51
|
Di Renzo F, Bacchetta R, Bizzo A, Giavini E, Menegola E. Is the amphibian X. laevis WEC a good alternative method to rodent WEC teratogenicity assay? The example of the three triazole derivative fungicides Triadimefon, Tebuconazole, Cyproconazole. Reprod Toxicol 2011; 32:220-6. [DOI: 10.1016/j.reprotox.2011.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/04/2011] [Accepted: 05/04/2011] [Indexed: 10/18/2022]
|
52
|
Liu Y, Xiao A. Epigenetic regulation in neural crest development. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2011; 91:788-96. [PMID: 21618405 DOI: 10.1002/bdra.20797] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/16/2010] [Accepted: 02/02/2011] [Indexed: 12/31/2022]
Abstract
The neural crest (NC) is a multipotent, migratory cell population that arises from the developing dorsal neural fold of vertebrate embryos. Once their fates are specified, neural crest cells (NCCs) migrate along defined routes and differentiate into a variety of tissues, including bone and cartilage of the craniofacial skeleton, peripheral neurons, glia, pigment cells, endocrine cells, and mesenchymal precursor cells (Santagati and Rijli,2003; Dupin et al.,2006; Hall,2009). Abnormal development of NCCs causes a number of human diseases, including ear abnormalities (including deafness), heart anomalies, neuroblastomas, and mandibulofacial dysostosis (Hall,2009). For more than a century, NCCs have attracted the attention of geneticists and developmental biologists for their stem cell-like properties, including self-renewal and multipotent differentiation potential. However, we have only begun to understand the underlying mechanisms responsible for their formation and behavior. Recent studies have demonstrated that epigenetic regulation plays important roles in NC development. In this review, we focused on some of the most recent findings on chromatin-mediated mechanisms for vertebrate NCC development.
Collapse
Affiliation(s)
- Yifei Liu
- Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
53
|
Vitobello A, Ferretti E, Lampe X, Vilain N, Ducret S, Ori M, Spetz JF, Selleri L, Rijli FM. Hox and Pbx factors control retinoic acid synthesis during hindbrain segmentation. Dev Cell 2011; 20:469-82. [PMID: 21497760 DOI: 10.1016/j.devcel.2011.03.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 02/07/2011] [Accepted: 03/16/2011] [Indexed: 12/11/2022]
Abstract
In vertebrate embryos, retinoic acid (RA) synthesized in the mesoderm by Raldh2 emanates to the hindbrain neuroepithelium, where it induces anteroposterior (AP)-restricted Hox expression patterns and rhombomere segmentation. However, how appropriate spatiotemporal RA activity is generated in the hindbrain is poorly understood. By analyzing Pbx1/Pbx2 and Hoxa1/Pbx1 null mice, we found that Raldh2 is itself under the transcriptional control of these factors and that the resulting RA-deficient phenotypes can be partially rescued by exogenous RA. Hoxa1-Pbx1/2-Meis2 directly binds a specific regulatory element that is required to maintain normal Raldh2 expression levels in vivo. Mesoderm-specific Xhoxa1 and Xpbx1b knockdowns in Xenopus embryos also result in Xraldh2 downregulation and hindbrain defects similar to mouse mutants, demonstrating conservation of this Hox-Pbx-dependent regulatory pathway. These findings reveal a feed-forward mechanism linking Hox-Pbx-dependent RA synthesis during early axial patterning with the establishment of spatially restricted Hox-Pbx activity in the developing hindbrain.
Collapse
Affiliation(s)
- Antonio Vitobello
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Oulion S, Borday-Birraux V, Debiais-Thibaud M, Mazan S, Laurenti P, Casane D. Evolution of repeated structures along the body axis of jawed vertebrates, insights from the Scyliorhinus canicula Hox code. Evol Dev 2011; 13:247-59. [DOI: 10.1111/j.1525-142x.2011.00477.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
55
|
Vieux-Rochas M, Bouhali K, Baudry S, Fontaine A, Coen L, Levi G. Irreversible effects of retinoic acid pulse on Xenopus jaw morphogenesis: new insight into cranial neural crest specification. ACTA ACUST UNITED AC 2011; 89:493-503. [PMID: 21086490 DOI: 10.1002/bdrb.20269] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Jaws are formed by cephalic neural crest (CNCCs) and mesodermal cells migrating to the first pharyngeal arch (PA1). A complex signaling network involving different PA1 components then establishes the jaw morphogenetic program. To gather insight on this developmental process, in this study, we analyze the teratogenic effects of brief (1-15 min) pulses of low doses of retinoic acid (RA: 0.25-2 µM) or RA agonists administered to early Xenopus laevis (X.l.) embryos. We show that these brief pulses of RA cause permanent craniofacial defects specifically when treatments are performed during a 6-hr window (developmental stages NF15-NF23) that covers the period of CNCCs maintenance, migration, and specification. Earlier or later treatments have no effect. Similar treatments performed at slightly different developmental stages within this temporal window give rise to different spectra of malformations. The RA-dependent teratogenic effects observed in Xenopus can be partially rescued by folinic acid. We provide evidence suggesting that in Xenopus, as in the mouse, RA causes craniofacial malformations by perturbing signaling to CNCCs. Differently from the mouse, where RA affects CNCCs only at the end of their migration, in Xenopus, RA has an effect on CNCCs during all the period ranging from their exit from the neural tube until their arrival in the PA1. Our findings provide a conceptual framework to understand the origin of individual facial features and the evolution of different craniofacial morphotypes.
Collapse
Affiliation(s)
- Maxence Vieux-Rochas
- Evolution des Régulations Endocriniennes, CNRS, UMR7221, Muséum National d'Histoire Naturelle, Paris, France
| | | | | | | | | | | |
Collapse
|
56
|
Kirilenko P, He G, Mankoo BS, Mallo M, Jones R, Bobola N. Transient activation of meox1 is an early component of the gene regulatory network downstream of hoxa2. Mol Cell Biol 2011; 31:1301-8. [PMID: 21245383 PMCID: PMC3067911 DOI: 10.1128/mcb.00705-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/10/2010] [Accepted: 01/02/2011] [Indexed: 11/20/2022] Open
Abstract
Hox genes encode transcription factors that regulate morphogenesis in all animals with bilateral symmetry. Although Hox genes have been extensively studied, their molecular function is not clear in vertebrates, and only a limited number of genes regulated by Hox transcription factors have been identified. Hoxa2 is required for correct development of the second branchial arch, its major domain of expression. We now show that Meox1 is genetically downstream from Hoxa2 and is a direct target. Meox1 expression is downregulated in the second arch of Hoxa2 mouse mutant embryos. In chromatin immunoprecipitation (ChIP), Hoxa2 binds to the Meox1 proximal promoter. Two highly conserved binding sites contained in this sequence are required for Hoxa2-dependent activation of the Meox1 promoter. Remarkably, in the absence of Meox1 and its close homolog Meox2, the second branchial arch develops abnormally and two of the three skeletal elements patterned by Hoxa2 are malformed. Finally, we show that Meox1 can specifically bind the DNA sequences recognized by Hoxa2 on its functional target genes. These results provide new insight into the Hoxa2 regulatory network that controls branchial arch identity.
Collapse
Affiliation(s)
- Pavel Kirilenko
- School of Dentistry, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom, Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom, Instituto Gulbenkian de Ciência, Oeiras, Portugal, Genetic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Guiyuan He
- School of Dentistry, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom, Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom, Instituto Gulbenkian de Ciência, Oeiras, Portugal, Genetic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Baljinder S. Mankoo
- School of Dentistry, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom, Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom, Instituto Gulbenkian de Ciência, Oeiras, Portugal, Genetic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Moises Mallo
- School of Dentistry, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom, Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom, Instituto Gulbenkian de Ciência, Oeiras, Portugal, Genetic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Richard Jones
- School of Dentistry, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom, Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom, Instituto Gulbenkian de Ciência, Oeiras, Portugal, Genetic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Nicoletta Bobola
- School of Dentistry, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom, Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom, Instituto Gulbenkian de Ciência, Oeiras, Portugal, Genetic Medicine, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
57
|
Clouthier DE, Garcia E, Schilling TF. Regulation of facial morphogenesis by endothelin signaling: insights from mice and fish. Am J Med Genet A 2010; 152A:2962-73. [PMID: 20684004 PMCID: PMC2974943 DOI: 10.1002/ajmg.a.33568] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Craniofacial morphogenesis is accomplished through a complex set of developmental events, most of which are initiated in neural crest cells within the pharyngeal arches. Local patterning cues from the surrounding environment induce gene expression within neural crest cells, leading to formation of a diverse set of skeletal elements. Endothelin-1 (Edn1) is one of the primary signals that establishes the identity of neural crest cells within the mandibular portion of the first pharyngeal arch. Signaling through its cognate receptor, the endothelin-A receptor, is critical for patterning the ventral/distal portion of the arch (lower jaw) and also participates with Hox genes in patterning more posterior arches. Edn1/Ednra signaling is highly conserved between mouse and zebrafish, and genetic analyses in these two species have provided complementary insights into the patterning cues responsible for establishing the craniofacial complex as well as the genetic basis of facial birth defect syndromes.
Collapse
Affiliation(s)
- David E Clouthier
- Department of Craniofacial Biology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA.
| | | | | |
Collapse
|
58
|
Minoux M, Rijli FM. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development 2010; 137:2605-21. [DOI: 10.1242/dev.040048] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During vertebrate craniofacial development, neural crest cells (NCCs) contribute much of the cartilage, bone and connective tissue that make up the developing head. Although the initial patterns of NCC segmentation and migration are conserved between species, the variety of vertebrate facial morphologies that exist indicates that a complex interplay occurs between intrinsic genetic NCC programs and extrinsic environmental signals during morphogenesis. Here, we review recent work that has begun to shed light on the molecular mechanisms that govern the spatiotemporal patterning of NCC-derived skeletal structures – advances that are central to understanding craniofacial development and its evolution.
Collapse
Affiliation(s)
- Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
- Faculté de Chirurgie Dentaire, 1, Place de l'Hôpital, 67000 Strasbourg, France
| | - Filippo M. Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| |
Collapse
|
59
|
Reisoli E, De Lucchini S, Nardi I, Ori M. Serotonin 2B receptor signaling is required for craniofacial morphogenesis and jaw joint formation in Xenopus. Development 2010; 137:2927-37. [PMID: 20667918 DOI: 10.1242/dev.041079] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Serotonin (5-HT) is a neuromodulator that plays many different roles in adult and embryonic life. Among the 5-HT receptors, 5-HT2B is one of the key mediators of 5-HT functions during development. We used Xenopus laevis as a model system to further investigate the role of 5-HT2B in embryogenesis, focusing on craniofacial development. By means of gene gain- and loss-of-function approaches and tissue transplantation assays, we demonstrated that 5-HT2B modulates, in a cell-autonomous manner, postmigratory skeletogenic cranial neural crest cell (NCC) behavior without altering early steps of cranial NCC development and migration. 5-HT2B overexpression induced the formation of an ectopic visceral skeletal element and altered the dorsoventral patterning of the branchial arches. Loss-of-function experiments revealed that 5-HT2B signaling is necessary for jaw joint formation and for shaping the mandibular arch skeletal elements. In particular, 5-HT2B signaling is required to define and sustain the Xbap expression necessary for jaw joint formation. To shed light on the molecular identity of the transduction pathway acting downstream of 5-HT2B, we analyzed the function of phospholipase C beta 3 (PLC) in Xenopus development and showed that PLC is the effector of 5-HT2B during craniofacial development. Our results unveiled an unsuspected role of 5-HT2B in craniofacial development and contribute to our understanding of the interactive network of patterning signals that is involved in the development and evolution of the vertebrate mandibular arch.
Collapse
Affiliation(s)
- Elisa Reisoli
- Unità di Biologia Cellulare e dello Sviluppo, Dipartimento di Biologia, Università di Pisa, S.S.12 Abetone e Brennero 4, Pisa, Italy
| | | | | | | |
Collapse
|
60
|
Takechi M, Kuratani S. History of studies on mammalian middle ear evolution: A comparative morphological and developmental biology perspective. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:417-33. [DOI: 10.1002/jez.b.21347] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
61
|
Hwang YS, Luo T, Xu Y, Sargent TD. Myosin-X is required for cranial neural crest cell migration in Xenopus laevis. Dev Dyn 2010; 238:2522-9. [PMID: 19718754 DOI: 10.1002/dvdy.22077] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Myosin-X (MyoX) belongs to a large family of unconventional, nonmuscle, actin-dependent motor proteins. We show that MyoX is predominantly expressed in cranial neural crest (CNC) cells in embryos of Xenopus laevis and is required for head and jaw cartilage development. Knockdown of MyoX expression using antisense morpholino oligonucleotides resulted in retarded migration of CNC cells into the pharyngeal arches, leading to subsequent hypoplasia of cartilage and inhibited outgrowth of the CNC-derived trigeminal nerve. In vitro migration assays on fibronectin using explanted CNC cells showed significant inhibition of filopodia formation, cell attachment, spreading and migration, accompanied by disruption of the actin cytoskeleton. These data support the conclusion that MyoX has an essential function in CNC migration in the vertebrate embryo.
Collapse
Affiliation(s)
- Yoo-Seok Hwang
- Laboratory of Molecular Genetics, NICHD, NIH, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
62
|
Le Pabic P, Scemama JL, Stellwag EJ. Role ofHoxPG2 genes in Nile tilapia pharyngeal arch specification: implications for gnathostome pharyngeal arch evolution. Evol Dev 2010; 12:45-60. [DOI: 10.1111/j.1525-142x.2009.00390.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
63
|
Parsons KJ, Albertson RC. Roles for Bmp4 and CaM1 in Shaping the Jaw: Evo-Devo and Beyond. Annu Rev Genet 2009; 43:369-88. [DOI: 10.1146/annurev-genet-102808-114917] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kevin J. Parsons
- Department of Biology, Syracuse University, Syracuse, New York 13244;
| | | |
Collapse
|
64
|
Smith TM, Wang X, Zhang W, Kulyk W, Nazarali AJ. Hoxa2plays a direct role in murine palate development. Dev Dyn 2009; 238:2364-73. [DOI: 10.1002/dvdy.22040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
65
|
Tokita M, Schneider RA. Developmental origins of species-specific muscle pattern. Dev Biol 2009; 331:311-25. [PMID: 19450573 PMCID: PMC2726847 DOI: 10.1016/j.ydbio.2009.05.548] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/12/2009] [Accepted: 05/12/2009] [Indexed: 12/15/2022]
Abstract
Vertebrate jaw muscle anatomy is conspicuously diverse but developmental processes that generate such variation remain relatively obscure. To identify mechanisms that produce species-specific jaw muscle pattern we conducted transplant experiments using Japanese quail and White Pekin duck, which exhibit considerably different jaw morphologies in association with their particular modes of feeding. Previous work indicates that cranial muscle formation requires interactions with adjacent skeletal and muscular connective tissues, which arise from neural crest mesenchyme. We transplanted neural crest mesenchyme from quail to duck embryos, to test if quail donor-derived skeletal and muscular connective tissues could confer species-specific identity to duck host jaw muscles. Our results show that duck host jaw muscles acquire quail-like shape and attachment sites due to the presence of quail donor neural crest-derived skeletal and muscular connective tissues. Further, we find that these species-specific transformations are preceded by spatiotemporal changes in expression of genes within skeletal and muscular connective tissues including Sox9, Runx2, Scx, and Tcf4, but not by alterations to histogenic or molecular programs underlying muscle differentiation or specification. Thus, neural crest mesenchyme plays an essential role in generating species-specific jaw muscle pattern and in promoting structural and functional integration of the musculoskeletal system during evolution.
Collapse
Affiliation(s)
| | - Richard A. Schneider
- Address for correspondence: Department of Orthopaedic Surgery, University of California at San Francisco, 533 Parnassus Avenue, U-453, San Francisco, CA 94143-0514, Telephone: 415-502-3788, Facsimile: 415-476-1128, Electronic-mail:
| |
Collapse
|
66
|
Ericsson R, Ziermann JM, Piekarski N, Schubert G, Joss J, Olsson L. Cell fate and timing in the evolution of neural crest and mesoderm development in the head region of amphibians and lungfishes. ACTA ZOOL-STOCKHOLM 2009. [DOI: 10.1111/j.1463-6395.2008.00380.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
67
|
He X, Eberhart JK, Postlethwait JH. MicroRNAs and micromanaging the skeleton in disease, development and evolution. J Cell Mol Med 2009; 13:606-18. [PMID: 19220576 PMCID: PMC2828950 DOI: 10.1111/j.1582-4934.2009.00696.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 01/19/2009] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are short, non-protein-encoding RNAs that effect post-transcriptional gene regulation by targeting messenger RNAs. miRNAs are associated with specific human diseases and help regulate development. Here we review recent advances in understanding the roles of miRNAs in skeletal malformations, including cleft palate, and in the evolution of skeletal morphologies. We propose the hypothesis that evolutionary variation in miRNA expression patterns or structural variation in miRNA binding sites in messenger RNAs can help explain the evolution of craniofacial variation among species, the development of human craniofacial disease and physiological changes leading to osteopenia that increases with ageing.
Collapse
Affiliation(s)
- Xinjun He
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Johann K Eberhart
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | | |
Collapse
|
68
|
Rose C. Generating, growing and transforming skeletal shape: insights from amphibian pharyngeal arch cartilages. Bioessays 2009; 31:287-99. [DOI: 10.1002/bies.200800059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
69
|
Japanese medakaHoxparalog group 2: insights into the evolution ofHoxPG2 gene composition and expression in the Osteichthyes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:623-41. [DOI: 10.1002/jez.b.21236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
70
|
Graham A. Deconstructing the pharyngeal metamere. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:336-44. [PMID: 17583579 DOI: 10.1002/jez.b.21182] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A prominent feature of all vertebrate embryos is the presence of a series of bulges on the lateral surface of the head, the pharyngeal arches. These structures constitute a metameric series, with each arch forming a similar set of derivatives. Significantly, the development of the pharyngeal arches is complex as it involves interactions between disparate embryonic cell types: ectoderm, endoderm, mesoderm and neural crest. It is becoming increasingly apparent that the development of the pharyngeal metamere revolves around the pharyngeal endoderm. The segmentation of this tissue is central to the generation of the arches. The pharyngeal endoderm also provides positional cues for the neural crest, and is involved in the induction of a number of components of the pharyngeal metamere. The segmentation of the pharyngeal endoderm has also been key to the evolution of pharyngeal metamerism. It is likely that endodermal segmentation is a deuterostome characteristic and that this basic pattern was sequentially modified and over time the more complex pharyngeal metamere of vertebrates emerged.
Collapse
Affiliation(s)
- Anthony Graham
- MRC Centre for Developmental Neurobiology, Guys Campus, King's College London, London, United Kingdom.
| |
Collapse
|
71
|
Lampe X, Samad OA, Guiguen A, Matis C, Remacle S, Picard JJ, Rijli FM, Rezsohazy R. An ultraconserved Hox-Pbx responsive element resides in the coding sequence of Hoxa2 and is active in rhombomere 4. Nucleic Acids Res 2008; 36:3214-25. [PMID: 18417536 PMCID: PMC2425489 DOI: 10.1093/nar/gkn148] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Hoxa2 gene has a fundamental role in vertebrate craniofacial and hindbrain patterning. Segmental control of Hoxa2 expression is crucial to its function and several studies have highlighted transcriptional regulatory elements governing its activity in distinct rhombomeres. Here, we identify a putative Hox–Pbx responsive cis-regulatory sequence, which resides in the coding sequence of Hoxa2 and is an important component of Hoxa2 regulation in rhombomere (r) 4. By using cell transfection and chromatin immunoprecipitation (ChIP) assays, we show that this regulatory sequence is responsive to paralogue group 1 and 2 Hox proteins and to their Pbx co-factors. Importantly, we also show that the Hox–Pbx element cooperates with a previously reported Hoxa2 r4 intronic enhancer and that its integrity is required to drive specific reporter gene expression in r4 upon electroporation in the chick embryo hindbrain. Thus, both intronic as well as exonic regulatory sequences are involved in Hoxa2 segmental regulation in the developing r4. Finally, we found that the Hox–Pbx exonic element is embedded in a larger 205-bp long ultraconserved genomic element (UCE) shared by all vertebrate genomes. In this respect, our data further support the idea that extreme conservation of UCE sequences may be the result of multiple superposed functional and evolutionary constraints.
Collapse
Affiliation(s)
- Xavier Lampe
- Unit of Developmental Genetics, Université Catholique de Louvain, 1200 Brussels, Belgium, Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS/INSERM/ULP, Collège de France, BP 10142-CU de Strasbourg, 67404 Illkirch Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
Vertebrate evolution is characterized by gene and genome duplication events. There is strong evidence that a whole-genome duplication occurred in the lineage leading to the teleost fishes. We have focused on the teleost hoxb1 duplicate genes as a paradigm to investigate the consequences of gene duplication. Previous analysis of the duplicated zebrafish hoxb1 genes suggested they have subfunctionalized. The combined expression pattern of the two zebrafish hoxb1 genes recapitulates the expression pattern of the single Hoxb1 gene of tetrapods, possibly due to degenerative changes in complementary cis-regulatory elements of the duplicates. Here we have tested the hypothesis that all teleost duplicates had a similar fate post duplication, by examining hoxb1 genes in medaka and striped bass. Consistent with this theory, we found that the ancestral Hoxb1 expression pattern is subdivided between duplicate genes in a largely similar fashion in zebrafish, medaka, and striped bass. Further, our analysis of hoxb1 genes reveals that sequence changes in cis-regulatory regions may underlie subfunctionalization in all teleosts, although the specific changes vary between species. It was previously shown that zebrafish hoxb1 duplicates have also evolved different functional capacities. We used misexpression to compare the functions of hoxb1 duplicates from zebrafish, medaka and striped bass. Unexpectedly, we found that some biochemical properties, which were paralog specific in zebrafish, are conserved in both duplicates of other species. This work suggests that the fate of duplicate genes varies across the teleost group.
Collapse
Affiliation(s)
- Imogen A Hurley
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, IL 60637, USA
| | | | | |
Collapse
|
73
|
Kuratani S, Ota KG. Primitive versus derived traits in the developmental program of the vertebrate head: views from cyclostome developmental studies. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:294-314. [PMID: 17705229 DOI: 10.1002/jez.b.21190] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Evolution can be viewed as a series of changes in the developmental program along the phylogenetic tree. To better understand the early evolution of the vertebrate skull, we can use the embryos of the cyclostome species as models. By comparing the cyclostome developmental patterns with those of gnathostomes, it becomes possible to distinguish the primitive and derived parts of the developmental program as taxon-specific traits. These traits are often recognizable as developmental constraints that define taxa by biasing the developmental trajectories within a certain limited range, resulting in morphological homologies in adults. These developmental constraints are distributed on the phylogenetic tree like the morphological character states of adult animals and are associated with specific regions of the tree. From this perspective, we emphasize the importance of considering gene expression and embryonic anatomy as the mechanistic bases that can result in homologous or nonhomologous morphological patterns at later developmental stages. Taking the acquisition of the jaw and trabecula cranii as examples, we demonstrate that a set of embryonic features can be coupled or decoupled during evolution and development. When they are coupled, they exert an ancestral developmental constraint that results in homologous morphological patterns, and when they are decoupled, the ancestral constraints tend to be abandoned, generating a new body plan. The heterotopy behind the specification of the oral domain is an example of decoupling, based on shifted tissue interactions. We also stress the importance of "developmental burden" in determining the sequential order of changes through evolution.
Collapse
Affiliation(s)
- Shigeru Kuratani
- Evolutionary Morphology Research Group, Center for Developmental Biology, RIKEN, Kobe, Japan.
| | | |
Collapse
|
74
|
Ericsson R, Joss J, Olsson L. The fate of cranial neural crest cells in the Australian lungfish,Neoceratodus forsteri. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2008; 310:345-54. [PMID: 17563085 DOI: 10.1002/jez.b.21178] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The cranial neural crest has been shown to give rise to a diversity of cells and tissues, including cartilage, bone and connective tissue, in a variety of tetrapods and in the zebrafish. It has been claimed, however, that in the Australian lungfish these tissues are not derived from the cranial neural crest, and even that no migrating cranial neural crest cells exist in this species. We have earlier documented that cranial neural crest cells do migrate, although they emerge late, in the Australian lungfish. Here, we have used the lipophilic fluorescent dye, DiI, to label premigratory cranial neural crest cells and follow their fate until stage 43, when several cranial skeletal elements have started to differentiate. The timing and extent of their migration was investigated, and formation of mandibular, hyoid and branchial streams documented. Cranial neural crest was shown to contribute cells to several parts of the head skeleton, including the trabecula cranii and derivatives of the mandibular arch (e.g., Meckel's cartilage, quadrate), the hyoid arch (e.g., the ceratohyal) and the branchial arches (ceratobranchials I-IV), as well as to the connective tissue surrounding the myofibers in cranial muscles. We conclude that cranial neural crest migration and fate in the Australian lungfish follow the stereotyped pattern documented in other vertebrates.
Collapse
Affiliation(s)
- Rolf Ericsson
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
75
|
Matis C, Oury F, Remacle S, Lampe X, Gofflot F, Picard JJ, Rijli FM, Rezsohazy R. Identification of Lmo1 as part of a Hox-dependent regulatory network for hindbrain patterning. Dev Dyn 2007; 236:2675-84. [PMID: 17676642 DOI: 10.1002/dvdy.21266] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The embryonic functions of Hox proteins have been extensively investigated in several animal phyla. These transcription factors act as selectors of developmental programmes, to govern the morphogenesis of multiple structures and organs. However, despite the variety of morphogenetic processes Hox proteins are involved in, only a limited set of their target genes has been identified so far. To find additional targets, we used a strategy based upon the simultaneous overexpression of Hoxa2 and its cofactors Pbx1 and Prep in a cellular model. Among genes whose expression was upregulated, we identified LMO1, which codes for an intertwining LIM-only factor involved in protein-DNA oligomeric complexes. By analysing its expression in Hox knockout mice, we show that Lmo1 is differentially regulated by Hoxa2 and Hoxb2, in specific columns of hindbrain neuronal progenitors. These results suggest that Lmo1 takes part in a Hox paralogue 2-dependent network regulating anteroposterior and dorsoventral hindbrain patterning.
Collapse
Affiliation(s)
- Christelle Matis
- Unit of Developmental Genetics, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Le Pabic P, Stellwag EJ, Brothers SN, Scemama JL. Comparative analysis of Hox paralog group 2 gene expression during Nile tilapia (Oreochromis niloticus) embryonic development. Dev Genes Evol 2007; 217:749-58. [PMID: 17924140 DOI: 10.1007/s00427-007-0182-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 09/07/2007] [Indexed: 11/25/2022]
Abstract
The hindbrain and pharyngeal arch-derived structures of vertebrates are determined, at least in part, by Hox paralog group 2 genes. In sarcopterygians, the Hoxa2 gene alone appears to specify structures derived from the second pharyngeal arch (PA2), while in zebrafish (Danio rerio), either of the two Hox PG2 genes, hoxa2b or hoxb2a, can specify PA2-derived structures. We previously reported three Hox PG2 genes in striped bass (Morone saxatilis), including hoxa2a, hoxa2b, and hoxb2a and observed that only HoxA cluster genes are expressed in PA2, indicative that they function alone or together to specify PA2. In this paper, we present the cloning and expression analysis of Nile tilapia (Oreochromis niloticus) Hox PG2 genes and show that all three genes are expressed in the hindbrain and in PA2. The expression of hoxb2a in PA2 was unexpected given the close phylogenetic relationship of Nile tilapia and striped bass, both of which are members of the order Perciformes. A reanalysis of striped bass hoxb2a expression demonstrated that it is expressed in PA2 with nearly the same temporal and spatial expression pattern as its Nile tilapia ortholog. Further, we determined that Nile tilapia and striped bass hoxa2a orthologs are expressed in PA2 well beyond the onset of chondrogenesis whereas neither hoxa2b nor hoxb2a expression persist until this stage, which, according to previous hypotheses, suggests that hoxa2a orthologs in these two species function alone as selector genes of PA2 identity.
Collapse
Affiliation(s)
- Pierre Le Pabic
- Department of Biology, East Carolina University, Howell Science Complex, Greenville, NC 27858, USA
| | | | | | | |
Collapse
|
77
|
Cobourne MT, Mitsiadis T. Neural crest cells and patterning of the mammalian dentition. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2007; 306:251-60. [PMID: 16358263 DOI: 10.1002/jez.b.21084] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The mammalian dentition is composed of serial groups of teeth, each with a distinctive crown and root morphology, highly adapted to its particular masticatory function. In the embryo, generation of individual teeth within the jaws relies upon interactions between ectoderm of the first branchial arch and the neural crest-derived ectomesenchymal cells that migrate into this region from their site of origin along the neural axis. Classic tissue recombination experiments have provided evidence of an essential role of the ectoderm in initiating tooth development; however, the underlying ectomesenchyme rapidly acquires dominance in establishing shape. A key question is how these cells acquire this positional information. One theory suggests that ectomesenchymal cells are pre-patterned with respect to shape generation. Alternatively, this cell population acquires positional information within the first branchial arch itself, following migration. Recent molecular evidence suggests a high degree of plasticity within these ectomesenchymal cells. In particular, signalling molecules within the ectoderm exert a time-dependent influence upon the ectomesenchyme by establishing specific domains of homeobox gene expression. Initially, these ectomesenchymal cells are plastic and able to respond to signalling from the ectoderm, however, this plasticity is rapidly lost and pattern information becomes fixed. Therefore, in the first branchial arch, local regulation between the ectoderm and neural crest-derived ectomesenchyme is crucial in establishing the appropriate tooth shape in the correct region of the jaw.
Collapse
Affiliation(s)
- Martyn T Cobourne
- Department of Orthodontics and Craniofacial Development, GKT Dental Institute, King's College London, London SE19RT, UK.
| | | |
Collapse
|
78
|
Noden DM, Schneider RA. Neural Crest Cells and the Community of Plan for Craniofacial Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 589:1-23. [PMID: 17076272 DOI: 10.1007/978-0-387-46954-6_1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
After their initial discovery in the mid 1800s, neural crest cells transitioned from the category of renegade intra-embryonic wanderers to achieve rebel status, provoked especially by the outrageous claim that they participate in skeletogenesis, an embryonic event theretofore reserved exclusively for mesoderm. Much of the 20th century found neural crest cells increasingly viewed as a unique population set apart from other embryonic populations and more often treated as orphans rather than fully embraced by mainstream developmental biology. Now frequently touted as a fourth germ layer, the neural crest has become a fundamental character for distinguishing craniates from other metazoans, and has radically redefined perceptions about the organization and evolution of the vertebrate jaws and head. In this chapter we provide an historical overview of four main research areas in which the neural crest have incited fervent discord among workers past and present. Specifically, we describe how discussions surrounding the neural crest threatened the germ layer theory, upended traditional schemes of vertebrate head organization, challenged assumptions about morphological conservation and homology, and redefined concepts on mechanisms of craniofacial patterning. In each case we frame these debates in the context of recent data on the developmental fate and roles of the neural crest.
Collapse
Affiliation(s)
- Drew M Noden
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | | |
Collapse
|
79
|
Knight RD, Schilling TF. Cranial neural crest and development of the head skeleton. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 589:120-33. [PMID: 17076278 DOI: 10.1007/978-0-387-46954-6_7] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The skeletal derivatives of the cranial neural crest (CNC) are patterned through a combination of intrinsic differences between crest cells and extrinsic signals from adjacent tissues, including endoderm and ectoderm. In this chapter, we focus on how CNC cells positionally interpret these cues to generate such highly specialized structures as the jaw and ear ossicles. We highlight recent genetic studies of craniofacial development in zebrafish that have revealed new tissue interactions and show that the process of CNC development is highly conserved across the vertebrates.
Collapse
Affiliation(s)
- Robert D Knight
- Centre for Developmental and Biomedical Genetics, Department of Biomedical Sciences, University of Sheffield, South Yorkshire, UK
| | | |
Collapse
|
80
|
Barrallo-Gimeno A, Nieto MA. Evolution of the neural crest. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 589:235-44. [PMID: 17076286 DOI: 10.1007/978-0-387-46954-6_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The recent advances in studies of the neural crest in vertebrates and the analysis of basal chordates using molecular and embryological approaches have demonstrated that at least part of the genetic programs and the cellular behavior were in place in nonvertebrate chordates before the neural crest evolved. Nevertheless, both the missing aspects and the close similarities found could explain why basal chordates lack a bona fide neural crest population, even though some migratory neurons and pigment cells have been recently identified in ascidians and amphioxus.
Collapse
|
81
|
Massip L, Ectors F, Deprez P, Maleki M, Behets C, Lengelé B, Delahaut P, Picard J, Rezsöhazy R. Expression of Hoxa2 in cells entering chondrogenesis impairs overall cartilage development. Differentiation 2007; 75:256-67. [PMID: 17359301 DOI: 10.1111/j.1432-0436.2006.00132.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vertebrate Hox genes act as developmental architects by patterning embryonic structures like axial skeletal elements, limbs, brainstem territories, or neural crest derivatives. While active during the patterning steps of development, these genes turn out to be down-regulated in specific differentiation programs like that leading to chondrogenesis. To investigate why chondrocyte differentiation is correlated to the silencing of a Hox gene, we generated transgenic mice allowing Cre-mediated conditional misexpression of Hoxa2 and induced this gene in Collagen 2 alpha 1-expressing cells committed to enter chondrogenesis. Persistent Hoxa2 expression in chondrogenic cells resulted in overall chondrodysplasia with delayed cartilage hypertrophy, mineralization, and ossification but without proliferation defects. The absence of skeletal patterning anomaly and the regular migration of precursor cells indicated that the condensation step of chondrogenesis was normal. In contrast, closer examination at the differentiation step showed severely impaired chondrocyte differentiation. In addition, this inhibition affected structures independently of their embryonic origin. In conclusion, for the first time here, by a cell-type specific misexpression, we precisely uncoupled the patterning function of Hoxa2 from its involvement in regulating differentiation programs per se and demonstrate that Hoxa2 displays an anti-chondrogenic activity that is distinct from its patterning function.
Collapse
Affiliation(s)
- Laurent Massip
- Developmental Genetics Unit, Université catholique de Louvain, Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
Otomandibular dysplasias encompass a broad range of congenital malformations (hemifacial microsomia, mandibulofacial dysostosis) affecting both jaw and ear apparatus. Deciphering the mechanisms of normal embryonic development is a prerequisite for optimal clinical management of those malformations. The development of craniofacial structures is a multi-step process, which involves many developmental events ranging from the migration of neural crest cells from the neural primordium, the molecular interactions that coordinate outgrowth and patterning of the facial primordia, to the fine tuning of the skeletal components. Our knowledge concerning craniofacial development has been gain through experiments carried out in animal developmental models; cell tracing strategies and functional analyses have contributed to significantly increment our understanding of human otomandibular dysplasias. In this review, we discuss classical and recent aspects of otomandibular development. Current proposals for pathogenesis are reviewed and a clinical approach for mandibulofacial dysostosis is proposed.
Collapse
Affiliation(s)
- Jean-Baptiste Charrier
- Service de chirurgie de la face et du cou du Pr Bobin, CHU de Bicêtre, AP-HP, 78, avenue du Général Leclerc, 94275 Kremlin Bicêtre Cedex, France.
| | | |
Collapse
|
83
|
Takio Y, Kuraku S, Murakami Y, Pasqualetti M, Rijli FM, Narita Y, Kuratani S, Kusakabe R. Hox gene expression patterns in Lethenteron japonicum embryos--insights into the evolution of the vertebrate Hox code. Dev Biol 2007; 308:606-20. [PMID: 17560975 DOI: 10.1016/j.ydbio.2007.05.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Revised: 05/09/2007] [Accepted: 05/09/2007] [Indexed: 12/22/2022]
Abstract
The Hox code of jawed vertebrates is characterized by the colinear and rostrocaudally nested expression of Hox genes in pharyngeal arches, hindbrain, somites, and limb/fin buds. To gain insights into the evolutionary path leading to the gnathostome Hox code, we have systematically analyzed the expression pattern of the Hox gene complement in an agnathan species, Lethenteron japonicum (Lj). We have isolated 15 LjHox genes and assigned them to paralogue groups (PG) 1-11, based on their deduced amino acid sequences. LjHox expression during development displayed gnathostome-like spatial patterns with respect to the PG numbers. Specifically, lamprey PG1-3 showed homologous expression patterns in the rostral hindbrain and pharyngeal arches to their gnathostome counterparts. Moreover, PG9-11 genes were expressed specifically in the tailbud, implying its posteriorizing activity as those in gnathostomes. We conclude that these gnathostome-like colinear spatial patterns of LjHox gene expression can be regarded as one of the features already established in the common ancestor of living vertebrates. In contrast, we did not find evidence for temporal colinearity in the onset of LjHox expression. The genomic and developmental characteristics of Hox genes from different chordate species are also compared, focusing on evolution of the complex body plan of vertebrates.
Collapse
Affiliation(s)
- Yoko Takio
- RIKEN Center for Developmental Biology, Evolutionary Morphology Research Group, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Schuff M, Rössner A, Wacker SA, Donow C, Gessert S, Knöchel W. FoxN3 is required for craniofacial and eye development of Xenopus laevis. Dev Dyn 2007; 236:226-39. [PMID: 17089409 DOI: 10.1002/dvdy.21007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A functional knockdown of FoxN3, a member of subclass N of fork head/winged helix transcription factors in Xenopus laevis, leads to an abnormal formation of the jaw cartilage, absence or malformation of distinct cranial nerves, and reduced size of the eye. While the eye phenotype is due to an increased rate of apoptosis, the cellular basis of the jaw phenotype is more complex. The upper and lower jaw cartilages are derivatives of a subset of cranial neural crest cells, which migrate into the first pharyngeal arch. Histological analysis of FoxN3-depleted embryos reveals severe deformation and false positioning of infrarostral, Meckel's, and palatoquadrate cartilages, structural elements derived from the first pharyngeal arch, and of the ceratohyale, which derives from the second pharyngeal arch. The derivatives of the third and fourth pharyngeal arches are less affected. FoxN3 is not required for early neural crest migration. Defects in jaw formation rather arise by failure of differentiation than by positional effects of crest migration. By GST-pulldown analysis, we have identified two different members of histone deacetylase complexes (HDAC), xSin3 and xRPD3, as putative interaction partners of FoxN3, suggesting that FoxN3 regulates craniofacial and eye development by recruiting HDAC.
Collapse
|
85
|
Papis E, Bernardini G, Gornati R, Menegola E, Prati M. Gene expression in Xenopus laevis embryos after Triadimefon exposure. Gene Expr Patterns 2007; 7:137-42. [PMID: 16875885 DOI: 10.1016/j.modgep.2006.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 06/20/2006] [Accepted: 06/21/2006] [Indexed: 11/23/2022]
Abstract
The triazole derivative Triadimefon (FON) is a systemic fungicide used to control powdery mildews, rusts, and other fungal pests. Some data have already been published about the teratogenic activity of this compound: craniofacial malformations were found in mouse, rat, and Xenopus laevis embryos exposed to FON. These alterations were correlated to defective branchial arch development possibly caused by abnormal neural crest cell (NCC) migration into the branchial mesenchyme. As the migration of NCCs is controlled by the HOX code and by an anteroposterior retinoic acid (RA) gradient, we analyzed the expression of CYP26, a key enzyme in RA metabolism, following FON exposure. The increased expression of this gene and the ability of citral (a RA inhibitor) to reduce the teratogenic effects of the fungicide support the notion that endogenous RA is involved in the mechanism of action of FON. Moreover, by in situ hybridization, we studied the effects of FON exposure at gastrula stage on the expression of some genes involved in craniofacial development, hindbrain patterning, and NCC migration. We observed abnormal localization of xCRABP, Hoxa2 and Xbap signal expression at the level of migrating NCC domains, whereas in the hindbrain, we did not find any alteration in Krox20 and Hoxa2 expression.
Collapse
Affiliation(s)
- Elena Papis
- Department of Biotechnology and Molecular Science, University of Insubria, via Dunant 3, 21100 Varese, Italy
| | | | | | | | | |
Collapse
|
86
|
Tümpel S, Cambronero F, Ferretti E, Blasi F, Wiedemann LM, Krumlauf R. Expression of Hoxa2 in rhombomere 4 is regulated by a conserved cross-regulatory mechanism dependent upon Hoxb1. Dev Biol 2006; 302:646-60. [PMID: 17113575 DOI: 10.1016/j.ydbio.2006.10.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 10/17/2006] [Accepted: 10/19/2006] [Indexed: 01/08/2023]
Abstract
The Hoxa2 gene is an important component of regulatory events during hindbrain segmentation and head development in vertebrates. In this study we have used sequenced comparisons of the Hoxa2 locus from 12 vertebrate species in combination with detailed regulatory analyses in mouse and chicken embryos to characterize the mechanistic basis for the regulation of Hoxa2 in rhombomere (r) 4. A highly conserved region in the Hoxa2 intron functions as an r4 enhancer. In vitro binding studies demonstrate that within the conserved region three bipartite Hox/Pbx binding sites (PH1-PH3) in combination with a single binding site for Pbx-Prep/Meis (PM) heterodimers co-operate to regulate enhancer activity in r4. Mutational analysis reveals that these sites are required for activity of the enhancer, suggesting that the r4 enhancer from Hoxa2 functions in vivo as a Hox-response module in combination with the Hox cofactors, Pbx and Prep/Meis. Furthermore, this r4 enhancer is capable of mediating a response to ectopic HOXB1 expression in the hindbrain. These findings reveal that Hoxa2 is a target gene of Hoxb1 and permit us to develop a gene regulatory network for r4, whereby Hoxa2, along with Hoxb1, Hoxb2 and Hoxa1, is integrated into a series of auto- and cross-regulatory loops between Hox genes. These data highlight the important role played by direct cross-talk between Hox genes in regulating hindbrain patterning.
Collapse
Affiliation(s)
- Stefan Tümpel
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | | | | | | | | | | |
Collapse
|
87
|
Scemama JL, Vernon JL, Stellwag EJ. Differential expression of hoxa2a and hoxa2b genes during striped bass embryonic development. Gene Expr Patterns 2006; 6:843-8. [PMID: 16581310 DOI: 10.1016/j.modgep.2006.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2005] [Revised: 02/09/2006] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
Here, we report the cloning and expression analysis of two previously uncharacterized paralogs group 2 Hox genes, striped bass hoxa2a and hoxa2b, and the developmental regulatory gene egr2. We demonstrate that both Hox genes are expressed in the rhombomeres of the developing hindbrain and the pharyngeal arches albeit with different spatio-temporal distributions relative to one another. While both hoxa2a and hoxa2b share the r1/r2 anterior boundary of expression characteristic of the hoxa2 paralog genes of other species, hoxa2a gene expression extends throughout the hindbrain, whereas hoxa2b gene expression is restricted to the r2-r5 region. Egr2, which is used in this study as an early developmental marker of rhombomeres 3 and 5, is expressed in two distinct bands with a location and spacing typical for these two rhombomeres in other species. Within the pharyngeal arches, hoxa2a is expressed at higher levels in the second pharyngeal arch, while hoxa2b is more strongly expressed in the posterior arches. Further, hoxa2b expression within the arches becomes undetectable at 60hpf, while hoxa2a expression is maintained at least up until the beginning of chondrogenesis. Comparison of the striped bass HoxA cluster paralog group 2 (PG2) genes to their orthologs and trans-orthologs shows that the striped bass hoxa2a gene expression pattern is similar to the overall expression pattern described for the hoxa2 genes in the lobe-finned fish lineage and for the hoxa2b gene from zebrafish. It is notable that the pharyngeal arch expression pattern of the striped bass hoxa2a gene is more divergent from its sister paralog, hoxa2b, than from the zebrafish hoxa2b gene. Overall, our results suggest that differences in the Hox PG2 gene complement of striped bass and zebrafish affects both their rhombomeric and pharyngeal arch expression patterns and may account for the similarities in pharyngeal arch expression between striped bass hoxa2a and zebrafish hoxa2b.
Collapse
Affiliation(s)
- Jean-Luc Scemama
- Department of Biology, Howell Science Complex, East Carolina University, Greenville, NC 27858, USA.
| | | | | |
Collapse
|
88
|
Creuzet SE, Martinez S, Le Douarin NM. The cephalic neural crest exerts a critical effect on forebrain and midbrain development. Proc Natl Acad Sci U S A 2006; 103:14033-8. [PMID: 16966604 PMCID: PMC1599907 DOI: 10.1073/pnas.0605899103] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Encephalisation is the most important characteristic in the evolutionary transition leading from protochordates to vertebrates. This event has coincided with the emergence of a transient and pluripotent structure, the neural crest (NC), which is absent in protochordates. In vertebrates, NC provides the rostral cephalic vesicles with skeletal protection and functional vascularization. The surgical extirpation of the cephalic NC, which is responsible for building up the craniofacial skeleton, results in the absence of facial skeleton together with severe defects of preotic brain development, leading to exencephaly. Here, we have analyzed the role of the NC in forebrain and midbrain development. We show that (i) NC cells (NCC) control Fgf8 expression in the anterior neural ridge, which is considered the prosencephalic organizer; (ii) the cephalic NCC are necessary for the closure of the neural tube; and (iii) NCC contribute to the proper patterning of genes that are expressed in the prosencephalic and mesencephalic alar plate. Along with the development of the roof plate, NCC also concur to the patterning of the pallial and subpallial structures. We show that the NC-dependent production of FGF8 in anterior neural ridge is able to restrict Shh expression to the ventral prosencephalon. All together, these findings support the notion that the cephalic NC controls the formation of craniofacial structures and the development of preotic brain.
Collapse
Affiliation(s)
- Sophie E. Creuzet
- *Laboratoire de Développement, Evolution, et Plasticité du Système Nerveux, Institut de Neurobiologie–Alfred Fessard, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France; and
| | - Salvador Martinez
- Instituto de Neurociencias, University Miguel Hernández and Consejo Superior de Investigaciones Cientificas, 03550 San Juan de Alicante, Spain
| | - Nicole M. Le Douarin
- *Laboratoire de Développement, Evolution, et Plasticité du Système Nerveux, Institut de Neurobiologie–Alfred Fessard, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
89
|
Baltzinger M, Ori M, Pasqualetti M, Nardi I, Rijli FM. Hoxa2 knockdown in Xenopus results in hyoid to mandibular homeosis. Dev Dyn 2006; 234:858-67. [PMID: 16222714 DOI: 10.1002/dvdy.20567] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The skeletal structures of the face and throat are derived from cranial neural crest cells (NCCs) that migrate from the embryonic neural tube into a series of branchial arches (BAs). The first arch (BA1) gives rise to the upper and lower jaw cartilages, whereas hyoid structures are generated from the second arch (BA2). The Hox paralogue group 2 (PG2) genes, Hoxa2 and Hoxb2, show distinct roles for hyoid patterning in tetrapods and fishes. In the mouse, Hoxa2 acts as a selector of hyoid identity, while its paralogue Hoxb2 is not required. On the contrary, in zebrafish Hoxa2 and Hoxb2 are functionally redundant for hyoid arch patterning. Here, we show that in Xenopus embryos morpholino-induced functional knockdown of Hoxa2 is sufficient to induce homeotic changes of the second arch cartilage. Moreover, Hoxb2 is downregulated in the BA2 of Xenopus embryos, even though initially expressed in second arch NCCs, similar to mouse and unlike in zebrafish. Finally, Xbap, a gene involved in jaw joint formation, is selectively upregulated in the BA2 of Hoxa2 knocked-down frog embryos, supporting a hyoid to mandibular change of NCC identity. Thus, in Xenopus Hoxa2 does not act redundantly with Hoxb2 for BA2 patterning, similar to mouse and unlike in fish. These data bring novel insights into the regulation of Hox PG2 genes and hyoid patterning in vertebrate evolution and suggest that Hoxa2 function is required at late stages of BA2 development.
Collapse
Affiliation(s)
- Mireille Baltzinger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Strasbourg, France
| | | | | | | | | |
Collapse
|
90
|
Koebernick K, Kashef J, Pieler T, Wedlich D. Xenopus Teashirt1 regulates posterior identity in brain and cranial neural crest. Dev Biol 2006; 298:312-26. [PMID: 16916510 DOI: 10.1016/j.ydbio.2006.06.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 06/20/2006] [Accepted: 06/26/2006] [Indexed: 11/22/2022]
Abstract
We have isolated two related Xenopus homologues of the homeotic zinc finger protein Teashirt1 (Tsh1), XTsh1a and XTsh1b. While Drosophila teashirt specifies trunk identity in the fly, the developmental relevance of vertebrate Tsh homologues is unknown. XTsh1a/b are expressed in prospective trunk CNS throughout early neurula stages and later in the migrating cranial neural crest (CNC) of the third arch. In postmigratory CNC, XTsh1a/b is uniformly activated in the posterior arches. Gain- and loss-of-function experiments reveal that reduction or increase of XTsh1 levels selectively inhibits specification of the hindbrain and mid/hindbrain boundary in Xenopus embryos. In addition, both overexpression and depletion of XTsh1 interfere with the determination of CNC segment identity. In transplantation assays, ectopic XTsh1a inhibits the routing of posterior, but not of mandibular CNC streams. The loss of function phenotype could be rescued with low amounts either of XTsh1a or murine Tsh3. Our results demonstrate that proper expression of XTsh1 is essential for segmentally restricted gene expression in the posterior brain and CNC and suggest for the first time that teashirt genes act as positional factors also in vertebrate development.
Collapse
Affiliation(s)
- Katja Koebernick
- Institute of Biochemistry, University of Goettingen, Justus-von-Liebig-Weg 11, 37077 Goettingen, Germany
| | | | | | | |
Collapse
|
91
|
Rangarajan J, Luo T, Sargent TD. PCNS: a novel protocadherin required for cranial neural crest migration and somite morphogenesis in Xenopus. Dev Biol 2006; 295:206-18. [PMID: 16674935 DOI: 10.1016/j.ydbio.2006.03.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 03/16/2006] [Accepted: 03/20/2006] [Indexed: 12/26/2022]
Abstract
Protocadherins (Pcdhs), a major subfamily of cadherins, play an important role in specific intercellular interactions in development. These molecules are characterized by their unique extracellular domain (EC) with more than 5 cadherin-like repeats, a transmembrane domain (TM) and a variable cytoplasmic domain. PCNS (Protocadherin in Neural crest and Somites), a novel Pcdh in Xenopus, is initially expressed in the mesoderm during gastrulation, followed by expression in the cranial neural crest (CNC) and somites. PCNS has 65% amino acid identity to Xenopus paraxial protocadherin (PAPC) and 42-49% amino acid identity to Pcdh 8 in human, mouse, and zebrafish genomes. Overexpression of PCNS resulted in gastrulation failure but conferred little if any specific adhesion on ectodermal cells. Loss of function accomplished independently with two non-overlapping antisense morpholino oligonucleotides resulted in failure of CNC migration, leading to severe defects in the craniofacial skeleton. Somites and axial muscles also failed to undergo normal morphogenesis in these embryos. Thus, PCNS has essential functions in these two important developmental processes in Xenopus.
Collapse
Affiliation(s)
- Janaki Rangarajan
- Laboratory of Molecular Genetics, NICHD, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
92
|
Abstract
The Drosophila Delta gene and its vertebrate homologues are ligands for the Notch receptor and are involved in a variety of developmental processes, including neurogenesis, boundary formation, and axon guidance. This study deals with the ectodermal expression and function of X-Delta-2 during early Xenopus laevis development. X-Delta-2 is expressed, from early neurula stages on, throughout the central nervous system (CNS; forebrain, eyes, midbrain, hindbrain, and spinal cord) and in the majority of the cranial placodes. Loss of function experiments using a morpholino knockdown approach revealed that X-Delta-2 is necessary for hindbrain segmentation and the correct specification of the anterior CNS. X-Delta-2 also seems to be important in the determination of the size of the eyes. Furthermore, our results suggest that X-Delta-2 is involved in the migration of the cranial placodes cells, as well the migration of the cranial neural crest cells.
Collapse
Affiliation(s)
- João N Peres
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht, The Netherlands
| | | |
Collapse
|
93
|
Graham A, Okabe M, Quinlan R. The role of the endoderm in the development and evolution of the pharyngeal arches. J Anat 2006; 207:479-87. [PMID: 16313389 PMCID: PMC1571564 DOI: 10.1111/j.1469-7580.2005.00472.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The oro-pharyngeal apparatus has its origin in a series of bulges found on the lateral surface of the embryonic head, the pharyngeal arches. Significantly, the development of these structures is extremely complex, involving interactions between a number of disparate embryonic cell types: ectoderm, endoderm, mesoderm and neural crest, each of which generates particular components of the arches, and whose development must be co-ordinated to generate the functional adult oro-pharyngeal apparatus. In the past most studies have emphasized the role played by the neural crest, which generates the skeletal elements of the arches, in directing pharyngeal arch development. However, it is now apparent that the pharyngeal endoderm plays an important role in directing arch development. Here we discuss the role of the pharyngeal endoderm in organizing the development of the pharyngeal arches, and the mechanisms that act to pattern the endoderm itself and those which direct its morphogenesis. Finally, we discuss the importance of modification to the pharyngeal endoderm during vertebrate evolution. In particular, we focus on the emergence of the parathyroid gland, which we have recently shown to be the result of the internalization of the gills.
Collapse
Affiliation(s)
- Anthony Graham
- MRC Centre for Developmental Neurobiology, Guys Campus, Kings College London, London, UK.
| | | | | |
Collapse
|
94
|
Tapadia MD, Cordero DR, Helms JA. It's all in your head: new insights into craniofacial development and deformation. J Anat 2006; 207:461-77. [PMID: 16313388 PMCID: PMC1571563 DOI: 10.1111/j.1469-7580.2005.00484.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Minal D Tapadia
- Department of Plastic and Reconstructive Surgery, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
95
|
Dupin E, Creuzet S, Le Douarin NM. The contribution of the neural crest to the vertebrate body. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 589:96-119. [PMID: 17076277 DOI: 10.1007/978-0-387-46954-6_6] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As a transitory structure providing adult tissues of the vertebrates with very diverse cell types, the neural crest (NC) has attracted for long the interest of developmental biologists and is still the subject of ongoing research in a variety of animal models. Here we review a number of data from in vivo cell tracing and in vitro single cell culture experiments, which gained new insights on the mechanisms of cell migration, proliferation and differentiation during NC ontogeny. We put emphasis on the role of Hox genes, morphogens and interactions with neighbouring tissues in specifying and patterning the skeletogenic NC cells in the head. We also include advances made towards characterizing multipotent stem cells in the early NC as well as in various NC derivatives in embryos and even in adult.
Collapse
Affiliation(s)
- Elisabeth Dupin
- Laboratoire d'Embryologie Cellulaire et Moléculaire, CNRS UMR 7128, 49 bis, avenue de la Belle Gabrielle, 94736 Nogent-sur-Marne, France
| | | | | |
Collapse
|
96
|
Abstract
The prevailing approach within the field of craniofacial development is focused on finding a balance between tissues (e.g., facial epithelia, neuroectoderm, and neural crest) and molecules (e.g., bone morphogenetic proteins, fibroblast growth factors, Wnts) that play a role in sculpting the face. We are rapidly learning that neither these tissues nor molecular signals are able to act in isolation; in fact, molecular cues are constantly reciprocating signals between the epithelia and the neural crest in order to pattern and mold facial structures. More recently, it has been proposed that this crosstalk is often mediated and organized by discrete organizing centers within the tissues that are able to act as a self-contained unit of developmental potential (e.g., the rhombomere and perhaps the ectomere). Whatever the molecules are and however they are interpreted by these tissues, it appears that there is a remarkably conserved mechanism for setting up the initial organization of the facial prominences between species. Regardless of species, all vertebrates appear to have the same basic bauplan. However, sometime during mid-gestation, the vertebrate face begins to exhibit species-specific variations, in large part due to differences in the rates of growth and differentiation of cells comprising the facial prominences. How do these differences arise? Are they due to late changes in molecular signaling within the facial prominences themselves? Or are these late changes a reflection of earlier, more subtle alterations in boundaries and fields that are established at the earliest stages of head formation? We do not have clear answers to these questions yet, but in this chapter we present new studies that shed light on this age-old question. This chapter aims to present the known signals, both on a molecular and cellular level, responsible for craniofacial development while bringing to light the events that may serve to create difference in facial morphology seen from species to species.
Collapse
Affiliation(s)
- Samantha A Brugmann
- Department of Plastic and Reconstructive Surgery, Stanford University, California 94305, USA
| | | | | |
Collapse
|
97
|
Sandell LL, Trainor PA. Neural crest cell plasticity. size matters. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 589:78-95. [PMID: 17076276 DOI: 10.1007/978-0-387-46954-6_5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Patterning and morphogenesis of neural crest-derived tissues within a developing vertebrate embryo rely on a complex balance between signals acquired by neural crest cells in the neuroepithelium during their formation and signals from the tissues that the neural crest cells contact during their migration. Axial identity of hindbrain neural crest is controlled by a combinatorial pattern of Hox gene expression. Cellular interactions that pattern neural crest involve signals from the same key molecular families that regulate other aspects of patterning and morphogenesis within a developing embryo, namely the BMP, SHH and FGF pathways. The developmental program that regulates neural crest cell fate is both plastic and fixed. As a cohort of interacting cells, neural crest cells carry information that directs the axial pattern and species-specific morphology of the head and face. As individual cells, neural crest cells are responsive to signals from each other as well as from non-neural crest tissues in the environment. General rules and fundamental mechanisms have been important for the conservation of basic patterning of neural crest, but exceptions are notable and relevant. The key to furthering our understanding of important processes such as craniofacial development will require a better characterization of the molecular determinants of the endoderm, ectoderm and mesoderm and the effects that these molecules have on neural crest cell development.
Collapse
Affiliation(s)
- Lisa L Sandell
- Stowers Institute of Medical Research, 901 Volker Blvd., Kansas City, Missouri 64110, USA
| | | |
Collapse
|
98
|
Kuratani S. Developmental studies of the lamprey and hierarchical evolutionary steps towards the acquisition of the jaw. J Anat 2005; 207:489-99. [PMID: 16313390 PMCID: PMC1571557 DOI: 10.1111/j.1469-7580.2005.00483.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2005] [Indexed: 11/28/2022] Open
Abstract
The evolution of animal morphology can be understood as a series of changes in developmental programs. Among vertebrates, some developmental stages are conserved across species, representing particular developmental constraints. One of the most conserved stages is the vertebrate pharyngula, in which similar embryonic morphology is observed and the Hox code is clearly expressed. The oral developmental program also appears to be constrained to some extent, as both its morphology and the the Hox-code-default state of the oropharyngeal region are well conserved between the lamprey and gnathostome embryos. These features do not by themselves explain the evolution of jaws, but should be regarded as a prerequisite for evolutionary diversification of the mandibular arch. By comparing the pharyngula morphology of the lamprey and gnathostomes, it has become clear that the oral pattern is not entirely identical; in particular, the positional differentiation of the rostral ectomesenchyme is shifted between these animals. Therefore, the jaw seems to have arisen as an evolutionary novelty by overriding ancestral constraints, a process in which morphological homologies are partially lost. This change involves the heterotopic shift of tissue interaction, which appears to have been preceded by the transition from monorhiny to diplorhiny, as well as separation of the hypophysis. When gene expression patterns are compared between the lamprey and gnathostomes, cell-autonomously functioning genes tend to be associated with identical cell types or equivalent anatomical domains, whereas growth-factor-encoding genes have changed their expression domains during evolution. Thus, the heterotopic evolution may be based on changes in the regulation of signalling-molecule-encoding genes.
Collapse
Affiliation(s)
- Shigeru Kuratani
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, Kobe, Hyogo, Japan.
| |
Collapse
|
99
|
Olsson L, Ericsson R, Cerny R. Vertebrate head development: segmentation, novelties, and homology. Theory Biosci 2005; 124:145-63. [PMID: 17046353 DOI: 10.1007/bf02814481] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 06/30/2005] [Indexed: 11/26/2022]
Abstract
Vertebrate head development is a classical topic lately invigorated by methodological as well as conceptual advances. In contrast to the classical segmentalist views going back to idealistic morphology, the head is now seen not as simply an extension of the trunk, but as a structure patterned by different mechanisms and tissues. Whereas the trunk paraxial mesoderm imposes its segmental pattern on adjacent tissues such as the neural crest derivatives, in the head the neural crest cells carry pattern information needed for proper morphogenesis of mesodermal derivatives, such as the cranial muscles. Neural crest cells make connective tissue components which attach the muscle fiber to the skeletal elements. These crest cells take their origin from the same visceral arch as the muscle cells, even when the skeletal elements to which the muscle attaches are from another arch. The neural crest itself receives important patterning influences from the pharyngeal endoderm. The origin of jaws can be seen as an exaptation in which a heterotopic shift of the expression domains of regulatory genes was a necessary step that enabled this key innovation. The jaws are patterned by Dlx genes expressed in a nested pattern along the proximo-distal axis, analogous to the anterior-posterior specification governed by Hox genes. Knocking out Dlx 5 and 6 transforms the lower jaw homeotically into an upper jaw. New data indicate that both upper and lower jaw cartilages are derived from one, common anlage traditionally labelled the "mandibular" condensation, and that the "maxillary" condensation gives rise to other structures such as the trabecula. We propose that the main contribution from evolutionary developmental biology to solving homology questions lies in deepening our biological understanding of characters and character states.
Collapse
Affiliation(s)
- Lennart Olsson
- Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität, D-07743 Jena, Germany.
| | | | | |
Collapse
|
100
|
Creuzet S, Couly G, Le Douarin NM. Patterning the neural crest derivatives during development of the vertebrate head: insights from avian studies. J Anat 2005; 207:447-59. [PMID: 16313387 PMCID: PMC1571568 DOI: 10.1111/j.1469-7580.2005.00485.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2005] [Indexed: 11/29/2022] Open
Abstract
Studies carried out in the avian embryo and based on the construction of quail-chick chimeras have shown that most of the skull and all the facial and visceral skeleton are derived from the cephalic neural crest (NC). Contribution of the mesoderm is limited to its occipital and (partly) to its otic domains. NC cells (NCCs) participating in membrane bones and cartilages of the vertebrate head arise from the diencephalon (posterior half only), the mesencephalon and the rhombencephalon. They can be divided into an anterior domain (extending down to r2 included) in which genes of the Hox clusters are not expressed (Hox-negative skeletogenic NC) and a posterior domain including r4 to r8 in which Hox genes of the four first paraloguous groups are expressed. The NCCs that form the facial skeleton belong exclusively to the anterior Hox-negative domain and develop from the first branchial arch (BA1). This rostral domain of the crest is designated as FSNC for facial skeletogenic neural crest. Rhombomere 3 (r3) participates modestly to both BA1 and BA2. Forced expression of Hox genes (Hoxa2, Hoxa3 and Hoxb4) in the neural fold of the anterior domain inhibits facial skeleton development. Similarly, surgical excision of these anterior Hox-negative NCCs results in the absence of facial skeleton, showing that Hox-positive NCCs cannot replace the Hox-negative domain for facial skeletogenesis. We also show that excision of the FSNC results in dramatic down-regulation of Fgf8 expression in the head, namely in ventral forebrain and in BA1 ectoderm. We have further demonstrated that exogenous FGF8 applied to the presumptive BA1 territory at the 5-6-somite stage (5-6ss) restores to a large extent facial skeleton development. The source of the cells responsible for this regeneration was shown to be r3, which is at the limit between the Hox-positive and Hox-negative domain. NCCs that respond to FGF8 by survival and proliferation are in turn necessary for the expression/maintenance of Fgf8 expression in the ectoderm. These results strongly support the emerging picture according to which the processes underlying morphogenesis of the craniofacial skeleton are regulated by epithelial-mesenchymal bidirectional crosstalk.
Collapse
Affiliation(s)
- Sophie Creuzet
- Institut d'Embryologie Cellulaire et Moléculaire, Nogent-sur-Marne, France
| | | | | |
Collapse
|