51
|
Hornecker JL, Samollow PB, Robinson ES, VandeBerg JL, McCarrey JR. Meiotic sex chromosome inactivation in the marsupialMonodelphis domestica. Genesis 2007; 45:696-708. [DOI: 10.1002/dvg.20345] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
52
|
Heard E, Disteche CM. Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev 2006; 20:1848-67. [PMID: 16847345 DOI: 10.1101/gad.1422906] [Citation(s) in RCA: 342] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mammalian females have two X chromosomes and males have only one. This has led to the evolution of special mechanisms of dosage compensation. The inactivation of one X chromosome in females equalizes gene expression between the sexes. This process of X-chromosome inactivation (XCI) is a remarkable example of long-range, monoallelic gene silencing and facultative heterochromatin formation, and the questions surrounding it have fascinated biologists for decades. How does the inactivation of more than a thousand genes on one X chromosome take place while the other X chromosome, present in the same nucleus, remains genetically active? What are the underlying mechanisms that trigger the initial differential treatment of the two X chromosomes? How is this differential treatment maintained once it has been established, and how are some genes able to escape the process? Does the mechanism of X inactivation vary between species and even between lineages? In this review, X inactivation is considered in evolutionary terms, and we discuss recent insights into the epigenetic changes and developmental timing of this process. We also review the discovery and possible implications of a second form of dosage compensation in mammals that deals with the unique, potentially haploinsufficient, status of the X chromosome with respect to autosomal gene expression.
Collapse
Affiliation(s)
- Edith Heard
- CNRS UMR218, Curie Institute, Paris, France.
| | | |
Collapse
|
53
|
Namekawa SH, Park PJ, Zhang LF, Shima JE, McCarrey JR, Griswold MD, Lee JT. Postmeiotic sex chromatin in the male germline of mice. Curr Biol 2006; 16:660-7. [PMID: 16581510 DOI: 10.1016/j.cub.2006.01.066] [Citation(s) in RCA: 317] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 01/27/2006] [Indexed: 11/19/2022]
Abstract
In mammals, the X and Y chromosomes are subject to meiotic sex chromosome inactivation (MSCI) during prophase I in the male germline, but their status thereafter is currently unclear. An abundance of X-linked spermatogenesis genes has spawned the view that the X must be active . On the other hand, the idea that the imprinted paternal X of the early embryo may be preinactivated by MSCI suggests that silencing may persist longer . To clarify this issue, we establish a comprehensive X-expression profile during mouse spermatogenesis. Here, we discover that the X and Y occupy a novel compartment in the postmeiotic spermatid and adopt a non-Rabl configuration. We demonstrate that this postmeiotic sex chromatin (PMSC) persists throughout spermiogenesis into mature sperm and exhibits epigenetic similarity to the XY body. In the spermatid, 87% of X-linked genes remain suppressed postmeiotically, while autosomes are largely active. We conclude that chromosome-wide X silencing continues from meiosis to the end of spermiogenesis, and we discuss implications for proposed mechanisms of imprinted X-inactivation.
Collapse
Affiliation(s)
- Satoshi H Namekawa
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, 02114, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Sciurano R, Rahn M, Rey-Valzacchi G, Solari AJ. The asynaptic chromatin in spermatocytes of translocation carriers contains the histone variant γ-H2AX and associates with the XY body. Hum Reprod 2006; 22:142-50. [PMID: 16920723 DOI: 10.1093/humrep/del330] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The close apposition of multivalents with the XY body has been repeatedly described in heterozygous carriers of chromosomal rearrangements. Because in many of these carriers spermatogenesis is deeply disturbed at the spermatocyte level, the association of autosomal chromatin with the XY body may impair the spermatocyte life. METHODS Testicular biopsies from three men carriers of three different chromosomal rearrangements have been analysed by electron microscopy (EM) and immunolocalization of meiotic proteins. RESULTS There is an ordered transition from isolated multivalents at early pachytene to XY body association in late pachytene, as shown in a carrier of a rob t(13;14) translocation by EM and in a reciprocal translocation t(9;14) carrier by immunofluorescence. The non-synapsed ends of the quadrivalent show BRCA1 located on the axes and the variant histone gamma-H2AX located on the chromatin. The area covered by gamma-H2AX increases with the association of the asynaptic ends with the XY body in the t(9;14) carrier, and the area covered with gamma-H2AX in the t(Y;15) carrier is larger than that of the XY body of controls. CONCLUSIONS The affinity between the inactive XY body and asynaptic regions of multivalents is given a material basis, and transcriptional inactivation is probably shared by these two chromatin types.
Collapse
MESH Headings
- Adult
- Azoospermia/genetics
- Azoospermia/pathology
- BRCA1 Protein/genetics
- Biopsy
- Cell Cycle Proteins
- Cell Nucleus Structures/genetics
- Chromatin/genetics
- Chromatin/ultrastructure
- Chromosomes, Human, Pair 13/genetics
- Chromosomes, Human, Pair 14/genetics
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 9/genetics
- Chromosomes, Human, X/genetics
- Chromosomes, Human, Y/genetics
- DNA-Binding Proteins
- Histones/genetics
- Humans
- Male
- Nuclear Proteins/genetics
- Oligospermia/genetics
- Oligospermia/pathology
- Spermatocytes/ultrastructure
- Testis/pathology
- Translocation, Genetic/genetics
Collapse
Affiliation(s)
- R Sciurano
- Biologia Celular, CIR, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
55
|
Greaves IK, Rangasamy D, Devoy M, Marshall Graves JA, Tremethick DJ. The X and Y chromosomes assemble into H2A.Z-containing [corrected] facultative heterochromatin [corrected] following meiosis. Mol Cell Biol 2006; 26:5394-405. [PMID: 16809775 PMCID: PMC1592715 DOI: 10.1128/mcb.00519-06] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Spermatogenesis is a complex sequential process that converts mitotically dividing spermatogonia stem cells into differentiated haploid spermatozoa. Not surprisingly, this process involves dramatic nuclear and chromatin restructuring events, but the nature of these changes are poorly understood. Here, we linked the appearance and nuclear localization of the essential histone variant H2A.Z with key steps during mouse spermatogenesis. H2A.Z cannot be detected during the early stages of spermatogenesis, when the bulk of X-linked genes are transcribed, but its expression begins to increase at pachytene, when meiotic sex chromosome inactivation (MSCI) occurs, peaking at the round spermatid stage. Strikingly, when H2A.Z is present, there is a dynamic nuclear relocalization of heterochromatic marks (HP1beta and H3 di- and tri-methyl K9), which become concentrated at chromocenters and the inactive XY body, implying that H2A.Z may substitute for the function of these marks in euchromatin. We also show that the X and the Y chromosome are assembled into facultative heterochromatic structures postmeiotically that are enriched with H2A.Z, thereby replacing macroH2A. This indicates that XY silencing continues following MSCI. These results provide new insights into the large-scale changes in the composition and organization of chromatin associated with spermatogenesis and argue that H2A.Z has a unique role in maintaining sex chromosomes in a repressed state.
Collapse
Affiliation(s)
- Ian K Greaves
- The John Curtin School of Medical Research, The Australian National University, P.O. Box 334, Canberra, Australian Capital Territory, 2601 Australia.
| | | | | | | | | |
Collapse
|
56
|
Thorvaldsen JL, Verona RI, Bartolomei MS. X-tra! X-tra! News from the mouse X chromosome. Dev Biol 2006; 298:344-53. [PMID: 16916508 DOI: 10.1016/j.ydbio.2006.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 07/05/2006] [Accepted: 07/11/2006] [Indexed: 11/29/2022]
Abstract
X chromosome inactivation (XCI) is the phenomenon through which one of the two X chromosomes in female mammals is silenced to achieve dosage compensation with males. XCI is a highly complex, tightly controlled and developmentally regulated process. The mouse undergoes two forms of XCI: imprinted, which occurs in all cells of the preimplantation embryo and in the extraembryonic lineage, and random, which occurs in somatic cells after implantation. This review presents results and hypotheses that have recently been proposed concerning important aspects of both imprinted and random XCI in mice. We focus on how imprinted XCI occurs during preimplantation development, including a brief discussion of the debate as to when silencing initiates. We also discuss regulation of random XCI, focusing on the requirement for Tsix antisense transcription through the Xist locus, on the regulation of Xist chromatin structure by Tsix and on the effect of Tsix regulatory elements on choice and counting. Finally, we review exciting new data revealing that X chromosomes co-localize during random XCI. To conclude, we highlight other aspects of X-linked gene regulation that make it a suitable model for epigenetics at work.
Collapse
Affiliation(s)
- Joanne L Thorvaldsen
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
57
|
Okamoto I, Heard E. The dynamics of imprinted X inactivation during preimplantation development in mice. Cytogenet Genome Res 2006; 113:318-24. [PMID: 16575196 DOI: 10.1159/000090848] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 10/07/2005] [Indexed: 11/19/2022] Open
Abstract
In the mouse, there are two forms of X chromosome inactivation (XCI), random XCI in the fetus and imprinted paternal XCI, which is limited to the extraembryonic tissues. While the mechanism of random XCI has been studied extensively using the in vitro XX ES cell differentiation system, imprinted XCI during early embryonic development has been less well characterized. Recent studies of early embryos have reported unexpected findings for the paternal X chromosome (Xp). Imprinted XCI may not be linked to meiotic silencing in the male germ line but rather to the imprinted status of the Xist gene. Furthermore, the Xp becomes inactivated in all cells of cleavage-stage embryos and then reactivated in the cells of the inner cell mass (ICM) that form the epiblast, where random XCI ensues.
Collapse
Affiliation(s)
- I Okamoto
- CNRS UMR218, Curie Institute, Paris, France.
| | | |
Collapse
|
58
|
Khalil AM, Driscoll DJ. Histone H3 lysine 4 dimethylation is enriched on the inactive sex chromosomes in male meiosis but absent on the inactive X in female somatic cells. Cytogenet Genome Res 2006; 112:11-5. [PMID: 16276085 DOI: 10.1159/000087508] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2005] [Accepted: 03/04/2005] [Indexed: 02/02/2023] Open
Abstract
Inactivation of the X chromosome occurs in female somatic cells and in male meiosis. In both cases, the inactive X chromosome undergoes changes in histone modifications including deacetylation of core histone proteins and enrichment with histone H3 lysine 9 (H3-K9) dimethylation. In this study we show that while the inactive X in female somatic cells is largely devoid of H3-K4 dimethylation, the inactive X in male meiosis is enriched with this modification. However, the inactive X chromosome in female somatic cells and the inactive X and Y in male meiosis are devoid of H3-K4 trimethylation. Further, trimethylation of H3-K4 is present at discrete regions along most of the autosomes, while H3-K4 dimethylation shows a more homogenous staining. Also, the Y chromosome is largely devoid of H3-K4 di- and trimethylation in somatic cells of both humans and mice, however, the Y chromosome is enriched with H3-K4 di- but not trimethylation throughout spermatogenesis. Our results provide insights into the differences between female somatic cells and male germ cells in inactivating the X chromosome, and suggest that trimethylation, and not dimethylation, of H3-K4 is a more robust indicator of the active regions of the genome.
Collapse
Affiliation(s)
- A M Khalil
- Division of Pediatrics Genetics, Center for Mammalian Genetics, University of Florida College of Medicine, Gainesville, FL 32610-0296, USA
| | | |
Collapse
|
59
|
Morelli MA, Cohen PE. Not all germ cells are created equal: Aspects of sexual dimorphism in mammalian meiosis. Reproduction 2005; 130:761-81. [PMID: 16322537 DOI: 10.1530/rep.1.00865] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The study of mammalian meiosis is complicated by the timing of meiotic events in females and by the intermingling of meiotic sub-stages with somatic cells in the gonad of both sexes. In addition, studies of mouse mutants for different meiotic regulators have revealed significant differences in the stringency of meiotic events in males versus females. This sexual dimorphism implies that the processes of recombination and homologous chromosome pairing, while being controlled by similar genetic pathways, are subject to different levels of checkpoint control in males and females. This review is focused on the emerging picture of sexual dimorphism exhibited by mammalian germ cells using evidence from the broad range of meiotic mutants now available in the mouse. Many of these mouse mutants display distinct differences in meiotic progression and/or dysfunction in males versus females, and their continued study will allow us to understand the molecular basis for the sex-specific differences observed during prophase I progression.
Collapse
Affiliation(s)
- Meisha A Morelli
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
60
|
Huynh KD, Lee JT. A continuity of X-chromosome silence from gamete to zygote. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2005; 69:103-12. [PMID: 16117638 DOI: 10.1101/sqb.2004.69.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- K D Huynh
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
61
|
Jeong KS, Park JH, Lee S. The analysis of X-chromosome inactivation-related gene expression from single mouse embryo with sex-determination. Biochem Biophys Res Commun 2005; 333:803-7. [PMID: 15975555 DOI: 10.1016/j.bbrc.2005.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Accepted: 06/01/2005] [Indexed: 11/26/2022]
Abstract
Chromatin remodeling by histone and DNA modification is important for the initiation of X-chromosome inactivation (XCI). In this study, a thorough transcriptional analysis of five XCI-related genes was performed by single cell reverse-transcribed PCR. An analysis of the XCI-related gene (Xist, Tsix, SUV39H1, SET7, and DNMT1) expression was performed to investigate the initiation process of XCI from early mouse single embryo (1-cell, 2-cell, 4-cell, 8-cell, and blastocyst). Detection of the expression of Xist and Tsix from single 2-cell embryo was feasible, although the expression of those genes was very low in single 1-cell embryo. Transcription of those genes may be activated from single 2-cell embryo. After determining the sex of single embryo by Y-chromosome-specific Zfy expression, we found that Tsix could be detected from both male and female single embryos, but it was only possible to detect Xist from female single embryo. XCI chromatin-remodeling genes, such as histone H3 methylation enzymes (SUV39H1 and SET7) and DNA methylation enzyme (DNMT1), were expressed during all early phases of embryogenesis. The expression of those genes in single embryo was not dependent on sex. Our study illustrated that the expression of these chromatin-remodeling genes, SUV39H1, DNMT1, and SET7, may be originated from germ cells, which were not dependent on zygotic activation of Xist from female single embryo.
Collapse
Affiliation(s)
- Kyoung-Sin Jeong
- Functional Genomics Lab, CHA Research Institute, Yatap Campus, College of Medicine, Pochon CHA University, 222 Yatap-Dong, Sungnam-Si, Kyunggi-Do 463-836, Republic of Korea
| | | | | |
Collapse
|
62
|
Oliver-Bonet M, Ko E, Martin RH. Male infertility in reciprocal translocation carriers: the sex body affair. Cytogenet Genome Res 2005; 111:343-6. [PMID: 16192713 DOI: 10.1159/000086908] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Accepted: 02/15/2005] [Indexed: 11/19/2022] Open
Abstract
Previous reports have linked chromosomal reorganization and spermatogenic failure. In this context, it has long been known that reciprocal translocation carriers are more likely to have anomalies in the meiotic process, including fertility failures. It has also been proposed that this fertility failure may be a consequence of an association between the translocated chromosomes and the sex body. In this work, we review different hypotheses explaining meiotic failure in these carriers, and propose a model that relates meiotic abnormalities with both sex body-translocation association and different checkpoints that are known to operate during meiosis.
Collapse
Affiliation(s)
- M Oliver-Bonet
- Department of Medical Genetics, University of Calgary, Calgary, Canada
| | | | | |
Collapse
|
63
|
Aksglaede L, Wikström AM, Rajpert-De Meyts E, Dunkel L, Skakkebaek NE, Juul A. Natural history of seminiferous tubule degeneration in Klinefelter syndrome. Hum Reprod Update 2005; 12:39-48. [PMID: 16172111 DOI: 10.1093/humupd/dmi039] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Klinefelter syndrome (47,XXY) is characterized by small, firm testis, gynaecomastia, azoospermia and hypergonadotropic hypogonadism. Degeneration of the seminiferous tubules in 47,XXY males is a well-described phenomenon. It begins in the fetus, progresses through infancy and accelerates dramatically at the time of puberty with complete hyalinization of the seminiferous tubules, although a few tubules with spermatogenesis may be present in adult life. Activation of the pituitary-gonadal axis at 3 months of age is seen in Klinefelter boys similar to healthy boys. However, the level of testosterone in Klinefelter boys is significantly lower than in controls. After this 'minipuberty', the hormone levels decline to normal prepubertal levels until puberty. In puberty, an initial rise in testosterone, inhibin B, LH and FSH occurs in Klinefelter boys. However, the rise in testosterone levels off and ends at a low-normal level in young adults. Likewise, serum concentration of inhibin B exhibits a dramatic decline to a low, often undetectable level, concomitantly with a rise in FSH, reflecting the degeneration of the seminiferous tubules. Many hypotheses about the underlying mechanism of the depletion of the germ cells in Klinefelter males have been reported and include insufficient supranumerary X-chromosome inactivation, Leydig cell insufficiency and disturbed regulation of apoptosis of Sertoli and Leydig cells. However, at present, the exact mechanism remains unclear. In this article, we summarize current knowledge on the development of the classical endocrinological and histological features of 47,XXY males from fetus to adulthood and review the literature concerning the degeneration of the seminiferous tubules in this syndrome.
Collapse
Affiliation(s)
- Lise Aksglaede
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
64
|
Barchi M, Mahadevaiah S, Di Giacomo M, Baudat F, de Rooij DG, Burgoyne PS, Jasin M, Keeney S. Surveillance of different recombination defects in mouse spermatocytes yields distinct responses despite elimination at an identical developmental stage. Mol Cell Biol 2005; 25:7203-15. [PMID: 16055729 PMCID: PMC1190256 DOI: 10.1128/mcb.25.16.7203-7215.2005] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fundamentally different recombination defects cause apoptosis of mouse spermatocytes at the same stage in development, stage IV of the seminiferous epithelium cycle, equivalent to mid-pachynema in normal males. To understand the cellular response(s) that triggers apoptosis, we examined markers of spermatocyte development in mice with different recombination defects. In Spo11(-)(/)(-) mutants, which lack the double-strand breaks (DSBs) that initiate recombination, spermatocytes express markers of early to mid-pachynema, forming chromatin domains that contain sex body-associated proteins but that rarely encompass the sex chromosomes. Dmc1(-)(/)(-) spermatocytes, impaired in DSB repair, appear to arrest at or about late zygonema. Epistasis analysis reveals that this earlier arrest is a response to unrepaired DSBs, and cytological analysis implicates the BRCT-containing checkpoint protein TOPBP1. Atm(-)(/)(-) spermatocytes show similarities to Dmc1(-)(/)(-) spermatocytes, suggesting that ATM promotes meiotic DSB repair. Msh5(-)(/)(-) mutants display a set of characteristics distinct from these other mutants. Thus, despite equivalent stages of spermatocyte elimination, different recombination-defective mutants manifest distinct responses, providing insight into surveillance mechanisms in male meiosis.
Collapse
Affiliation(s)
- Marco Barchi
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Abstract
Mammalian X chromosome inactivation is one of the most striking examples of epigenetic gene regulation. Early in development one of the pair of approximately 160-Mb X chromosomes is chosen to be silenced, and this silencing is then stably inherited through subsequent somatic cell divisions. Recent advances have revealed many of the chromatin changes that underlie this stable silencing of an entire chromosome. The key initiator of these changes is a functional RNA, XIST, which is transcribed from, and associates with, the inactive X chromosome, although the mechanism of association with the inactive X and recruitment of facultative heterochromatin remain to be elucidated. This review describes the unique evolutionary history and resulting genomic structure of the X chromosome as well as the current understanding of the factors and events involved in silencing an X chromosome in mammals.
Collapse
Affiliation(s)
- Jennifer C Chow
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| | | | | | | |
Collapse
|
66
|
Wang PJ, Page DC, McCarrey JR. Differential expression of sex-linked and autosomal germ-cell-specific genes during spermatogenesis in the mouse. Hum Mol Genet 2005; 14:2911-8. [PMID: 16118233 PMCID: PMC1994333 DOI: 10.1093/hmg/ddi322] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have examined expression during spermatogenesis in the mouse of three Y-linked genes, 11 X-linked genes and 22 autosomal genes, all previously shown to be germ-cell-specific and expressed in premeiotic spermatogonia, plus another 21 germ-cell-specific autosomal genes that initiate expression in meiotic spermatocytes. Our data demonstrate that, like sex-linked housekeeping genes, germ-cell-specific sex-linked genes are subject to meiotic sex-chromosome inactivation (MSCI). Although all the sex-linked genes we investigated underwent MSCI, 14 of the 22 autosomal genes expressed in spermatogonia showed no decrease in expression in meiotic spermatocytes. This along with our observation that an additional 21 germ-cell-specific autosomal genes initiate or significantly up-regulate expression in spermatocytes confirms that MSCI is indeed a sex-chromosome-specific effect. Our results further demonstrate that the chromosome-wide repression imposed by MSCI is limited to meiotic spermatocytes and that postmeiotic expression of sex-linked genes is variable. Thus, 13 of the 14 sex-linked genes we examined showed some degree of postmeiotic reactivation. The extent of postmeiotic reactivation of germ-cell-specific X-linked genes did not correlate with proximity to the X inactivation center or the Xist gene locus. The implications of these findings are discussed with respect to differential gene regulation and the function of MSCI during spermatogenesis, including epigenetic programming of the future paternal genome during spermatogenesis.
Collapse
Affiliation(s)
- P Jeremy Wang
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19004, USA
| | | | | |
Collapse
|
67
|
Huynh KD, Lee JT. X-chromosome inactivation: a hypothesis linking ontogeny and phylogeny. Nat Rev Genet 2005; 6:410-8. [PMID: 15818384 DOI: 10.1038/nrg1604] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In mammals, sex is determined by differential inheritance of a pair of dimorphic chromosomes: the gene-rich X chromosome and the gene-poor Y chromosome. To balance the unequal X-chromosome dosage between the XX female and XY male, mammals have adopted a unique form of dosage compensation in which one of the two X chromosomes is inactivated in the female. This mechanism involves a complex, highly coordinated sequence of events and is a very different strategy from those used by other organisms, such as the fruitfly and the worm. Why did mammals choose an inactivation mechanism when other, perhaps simpler, means could have been used? Recent data offer a compelling link between ontogeny and phylogeny. Here, we propose that X-chromosome inactivation and imprinting might have evolved from an ancient genome-defence mechanism that silences unpaired DNA.
Collapse
Affiliation(s)
- Khanh D Huynh
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
68
|
Elliott DJ. The role of potential splicing factors including RBMY, RBMX, hnRNPG-T and STAR proteins in spermatogenesis. ACTA ACUST UNITED AC 2005; 27:328-34. [PMID: 15595951 DOI: 10.1111/j.1365-2605.2004.00496.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Investigations into the RBM gene family are uncovering networks of protein interactions which regulate RNA processing, and which might operate downstream of signal transduction pathways. Similar pathways likely operate in germ cells and somatic cells, with RBMY, hnRNPGT and T-STAR proteins providing germ cell-specific components. These pathways may be important for normal germ cell development, and might be compromised in men with Y chromosome deletions affecting RBMY gene expression. The STAR proteins have multiple functions in pre-mRNA splicing, signalling and cell cycle control. These processes might have to be very finely regulated during germ cell development, which involves both two sequential meiotic divisions (meiosis I and II) as well as mitotic (spermatogonial) cell divisions, and which is controlled by paracrine signalling within the testis from Sertoli cells.
Collapse
Affiliation(s)
- David J Elliott
- Institute of Human Genetics, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 3BZ, UK.
| |
Collapse
|
69
|
Chang CC, Ma Y, Jacobs S, Tian XC, Yang X, Rasmussen TP. A maternal store of macroH2A is removed from pronuclei prior to onset of somatic macroH2A expression in preimplantation embryos. Dev Biol 2005; 278:367-80. [PMID: 15680357 DOI: 10.1016/j.ydbio.2004.11.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 11/01/2004] [Accepted: 11/11/2004] [Indexed: 01/15/2023]
Abstract
MacroH2A histones are variants of canonical histone H2A that are conserved among vertebrates. Previous studies have implicated macroH2As in epigenetic gene-silencing events including X chromosome inactivation. Here we show that macroH2A is present in developing and mature mouse oocytes. MacroH2A is localized to chromatin of germinal vesicles (GV) in both late growth stage (lg-GV) and fully grown (fg-GV) stage oocytes. In addition, macroH2A is associated with the chromosomes of mature oocytes, and abundant macroH2A is present in the first polar body. However, maternal macroH2A is lost from zygotes generated by normal fertilization by the late 2 pronuclei (2PN) stage. Normal embryos at 2-, 4-, and 8-cell stages lack macroH2A except in residual polar bodies. MacroH2A protein expression reappears in embryos after the 8-cell stage and persists in morulae and blastocysts, where nuclear macroH2A is present in both the trophectodermal and inner cell mass cells. We followed the loss of macroH2A from pronuclei in parthenogenetic embryos generated by oocyte activation. Abundant macroH2A is present upon the metaphase II plate and persists through parthenogenetic anaphase, but macroH2A is progressively lost during pronuclear decondensation prior to synkaryogamy. Examination of embryos generated by intracytoplasmic sperm injection (ICSI) revealed that macroH2A is associated exclusively with female pronuclei prior to loss in late pronucleus stage embryos. These results outline a surprising finding that a maternal store of macroH2A is removed from the maternal genome prior to synkaryogamy, resulting in embryos that execute three to four mitotic divisions in the absence of macroH2A prior to the onset of embryonic macroH2A expression.
Collapse
Affiliation(s)
- Ching-Chien Chang
- Center for Regenerative Biology, University of Connecticut, 1392 Storrs Road, Storrs, CT 06269-4243, USA
| | | | | | | | | | | |
Collapse
|
70
|
Baarends WM, Wassenaar E, van der Laan R, Hoogerbrugge J, Sleddens-Linkels E, Hoeijmakers JHJ, de Boer P, Grootegoed JA. Silencing of unpaired chromatin and histone H2A ubiquitination in mammalian meiosis. Mol Cell Biol 2005; 25:1041-53. [PMID: 15657431 PMCID: PMC543997 DOI: 10.1128/mcb.25.3.1041-1053.2005] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During meiotic prophase in male mammals, the X and Y chromosomes are incorporated in the XY body. This heterochromatic body is transcriptionally silenced and marked by increased ubiquitination of histone H2A. This led us to investigate the relationship between histone H2A ubiquitination and chromatin silencing in more detail. First, we found that ubiquitinated H2A also marks the silenced X chromosome of the Barr body in female somatic cells. Next, we studied a possible relationship between H2A ubiquitination, chromatin silencing, and unpaired chromatin in meiotic prophase. The mouse models used carry an unpaired autosomal region in male meiosis or unpaired X and Y chromosomes in female meiosis. We show that ubiquitinated histone H2A is associated with transcriptional silencing of large chromatin regions. This silencing in mammalian meiotic prophase cells concerns unpaired chromatin regions and resembles a phenomenon described for the fungus Neurospora crassa and named meiotic silencing by unpaired DNA.
Collapse
Affiliation(s)
- Willy M Baarends
- Department of Reproduction and Development, Erasmus MC, University Medical Center Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Divina P, Vlček Č, Strnad P, Pačes V, Forejt J. Global transcriptome analysis of the C57BL/6J mouse testis by SAGE: evidence for nonrandom gene order. BMC Genomics 2005; 6:29. [PMID: 15748293 PMCID: PMC1079818 DOI: 10.1186/1471-2164-6-29] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Accepted: 03/05/2005] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND We generated the gene expression profile of the total testis from the adult C57BL/6J male mice using serial analysis of gene expression (SAGE). Two high-quality SAGE libraries containing a total of 76 854 tags were constructed. An extensive bioinformatic analysis and comparison of SAGE transcriptomes of the total testis, testicular somatic cells and other mouse tissues was performed and the theory of male-biased gene accumulation on the X chromosome was tested. RESULTS We sorted out 829 genes predominantly expressed from the germinal part and 944 genes from the somatic part of the testis. The genes preferentially and specifically expressed in total testis and testicular somatic cells were identified by comparing the testis SAGE transcriptomes to the available transcriptomes of seven non-testis tissues. We uncovered chromosomal clusters of adjacent genes with preferential expression in total testis and testicular somatic cells by a genome-wide search and found that the clusters encompassed a significantly higher number of genes than expected by chance. We observed a significant 3.2-fold enrichment of the proportion of X-linked genes specific for testicular somatic cells, while the proportions of X-linked genes specific for total testis and for other tissues were comparable. In contrast to the tissue-specific genes, an under-representation of X-linked genes in the total testis transcriptome but not in the transcriptomes of testicular somatic cells and other tissues was detected. CONCLUSION Our results provide new evidence in favor of the theory of male-biased genes accumulation on the X chromosome in testicular somatic cells and indicate the opposite action of the meiotic X-inactivation in testicular germ cells.
Collapse
Affiliation(s)
- Petr Divina
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic and Center for Integrated Genomics, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Čestmír Vlček
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic and Center for Integrated Genomics, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Petr Strnad
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic and Center for Integrated Genomics, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Václav Pačes
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic and Center for Integrated Genomics, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Jiří Forejt
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic and Center for Integrated Genomics, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| |
Collapse
|
72
|
Storchová R, Gregorová S, Buckiová D, Kyselová V, Divina P, Forejt J. Genetic analysis of X-linked hybrid sterility in the house mouse. Mamm Genome 2005; 15:515-24. [PMID: 15366371 DOI: 10.1007/s00335-004-2386-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Hybrid sterility is a common postzygotic reproductive isolation mechanism that appears in the early stages of speciation of various organisms. Mus musculus musculus and Mus musculus domesticus represent two recently separated mouse subspecies particularly suitable for genetic studies of hybrid sterility. Here we show that the introgression of Chr X of M. m. musculus origin (PWD/Ph inbred strain, henceforth PWD) into the genetic background of the C57BL/6J (henceforth B6) inbred strain (predominantly of M. m. domesticus origin) causes male sterility. The X-linked hybrid sterility is associated with reduced testes weight, lower sperm count, and morphological abnormalities of sperm heads. The analysis of recombinant Chr Xs in sterile and fertile males as well as quantitative trait locus (QTL) analysis of several fertility parameters revealed an oligogenic nature of the X-linked hybrid sterility. The Hstx1 locus responsible for male sterility was mapped near DXMit119 in the central part of Chr X. To ensure full sterility, the PWD allele of Hstx1 has to be supported with the PWD allelic form of loci in at least one proximal and/or one distal region of Chr X. Mapping and cloning of Hstx1 and other genes responsible for sterility of B6-X PWD Y B6 males could help to elucidate the special role of Chr X in hybrid sterility and consequently in speciation.
Collapse
Affiliation(s)
- Radka Storchová
- Institute of Molecular Genetics AS CR, 14220 Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
73
|
Abstract
Post-transcriptional mechanisms play an important role in the biology of germ cells, where they control key developmental decisions in cell division, differentiation and death. Because these post-transcriptional controls are cell-type-specific, and often utilize germ-cell-specific RNA-binding proteins, they provide useful diagnostic markers for male infertility and testicular cancer. Investigation of the genetics of male infertility in men and model organisms suggests that disruption of post-transcriptional control mechanisms can cause specific germ cell pathologies, and these studies point to future possible therapeutic routes for restoring spermatogenesis.
Collapse
Affiliation(s)
- Ingrid Ehrmann
- Institute of Human Genetics, International Centre for Life, Central Parkway, Newcastle NE1 3BZ, UK
| | | |
Collapse
|
74
|
Jarvis S, Elliott DJ, Morgan D, Winston R, Readhead C. Molecular markers for the assessment of postnatal male germ cell development in the mouse. Hum Reprod 2005; 20:108-16. [PMID: 15539445 DOI: 10.1093/humrep/deh565] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND A proliferation marker, proliferating cell nuclear antigen (PCNA), a Sertoli cell specific transcription factor, GATA-1 and the male germ cell specific, RNA binding motif (RBM), were used to identify different cellular populations during postnatal development of the mouse testis. METHODS Immunohistochemistry, RT-PCR and real-time quantitative RT-PCR (QRT-PCR) were used. RESULTS PCNA was expressed in pre-Sertoli and germ cells on the day of birth. Both pre-meiotic germ cells and spermatocytes expressed RBM throughout postnatal development. RBM-positive cell counts and QRT-PCR of RBM showed that average level of RBM per cell is highest in juvenile males between 14 and 21 days. From 42 days onward, there was a dramatic decrease in RBM expression in individual pre-meiotic and meiotic germ cells. CONCLUSIONS These markers were used to correlate cell proliferative capability, gene expression profile and anatomic location within the developing mouse testis. The majority of germ cells start active proliferation once they have migrated to the basement membrane or immediately before. RBM is more highly expressed during the first wave of spermatogenesis versus subsequent waves, suggesting that there may be a change in the activity of RBM.
Collapse
Affiliation(s)
- Sheba Jarvis
- Institute of Reproductive and Developmental Biology, Imperial College Faculty of Medicine, Hammersmith Campus, Du Cane Road, London W12 ONN, UK
| | | | | | | | | |
Collapse
|
75
|
Khalil AM, Boyar FZ, Driscoll DJ. Dynamic histone modifications mark sex chromosome inactivation and reactivation during mammalian spermatogenesis. Proc Natl Acad Sci U S A 2004; 101:16583-7. [PMID: 15536132 PMCID: PMC534513 DOI: 10.1073/pnas.0406325101] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Based on the formation of the XY body at pachytene and expression studies of a few X-linked genes, the X and Y chromosomes seem to undergo transcriptional inactivation during mammalian spermatogenesis. However, the extent and the mechanism of X and Y inactivation are not known. Here, we show that both the X and Y chromosomes undergo sequential changes in their histone modifications beginning at the pachytene stage of meiosis. These changes usually are associated with transcriptional inactivation in somatic cells, and they coincide with the exclusion of the phosphorylated (active) form of RNA polymerase II from the XY body. Both sex chromosomes undergo extensive deacetylation at histones H3 and H4 and (di)methylation of lysine (K)9 on histone H3; however, there are no changes in H3-K4 methylation. These changes persist even when the XY body disappears in late pachytene, and the X and Y chromosomes segregate from one another after the first meiotic division. By the spermatid stage, histone modifications of the X and Y chromosomes revert to those of active chromatin and RNA polymerase II reengages with both chromosomes. Our observations indicate that X and Y inactivation is extensive and persists even when the X and Y chromosomes are separated in secondary spermatocytes. These findings provide insights into epigenetic programming and chromatin dynamics in the male germ line.
Collapse
Affiliation(s)
- Ahmad M Khalil
- Division of Pediatrics Genetics and Center for Mammalian Genetics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
76
|
Touré A, Szot M, Mahadevaiah SK, Rattigan A, Ojarikre OA, Burgoyne PS. A new deletion of the mouse Y chromosome long arm associated with the loss of Ssty expression, abnormal sperm development and sterility. Genetics 2004; 166:901-12. [PMID: 15020475 PMCID: PMC1470733 DOI: 10.1534/genetics.166.2.901] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mouse Y chromosome carries 10 distinct genes or gene families that have open reading frames suggestive of retained functionality; it has been assumed that many of these function in spermatogenesis. However, we have recently shown that only two Y genes, the testis determinant Sry and the translation initiation factor Eif2s3y, are essential for spermatogenesis to proceed to the round spermatid stage. Thus, any further substantive mouse Y-gene functions in spermatogenesis are likely to be during sperm differentiation. The complex Ssty gene family present on the mouse Y long arm (Yq) has been implicated in sperm development, with partial Yq deletions that reduce Ssty expression resulting in impaired fertilization efficiency. Here we report the identification of a more extensive Yq deletion that abolishes Ssty expression and results in severe sperm defects and sterility. This result establishes that genetic information (Ssty?) essential for normal sperm differentiation and function is present on mouse Yq.
Collapse
Affiliation(s)
- Aminata Touré
- National Institute for Medical Research, London NW7 1AA, UK
| | | | | | | | | | | |
Collapse
|
77
|
Rohozinski J, Bishop CE. The mouse juvenile spermatogonial depletion (jsd) phenotype is due to a mutation in the X-derived retrogene, mUtp14b. Proc Natl Acad Sci U S A 2004; 101:11695-700. [PMID: 15289605 PMCID: PMC511039 DOI: 10.1073/pnas.0401130101] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recessive juvenile spermatogonial depletion (jsd) mutation results in a single wave of spermatogenesis, followed by failure of type A spermatogonia to differentiate, resulting in adult male sterility. We have identified a jsd-specific rearrangement in the mouse homologue of the Saccharomyces cerevisiae gene UTP14, termed mUtp14b. Confirmation that mUtp14b underlies the jsd phenotype was obtained by transgenic bacterial artificial chromosome (BAC) rescue. We also identified a homologous gene on the Mus musculus X chromosome (MMUX) (mUtp14a) that is the strict homologue of the yeast gene, from which the intronless mUtp14b has been derived by retrotransposition. Expression analysis showed that mUtp14b is predominantly expressed in the germ line of the testis from zygotene through round spermatids, whereas mUtp14a, although well expressed in all somatic tissues, could be detected only in the germ line in round spermatids. In yeast, depletion of the UTP proteins impedes production of 18S rRNA, leading to cell death. We propose that the retroposed autosomal copy mUtp14b, having acquired a testis-specific expression pattern, could have provided a mechanism for increasing the efficiency and/or numbers of germ cells produced by meeting the need for more 18S rRNA and protein. Such a mechanism would be of obvious reproductive advantage and be strongly selected for in evolution. Consistent with this hypothesis is the finding of a similar X-autosome retroposition of UTP14 in human which seems to have arisen independently of that in rodents. In jsd homozygotes, which lack a functional copy of Utp14b, insufficient production of rRNA quickly leads to a cessation of spermatogenesis.
Collapse
Affiliation(s)
- Jan Rohozinski
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
78
|
Churikov D, Zalenskaya IA, Zalensky AO. Male germline-specific histones in mouse and man. Cytogenet Genome Res 2004; 105:203-14. [PMID: 15237208 DOI: 10.1159/000078190] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Accepted: 12/10/2003] [Indexed: 11/19/2022] Open
Abstract
In mice and humans, the production of male gametes is a result of a complex multistep process of stem cell differentiation. The final product, the mature spermatozoon, is designed for the safe delivery of a haploid copy of the paternal genetic information to the oocyte in a structural state suitable for zygote formation and embryogenesis. A remarkable structural reorganization of chromosomes in germline cells during mammalian spermatogenesis has been characterized. The most important steps are connected with the recombination events during meiosis and the final packaging of the haploid genome in the genetically inert, compacted nucleus of the sperm. Underlying the changes in chromatin organization is the appearance of testis-specific histones. Although the existence of such histones has been known for decades, their exact functions still are not established. Deciphering of the mouse and human genomes has allowed a more detailed description of the organization and regulation of the testis-specific histone genes. In addition, it has facilitated the discovery of previously unknown proteins. This review summarizes contemporary information on these germline-specific/enriched histones in both the mouse and human and outlines early achievements in the identification of their functions.
Collapse
Affiliation(s)
- D Churikov
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | | | | |
Collapse
|
79
|
Abstract
X inactivation is the silencing one of the two X chromosomes in XX female mammals. Initiation of this process during early development is controlled by the X-inactivation centre, a complex locus that determines how many, and which, X chromosomes will be inactivated. It also produces the Xist transcript, a remarkable RNA that coats the X chromosome in cis and triggers its silencing. Xist RNA coating induces a cascade of chromatin changes on the X chromosome, including the recruitment of Polycomb group proteins. This results in an inactive state that is initially labile, but may be further locked in by epigenetic marks such as DNA methylation. In mice, X inactivation has recently been found to be much more dynamic than previously thought during early pre-implantation development. The paternal X chromosome is initially inactivated in all cells of cleavage-stage embryos and then selectively reactivated in the subset of cells that will form the embryo, with random X inactivation occurring thereafter.
Collapse
Affiliation(s)
- Edith Heard
- CNRS UMR 218, Curie Institute, 26 rue d'Ulm, Paris 75005, France.
| |
Collapse
|
80
|
Affiliation(s)
- Anne C Ferguson-Smith
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
81
|
Hoyer-Fender S. Molecular aspects of XY body formation. Cytogenet Genome Res 2004; 103:245-55. [PMID: 15051945 DOI: 10.1159/000076810] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Accepted: 09/26/2003] [Indexed: 11/19/2022] Open
Abstract
More than a century ago, a densely stained area inside the nucleus of male meiotic cells was described. It was later shown to harbor the sex chromosomes which undergo transcriptional inactivation in conjunction with heterochromatinisation and synapsis to form the XY body. Formation of the XY body is conserved throughout the mammalian phylogenetic tree and is thought to be essential for successful spermatogenesis. However, its biological role as well as the molecular mechanisms underlying XY body formation are still far from being understood. A lot of effort has already been undertaken to characterize components of the XY body and to investigate their functional implications in sex chromatin heterochromatinisation and meiotic sex chromosome inactivation (MSCI). This review gives an overview of those components and their possible implications in XY body formation and function.
Collapse
Affiliation(s)
- S Hoyer-Fender
- Georg-August-Universität Göttingen, Göttinger Zentrum für Molekulare Biowissenschaften, Abteilung Entwicklungsbiologie, Göttingen, Germany.
| |
Collapse
|
82
|
Baarends WM, Grootegoed JA. Chromatin dynamics in the male meiotic prophase. Cytogenet Genome Res 2004; 103:225-34. [PMID: 15051943 DOI: 10.1159/000076808] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Accepted: 11/24/2003] [Indexed: 11/19/2022] Open
Abstract
During the male meiotic prophase in mouse and man, pairing and recombination of homologous chromosomes is accompanied by changes in chromatin structure. In this review, the dynamics of assembly and disassembly of the chromatin-associated complexes that mediate sister chromatid cohesion (cohesin) and maintain chromosome pairing (the synaptonemal complex) are described. Special features of the meiotic S phase are discussed, and also the dynamics of several key players that act together after the S phase at sites of meiotic double-strand break DNA repair. Current knowledge on histone modifications that occur during the male meiotic prophase is discussed, with special attention for the inactive chromatin of the X and Y chromosomes that constitutes the sex body. Finally, it is discussed that in the future, it will be possible to view the true chromatin dynamics during male meiosis in time, in living cells, through analysis of fluorescent-tagged proteins expressed in transgenic mice, using advanced fluorescent microscopy techniques.
Collapse
Affiliation(s)
- W M Baarends
- Department of Reproduction and Development, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| | | |
Collapse
|
83
|
Szot M, Grigoriev V, Mahadevaiah SK, Ojarikre OA, Touré A, von Glasenapp E, Rattigan A, Turner JMA, Elliott DJ, Burgoyne PS. Does Rbmy have a role in sperm development in mice? Cytogenet Genome Res 2004; 103:330-6. [PMID: 15051956 DOI: 10.1159/000076821] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Accepted: 10/27/2003] [Indexed: 11/19/2022] Open
Abstract
The Y(d1) deletion in mice removes most of the multi-copy Rbmy gene cluster that is located adjacent to the centromere on the Y short arm (Yp). XY(d1) mice develop as females because Sry is inactivated, probably because it is now juxtaposed to centromeric heterochromatin. We have previously produced XY(d1)Sry transgenic males and found that they have a substantially increased frequency of abnormal sperm. Staining of testis sections with a polyclonal anti-RBMY antibody appeared to show a marked decrease of RBMY protein in the spermatids of XY(d1)Sry males compared to control males, which led us to suggest that this may be responsible for the increase in sperm anomalies. In the current study we sought to determine whether augmenting Rbmy expression specifically in the spermatids of XY(d1)Sry males would ameliorate the sperm defects. An expressing Rbmy transgene driven by the spermatid-specific mouse protamine 1 promotor (mP1Rbmy) was therefore introduced into XY(d1)Sry males. This failed to reduce the frequency of abnormal sperm. In the course of this study, a new RBMY antibody was generated that, in contrast to the original antibody, failed to detect RBMY in spermatid stages by immunostaining. The lack of RBMY was confirmed by western blotting of lysates from purified round spermatids and elongating spermatids. The implications of these results for the proposed role for RBMY in sperm development are discussed.
Collapse
Affiliation(s)
- M Szot
- Division of Developmental Genetics, MRC National Institute for Medical Research, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Touré A, Szot M, Mahadevaiah SK, Rattigan Á, Ojarikre OA, Burgoyne PS. A New Deletion of the Mouse Y Chromosome Long Arm Associated With the Loss of Ssty Expression, Abnormal Sperm Development and Sterility. Genetics 2004. [DOI: 10.1093/genetics/166.2.901] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Abstract
The mouse Y chromosome carries 10 distinct genes or gene families that have open reading frames suggestive of retained functionality; it has been assumed that many of these function in spermatogenesis. However, we have recently shown that only two Y genes, the testis determinant Sry and the translation initiation factor Eif2s3y, are essential for spermatogenesis to proceed to the round spermatid stage. Thus, any further substantive mouse Y-gene functions in spermatogenesis are likely to be during sperm differentiation. The complex Ssty gene family present on the mouse Y long arm (Yq) has been implicated in sperm development, with partial Yq deletions that reduce Ssty expression resulting in impaired fertilization efficiency. Here we report the identification of a more extensive Yq deletion that abolishes Ssty expression and results in severe sperm defects and sterility. This result establishes that genetic information (Ssty?) essential for normal sperm differentiation and function is present on mouse Yq.
Collapse
Affiliation(s)
- Aminata Touré
- National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Maria Szot
- National Institute for Medical Research, London NW7 1AA, United Kingdom
- Department of Genetics and Evolution, Jagiellonian University, 30-060 Krakow, Poland
| | | | - Áine Rattigan
- National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Obah A Ojarikre
- National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Paul S Burgoyne
- National Institute for Medical Research, London NW7 1AA, United Kingdom
| |
Collapse
|
85
|
Migeon BR. X chromosome inactivation: theme and variations. Cytogenet Genome Res 2004; 99:8-16. [PMID: 12900539 DOI: 10.1159/000071568] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Accepted: 01/20/2003] [Indexed: 11/19/2022] Open
Abstract
My contribution to this special issue on Vertebrate Sex Chromosomes deals with the theme of X chromosome inactivation and its variations. I will argue that the single active X--characteristic of mammalian X dosage compensation--is unique to mammals, and that the major underlying mechanism(s) must be the same for most of them. The variable features reflect modifications that do not interfere with the basic theme. These variations were acquired during mammalian evolution--to solve special needs for imprinting and locking in the inactive state. Some of the adaptations reinforce the basic theme, and were needed because of species differences in the timing of interacting developmental events. Elucidating the molecular basis for the single active X requires that we distinguish the mechanisms essential for the basic theme from those responsible for its variations.
Collapse
Affiliation(s)
- B R Migeon
- McKusick Nathans Institute of Genetic Medicine and Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore MD, USA.
| |
Collapse
|
86
|
Heard E, Chaumeil J, Masui O, Okamoto I. Mammalian X-chromosome inactivation: an epigenetics paradigm. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 69:89-102. [PMID: 16117637 DOI: 10.1101/sqb.2004.69.89] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- E Heard
- Mammalian Developmental Epigenetics Group, CNRS UMR218, Curie Institute, 75248 Paris Cedex 05, France.
| | | | | | | |
Collapse
|
87
|
Abstract
The Xist RNA is a critical component of X inactivation, and Tsix is a non-coding antisense RNA to the Xist gene. We review the data from mouse that demonstrates that Tsix serves to regulate Xist expression. TSIX antisense transcripts have also been detected in humans, but without a manipulatable system to study the inactivation process in humans it remains unknown whether these antisense transcripts are functional in regulating human XIST. After a review of the differences between the human and mouse antisense, we discuss how the question of whether or not the human TSIX is functional impacts models of Tsix function.
Collapse
Affiliation(s)
- Carolyn J Brown
- Department of Medical Genetics, University of British Columbia, 6174 University Boulevard, Vancouver, BC, Canada V6T 1Z3.
| | | |
Collapse
|
88
|
Metzler-Guillemain C, Luciani J, Depetris D, Guichaoua MR, Mattei MG. HP1beta and HP1gamma, but not HP1alpha, decorate the entire XY body during human male meiosis. Chromosome Res 2003; 11:73-81. [PMID: 12675308 DOI: 10.1023/a:1022014217196] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During meiosis in male mammals, the X and Y chromosomes become heterochromatic and transcriptionally silent, and form the XY body. Although the HP1 proteins are known to be involved in the packaging of chromosomal DNA into repressive heterochromatin domains, their involvement in facultative heterochromatinization has not been precisely determined. Here, we analyse, for the first time in humans, the subcellular distribution of the heterochromatin protein HP1alpha, HP1beta and HP1gamma isoforms, in male pachytene spermatocytes, and the XY body facultative heterochromatin in particular. Our results demonstrate that HP1beta and HP1gamma, but not the HP1alpha isoforms, decorate the entire XY body in half the pachytene nuclei observed. In some nuclei, the XY body appears to be only partially labelled. In these cases, the HP1beta and HP1gamma signals are adjacent to the Yq12 constitutive heterochromatin and signal appears to originate in this region before spreading over the entire XY body. This distribution suggests that HP1beta and HP1gamma proteins, which are components of the constitutive heterochromatin, may also be involved in the facultative heterochromatinization of the XY body. Nevertheless, their absence from the early pachytene substage, even though the XY body is already condensed, suggests that these proteins are not involved in the initiation of this process.
Collapse
Affiliation(s)
- C Metzler-Guillemain
- Inserm U491, Faculté de Médecine Timone, 27, Bd Jean Moulin, 13385 Marseille cedex 05, France
| | | | | | | | | |
Collapse
|
89
|
Banks KG, Johnson KA, Lerner CP, Mahaffey CL, Bronson RT, Simpson EM. Retroposon compensatory mechanism hypothesis not supported: Zfa knockout mice are fertile. Genomics 2003; 82:254-60. [PMID: 12906850 DOI: 10.1016/s0888-7543(03)00155-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It is hypothesized that autosomal retroposons compensate for the loss of their inactivated essential X-chromosome progenitors during spermatogenesis. Here we test this Retroposon Compensatory Mechanism (RCM) hypothesis using the Zfy gene family. The mouse autosomal retroposon Zfa is expressed in testes at the same developmental time points at which Zfx levels decline, which correspond to the time of male sex chromosome inactivation, suggesting that Zfa may compensate for the loss of Zfx during spermatogenesis. We examined the effect of Zfa-targeted mutagenesis on spermatogenesis in three genetically distinct mouse strains. Surprisingly, Zfa knockout mice showed no detectable fertility, sperm count, or testes morphology defects. We therefore conclude that Zfa is not an essential gene for spermatogenesis and fertility. This surprising finding now challenges the RCM hypothesis at least for the Zfy gene family. It also forces us to reevaluate the original data underpinning the RCM hypothesis for this family and to propose alternative hypotheses.
Collapse
Affiliation(s)
- Kathleen G Banks
- Centre for Molecular Medicine and Therapeutics, British Columbia Research Institute for Children's and Women's Health, Department of Medical Genetics, University of British Columbia, 950 West 28th Avenue, Vancouver, British Columbia, Canada, V5Z 4H4
| | | | | | | | | | | |
Collapse
|
90
|
Fernandez-Capetillo O, Mahadevaiah SK, Celeste A, Romanienko PJ, Camerini-Otero RD, Bonner WM, Manova K, Burgoyne P, Nussenzweig A. H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell 2003; 4:497-508. [PMID: 12689589 DOI: 10.1016/s1534-5807(03)00093-5] [Citation(s) in RCA: 460] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
During meiotic prophase in male mammals, the X and Y chromosomes condense to form a macrochromatin body, termed the sex, or XY, body, within which X- and Y-linked genes are transcriptionally repressed. The molecular basis and biological function of both sex body formation and meiotic sex chromosome inactivation (MSCI) are unknown. A phosphorylated form of H2AX, a histone H2A variant implicated in DNA repair, accumulates in the sex body in a manner independent of meiotic recombination-associated double-strand breaks. Here we show that the X and Y chromosomes of histone H2AX-deficient spermatocytes fail to condense to form a sex body, do not initiate MSCI, and exhibit severe defects in meiotic pairing. Moreover, other sex body proteins, including macroH2A1.2 and XMR, do not preferentially localize with the sex chromosomes in the absence of H2AX. Thus, H2AX is required for the chromatin remodeling and associated silencing in male meiosis.
Collapse
Affiliation(s)
- Oscar Fernandez-Capetillo
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|