51
|
Stirnnagel K, Lüftenegger D, Stange A, Swiersy A, Müllers E, Reh J, Stanke N, Grosse A, Chiantia S, Keller H, Schwille P, Hanenberg H, Zentgraf H, Lindemann D. Analysis of prototype foamy virus particle-host cell interaction with autofluorescent retroviral particles. Retrovirology 2010; 7:45. [PMID: 20478027 PMCID: PMC2887381 DOI: 10.1186/1742-4690-7-45] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 05/17/2010] [Indexed: 11/21/2022] Open
Abstract
Background The foamy virus (FV) replication cycle displays several unique features, which set them apart from orthoretroviruses. First, like other B/D type orthoretroviruses, FV capsids preassemble at the centrosome, but more similar to hepadnaviruses, FV budding is strictly dependent on cognate viral glycoprotein coexpression. Second, the unusually broad host range of FV is thought to be due to use of a very common entry receptor present on host cell plasma membranes, because all cell lines tested in vitro so far are permissive. Results In order to take advantage of modern fluorescent microscopy techniques to study FV replication, we have created FV Gag proteins bearing a variety of protein tags and evaluated these for their ability to support various steps of FV replication. Addition of even small N-terminal HA-tags to FV Gag severely impaired FV particle release. For example, release was completely abrogated by an N-terminal autofluorescent protein (AFP) fusion, despite apparently normal intracellular capsid assembly. In contrast, C-terminal Gag-tags had only minor effects on particle assembly, egress and particle morphogenesis. The infectivity of C-terminal capsid-tagged FV vector particles was reduced up to 100-fold in comparison to wild type; however, infectivity was rescued by coexpression of wild type Gag and assembly of mixed particles. Specific dose-dependent binding of fluorescent FV particles to target cells was demonstrated in an Env-dependent manner, but not binding to target cell-extracted- or synthetic- lipids. Screening of target cells of various origins resulted in the identification of two cell lines, a human erythroid precursor- and a zebrafish- cell line, resistant to FV Env-mediated FV- and HIV-vector transduction. Conclusions We have established functional, autofluorescent foamy viral particles as a valuable new tool to study FV - host cell interactions using modern fluorescent imaging techniques. Furthermore, we succeeded for the first time in identifying two cell lines resistant to Prototype Foamy Virus Env-mediated gene transfer. Interestingly, both cell lines still displayed FV Env-dependent attachment of fluorescent retroviral particles, implying a post-binding block potentially due to lack of putative FV entry cofactors. These cell lines might ultimately lead to the identification of the currently unknown ubiquitous cellular entry receptor(s) of FVs.
Collapse
Affiliation(s)
- Kristin Stirnnagel
- Institut für Virologie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Abstract
One of the most fascinating areas in retrovirology is the study of foamy viruses (FVs), because these viruses appear to do everything that is common to all other retroviruses differently. FVs have found a completely new way to propagate their genome. And they do this extremely successfully because most of wild non-human primates, felines, bovines, equines, and small ruminants are likely to be non-pathogenically infected. The success of FVs can also be viewed from a different angle, since they replicate very conservatively and do not need to shape their genotypic and phenotypic makeup every now and then. The elucidation of the underlying basic mechanisms of the FV replication strategy is the topic of this review.
Collapse
|
53
|
Preparation of BFV Gag antiserum and preliminary study on cellular distribution of BFV. Virol Sin 2010; 25:115-22. [PMID: 20960308 DOI: 10.1007/s12250-010-3110-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 12/16/2009] [Indexed: 10/19/2022] Open
Abstract
Viruses (e.g. Human immunodeficiency virus, Human simplex virus and Prototype foamy virus) are obligate intracellular parasites and therefore depend on the cellular machinery for cellular trafficking. Bovine foamy virus (BFV) is a member of the Spumaretrovirinae subfamily of Retroviruses, however, details of its cellular trafficking remain unknown. In this study, we cloned the BFV gag gene into prokaryotic expression vector pET28a and purified the denaturalized Gag protein. The protein was used to immunize BALB/c mouse to produce antiserum, which could specifically recognize the BFV Gag protein in BFV-infected cells through western blot assay. Additionally, these results demonstrated that both the optimal and suboptimal cleavage of Gag protein occur in BFV-infected cells. Subsequently, the Gag antiserum was used to investigate subcellular localization of BFV. In immunofluorescence microscopy assays, colocalization microtubules (MTs) and assembling viral particles were clearly observed, which implied that BFV may transport along cellular MTs in host cells. Furthermore, MTs-depolymerizing assay indicated MTs were required for the efficient replication of BFV. In conclusion, our study suggests that BFV has evolved the mechanism to hijack the cellular cytoskeleton for its replication.
Collapse
|
54
|
Su Y, Qiao W, Guo T, Tan J, Li Z, Chen Y, Li X, Li Y, Zhou J, Chen Q. Microtubule-dependent retrograde transport of bovine immunodeficiency virus. Cell Microbiol 2010; 12:1098-107. [PMID: 20148896 DOI: 10.1111/j.1462-5822.2010.01453.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Microtubules are essential components of the cytoskeleton that participate in a variety of cellular processes such as cell division and migration. In addition, there is a growing body of evidence implicating a role for microtubules in intracellular viral transport. In this study, we found that pharmacological disruption of microtubules remarkably blocked bovine immunodeficiency virus (BIV) movement from the cell periphery to the perinuclear region, a process known as retrograde transport. A similar effect was observed by inhibiting function of the microtubule-associated motor protein dynein. By yeast two-hybrid assay, we found that the capsid protein (CA) of BIV interacted with the dynein light-chain component LC8. Immunoprecipitation and GST-pulldown assays further demonstrated an interaction between CA and LC8 in mammalian cells. In addition, our data revealed LC8 as a linker between BIV particles and microtubules. Retrograde transport of BIV was significantly inhibited by knockdown of LC8 expression. Our findings present the first evidence that incoming BIV particles employ host microtubule/dynein machinery for transport towards the perinuclear region. In addition, our data indicate that the LC8-CA interaction is a potential target for the design of antiviral strategies.
Collapse
Affiliation(s)
- Yang Su
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Frampton AR, Uchida H, von Einem J, Goins WF, Grandi P, Cohen JB, Osterrieder N, Glorioso JC. Equine herpesvirus type 1 (EHV-1) utilizes microtubules, dynein, and ROCK1 to productively infect cells. Vet Microbiol 2009; 141:12-21. [PMID: 19713056 DOI: 10.1016/j.vetmic.2009.07.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/05/2009] [Accepted: 07/31/2009] [Indexed: 11/17/2022]
Abstract
To initiate infection, equine herpesvirus type 1 (EHV-1) attaches to heparan sulfate on cell surfaces and then interacts with a putative glycoprotein D receptor(s). After attachment, virus entry occurs either by direct fusion of the virus envelope with the plasma membrane or via endocytosis followed by fusion between the virus envelope and an endosomal membrane. Upon fusion, de-enveloped virus particles are deposited into the cytoplasm and travel to the nucleus for viral replication. In this report, we examined the mechanism of EHV-1 intracellular trafficking and investigated the ability of EHV-1 to utilize specific cellular components to efficiently travel to the nucleus post-entry. Using a panel of microtubule-depolymerizing drugs and inhibitors of microtubule motor proteins, we show that EHV-1 infection is dependent on both the integrity of the microtubule network and the minus-end microtubule motor protein, dynein. In addition, we show that EHV-1 actively induces the acetylation of tubulin, a marker of microtubule stabilization, as early as 15 min post-infection. Finally, our data support a role for the cellular kinase, ROCK1, in virus trafficking to the nucleus.
Collapse
Affiliation(s)
- Arthur R Frampton
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, United States.
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Lehmann M, Milev MP, Abrahamyan L, Yao XJ, Pante N, Mouland AJ. Intracellular transport of human immunodeficiency virus type 1 genomic RNA and viral production are dependent on dynein motor function and late endosome positioning. J Biol Chem 2009; 284:14572-85. [PMID: 19286658 PMCID: PMC2682905 DOI: 10.1074/jbc.m808531200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 03/03/2009] [Indexed: 11/06/2022] Open
Abstract
Our earlier work indicated that the human immunodeficiency virus type 1 (HIV-1) genomic RNA (vRNA) is trafficked to the microtubule-organizing center (MTOC) when heterogeneous nuclear ribonucleoprotein A2/B1 is depleted from cells. Also, Rab7-interacting lysosomal protein promoted dynein motor complex, late endosome and vRNA clustering at the MTOC suggesting that the dynein motor and late endosomes were involved in vRNA trafficking. To investigate the role of the dynein motor in vRNA trafficking, dynein motor function was disrupted by small interference RNA-mediated depletion of the dynein heavy chain or by p50/dynamitin overexpression. These treatments led to a marked relocalization of vRNA and viral structural protein Gag to the cell periphery with late endosomes and a severalfold increase in HIV-1 production. In contrast, rerouting vRNA to the MTOC reduced virus production. vRNA localization depended on Gag membrane association as shown using both myristoylation and Gag nucleocapsid domain proviral mutants. Furthermore, the cytoplasmic localization of vRNA and Gag was not attributable to intracellular or internalized endocytosed virus particles. Our results demonstrate that dynein motor function is important for regulating Gag and vRNA egress on endosomal membranes in the cytoplasm to directly impact on viral production.
Collapse
Affiliation(s)
- Martin Lehmann
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute for Medical Research, Quebec
| | | | | | | | | | | |
Collapse
|
57
|
Desfarges S, Salin B, Calmels C, Andreola ML, Parissi V, Fournier M. HIV-1 integrase trafficking in S. cerevisiae: a useful model to dissect the microtubule network involvement of viral protein nuclear import. Yeast 2009; 26:39-54. [PMID: 19180639 DOI: 10.1002/yea.1651] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Intracellular transport of karyophilic cargos comprises translocation to the nuclear envelope and subsequent nuclear import. Small cargos such as isolated proteins can reach the nuclear envelope by diffusion but movement of larger structures depends on active translocation, typically using microtubules. Centripetal transport ends at the perinuclear microtubule organizing centre called the spindle pole body (SPB) in yeast. Previously, we found by two hybrids that the karyophilic lentiviral-encoded integrase (IN) interacts with two yeast microtubule-associated proteins, Dyn2p (dynein light chain protein) and Stu2p, a centrosomal protein (de Soultrait et al., 2002). Thus, to investigate the hinge between cytoplasmic retrograde transport and nuclear import, we decided to analyse HIV-1 IN trafficking in yeast as the model, since each of these biological mechanisms is evolutionarily conserved in eukaryotic cells. Here, we found an accumulation of IN at the SPB in yeast via Stu2p colocalization. Disruption of the microtubule network by nocodazole or IN expression in a dynein 2-deficient yeast strain prevented IN accumulation in the nuclear periphery and additionally inhibited IN transport into the nucleus. By mutagenesis, we showed that trafficking of IN towards the SPB requires the C-terminus of the molecule. Taking our findings together, we proposed a model in which IN nuclear import seems to depend on an essential intermediate step in the SPB. We found that Dyn2p and Stu2p play an important role in driving IN toward MTOC and could optimize nuclear entry of the retroviral enzyme. Our results suggest a new hypothesis in keeping with the current HIV-1 intracellular trafficking model.
Collapse
Affiliation(s)
- S Desfarges
- Laboratoire Microbiologie Cellulaire et Moléculaire et Pathogénicité, Département 1, UMR 5234-CNRS, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
58
|
Tobaly-Tapiero J, Bittoun P, Lehmann-Che J, Delelis O, Giron ML, de Thé H, Saïb A. Chromatin tethering of incoming foamy virus by the structural Gag protein. Traffic 2008; 9:1717-27. [PMID: 18627573 DOI: 10.1111/j.1600-0854.2008.00792.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Retroviruses hijack cellular machineries to productively infect their hosts. During the early stages of viral replication, proviral integration relies on specific interactions between components of the preintegration complex and host chromatin-bound proteins. Here, analyzing the fate of incoming primate foamy virus, we identify a short domain within the C-terminus of the structural Gag protein that efficiently binds host chromosomes, by interacting with H2A/H2B core histones. While viral particle production, virus entry and intracellular trafficking are not affected by mutation of this domain, chromosomal attachment of incoming subviral complexes is abolished, precluding proviral integration. We thus highlight a new function of the structural foamy Gag protein as the main tether between incoming subviral complexes and host chromatin prior to integration.
Collapse
Affiliation(s)
- Joelle Tobaly-Tapiero
- CNRS UMR 7151, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris Cedex 10, France
| | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
To overcome barriers to diffusion, many viruses utilize the microtubule-associated molecular motor cytoplasmic dynein 1 to drive transport towards the nucleus of a target cell. Cytoplasmic dynein 1 generates movement towards the minus end of microtubules located at the microtubule organizing centre (MTOC), a structure that is typically in close proximity to the nucleus. Physiological cargoes for cytoplasmic dynein include membranous organelles, protein complexes and aggregates of misfolded protein. In this review, we discuss the study of microtubule-based translocation of viruses and raise questions about the mechanisms for association with and then dissociation from cytoplasmic dynein with a goal of understanding whether viruses are seen by the intracellular trafficking machinery as functional protein complexes or misfolded protein aggregates.
Collapse
Affiliation(s)
- Philip L Leopold
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY, USA.
| | | |
Collapse
|
60
|
IMMUNOBIOLOGY OF HUMAN IMMUNODEFICIENCY VIRUS INFECTION. Indian J Med Microbiol 2007. [DOI: 10.1016/s0255-0857(21)02044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
61
|
Zamborlini A, Lehmann-Che J, Clave E, Giron ML, Tobaly-Tapiero J, Roingeard P, Emiliani S, Toubert A, de Thé H, Saïb A. Centrosomal pre-integration latency of HIV-1 in quiescent cells. Retrovirology 2007; 4:63. [PMID: 17845727 PMCID: PMC2014762 DOI: 10.1186/1742-4690-4-63] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 09/10/2007] [Indexed: 11/25/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) efficiently replicates in dividing and non-dividing cells. However, HIV-1 infection is blocked at an early post-entry step in quiescent CD4+ T cells in vitro. The molecular basis of this restriction is still poorly understood. Here, we show that in quiescent cells, incoming HIV-1 sub-viral complexes concentrate and stably reside at the centrosome for several weeks. Upon cell activation, viral replication resumes leading to viral gene expression. Thus, HIV-1 can persist in quiescent cells as a stable, centrosome-associated, pre-integration intermediate.
Collapse
Affiliation(s)
| | | | - Emmanuel Clave
- INSERM U662, Laboratoire d'Immunologie et d'Histocompatibilité AP-HP, Paris, France
| | - Marie-Lou Giron
- CNRS UMR7151, Université Paris 7, Hôpital Saint-Louis, Paris, France
| | | | | | | | - Antoine Toubert
- INSERM U662, Laboratoire d'Immunologie et d'Histocompatibilité AP-HP, Paris, France
| | - Hugues de Thé
- CNRS UMR7151, Université Paris 7, Hôpital Saint-Louis, Paris, France
| | - Ali Saïb
- CNRS UMR7151, Université Paris 7, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
62
|
Naghavi MH, Goff SP. Retroviral proteins that interact with the host cell cytoskeleton. Curr Opin Immunol 2007; 19:402-7. [PMID: 17707624 PMCID: PMC2040053 DOI: 10.1016/j.coi.2007.07.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 06/22/2007] [Accepted: 07/04/2007] [Indexed: 11/26/2022]
Abstract
In the past decade, several lines of evidence have highlighted the importance of the host cell cytoskeleton in various stages of retroviral infection. To complete their lifecycle, retroviruses must penetrate the outer barrier of the cell membrane, and viral cores containing the viral genome must traverse the cytoplasm to the nucleus and then viral gene products must make the journey back to the cell surface in order to release new progeny. The presence of a dense cytoskeletal network and organelles in the cytoplasm creates an environment that greatly impedes diffusion of macromolecules such as viruses. As such, retroviruses have evolved means to hijack actin as well as microtubule cytoskeletal networks that regulate macromolecular movement within the host cell. Developing studies are discovering several host and viral factors that play important roles in retroviral trafficking.
Collapse
Affiliation(s)
- Mojgan H. Naghavi
- School of Medicine and Medical Science, Center for Research in Infectious Diseases, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stephen P. Goff
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, College of Physicians and Surgeons, New York, NY 10032
| |
Collapse
|
63
|
Arhel NJ, Souquere-Besse S, Munier S, Souque P, Guadagnini S, Rutherford S, Prévost MC, Allen TD, Charneau P. HIV-1 DNA Flap formation promotes uncoating of the pre-integration complex at the nuclear pore. EMBO J 2007; 26:3025-37. [PMID: 17557080 PMCID: PMC1894778 DOI: 10.1038/sj.emboj.7601740] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 05/07/2007] [Indexed: 11/09/2022] Open
Abstract
The HIV-1 central DNA Flap acts as a cis-acting determinant of HIV-1 genome nuclear import. Indeed, DNA-Flap re-insertion within lentiviral-derived gene transfer vectors strongly stimulates gene transfer efficiencies. In this study, we sought to understand the mechanisms by which the central DNA Flap mediates HIV-1 nuclear import. Here, we show that reverse transcription (RT degrees) occurs within an intact capsid (CA) shell, independently of the routing process towards the nuclear membrane, and that uncoating is not an immediate post-fusion event, but rather occurs at the nuclear pore upon RT degrees completion. We provide the first observation with ultrastructural resolution of intact intracellular HIV-1 CA shells by scanning electron microscopy. In the absence of central DNA Flap formation, uncoating is impaired and linear DNA remains trapped within an integral CA shell precluding translocation through the nuclear pore. These data show that DNA Flap formation, the very last event of HIV-1 RT degrees, acts as a viral promoting element for the uncoating of HIV-1 at the nuclear pore.
Collapse
Affiliation(s)
- Nathalie J Arhel
- Groupe de Virologie Moléculaire et Vectorologie, CNRS-URA3015, Institut Pasteur, Paris, France
| | | | - Sandie Munier
- Groupe de Virologie Moléculaire et Vectorologie, CNRS-URA3015, Institut Pasteur, Paris, France
| | - Philippe Souque
- Groupe de Virologie Moléculaire et Vectorologie, CNRS-URA3015, Institut Pasteur, Paris, France
| | - Stéphanie Guadagnini
- Plateforme de Microscopie électronique, Institut Pasteur, 25-28 rue du Dr Roux, Paris, France
| | - Sandra Rutherford
- Paterson Institute for Cancer Research, CRC Department of Structural Cell Biology, Christie Hospital, Manchester, UK
| | - Marie-Christine Prévost
- Plateforme de Microscopie électronique, Institut Pasteur, 25-28 rue du Dr Roux, Paris, France
| | - Terry D Allen
- Paterson Institute for Cancer Research, CRC Department of Structural Cell Biology, Christie Hospital, Manchester, UK
| | - Pierre Charneau
- Groupe de Virologie Moléculaire et Vectorologie, CNRS-URA3015, Institut Pasteur, Paris, France
| |
Collapse
|
64
|
Lehmann-Che J, Renault N, Giron ML, Roingeard P, Clave E, Tobaly-Tapiero J, Bittoun P, Toubert A, de Thé H, Saïb A. Centrosomal latency of incoming foamy viruses in resting cells. PLoS Pathog 2007; 3:e74. [PMID: 17530924 PMCID: PMC1871606 DOI: 10.1371/journal.ppat.0030074] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 04/06/2007] [Indexed: 12/18/2022] Open
Abstract
Completion of early stages of retrovirus infection depends on the cell cycle. While gammaretroviruses require mitosis for proviral integration, lentiviruses are able to replicate in post-mitotic non-dividing cells. Resting cells such as naive resting T lymphocytes from peripheral blood cannot be productively infected by retroviruses, including lentiviruses, but the molecular basis of this restriction remains poorly understood. We demonstrate that in G0 resting cells (primary fibroblasts or peripheral T cells), incoming foamy retroviruses accumulate in close proximity to the centrosome, where they lie as structured and assembled capsids for several weeks. Under these settings, virus uncoating is impaired, but upon cell stimulation, Gag proteolysis and capsid disassembly occur, which allows viral infection to proceed. The data imply that foamy virus uncoating is the rate-limiting step for productive infection of primary G0 cells. Incoming foamy retroviruses can stably persist at the centrosome, awaiting cell stimulation to initiate capsid cleavage, nuclear import, and viral gene expression. Naive quiescent CD4-positive T cells or monocytes that are in the G0 stage of the cell cycle cannot be productively infected by retroviruses in vitro, but the molecular basis of this restriction remains poorly understood. In this report, we demonstrate that incoming foamy retroviruses remain around the centrosome as structured and assembled capsids for weeks in resting cultures. Under these conditions, virus uncoating is impaired, but upon cell activation, viral capsids undergo proteolysis and disassembly, allowing infection to proceed. Maintenance of incoming viral capsids at the centrosome in resting cells could be a strategy that viruses have evolved to rapidly respond to stimuli received by the cell. The cellular signal triggering the uncoating process upon cell stimulation remains unclear, but is likely linked to the centrosome cycle.
Collapse
Affiliation(s)
| | - Noémie Renault
- Université Paris 7, Paris, France
- CNRS, UMR 7151, Paris, France
| | - Marie Lou Giron
- Université Paris 7, Paris, France
- CNRS, UMR 7151, Paris, France
| | - Philippe Roingeard
- Université François Rabelais and Centre Hospitalier Régional Universitaire de Tours, Tours, France
- INSERM ERI 19, Tours, France
| | - Emmanuel Clave
- Laboratoire d'Immunologie et d'Histocompatibilité, Assistance Publique–Hôpitaux de Paris, Paris, France
- INSERM, U662, Paris, France
| | | | | | - Antoine Toubert
- Laboratoire d'Immunologie et d'Histocompatibilité, Assistance Publique–Hôpitaux de Paris, Paris, France
- INSERM, U662, Paris, France
| | - Hugues de Thé
- Université Paris 7, Paris, France
- CNRS, UMR 7151, Paris, France
| | - Ali Saïb
- Université Paris 7, Paris, France
- CNRS, UMR 7151, Paris, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
65
|
Afonso PV, Zamborlini A, Saïb A, Mahieux R. Centrosome and retroviruses: the dangerous liaisons. Retrovirology 2007; 4:27. [PMID: 17433108 PMCID: PMC1855351 DOI: 10.1186/1742-4690-4-27] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 04/14/2007] [Indexed: 01/22/2023] Open
Abstract
Centrosomes are the major microtubule organizing structures in vertebrate cells. They localize in close proximity to the nucleus for the duration of interphase and play major roles in numerous cell functions. Consequently, any deficiency in centrosome function or number may lead to genetic instability. Several viruses including retroviruses such as, Foamy Virus, HIV-1, JSRV, M-PMV and HTLV-1 have been shown to hamper centrosome functions for their own profit, but the outcomes are very different. Foamy viruses, HIV-1, JSRV, M-PMV and HTLV-1 use the cellular machinery to traffic towards the centrosome during early and/or late stages of the infection. In addition HIV-1 Vpr protein alters the cell-cycle regulation by hijacking centrosome functions. Enthrallingly, HTLV-1 Tax expression also targets the functions of the centrosome, and this event is correlated with centrosome amplification, aneuploidy and transformation.
Collapse
Affiliation(s)
- Philippe V Afonso
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, CNRS URA 3015, Département de Virologie, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| | - Alessia Zamborlini
- CNRS UMR7151, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| | - Ali Saïb
- CNRS UMR7151, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| | - Renaud Mahieux
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, CNRS URA 3015, Département de Virologie, Institut Pasteur, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
66
|
Gill MB, Kutok JL, Fingeroth JD. Epstein-Barr virus thymidine kinase is a centrosomal resident precisely localized to the periphery of centrioles. J Virol 2007; 81:6523-35. [PMID: 17428875 PMCID: PMC1900094 DOI: 10.1128/jvi.00147-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The thymidine kinase (TK) encoded by Epstein-Barr virus (EBV) differs not only from that of the alphaherpesviruses but also from that of the gamma-2 herpesvirus subfamily. Because cellular location is frequently a determinant of regulatory function, to gain insight into additional role(s) of EBV TK and to uncover how the lymphocryptovirus and rhadinovirus enzymes differ, the subcellular localizations of EBV TK and the related cercopithecine herpesvirus-15 TK were investigated. We show that in contrast to those of the other family members, the gamma-1 herpesvirus TKs localize to the centrosome and even more precisely to the periphery of the centriole, tightly encircling the tubulin-rich centrioles in a microtubule-independent fashion. Centrosomal localization is observed in diverse cell types and occurs whether the protein is expressed independently or in the context of lytic EBV infection. Surprisingly, analysis of mutants revealed that the unique N-terminal domain was not critical for targeting to the centrosome, but rather, peptide sequences located C terminal to this domain were key. This is the first herpesvirus protein documented to reside in the centrosome, or microtubule-organizing center, an amembranous organelle that regulates the structural biology of the cell cycle through control of chromosome separation and cytokinesis. More recently, proteasome-mediated degradation of cell cycle regulatory proteins, production and loading of antigenic peptides onto HLA molecules, and transient homing of diverse virion proteins required for entry and/or egress have been shown to be coordinated at the centrosome. Potential implications of centrosomal localization for EBV TK function are discussed.
Collapse
Affiliation(s)
- Michael B Gill
- Divison of Infectious Disease, Beth Israel Deaconess Medical Center, Harvard Medical School, and Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
67
|
Bergen JM, Pun SH. Evaluation of an LC8-binding peptide for the attachment of artificial cargo to dynein. Mol Pharm 2007; 4:119-28. [PMID: 17274669 PMCID: PMC2569131 DOI: 10.1021/mp060086o] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The limited cytoplasmic mobility of nonviral gene carriers is likely to contribute to their low transfection efficiency. This limitation could be overcome by mimicking the viral strategy of recruiting the dynein motor complex for efficient transport toward the host cell nucleus. A promising approach for attaching artificial cargo to dynein is through an adaptor peptide that binds the 8 kDa light chain (LC8) found in the cargo-binding region of the dynein complex. Several viral proteins that bind LC8 have in common an LC8-binding motif defined by (K/R)XTQT. Short peptides containing this motif have also been shown to bind recombinant LC8 in vitro. However, since the majority of intracellular LC8 exists outside of the dynein complex, it remains unclear whether peptides displaying this LC8-binding motif can access and bind to dynein-associated LC8. In this study, we employed biochemical analysis to investigate the feasibility of attaching artificial cargo to the dynein motor complex using a peptide displaying the well-characterized LC8-binding motif. We report that free intracellular LC8 bound specifically to an LC8-binding (TQT) peptide and not to a control peptide with a mutated LC8-binding motif. However, a similar binding interaction between the TQT peptide and intracellular dynein was not detected. To determine whether dynein binding of the TQT peptide was prevented by competition with free intracellular LC8 or due to the inability of the peptide to access its LC8 binding site in the dynein complex, the TQT peptide was evaluated for its ability to bind either purified LC8 or purified dynein. Our results demonstrate that, while the TQT peptide readily binds free LC8, it cannot bind to dynein-associated LC8. The results emphasize the need to identify functional dynein-binding peptides and highlight the importance of designing peptides that bind to the intact dynein motor complex.
Collapse
Affiliation(s)
| | - Suzie H. Pun
- Author to whom correspondence should be addressed. Mailing address: Foege Building, 1705 NE Pacific St., Room N530P, Box 355061, Seattle, WA 98195. Tel: (206) 685-3488. Fax: (206) 616-1984. E-mail:
| |
Collapse
|
68
|
Abstract
Human immunodeficiency virus 1 (HIV-1) and other retroviruses synthesize a DNA copy of their genome after entry into the host cell. Integration of this DNA into the host cell's genome is an essential step in the viral replication cycle. The viral DNA is synthesized in the cytoplasm and is associated with viral and cellular proteins in a large nucleoprotein complex. Before integration into the host genome can occur, this complex must be transported to the nucleus and must cross the nuclear envelope. This Review summarizes our current knowledge of how this journey is accomplished.
Collapse
Affiliation(s)
- Youichi Suzuki
- Laboratory for Host Factors, Center for Emerging Virus Research, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | |
Collapse
|
69
|
Abstract
Retroviruses make a long and complex journey from outside the cell to the nucleus in the early stages of infection, and then an equally long journey back out again in the late stages of infection. Ongoing efforts are identifying an enormous array of cellular proteins that are used by the viruses in the course of their travels. These host factors are potential new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute HHSC 1310c, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York, New York 10032, USA.
| |
Collapse
|
70
|
Kim S, Kim HY, Lee S, Kim SW, Sohn S, Kim K, Cho H. Hepatitis B virus x protein induces perinuclear mitochondrial clustering in microtubule- and Dynein-dependent manners. J Virol 2007; 81:1714-26. [PMID: 17151129 PMCID: PMC1797565 DOI: 10.1128/jvi.01863-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The hepatitis B virus (HBV) X protein (HBx) is thought to play a key role in HBV replication and the development of liver cancer. It became apparent that HBx induces mitochondrial clustering at the nuclear periphery, but the molecular basis for mitochondrial clustering is not understood. Since mitochondria move along the cytoskeleton as a cargo of motor proteins, we hypothesized that mitochondrial clustering induced by HBx occurs by an altered intracellular motility. Here, we demonstrated that the treatment of HBx-expressing cells with a microtubule-disrupting drug (nocodazole) abrogated mitochondrial clustering, while the removal of nocodazole restored clustering within 30 to 60 min, indicating that mitochondrial transport is occurring in a microtubule-dependent manner. The addition of a cytochalasin D-disrupting actin filament, however, did not measurably affect mitochondrial clustering. Mitochondrial clustering was further studied by observations of HBV-related hepatoma cells and HBV-replicating cells. Importantly, the abrogation of the dynein activity in HBx-expressing cells by microinjection of a neutralizing anti-dynein intermediate-chain antibody, dynamitin overexpression, or the addition of a dynein ATPase inhibitor significantly suppressed the mitochondrial clustering. In addition, HBx induced the activation of the p38 mitogen-activated protein kinase (MAPK) and inhibition of the p38 kinase activity by SB203580-attenuated HBx-induced mitochondrial clustering. Taken together, HBx activation of the p38 MAPK contributed to the increase in the microtubule-dependent dynein activity. The data suggest that HBx plays a novel regulatory role in subcellular transport systems, perhaps facilitating the process of maturation and/or assembly of progeny particles during HBV replication. Furthermore, mitochondrion aggregation induced by HBx may represent a cellular process that underlies disease progression during chronic viral infection.
Collapse
Affiliation(s)
- Sujeong Kim
- Department of Biochemistry, Ajou University School of Medicine, 5 Wonchon-dong, Yeongtong-gu, Suwon 443-721, Korea
| | | | | | | | | | | | | |
Collapse
|
71
|
Mannigel I, Stange A, Zentgraf H, Lindemann D. Correct capsid assembly mediated by a conserved YXXLGL motif in prototype foamy virus Gag is essential for infectivity and reverse transcription of the viral genome. J Virol 2007; 81:3317-26. [PMID: 17229703 PMCID: PMC1866044 DOI: 10.1128/jvi.01866-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unlike other retrovirus Gag proteins, the prototype foamy virus (PFV) p71(g)(ag) protein is not processed into mature matrix (MA), capsid (CA), and nucleocapsid (NC) subunits. Little information about sequence motifs involved in FV capsid assembly and release is available. The recent analysis of candidate L-domain motifs in PFV Gag identified an evolutionarily conserved YXXL sequence motif with a potential function in capsid assembly. Here we provide support for the hypothesis that this motif does not function like a conventional L domain, by demonstrating that, unlike the PFV Gag PSAP L-domain motif, it cannot be functionally replaced by heterologous L-domain sequences. Furthermore, mutation of individual amino acids Y(464), I(466), L(467), and L(469), but not E(465), to alanine led to reduced particle release and production of noninfectious, aberrant capsid structures, although relative structural protein incorporation and processing were not affected. In contrast, mutation of G(468) to alanine resulted in an intermediate, temperature-sensitive phenotype characterized by reduced particle release and reduced infectivity. Despite similar relative RNA genome incorporation for all mutants, analysis and quantification of particle-associated viral nucleic acids demonstrated defects in genomic reverse transcription for all the noninfectious mutants, a process that, unlike that of orthoretroviruses, in the case of FVs takes place in the virus-producing cell. In correlation with the reduced infectivity, the G(468)A mutant displayed an intermediate level of genomic reverse transcription. Taken together, these results demonstrate that the conserved YXXLGL motif in PFV Gag is involved in correct capsid assembly, which in turn is essential for reverse transcription of the FV genome.
Collapse
Affiliation(s)
- Ingrid Mannigel
- Institut für Virologie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | | | | | | |
Collapse
|
72
|
Vaughan EE, DeGiulio JV, Dean DA. Intracellular trafficking of plasmids for gene therapy: mechanisms of cytoplasmic movement and nuclear import. Curr Gene Ther 2007; 6:671-681. [PMID: 17168698 PMCID: PMC4400175 DOI: 10.2174/156652306779010688] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Under physiologically relevant conditions, the levels of non-viral gene transfer are low at best. The reason for this is that many barriers exist for the efficient transfer of genes to cells, even before any gene expression can occur. While many transfection strategies focus on DNA condensation and overcoming the plasma membrane, events associated with the intracellular trafficking of the DNA complexes have not been as extensively studied. Once internalized, plasmids must travel potentially long distances through the cytoplasm to reach their next barrier, the nuclear envelope. This review summarizes the current progress on the cytoplasmic trafficking and nuclear transport of plasmids used for gene therapy applications. Both of these processes utilize specific and defined mechanisms to facilitate movement of DNA complexes through the cell. The continued elucidation and exploitation of these mechanisms will lead to improved strategies for transfection and successful gene therapy.
Collapse
Affiliation(s)
| | | | - David A. Dean
- Address correspondence to this author at the Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, 240 E. Huron Ave., McGaw M-300, Chicago IL 60611 USA; Tel: 312-503-3121; Fax: 312-908-4650;
| |
Collapse
|
73
|
Lévesque K, Halvorsen M, Abrahamyan L, Chatel-Chaix L, Poupon V, Gordon H, DesGroseillers L, Gatignol A, Mouland AJ. Trafficking of HIV-1 RNA is mediated by heterogeneous nuclear ribonucleoprotein A2 expression and impacts on viral assembly. Traffic 2007; 7:1177-93. [PMID: 17004321 DOI: 10.1111/j.1600-0854.2006.00461.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Few details are known about how the human immunodeficiency virus type 1 (HIV-1) genomic RNA is trafficked in the cytoplasm. Part of this process is controlled by the activity of heterogeneous nuclear ribonucleoprotein A2 (hnRNP A2). The role of hnRNP A2 during the expression of a bona fide provirus in HeLa cells is investigated in this study. Using immunofluorescence and fluorescence in situ hybridization techniques, we show that knockdown of hnRNP A2 expression in HIV-1-expressing cells results in the rapid accumulation of HIV-1 genomic RNA in a distinct, cytoplasmic space that corresponds to the microtubule-organizing center (MTOC). The RNA exits in the nucleus and accumulates at the MTOC region as a result of hnRNP A2 knockdown even during the expression of a provirus harboring mutations in the hnRNP A2-response element (A2RE), the expression of which results in nuclear retention of genomic RNA. We also demonstrate that hnRNP A2 expression is required for downstream trafficking of genomic RNA from the MTOC in the cytoplasm. Genomic RNA localization at the MTOC that was both the result of hnRNP A2 knockdown and the overexpression of Rab7-interacting lysosomal protein had little effect on pr55Gag synthesis but negatively influenced virus production and infectivity. These data indicate that altered HIV-1 genomic RNA localization modulates viral assembly and that the MTOC serves as a central site to which HIV-1 genomic RNA converges following its exit from the nucleus, with the host protein, hnRNP A2, playing a central role in taking it to and from this site in the cell.
Collapse
Affiliation(s)
- Kathy Lévesque
- HIV-1 RNA Trafficking Laboratory, 3755 Côte-Ste-Catherine Road, Montréal, Québec, Canada H3T 1E2
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Iordanskiy S, Bukrinsky M. Reverse transcription complex: the key player of the early phase of HIV replication. Future Virol 2007; 2:49-64. [PMID: 23658595 DOI: 10.2217/17460794.2.1.49] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sergey Iordanskiy
- The George Washington University, Washington, DC, USA ; The D.I. Ivanovsky Institute of Virology, Moscow, Russia
| | | |
Collapse
|
75
|
Yu SF, Eastman SW, Linial ML. Foamy virus capsid assembly occurs at a pericentriolar region through a cytoplasmic targeting/retention signal in Gag. Traffic 2006; 7:966-77. [PMID: 16749903 PMCID: PMC7488586 DOI: 10.1111/j.1600-0854.2006.00448.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Foamy viruses (FV) are unusual retroviruses that differ in many aspects of their life cycle from the orthoretroviruses such as human immunodeficiency virus. Similar to Mason-Pfizer monkey virus (MPMV), FV assemble into capsids intracellularly. The capsids are then transported to a cellular membrane for acquisition of envelope (Env) glycoproteins and budding. However, unlike MPMV, budding of FV is dependent upon the presence of Env. Previous work suggested that FV Env proteins are localized to the endoplasmic reticulum (ER) where budding takes place. However, very little was known about the details of FV assembly. We have used immunofluorescence and electron microscopy to visualize the intracellular location of FV assembly and budding. We have found that, as in the case of MPMV, FV capsids assemble at a pericentriolar site in the cytoplasm. Surprisingly, FV Env is mostly absent from this site and, contrary to expectations, FV capsid structural protein (Gag) is absent from the ER. Gag and Env only co-localize at the trans-Golgi network, suggesting that Env-Gag interactions that are required for viral egress from the cell, occurs at this site. Finally, inhibitor studies suggest an important role of microtubule networks for foamy viral assembly and budding.
Collapse
Affiliation(s)
- Shuyuarn F Yu
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | |
Collapse
|
76
|
Renault N, Saïb A. From cell surface to the nucleus, a short but critical journey for retroviruses. Future Virol 2006. [DOI: 10.2217/17460794.1.3.331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
From the cell surface to the nucleus, retroviruses will face multiple obstacles, crossing physical barriers such as the plasma membrane, but also finding their pathway through a viscous cytoplasm. At the same time, retroviruses have to overcome cellular defenses, interfering with the early steps of the virus life cycle. Although the general outcomes of this journey have been known for several decades, the stepwise interactions taking place between cellular and viral factors, which will transform the incoming viral RNA genome into a double-stranded DNA competent for integration, remain largely unknown. In this sense, the uncoating process and the molecular basis of intracellular trafficking of preintegration complexes are still poorly defined. Additionally, other key stages, which have been the focus of many reports, still require some clarification, as is the case for the precise implication of viral and cellular determinants involved in nuclear import of preintegration complexes.
Collapse
Affiliation(s)
- Noémie Renault
- CNRS UMR7151, Université Paris 7, Hôpital Saint-Louis, Centre Hayem, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| | - Ali Saïb
- CNRS UMR7151, Université Paris 7, Hôpital Saint-Louis, Centre Hayem, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| |
Collapse
|
77
|
Radtke K, Döhner K, Sodeik B. Viral interactions with the cytoskeleton: a hitchhiker's guide to the cell. Cell Microbiol 2006; 8:387-400. [PMID: 16469052 DOI: 10.1111/j.1462-5822.2005.00679.x] [Citation(s) in RCA: 274] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The actin and microtubule cytoskeleton play important roles in the life cycle of every virus. During attachment, internalization, endocytosis, nuclear targeting, transcription, replication, transport of progeny subviral particles, assembly, exocytosis, or cell-to-cell spread, viruses make use of different cellular cues and signals to enlist the cytoskeleton for their mission. Viruses induce rearrangements of cytoskeletal filaments so that they can utilize them as tracks or shove them aside when they represent barriers. Viral particles recruit molecular motors in order to hitchhike rides to different subcellular sites which provide the proper molecular environment for uncoating, replicating and packaging viral genomes. Interactions between subviral components and cytoskeletal tracks also help to orchestrate virus assembly, release and efficient cell-to-cell spread. There is probably not a single virus that does not use cytoskeletal and motor functions in its life cycle. Being well informed intracellular passengers, viruses provide us with unique tools to decipher how a particular cargo recruits one or several motors, how these are activated or tuned down depending on transport needs, and how cargoes switch from actin tracks to microtubules to nuclear pores and back.
Collapse
Affiliation(s)
- Kerstin Radtke
- Institute of Virology, OE5230, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | | | | |
Collapse
|
78
|
Abstract
Microtubule-mediated transport of macromolecules and organelles (also known as "cargo") is essential for cells to function. Deficiencies in cytoplasmic transport are frequently associated with severe diseases and syndromes. Cytoplasmic transport also provides viruses with the means to reach their site of replication and is the route for newly assembled progeny to leave the infected cell. This parasitic relationship of viruses with the host cytoskeleton provides an excellent basis for cell biologists to unlock the secrets of cytoplasmic transport and unravel mechanisms of disease. Recent advances in live cell imaging and computational tracking of fluorescently labeled viruses are now revealing how complex the movements of single viruses are in infected cells. This review focuses on microtubule-based motility of viruses and highlights the mechanisms regulating cytoplasmic transport.
Collapse
Affiliation(s)
- Urs F Greber
- Zoologisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | |
Collapse
|
79
|
Abstract
Nonviral vectors continue to be attractive alternatives to viruses due to their low toxicity and immunogenicity, lack of pathogenicity, and ease of pharmacologic production. However, nonviral vectors also continue to suffer from relatively low levels of gene transfer compared to viruses, thus the drive to improve these vectors continues. Many studies on vector-cell interactions have reported that nonviral vectors bind and enter cells efficiently, but yield low gene expression, thus directing our attention to the intracellular trafficking of these vectors to understand where the obstacles occur. Here, we will review nonviral vector trafficking pathways, which will be considered here as the steps from cell binding to nuclear delivery. Studies on the intracellular trafficking of nonviral vectors has given us valuable insights into the barriers these vectors must overcome to mediate efficient gene transfer. Importantly, we will highlight the different approaches used by researchers to overcome certain trafficking barriers to gene transfer, many of which incorporate components from biological systems that have naturally evolved the capacity to overcome such obstacles. The tools used to study trafficking pathways will also be discussed.
Collapse
Affiliation(s)
- L K Medina-Kauwe
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | |
Collapse
|
80
|
Abstract
Retroviruses are efficient vehicles for delivering transgenes in vivo. Their ability to integrate into the host genome, providing a permanent imprint of their genes in the host, is a key asset for gene therapy. Furthermore, the lentivirus subset of retroviruses can infect nondividing as well as dividing cells. This expands the cell types capable of gene therapy, driving the development of lentiviral vectors. However, the precise mechanisms used by different retroviruses to efficiently deliver their genes into cell nuclei remains largely unclear. Understanding these molecular mechanisms may reveal features to improve the efficacy of current retroviral vectors. Moreover, this knowledge may expose elements pliable to other gene therapy vehicles to improve their in vivo performance and circumvent the biosafety concerns of using retroviral vectors. Therefore, the mechanisms underlying the early trafficking of retroviral vectors in host cells are reviewed here, as understood from studying the native retroviruses. Events after virus entry up to nuclear delivery of the viral cDNA are discussed. Cellular obstacles faced by these retroviral vectors and how they advance beyond these barriers is emphasized.
Collapse
Affiliation(s)
- J L Anderson
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3093, USA
| | | |
Collapse
|
81
|
Poole E, Strappe P, Mok HP, Hicks R, Lever AML. HIV-1 Gag-RNA interaction occurs at a perinuclear/centrosomal site; analysis by confocal microscopy and FRET. Traffic 2005; 6:741-55. [PMID: 16101678 DOI: 10.1111/j.1600-0854.2005.00312.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The Gag polyprotein is the major structural protein of human immunodeficiency virus-1 (HIV-1) constituting the viral core. Between translation on cytoplasmic polysomes and assembly into viral particles at the plasma membrane, it specifically captures the RNA genome of the virus through binding RNA structural motifs (packaging signals -Psi) in the RNA. RNA is believed to be a structural facilitator of Gag assembly. Using a combined approach of immunofluorescence detection of Gag protein and in situ hybridisation detection of viral genomic RNA, we demonstrate that Gag protein colocalises early after expression with Psi+ RNA in the perinuclear region and also colocalises with centrioles. Colocalised RNA and protein subsequently traffic through the cytoplasm to the plasma membrane of the cell. Gag expressed from Psi- RNA diffuses throughout the cell. It is not found at centrioles and shows delayed cytoplasmic colocalisation with the RNA genome. RNA capture through Psi does not influence binding of Gag to microfilaments. Gag does not bind to tubulin during export. The presence of the packaging signal may coordinate capture of Psi+ RNA by Gag protein at the centrosome followed by their combined transport to the site of budding. HIV-1 Psi thus acts as a subcellular localisation signal as well as a high-affinity-binding site for Gag.
Collapse
Affiliation(s)
- Emma Poole
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| | | | | | | | | |
Collapse
|
82
|
Döhner K, Nagel CH, Sodeik B. Viral stop-and-go along microtubules: taking a ride with dynein and kinesins. Trends Microbiol 2005; 13:320-7. [PMID: 15950476 DOI: 10.1016/j.tim.2005.05.010] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 04/20/2005] [Accepted: 05/20/2005] [Indexed: 11/21/2022]
Abstract
Incoming viral particles move from the cell surface to sites of viral transcription and replication. By contrast, during assembly and egress, subviral nucleoprotein complexes and virions travel back to the plasma membrane. Because diffusion of large molecules is severely restricted in the cytoplasm, viruses use ATP-hydrolyzing molecular motors of the host for propelling along the microtubules, which are the intracellular highways. Recent studies have revealed that, besides travelling inside endocytic or exocytic vesicles, viral proteins interact directly with dynein or kinesin motors. Understanding the molecular mechanisms of cytoplasmic viral transport will aid in the construction of viral vectors for human gene therapy and the search for new antiviral targets.
Collapse
Affiliation(s)
- Katinka Döhner
- Institute of Virology, Hannover Medical School, D-30623 Hannover, Germany
| | | | | |
Collapse
|
83
|
Havecker ER, Gao X, Voytas DF. The Sireviruses, a plant-specific lineage of the Ty1/copia retrotransposons, interact with a family of proteins related to dynein light chain 8. PLANT PHYSIOLOGY 2005; 139:857-68. [PMID: 16183843 PMCID: PMC1256001 DOI: 10.1104/pp.105.065680] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2005] [Revised: 07/17/2005] [Accepted: 07/19/2005] [Indexed: 05/04/2023]
Abstract
Plant genomes are rich in long terminal repeat retrotransposons, and here we describe a plant-specific lineage of Ty1/copia elements called the Sireviruses. The Sireviruses vary greatly in their genomic organization, and many have acquired additional coding information in the form of an envelope-like open reading frame and an extended gag gene. Two-hybrid screens were conducted with the novel domain of Gag (the Gag extension) encoded by a representative Sirevirus from maize (Zea mays) called Hopie. The Hopie Gag extension interacts with a protein related to dynein light chain 8 (LC8). LC8 also interacts with the Gag extension from a Hopie homolog from rice (Oryza sativa). Amino acid motifs were identified in both Hopie Gag and LC8 that are responsible for the interaction. Two amino acids critical for Gag recognition map within the predicted LC8-binding cleft. Two-hybrid screens were also conducted with the Gag extension encoded by the soybean (Glycine max) SIRE1 element, and an interaction was found with light chain 6 (LC6), a member of the LC8 protein family. LC8 and LC6 proteins are components of the dynein microtubule motor, with LC8 being a versatile adapter that can bind many unrelated cellular proteins and viruses. Plant LC8 and LC6 genes are abundant and divergent, yet flowering plants do not encode other components of the dynein motor. Although, to our knowledge, no cellular roles for plant LC8 family members have been proposed, we hypothesize that binding of LC8 proteins to Gag aids in the movement of retrotransposon virus-like particles within the plant cell or possibly induces important conformational changes in the Gag protein.
Collapse
Affiliation(s)
- Ericka R Havecker
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, 50011, USA
| | | | | |
Collapse
|
84
|
Kuznetsov YG, Zhang M, Menees TM, McPherson A, Sandmeyer S. Investigation by atomic force microscopy of the structure of Ty3 retrotransposon particles. J Virol 2005; 79:8032-45. [PMID: 15956549 PMCID: PMC1143757 DOI: 10.1128/jvi.79.13.8032-8045.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ty3, a member of the Metaviridiae family of long-terminal-repeat retrotransposons found in Saccharomyces cerevisiae, encodes homologs of retroviral Gag and Gag-Pol proteins, which, together with genomic RNA, assemble into virus-like particles (VLPs) that undergo processing and reverse transcription. The Ty3 structural proteins, capsid and nucleocapsid, contain major homology and nucleocapsid motifs similar to retrovirus capsid and nucleocapsid proteins, but Ty3 lacks a matrix-like structural domain amino terminal to capsid. Mass spectrometry analysis of Ty3 Gag3 processing products defined an acetylated Ser residue as the amino terminus of Gag3/p34, p27, and CA/p24 species and supported a model where p34 and p27 occur in phosphorylated forms. Using atomic force microscopy, VLPs were imaged from cells producing wild-type and protease and reverse transcriptase mutant Ty3. Wild-type VLPs were found to have a broad range of diameters, but the majority, if not all of the particles, exhibited arrangements of capsomeres on their surfaces which were consistent with icosahedral symmetry. Wild-type particles were in the range of 25 to 52 nm in diameter, with particles in the 42- to 52-nm diameter range consistent with T=7 symmetry. Both classes of mutant VLPs fell into a narrower range of 44 to 53 nm in diameter and appeared to be consistent with T=7 icosahedral symmetry. The smaller particles in the wild-type population likely correspond to VLPs that have progressed to reverse transcription or later stages, which do not occur in the protease and reverse transcriptase mutants. Ty3 VLPs did not undergo major external rearrangements during proteolytic maturation.
Collapse
Affiliation(s)
- Yurii G Kuznetsov
- Department of Molecular Biology, University of California, Irvine, California 92697-1700, USA
| | | | | | | | | |
Collapse
|
85
|
Lehmann-Che J, Giron ML, Delelis O, Löchelt M, Bittoun P, Tobaly-Tapiero J, de Thé H, Saïb A. Protease-dependent uncoating of a complex retrovirus. J Virol 2005; 79:9244-53. [PMID: 15994819 PMCID: PMC1168774 DOI: 10.1128/jvi.79.14.9244-9253.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although retrovirus egress and budding have been partly unraveled, little is known about early stages of the replication cycle. In particular, retroviral uncoating, a process during which incoming retroviral cores are altered to allow the integration of the viral genome into host chromosomes, is poorly understood. To get insights into these early events of the retroviral cycle, we have used foamy complex retroviruses as a model. In this report, we show that a protease-defective foamy retrovirus is noninfectious, although it is still able to bud and enter target cells efficiently. Similarly, a retrovirus mutated in an essential viral protease-dependent cleavage site in the central part of Gag is noninfectious. Following entry, wild-type and mutant retroviruses are able to traffic along microtubules towards the microtubule-organizing center (MTOC). However, whereas nuclear import of Gag and of the viral genome was observed for the wild-type virus as early as 8 hours postinfection, incoming capsids and genome from mutant viruses remained at the MTOC. Interestingly, a specific viral protease-dependent Gag cleavage product was detected only for the wild-type retrovirus early after infection, demonstrating that cleavage of Gag by the viral protease at this stage of the virus life cycle is absolutely required for productive infection, an unprecedented observation among retroviruses.
Collapse
|
86
|
Strunze S, Trotman LC, Boucke K, Greber UF. Nuclear targeting of adenovirus type 2 requires CRM1-mediated nuclear export. Mol Biol Cell 2005; 16:2999-3009. [PMID: 15814838 PMCID: PMC1142442 DOI: 10.1091/mbc.e05-02-0121] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 03/24/2005] [Accepted: 03/29/2005] [Indexed: 01/05/2023] Open
Abstract
Incoming adenovirus type 2 (Ad2) and Ad5 shuttle bidirectionally along microtubules, biased to the microtubule-organizing center by the dynein/dynactin motor complex. It is unknown how the particles reach the nuclear pore complex, where capsids disassemble and viral DNA enters the nucleus. Here, we identified a novel link between nuclear export and microtubule-mediated transport. Two distinct inhibitors of the nuclear export factor CRM1, leptomycin B (LMB) and ratjadone A (RJA) or CRM1-siRNAs blocked adenovirus infection, arrested cytoplasmic transport of viral particles at the microtubule-organizing center or in the cytoplasm and prevented capsid disassembly and nuclear import of the viral genome. In mitotic cells where CRM1 is in the cytoplasm, adenovirus particles were not associated with microtubules but upon LMB treatment, they enriched at the spindle poles implying that CRM1 inhibited microtubule association of adenovirus. We propose that CRM1, a nuclear factor exported by CRM1 or a protein complex containing CRM1 is part of a sensor mechanism triggering the unloading of the incoming adenovirus particles from microtubules proximal to the nucleus of interphase cells.
Collapse
Affiliation(s)
- Sten Strunze
- University of Zürich, Institute of Zoology, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
87
|
Ruthel G, Demmin GL, Kallstrom G, Javid MP, Badie SS, Will AB, Nelle T, Schokman R, Nguyen TL, Carra JH, Bavari S, Aman MJ. Association of ebola virus matrix protein VP40 with microtubules. J Virol 2005; 79:4709-19. [PMID: 15795257 PMCID: PMC1069569 DOI: 10.1128/jvi.79.8.4709-4719.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses exploit a variety of cellular components to complete their life cycles, and it has become increasingly clear that use of host cell microtubules is a vital part of the infection process for many viruses. A variety of viral proteins have been identified that interact with microtubules, either directly or via a microtubule-associated motor protein. Here, we report that Ebola virus associates with microtubules via the matrix protein VP40. When transfected into mammalian cells, a fraction of VP40 colocalized with microtubule bundles and VP40 coimmunoprecipitated with tubulin. The degree of colocalization and microtubule bundling in cells was markedly intensified by truncation of the C terminus to a length of 317 amino acids. Further truncation to 308 or fewer amino acids abolished the association with microtubules. Both the full-length and the 317-amino-acid truncation mutant stabilized microtubules against depolymerization with nocodazole. Direct physical interaction between purified VP40 and tubulin proteins was demonstrated in vitro. A region of moderate homology to the tubulin binding motif of the microtubule-associated protein MAP2 was identified in VP40. Deleting this region resulted in loss of microtubule stabilization against drug-induced depolymerization. The presence of VP40-associated microtubules in cells continuously treated with nocodazole suggested that VP40 promotes tubulin polymerization. Using an in vitro polymerization assay, we demonstrated that VP40 directly enhances tubulin polymerization without any cellular mediators. These results suggest that microtubules may play an important role in the Ebola virus life cycle and potentially provide a novel target for therapeutic intervention against this highly pathogenic virus.
Collapse
|
88
|
Schnell MJ, Tan GS, Dietzschold B. The application of reverse genetics technology in the study of rabies virus (RV) pathogenesis and for the development of novel RV vaccines. J Neurovirol 2005; 11:76-81. [PMID: 15804964 DOI: 10.1080/13550280590900436] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Rabies is a central nervous system (CNS) disease that is almost invariably fatal. Neurotropism, neuroinvasiveness, and transsynaptic spread are the main features that determine the pathogenesis of rabies. Recent advances in rabies virus (RV) research, which made direct genetic manipulations of the RV genome possible, greatly improved the understanding of the role of different viral and host cell factors in the pathogenesis of rabies. Here the authors discuss molecular mechanisms associated with rabies RV infection and its spread to the CNS.
Collapse
Affiliation(s)
- Matthias J Schnell
- Department of Biochemistry and Molecular Pharmacology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107-6799, USA.
| | | | | |
Collapse
|
89
|
Kelkar SA, Pfister KK, Crystal RG, Leopold PL. Cytoplasmic dynein mediates adenovirus binding to microtubules. J Virol 2004; 78:10122-32. [PMID: 15331745 PMCID: PMC515014 DOI: 10.1128/jvi.78.18.10122-10132.2004] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
During infection, adenovirus (Ad) capsids undergo microtubule-dependent retrograde transport as part of a program of vectorial transport of the viral genome to the nucleus. The microtubule-associated molecular motor, cytoplasmic dynein, has been implicated in the retrograde movement of Ad. We hypothesized that cytoplasmic dynein constituted the primary mode of association of Ad with microtubules. To evaluate this hypothesis, an Ad-microtubule binding assay was established in which microtubules were polymerized with taxol, combined with Ad in the presence or absence of microtubule-associated proteins (MAPs), and centrifuged through a glycerol cushion. The addition of purified bovine brain MAPs increased the fraction of Ad in the microtubule pellet from 17.3% +/- 3.5% to 80.7% +/- 3.8% (P < 0.01). In the absence of tubulin polymerization or in the presence of high salt, no Ad was found in the pellet. Ad binding to microtubules was not enhanced by bovine brain MAPs enriched for tau protein or by the addition of bovine serum albumin. Enhanced Ad-microtubule binding was also observed by using a fraction of MAPs purified from lung A549 epithelial cell lysate which contained cytoplasmic dynein. Ad-microtubule interaction was sensitive to the addition of ATP, a hallmark of cytoplasmic dynein-dependent microtubule interactions. Immunodepletion of cytoplasmic dynein from the A549 cell lysate abolished the MAP-enhanced Ad-microtubule binding. The interaction of Ad with both dynein and dynactin complexes was demonstrated by coimmunoprecipitation. Partially uncoated capsids isolated from cells 40 min after infection also exhibited microtubule binding. In summary, the primary mode of Ad attachment to microtubules occurs though cytoplasmic dynein-mediated binding.
Collapse
Affiliation(s)
- Samir A Kelkar
- Weill Medical College of Cornell University, Department of Genetic Medicine, 515 E. 71st St., S-1000, New York, NY 10021, USA
| | | | | | | |
Collapse
|
90
|
Abstract
Foamy viruses (FVs) or spumaviruses were described for the first time in the early 1950s in cell cultures derived from monkey kidneys. Later, FVs were isolated in several mammal species such as cats, cattle and horses. Highly prevalent in non-human primates they are not naturally present in humans, although several cases of simian-to-human transmissions have been described. Interestingly, the replication strategy of FVs differs in many aspects from that of other retroviruses, presenting features that are closely related to pararetroviruses, exemplified by the hepatitis B virus (HBV), but also characteristics that are closely related to yeast retrotransposons. These characteristics led to the creation of a distinct viral subfamily by the International Committee on Virus Taxonomy in 2002; the Spumaretrovirinae.
Collapse
Affiliation(s)
- Olivier Delelis
- CNRS UPR9051, Hôpital Saint-Louis, Centre Hayem, 1 Avenue Claude Vellefaux, 75475 Paris Cedex 10, Paris, France
| | | | | |
Collapse
|
91
|
Nisole S, Saïb A. Early steps of retrovirus replicative cycle. Retrovirology 2004; 1:9. [PMID: 15169567 PMCID: PMC421752 DOI: 10.1186/1742-4690-1-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2004] [Accepted: 05/14/2004] [Indexed: 12/28/2022] Open
Abstract
During the last two decades, the profusion of HIV research due to the urge to identify new therapeutic targets has led to a wealth of information on the retroviral replication cycle. However, while the late stages of the retrovirus life cycle, consisting of virus replication and egress, have been partly unraveled, the early steps remain largely enigmatic. These early steps consist of a long and perilous journey from the cell surface to the nucleus where the proviral DNA integrates into the host genome. Retroviral particles must bind specifically to their target cells, cross the plasma membrane, reverse-transcribe their RNA genome, while uncoating the cores, find their way to the nuclear membrane and penetrate into the nucleus to finally dock and integrate into the cellular genome. Along this journey, retroviruses hijack the cellular machinery, while at the same time counteracting cellular defenses. Elucidating these mechanisms and identifying which cellular factors are exploited by the retroviruses and which hinder their life cycle, will certainly lead to the discovery of new ways to inhibit viral replication and to improve retroviral vectors for gene transfer. Finally, as proven by many examples in the past, progresses in retrovirology will undoubtedly also provide some priceless insights into cell biology.
Collapse
Affiliation(s)
- Sébastien Nisole
- Division of Virology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Ali Saïb
- CNRS UPR9051, Hôpital Saint-Louis, 1 Avenue Claude Vellefaux, 75475 Paris cedex 10, France
| |
Collapse
|
92
|
Guzzo RM, Sevinc S, Salih M, Tuana BS. A novel isoform of sarcolemmal membrane-associated protein (SLMAP) is a component of the microtubule organizing centre. J Cell Sci 2004; 117:2271-81. [PMID: 15126628 DOI: 10.1242/jcs.01079] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The microtubule organizing centre (MTOC) or the centrosome serves a crucial role in the establishment of cellular polarity, organization of interphase microtubules and the formation of the bipolar mitotic spindle. We have elucidated the genomic structure of a gene encoding the sarcolemmal membrane-associated protein (SLMAP), which encodes a 91 kDa polypeptide with a previously uncharacterized N-terminal sequence encompassing a forkhead-associated (FHA) domain that resides at the centrosome. Anti-peptide antibodies directed against SLMAP N-terminal sequences showed colocalization with γ-tubulin at the centrosomes at all phases of the cell cycle. Agents that specifically disrupt microtubules did not affect SLMAP association with centrosomes. Furthermore, SLMAP sequences directed a reporter green fluorescent protein (GFP) to the centrosome, and deletions of the newly identified N-terminal sequence from SLMAP prevented the centrosomal targeting. Deletion-mutant analysis concluded that overall, structural determinants in SLMAP were responsible for centrosomal targeting. Elevated levels of centrosomal SLMAP were found to be lethal, whereas mutants that lacked centrosomal targeting inhibited cell growth accompanied by an accumulation of cells at the G2/M phase of the cell cycle.
Collapse
Affiliation(s)
- Rosa M Guzzo
- Department of Cellular and Molecular Medicine, 451 Smyth Road, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | | | | | | |
Collapse
|
93
|
Sakato M, King SM. Design and regulation of the AAA+ microtubule motor dynein. J Struct Biol 2004; 146:58-71. [PMID: 15037237 DOI: 10.1016/j.jsb.2003.09.026] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 09/22/2003] [Indexed: 11/19/2022]
Abstract
Dyneins are highly complex molecular motors that transport their attached cargo towards the minus end of microtubules. These enzymes are required for many essential motile activities within the cytoplasm and also power eukaryotic cilia and flagella. Each dynein contains one or more heavy chain motor units that consist of an N-terminal stem domain that is involved in cargo attachment, and six AAA+ domains (AAA1-6) plus a C-terminal globular segment that are arranged in a heptameric ring. At least one AAA+ domain (AAA1) is capable of ATP binding and hydrolysis, and the available data suggest that one or more additional domains also may bind nucleotide. The ATP-sensitive microtubule binding site is located at the tip of a 10nm coiled coil stalk that emanates from between AAA4 and AAA5. The function of this motor both in the cytoplasm and the flagellum must be tightly regulated in order to result in useful work. Consequently, dyneins also contain a series of additional components that serve to define the cargo-binding properties of the enzyme and which act as sensors to transmit regulatory inputs to the motor units. Here we describe the two basic dynein designs and detail the various regulatory systems that impinge on this motor within the eukaryotic flagellum.
Collapse
Affiliation(s)
- Miho Sakato
- Department of Biochemistry, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA
| | | |
Collapse
|
94
|
Vallee RB, Williams JC, Varma D, Barnhart LE. Dynein: An ancient motor protein involved in multiple modes of transport. ACTA ACUST UNITED AC 2004; 58:189-200. [PMID: 14704951 DOI: 10.1002/neu.10314] [Citation(s) in RCA: 310] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cytoplasmic dynein has long been thought to be responsible for retrograde axonal transport. As the number of cellular roles for this multifunctional protein has expanded, the complexity of its contribution to axonal transport has increased. In this article the increasing evidence for a role for cytoplasmic dynein in anterograde as well as retrograde transport is discussed. The current status of the complex dynein cargo-binding mechanism is evaluated. Finally, recent genetic evidence supporting a role in axonal transport and revealing a role in neurodegenerative conditions is reviewed.
Collapse
Affiliation(s)
- Richard B Vallee
- Departments of Pathology and Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 W. 168th Street, New York, New York 10032, USA.
| | | | | | | |
Collapse
|
95
|
Saïb A. [Viral hijacking of cell functions]. ACTA ACUST UNITED AC 2004; 52:58-9. [PMID: 15001231 DOI: 10.1016/j.patbio.2003.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2003] [Accepted: 05/05/2003] [Indexed: 11/25/2022]
|
96
|
Zhong L, Qing K, Si Y, Chen L, Tan M, Srivastava A. Heat-shock treatment-mediated increase in transduction by recombinant adeno-associated virus 2 vectors is independent of the cellular heat-shock protein 90. J Biol Chem 2004; 279:12714-23. [PMID: 14711833 PMCID: PMC1987378 DOI: 10.1074/jbc.m310548200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recombinant adeno-associated virus 2 (AAV) vectors transduction efficiency varies greatly in different cell types. We have described that a cellular protein, FKBP52, in its phosphorylated form interacts with the D-sequence in the viral inverted terminal repeat, inhibits viral second strand DNA synthesis, and limits transgene expression. Here we investigated the role of cellular heat-shock protein 90 (HSP90) in AAV transduction because FKBP52 forms a complex with HSP90, and because heat-shock treatment augments AAV transduction efficiency. Heat-shock treatment of HeLa cells resulted in tyrosine dephosphorylation of FKBP52, led to stabilization of the FKBP52-HSP90 complex, and resulted in approximately 6-fold increase in AAV transduction. However, when HeLa cells were pre-treated with tyrphostin 23, a specific inhibitor of cellular epidermal growth factor receptor tyrosine kinase, which phosphorylates FKBP52 at tyrosine residues, heat-shock treatment resulted in a further 18-fold increase in AAV transduction. HSP90 was shown to be a part of the FKBP52-AAV D-sequence complex, but HSP90 by itself did not bind to the D-sequence. Geldanamycin treatment, which disrupts the HSP90-FKBP52 complex, resulted in >22-fold increase in AAV transduction in heat-shock-treated cells compared with heat shock alone. Deliberate overexpression of the human HSP90 gene resulted in a significant decrease in AAV-mediated transduction in tyrphostin 23-treated cells, whereas down-modulation of HSP90 levels led to a decrease in HSP90-FKBP52-AAV D-sequence complex formation, resulting in a significant increase in AAV transduction following pre-treatment with tyrphostin 23. These studies suggest that the observed increase in AAV transduction efficiency following heat-shock treatment is unlikely to be mediated by HSP90 alone and that increased levels of HSP90, in the absence of heat shock, facilitate binding of FKBP52 to the AAV D-sequence, thereby leading to inhibition of AAV-mediated transgene expression. These studies have implications in the optimal use of recombinant AAV vectors in human gene therapy.
Collapse
Affiliation(s)
- Li Zhong
- Department of Microbiology and Immunology, Walther Oncology Center, Walther Cancer Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
97
|
Abstract
Foamy virus (FV) replication is distinct from that of all other retroviruses in many respects, including viral assembly. In fact, the viral assembly pathway is rather similar to that of hepadnaviruses such as hepatitis B virus. Foamy virus Gag does not contain landmark retroviral assembly domains such as the major homology region, Cys-His boxes, or a defined M domain. Like hepadnaviruses, the FV Gag protein is not cleaved and contains arginine-rich regions at the carboxyl terminus. In addition, egress of FV particles requires presence of the envelope glycoproteins. Finally, the cis-acting sequences in the FV genome required for genome incorporation, although poorly defined, differ in location from other retroviruses.
Collapse
Affiliation(s)
- M L Linial
- Division of Basic Sciences A3-015, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA.
| | | |
Collapse
|