overexpression of the secreted factor Mig30 expressed in the Spemann organizer impairs morphogenetic movements during Xenopus gastrulation. Mech Dev 2002; 112:37-51. [PMID: 11850177 DOI: 10.1016/s0925-4773(01)00638-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The Spemann organizer secretes several antagonists of growth factors during gastrulation. We describe a novel secreted protein, Mig30, which is expressed in the anterior endomesoderm of the Spemann organizer. Mixer-inducible gene 30 (Mig30) was isolated as a target of Mixer, a homeobox gene required for endoderm development. The Mig30 gene encodes a secreted protein containing a cysteine-rich domain and an immunoglobulin-like domain that belongs to the insulin-like growth factor-binding protein family. Overexpression of Mig30 in the dorsal region results in the retardation of morphogenetic movements during gastrulation and leads to microcephalic embryos. Overexpression of Mig30 also inhibits activin-induced elongation of ectodermal explants without affecting gene expression patterns in mesoderm and endoderm. These results suggest that Mig30 is involved in the regulation of morphogenetic movements during gastrulation in the extracellular space of the Spemann organizer.
Collapse
Affiliation(s)
- Tadayoshi Hayata
- Department of Life Science, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | | | |
Collapse
|
78
|
Abstract
Strict control of T-cell homeostasis is required to permit normal immune responses and prevent undesirable self-targeted responses. Transforming growth factor-beta (TGF-beta) has been shown to have an essential role in that regulation. Owing to its broad expression, and inhibitory effects on multiple cell types of the immune system, TGF-beta regulation is complex. Through advances in cell-specific targeting of TGF-beta signalling in vivo, the role of TGF-beta in T-cell regulation has become clearer. Recent in vitro studies provide a better understanding of how TGF-beta regulates T-cell homeostasis, through multiple mechanisms involving numerous cell types.
Collapse
|
79
|
Jacobsen CM, Narita N, Bielinska M, Syder AJ, Gordon JI, Wilson DB. Genetic mosaic analysis reveals that GATA-4 is required for proper differentiation of mouse gastric epithelium. Dev Biol 2002; 241:34-46. [PMID: 11784093 DOI: 10.1006/dbio.2001.0424] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During mouse embryogenesis GATA-4 is expressed first in primitive endoderm and then in definitive endoderm derivatives, including glandular stomach and intestine. To explore the role of GATA-4 in specification of definitive gastric endoderm, we generated chimeric mice by introducing Gata4(-/-) ES cells into ROSA26 morulae or blastocysts. In E14.5 chimeras, Gata4(-/-) cells were represented in endoderm lining the proximal and distal stomach. These cells expressed early cytodifferentiation markers, including GATA-6 and ApoJ. However, by E18.5, only rare patches of Gata4(-/-) epithelium were evident in the distal stomach. This heterotypic epithelium had a squamous morphology and did not express markers associated with differentiation of gastric epithelial cell lineages. Sonic Hedgehog, an endoderm-derived signaling molecule normally down-regulated in the distal stomach, was overexpressed in Gata4(-/-) cells. We conclude that GATA-4-deficient cells have an intrinsic defect in their ability to differentiate. Similarities in the phenotypes of Gata4(-/-) chimeras and mice with other genetically engineered mutations that affect gut development suggest that GATA-4 may be involved in the gastric epithelial response to members of the TGF-beta superfamily.
Collapse
Affiliation(s)
- Christina M Jacobsen
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
80
|
Heasman J, Wessely O, Langland R, Craig EJ, Kessler DS. Vegetal localization of maternal mRNAs is disrupted by VegT depletion. Dev Biol 2001; 240:377-86. [PMID: 11784070 DOI: 10.1006/dbio.2001.0495] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
VegT is an essential maternal regulator of germ layer specification in Xenopus. The localization of VegT mRNA to the vegetal cortex of the oocyte during oogenesis ensures its inheritance by vegetal and not animal cells, and directs the differentiation of vegetal cells into endoderm. Similarly localized mRNAs, Vg1 and Bicaudal-C, are also inherited by vegetal cells, while germ plasm-associated mRNAs, such as Xcat2, become incorporated into vegetally derived primordial germ cells. Although mRNA localization is clearly important for tissue specification, the mechanism of mRNA anchoring to the oocyte vegetal cortex is not understood. Here, we examine the role of VegT in cortical localization. We report that depletion of VegT mRNA caused the release of Vg1 mRNA from the vegetal cortex and a reduction of Vg1 protein, without affecting the total amount of Vg1 transcript. Furthermore, we found that Bicaudal-C and Wnt11 mRNAs were also dispersed, but not degraded, by VegT depletion, while the localization of Xcat2 and Xotx1 mRNAs was unaffected. This effect was specific to the loss of VegT mRNA and not VegT protein, since a morpholino oligo against VegT, that blocked translation without degrading mRNA, did not disperse the vegetally localized mRNAs. Therefore, a subset of localized mRNAs is dependent on VegT mRNA for anchoring to the vegetal cortex, indicating a novel function for maternal VegT mRNA.
Collapse
Affiliation(s)
- J Heasman
- Division of Developmental Biology, Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | | | | | | | | |
Collapse
|
81
|
Tiedemann H, Asashima M, Grunz H, Knöchel W. Pluripotent cells (stem cells) and their determination and differentiation in early vertebrate embryogenesis. Dev Growth Differ 2001; 43:469-502. [PMID: 11576166 DOI: 10.1046/j.1440-169x.2001.00599.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mammalian embryonic stem cells can be obtained from the inner cell mass of blastocysts or from primordial germ cells. These stem cells are pluripotent and can develop into all three germ cell layers of the embryo. Somatic mammalian stem cells, derived from adult or fetal tissues, are more restricted in their developmental potency. Amphibian ectodermal and endodermal cells lose their pluripotency at the early gastrula stage. The dorsal mesoderm of the marginal zone is determined before the mid-blastula transition by factors located after cortical rotation in the marginal zone, without induction by the endoderm. Secreted maternal factors (BMP, FGF and activins), maternal receptors and maternal nuclear factors (beta-catenin, Smad and Fast proteins), which form multiprotein transcriptional complexes, act together to initiate pattern formation. Following mid-blastula transition in Xenopus laevis (Daudin) embryos, secreted nodal-related (Xnr) factors become important for endoderm and mesoderm differentiation to maintain and enhance mesoderm induction. Endoderm can be induced by high concentrations of activin (vegetalizing factor) or nodal-related factors, especially Xnr5 and Xnr6, which depend on Wnt/beta-catenin signaling and on VegT, a vegetal maternal transcription factor. Together, these and other factors regulate the equilibrium between endoderm and mesoderm development. Many genes are activated and/or repressed by more than one signaling pathway and by regulatory loops to refine the tuning of gene expression. The nodal related factors, BMP, activins and Vg1 belong to the TGF-beta superfamily. The homeogenetic neural induction by the neural plate probably reinforces neural induction and differentiation. Medical and ethical problems of future stem cell therapy are briefly discussed.
Collapse
Affiliation(s)
- H Tiedemann
- Institut für Molekularbiologie und Biochemie der Freien Universtität Berlin, Arnimallee 22, D-14195 Berlin, Germany.
| | | | | | | |
Collapse
|
82
|
Caprioli A, Minko K, Drevon C, Eichmann A, Dieterlen-Lièvre F, Jaffredo T. Hemangioblast commitment in the avian allantois: cellular and molecular aspects. Dev Biol 2001; 238:64-78. [PMID: 11783994 DOI: 10.1006/dbio.2001.0362] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We recently identified the allantois as a site producing hemopoietic and endothelial cells capable of colonizing the bone marrow of an engrafted host. Here, we report a detailed investigation of some early cytological and molecular processes occurring in the allantoic bud, which are probably involved in the production of angioblasts and hemopoietic cells. We show that the allantois undergoes a program characterized by the prominent expression of several "hemangioblastic" genes in the mesoderm accompanied by other gene patterns in the associated endoderm. VEGF-R2, at least from stage HH17 onward, is expressed and is shortly followed by transcription factors GATA-2, SCL/tal-1, and GATA-1. Blood island-like structures differentiate that contain both CD45(+) cells and cells accumulating hemoglobin; these structures look exactly like blood islands in the yolk sac. This hemopoietic process takes place before the establishment of a vascular network connecting the allantois to the embryo. As far as the endoderm is concerned, GATA-3 mRNA is found in the region where allantois will differentiate before the posterior instestinal portal becomes anatomically distinct. Shortly before the bud grows out, GATA-2 was expressed in the endoderm and, at the same time, the hemangioblastic program became initiated in the mesoderm. GATA-3 is detected at least until E8 and GATA-2 until E3 the latest stage examined for this factor. Using in vitro cultures, we show that allantoic buds, dissected out before the establishment of circulation between the bud and the rest of the embryo, produced erythrocytes of the definitive lineage. Moreover, using heterospecific grafts between chick and quail embryos, we demonstrate that the allantoic vascular network develops from intrinsic progenitors. Taken together, these results extend our earlier findings about the commitment of mesoderm to the endothelial and hemopoietic lineages in the allantois. The detection of a prominent GATA-3 expression restricted to the endoderm of the preallantoic region and allantoic bud, followed by that of GATA-2, is an interesting and novel information, in the context of organ formation and endoderm specification in the emergence of hemopoietic cells.
Collapse
Affiliation(s)
- A Caprioli
- Institut d'Embryologie Cellulaire et Moléculaire du CNRS et du Collège de France, 49 bis av. de la Belle Gabrielle, Nogent s/Marne Cedex, 94736, France
| | | | | | | | | | | |
Collapse
|
83
|
Engleka MJ, Craig EJ, Kessler DS. VegT activation of Sox17 at the midblastula transition alters the response to nodal signals in the vegetal endoderm domain. Dev Biol 2001; 237:159-72. [PMID: 11518513 DOI: 10.1006/dbio.2001.0366] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Xenopus, the prospective endoderm and mesoderm are localized to discrete, adjacent domains at the beginning of gastrulation, and this is made evident by the expression of Sox17 in vegetal blastomeres and Brachyury (Xbra) in marginal blastomeres. Here, we examine the regulation of Sox17alpha expression and the role of Sox17alpha in establishing the vegetal endodermal gene expression domain. Injection of specific inhibitors of VegT or Nodal resulted in a loss of Sox17alpha expression in the gastrula. However, the onset of Sox17alpha expression at the midblastula transition was dependent on VegT, but not on Nodal function, indicating that Sox17alpha expression is initiated by VegT and then maintained by Nodal signals. Consistent with these results, VegT, but not Xenopus Nodal-related-1 (Xnr1), can activate Sox17alpha expression at the midblastula stage in animal explants. In addition, VegT activates Sox17alpha in the presence of cycloheximide or a Nodal antagonist, suggesting that Sox17alpha is an immediate-early target of VegT in vegetal blastomeres. Given that Nodal signals are necessary and sufficient for both mesodermal and endodermal gene expression, we propose that VegT activation of Sox17alpha at the midblastula transition prevents mesodermal gene expression in response to Nodal signals, thus establishing the vegetal endodermal gene expression domain. Supporting this idea, Sox17alpha misexpression in the marginal zone inhibits the expression of multiple mesodermal genes. Furthermore, in animal explants, Sox17alpha prevents the induction of Xbra and MyoD, but not Sox17beta or Mixer, in response to Xnr1. Therefore, VegT activation of Sox17alpha plays an important role in establishing a region of endoderm-specific gene expression in vegetal blastomeres.
Collapse
Affiliation(s)
- M J Engleka
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
84
|
Abstract
It is known from work with amniote embryos that regional specification of the gut requires cell-cell signalling between the mesoderm and the endoderm. In recent years, much of the interest in Xenopus endoderm development has focused on events that occur before gastrulation and this work has led to a different model whereby regional specification of the endoderm is autonomous. In this paper, we examine the specification and differentiation of the endoderm in Xenopus using neurula and tail-bud-stage embryos and we show that the current hypothesis of stable autonomous regional specification is not correct. When the endoderm is isolated alone from neurula and tail bud stages, it remains fully viable but will not express markers of regional specification or differentiation. If mesoderm is present, regional markers are expressed. If recombinations are made between mesoderm and endoderm, then the endodermal markers expressed have the regional character of the mesoderm. Previous results with vegetal explants had shown that endodermal differentiation occurs cell-autonomously, in the absence of mesoderm. We have repeated these experiments and have found that the explants do in fact show some expression of mesoderm markers associated with lateral plate derivatives. We believe that the formation of mesoderm cells by the vegetal explants accounts for the apparent autonomous development of the endoderm. Since the fate map of the Xenopus gut shows that the mesoderm and endoderm of each level do not come together until tail bud stages, we conclude that stable regional specification of the endoderm must occur quite late, and as a result of inductive signals from the mesoderm.
Collapse
Affiliation(s)
- M E Horb
- Developmental Biology Programme, Department of Biology and Biochemistry, University of Bath, BA2 7AY, United Kingdom.
| | | |
Collapse
|
85
|
Kudoh T, Dawid IB. Role of the iroquois3 homeobox gene in organizer formation. Proc Natl Acad Sci U S A 2001; 98:7852-7. [PMID: 11438735 PMCID: PMC35431 DOI: 10.1073/pnas.141224098] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In zebrafish, the organizer is thought to consist of two regions, the yolk syncytial layer (YSL) and the shield. The dorsal YSL appears to send signals that affect formation of the shield in the overlying mesendoderm. We show here that a domain of dorsal deep cells located between the YSL and the shield is marked by expression of the iro3 gene. As gastrulation proceeds, the iro3 positive domain involutes and migrates to the animal pole. Iro3 expression is regulated by Nodal and bone morphogenic protein antagonists. Overexpression of iro3 induced ectopic expression of shield-specific genes. This effect was mimicked by an Iro3-Engrailed transcriptional repressor domain fusion, whereas an Iro3-VP16 activator domain fusion behaved as a dominant negative or antimorphic form. These results suggest that Iro3 acts as a transcriptional repressor and further implicate the iro3 gene in regulating organizer formation. We propose that the iro3-expressing dorsal deep cells represent a distinct organizer domain that receives signals from the YSL and in turn sends signals to the forming shield, thereby influencing its expansion and differentiation.
Collapse
Affiliation(s)
- T Kudoh
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
86
|
Kikuchi Y, Agathon A, Alexander J, Thisse C, Waldron S, Yelon D, Thisse B, Stainier DY. casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. Genes Dev 2001; 15:1493-505. [PMID: 11410530 PMCID: PMC312713 DOI: 10.1101/gad.892301] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Early endoderm formation in zebrafish requires at least three loci that function downstream of Nodal signaling but upstream of the early endodermal marker sox17: bonnie and clyde (bon), faust (fau), and casanova (cas). cas mutants show the most severe phenotype as they do not form any gut tissue and lack all sox17 expression. Activation of the Nodal signaling pathway or overexpression of Bon or Fau/Gata5 fails to restore any sox17 expression in cas mutants, demonstrating that cas plays a central role in endoderm formation. Here we show that cas encodes a novel member of the Sox family of transcription factors. Initial cas expression appears in the dorsal yolk syncytial layer (YSL) in the early blastula, and is independent of Nodal signaling. In contrast, endodermal expression of cas, which begins in the late blastula, is regulated by Nodal signaling. Cas is a potent inducer of sox17 expression in wild-type embryos as well as in bon and fau/gata5 mutants. Cas is also a potent inducer of sox17 expression in MZoep mutants, which cannot respond to Nodal signaling. In addition, ectopic expression of cas in presumptive mesodermal cells leads to their transfating into endoderm. Altogether, these data indicate that Cas is the principal transcriptional effector of Nodal signaling during zebrafish endoderm formation.
Collapse
Affiliation(s)
- Y Kikuchi
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-0448, USA
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Affiliation(s)
- A Rodaway
- The Randall Centre, 3rd Floor North, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, London, United Kingdom
| | | |
Collapse
|
88
|
Keijzer R, van Tuyl M, Meijers C, Post M, Tibboel D, Grosveld F, Koutsourakis M. The transcription factor GATA6 is essential for branching morphogenesis and epithelial cell differentiation during fetal pulmonary development. Development 2001; 128:503-11. [PMID: 11171334 DOI: 10.1242/dev.128.4.503] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent loss-of-function studies in mice show that the transcription factor GATA6 is important for visceral endoderm differentiation. It is also expressed in early bronchial epithelium and the observation that this tissue does not receive any contribution from Gata6 double mutant embryonic stem (ES) cells in chimeric mice suggests that GATA6 may play a crucial role in lung development. The aim of this study was to determine the role of GATA6 in fetal pulmonary development. We show that Gata6 mRNA is expressed predominantly in the developing pulmonary endoderm and epithelium, but at E15.5 also in the pulmonary mesenchyme. Blocking or depleting GATA6 function results in diminished branching morphogenesis both in vitro and in vivo. TTF1 expression is unaltered in chimeric lungs whereas SPC and CC10 expression are attenuated in abnormally branched areas of chimeric lungs. Chimeras generated in a ROSA26 background show that endodermal cells in these abnormally branched areas are derived from Gata6 mutant ES cells, implicating that the defect is intrinsic to the endoderm. Taken together, these data demonstrate that GATA6 is not essential for endoderm specification, but is required for normal branching morphogenesis and late epithelial cell differentiation.
Collapse
Affiliation(s)
- R Keijzer
- Department of Cell Biology and Genetics, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
89
|
Xanthos JB, Kofron M, Wylie C, Heasman J. Maternal VegT is the initiator of a molecular network specifying endoderm in Xenopus laevis. Development 2001; 128:167-80. [PMID: 11124113 DOI: 10.1242/dev.128.2.167] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During cleavage stages, maternal VegT mRNA and protein are localized to the Xenopus embryo's vegetal region from which the endoderm will arise and where several zygotic gene transcripts will be localized. Previous loss-of-function experiments on this T-box transcription factor suggested a role for VegT in Xenopus endoderm formation. Here, we test whether VegT is required to initiate endoderm formation using a loss of function approach. We find that the endodermal genes, Bix1, Bix3, Bix4, Milk (Bix2), Mix.1, Mix.2, Mixer, Xsox17 alpha, Gata4, Gata5, Gata6 and endodermin, as well as the anterior endodermal genes Xhex and cerberus, and the organizer specific gene, Xlim1, are downstream of maternal VegT. We also find that the TGF beta s, Xnr1, Xnr2, Xnr4 and derriere rescue expression of these genes, supporting the idea that cell interactions are critical for proper endoderm formation. Additionally, inhibitory forms of Xnr2 and Derriere blocked the ability of VegT mRNA injection to rescue VegT-depleted embryos. Furthermore, a subset of endodermal genes was rescued in VegT-depleted vegetal masses by induction from an uninjected vegetal mass. Finally, we begin to establish a gene hierarchy downstream of VegT by testing the ability of Mixer and Gata5 to rescue the expression of other endodermal genes. These results identify VegT as the maternal regulator of endoderm initiation and illustrate the complexity of zygotic pathways activated by VegT in the embryo's vegetal region.
Collapse
Affiliation(s)
- J B Xanthos
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
90
|
Abstract
Previous studies have indicated that gata5, a zinc-finger transcription factor gene, is required for the development of the zebrafish gut tube. Here, we show that gata5 mutants also display defects in the development of other endodermal organs such as the liver, pancreas, thyroid and thymus. gata5 is expressed in the endodermal progenitors from late blastula stages, suggesting that it functions early during endoderm development. We indeed find that during gastrulation stages, gata5 mutants form fewer endodermal cells than their wild-type siblings. In addition, the endodermal cells that form in gata5 mutants appear to express lower than wild-type levels of endodermal genes such as sox17 and axial/foxA2. Conversely, overexpression of gata5 leads to expanded endodermal gene expression. These data indicate that Gata5 is involved both in the generation of endodermal cells at late blastula stages and in the maintenance of endodermal sox17 expression during gastrulation. We have also analyzed the relationship of Gata5 to other factors involved in endoderm formation. Using complementary mutant and overexpression analyses, we show that Gata5 regulates endoderm formation in cooperation with the Mix-type transcription factor Bon, that Gata5 and Bon function downstream of Nodal signaling, and that cas function is usually required for the activity of Gata5 in endoderm formation. Finally, we show that fau/gata5, bon and cas exhibit dominant genetic interactions providing additional support that they function in the same pathway. Together, these data demonstrate that Gata5 plays multiple roles in endoderm development in zebrafish, and position Gata5 relative to other regulators of endoderm formation.
Collapse
Affiliation(s)
- J F Reiter
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, University of California, San Francisco, San Francisco, CA 94143-0448, USA
| | | | | |
Collapse
|