51
|
MicroRNA: a connecting road between apoptosis and cholesterol metabolism. Tumour Biol 2016; 37:8529-54. [PMID: 27105614 DOI: 10.1007/s13277-016-4988-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/10/2016] [Indexed: 12/15/2022] Open
Abstract
Resistance to apoptosis leads to tumorigenesis and failure of anti-cancer therapy. Recent studies also highlight abrogated lipid/cholesterol metabolism as one of the root causes of cancer that can lead to metastatic transformations. Cancer cells are dependent on tremendous supply of cellular cholesterol for the formation of new membranes and continuation of cell signaling. Cholesterol homeostasis network tightly regulates this metabolic need of cancer cells on cholesterol and other lipids. Genetic landscape is also shared between apoptosis and cholesterol metabolism. MicroRNAs (miRNAs) are the new fine tuners of signaling pathways and cellular processes and are known for their ability to post-transcriptionally repress gene expression in a targeted manner. This review summarizes the current knowledge about the cross talk between apoptosis and cholesterol metabolism via miRNAs. In addition, we also emphasize herein recent therapeutic modulations of specific miRNAs and their promising potential for the treatment of deadly diseases including cancer and cholesterol related pathologies. Understanding of the impact of miRNA-based regulation of apoptosis and metabolic processes is still at its dawn and needs further research for the development of future miRNA-based therapies. As both these physiological processes affect cellular homeostasis, we believe that this comprehensive summary of miRNAs modulating both apoptosis and cholesterol metabolism will open uncharted territory for scientific exploration and will provide the foundation for discovering novel drug targets for cancer and metabolic diseases.
Collapse
|
52
|
Ernst WL, Shome K, Wu CC, Gong X, Frizzell RA, Aridor M. VAMP-associated Proteins (VAP) as Receptors That Couple Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Proteostasis with Lipid Homeostasis. J Biol Chem 2016; 291:5206-20. [PMID: 26740627 DOI: 10.1074/jbc.m115.692749] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 12/27/2022] Open
Abstract
Unesterified cholesterol accumulates in late endosomes in cells expressing the misfolded cystic fibrosis transmembrane conductance regulator (CFTR). CFTR misfolding in the endoplasmic reticulum (ER) or general activation of ER stress led to dynein-mediated clustering of cholesterol-loaded late endosomes at the Golgi region, a process regulated by ER-localized VAMP-associated proteins (VAPs). We hypothesized that VAPs serve as intracellular receptors that couple lipid homeostasis through interactions with two phenylalanines in an acidic track (FFAT) binding signals (found in lipid sorting and sensing proteins, LSS) with proteostasis regulation. VAPB inhibited the degradation of ΔF508-CFTR. The activity was mapped to the ligand-binding major sperm protein (MSP) domain, which was sufficient in regulating CFTR biogenesis. We identified mutations in an unstructured loop within the MSP that uncoupled VAPB-regulated CFTR biogenesis from basic interactions with FFAT. Using this information, we defined functional and physical interactions between VAPB and proteostasis regulators (ligands), including the unfolded protein response sensor ATF6 and the ER degradation cluster that included FAF1, VCP, BAP31, and Derlin-1. VAPB inhibited the degradation of ΔF508-CFTR in the ER through interactions with the RMA1-Derlin-BAP31-VCP pathway. Analysis of pseudoligands containing tandem FFAT signals supports a competitive model for VAP interactions that direct CFTR biogenesis. The results suggest a model in which VAP-ligand binding couples proteostasis and lipid homeostasis leading to observed phenotypes of lipid abnormalities in protein folding diseases.
Collapse
Affiliation(s)
- Wayne L Ernst
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Kuntala Shome
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Christine C Wu
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Xiaoyan Gong
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Raymond A Frizzell
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Meir Aridor
- From the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
53
|
Lazzara CA, Kim YH. Potential application of lithium in Parkinson's and other neurodegenerative diseases. Front Neurosci 2015; 9:403. [PMID: 26578864 PMCID: PMC4621308 DOI: 10.3389/fnins.2015.00403] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/12/2015] [Indexed: 12/12/2022] Open
Abstract
Lithium, the long-standing hallmark treatment for bipolar disorder, has recently been identified as a potential neuroprotective agent in neurodegeneration. Here we focus on introducing numerous in vitro and in vivo studies that have shown lithium treatment to be efficacious in reducing oxidative stress and inflammation, increasing autophagy, inhibiting apoptosis, and decreasing the accumulation of α-synulcein, with an emphasis on Parkinson's disease. A number of biological pathways have been shown to be involved in causing these neuroprotective effects. The inhibition of GSK-3β has been the mechanism most studied; however, other modes of action include the regulation of apoptotic proteins and glutamate excitotoxicity as well as down-regulation of calpain. This review provides a framework of the neuroprotective effects of lithium in neurodegenerative diseases and the putative mechanisms by which lithium provides the protection. Lithium-only treatment may not be a suitable therapeutic option for neurodegenerative diseases due to inconsistent efficacy and potential side-effects, however, the use of low dose lithium in combination with other potential or existing therapeutic compounds may be a promising approach to reduce symptoms and disease progression in neurodegenerative diseases.
Collapse
Affiliation(s)
- Carol A Lazzara
- Department of Biological Sciences, Delaware State University Dover, DE, USA
| | - Yong-Hwan Kim
- Department of Biological Sciences, Delaware State University Dover, DE, USA
| |
Collapse
|
54
|
Aghajanirefah A, Nguyen LN, Ohadi M. BEND3 is involved in the human-specific repression of calreticulin: Implication for the evolution of higher brain functions in human. Gene 2015; 576:577-80. [PMID: 26481236 DOI: 10.1016/j.gene.2015.10.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/01/2015] [Accepted: 10/15/2015] [Indexed: 01/27/2023]
Abstract
Recent emerging evidence indicates that changes in gene expression levels are linked to human evolution. We have previously reported a human-specific nucleotide in the promoter sequence of the calreticulin (CALR) gene at position -220C, which is the site of action of valproic acid. Reversion of this nucleotide to the ancestral A-allele has been detected in patients with degrees of deficit in higher brain cognitive functions. This mutation has since been reported in the 1000 genomes database at an approximate frequency of <0.0004 in humans (rs138452745). In the study reported here, we present update on the status of rs138452745 across evolution, based on the Ensembl and NCBI databases. The DNA pulldown assay was also used to identify the proteins binding to the C- and A-alleles, using two cell lines, SK-N-BE and HeLa. Consistent with our previous findings, the C-allele is human-specific, and the A-allele is the rule across all other species (N=38). This nucleotide resides in a block of 12-nucleotides that is strictly conserved across evolution. The DNA pulldown experiments revealed that in both SK-N-BE and HeLa cells, the transcription repressor BEN domain containing 3 (BEND3) binds to the human-specific C-allele, whereas the nuclear factor I (NFI) family members, NF1A, B, C, and X, specifically bind to the ancestral A-allele. This binding pattern is consistent with a previously reported decreased promoter activity of the C-allele vs. the A-allele. We propose that there is a link between binding of BEND3 to the CALR rs138452745 C-allele and removal of NFI binding site from this nucleotide, and the evolution of human-specific higher brain functions. To our knowledge, CALR rs138452745 is the first instance of enormous nucleotide conservation across evolution, except in the human species.
Collapse
Affiliation(s)
- A Aghajanirefah
- Department of Molecular Biology, Faculty of Science and Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - L N Nguyen
- Department of Molecular Biology, Faculty of Science and Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - M Ohadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
55
|
The Chondroprotective Role of TMF in PGE2-Induced Apoptosis Associating with Endoplasmic Reticulum Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:297423. [PMID: 26435723 PMCID: PMC4576019 DOI: 10.1155/2015/297423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/21/2015] [Accepted: 08/25/2015] [Indexed: 12/23/2022]
Abstract
Endoplasmic reticulum stress (ERS) has been demonstrated to exhibit a critical role in osteoarthritic chondrocytes. Whether 5,7,3′,4′-tetramethoxyflavone (TMF) plays the chondroprotective role in inhibition of PGE2-induced chondrocytes apoptosis associating with ERS has not been reported. To investigate this, the activation of PERK, ATF6, and IRE1 signaling pathways in ERS in chondrocytes pretreated with PGE2 was studied. By treatment with PGE2, the chondrocytes apoptosis was significantly increased, the proapoptotic CHOP and JNK were upregulated, the prosurvival GRP78 and XBP1 were downregulated, and GSK-3β was also upregulated. However, TMF exhibited the effectively protective functions via counteracting these detrimental effects of PGE2. Finally, the inflammatory cytokine PGE2 can activate ERS signaling and promote chondrocytes apoptosis, which might be associated with upregulation of GSK-3β. TMF exhibits a chondroprotective role in inhibiting PGE2-induced ERS and GSK-3β.
Collapse
|
56
|
Renoux C, Dell'Aniello S, Saarela O, Filion KB, Boivin JF. Antiepileptic drugs and the risk of ischaemic stroke and myocardial infarction: a population-based cohort study. BMJ Open 2015; 5:e008365. [PMID: 26270948 PMCID: PMC4538287 DOI: 10.1136/bmjopen-2015-008365] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Hepatic enzyme-inducing antiepileptic drugs (AEDs) increase serum lipid levels and other atherogenic markers via the induction of cytochrome P450 and may therefore increase the risk of vascular events. We sought to assess the risk of ischaemic stroke and myocardial infarction (MI) according to AED enzymatic properties. DESIGN Population-based cohort study with nested case-control analysis. SETTING 650 general practices in the UK contributing to the Clinical Practice Research Datalink. PARTICIPANTS A cohort of 252,407 incident AED users aged 18 or older between January 1990 and April 2013. For each case of ischaemic stroke or MI, up to 10 controls were randomly selected among the cohort members in the risk sets defined by the case and matched on age, sex, indication for AED, calendar time and duration of follow-up. INTERVENTIONS Current use of enzyme-inducing and enzyme-inhibiting AEDs compared with non-inducing AEDs. PRIMARY OUTCOME MEASURES Incidence rate ratios (RRs) of ischaemic stroke and MI. RESULTS 5069 strokes and 3636 MIs were identified during follow-up. Inducing AEDs use was associated with a small increased risk of ischaemic stroke (RR=1.16, 95% CI 1.02 to 1.33) relative to non-inducing AEDs, most likely due to residual confounding. However, current use of inducing AEDs for ≥ 24 months was associated with a 46% increased risk of MI (RR=1.46, 95% CI 1.15 to 1.85) compared with the same duration of non-inducing AED, corresponding to a risk difference of 1.39/1000 (95% CI 0.33 to 2.45) persons per year. Current use of inhibiting AED was associated with a decreased risk of MI (RR=0.81, 95% CI 0.66 to 1.00). CONCLUSIONS The use of enzyme-inducing AEDs was not associated with an increased risk of ischaemic stroke; a small increase of MI with prolonged use was observed. In contrast, use of inhibiting AEDs was associated with a decreased risk of MI.
Collapse
Affiliation(s)
- Christel Renoux
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
- Department of Epidemiology and Biostatistics, McGill University, Montréal, Québec, Canada
| | - Sophie Dell'Aniello
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Olli Saarela
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Kristian B Filion
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Department of Epidemiology and Biostatistics, McGill University, Montréal, Québec, Canada
- Division of Clinical Epidemiology, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Jean-François Boivin
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
- Department of Epidemiology and Biostatistics, McGill University, Montréal, Québec, Canada
| |
Collapse
|
57
|
Golpich M, Amini E, Hemmati F, Ibrahim NM, Rahmani B, Mohamed Z, Raymond AA, Dargahi L, Ghasemi R, Ahmadiani A. Glycogen synthase kinase-3 beta (GSK-3β) signaling: Implications for Parkinson's disease. Pharmacol Res 2015; 97:16-26. [PMID: 25829335 DOI: 10.1016/j.phrs.2015.03.010] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/05/2015] [Accepted: 03/16/2015] [Indexed: 01/02/2023]
Abstract
Glycogen synthase kinase 3 (GSK-3) dysregulation plays an important role in the pathogenesis of numerous disorders, affecting the central nervous system (CNS) encompassing both neuroinflammation and neurodegenerative diseases. Several lines of evidence have illustrated a key role of the GSK-3 and its cellular and molecular signaling cascades in the control of neuroinflammation. Glycogen synthase kinase 3 beta (GSK-3β), one of the GSK-3 isomers, plays a major role in neuronal apoptosis and its inhibition decreases expression of alpha-Synuclein (α-Synuclein), which make this kinase an attractive therapeutic target for neurodegenerative disorders. Parkinson's disease (PD) is a chronic neurodegenerative movement disorder characterized by the progressive and massive loss of dopaminergic neurons by neuronal apoptosis in the substantia nigra pars compacta and depletion of dopamine in the striatum, which lead to pathological and clinical abnormalities. Thus, understanding the role of GSK-3β in PD will enhance our knowledge of the basic mechanisms underlying the pathogenesis of this disorder and facilitate the identification of new therapeutic avenues. In recent years, GSK-3β has been shown to play essential roles in modulating a variety of cellular functions, which have prompted efforts to develop GSK-3β inhibitors as therapeutics. In this review, we summarize GSK-3 signaling pathways and its association with neuroinflammation. Moreover, we highlight the interaction between GSK-3β and several cellular processes involved in the pathogenesis of PD, including the accumulation of α-Synuclein aggregates, oxidative stress and mitochondrial dysfunction. Finally, we discuss about GSK-3β inhibitors as a potential therapeutic strategy in PD.
Collapse
Affiliation(s)
- Mojtaba Golpich
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Elham Amini
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Fatemeh Hemmati
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Behrouz Rahmani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahurin Mohamed
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Azman Ali Raymond
- Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Kuala Lumpur, Malaysia
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Neurophysiology Research Center and Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
58
|
Kim S, Joe Y, Kim HJ, Kim YS, Jeong SO, Pae HO, Ryter SW, Surh YJ, Chung HT. Endoplasmic reticulum stress-induced IRE1α activation mediates cross-talk of GSK-3β and XBP-1 to regulate inflammatory cytokine production. THE JOURNAL OF IMMUNOLOGY 2015; 194:4498-506. [PMID: 25821218 DOI: 10.4049/jimmunol.1401399] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 02/24/2015] [Indexed: 12/22/2022]
Abstract
IL-1β and TNF-α are important proinflammatory cytokines that respond to mutated self-antigens of tissue damage and exogenous pathogens. The endoplasmic reticulum (ER) stress and unfolded protein responses are related to the induction of proinflammatory cytokines. However, the detailed molecular pathways by which ER stress mediates cytokine gene expression have not been investigated. In this study, we found that ER stress-induced inositol-requiring enzyme (IRE)1α activation differentially regulates proinflammatory cytokine gene expression via activation of glycogen synthase kinase (GSK)-3β and X-box binding protein (XBP)-1. Surprisingly, IL-1β gene expression was modulated by IRE1α-mediated GSK-3β activation, but not by XBP-1. However, IRE1α-mediated XBP-1 splicing regulated TNF-α gene expression. SB216763, a GSK-3 inhibitor, selectively inhibited IL-1β gene expression, whereas the IRE1α RNase inhibitor STF083010 suppressed only TNF-α production. Additionally, inhibition of GSK-3β greatly increased IRE1α-dependent XBP-1 splicing. Our results identify an unsuspected differential role of downstream mediators GSK-3β and XBP-1 in ER stress-induced IRE1α activation that regulates cytokine production through signaling cross-talk. These results have important implications in the regulation of inflammatory pathways during ER stress, and they suggest novel therapeutic targets for diseases in which meta-inflammation plays a key role.
Collapse
Affiliation(s)
- Sena Kim
- School of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - Yeonsoo Joe
- School of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - Hyo Jeong Kim
- School of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | - You-Sun Kim
- Department of Biochemistry, Ajou University School of Medicine, Graduate School, Ajou University, Suwon 443-721, Korea; Department of Biomedical Sciences, Graduate School, Ajou University, Suwon 443-721, Korea
| | - Sun Oh Jeong
- Department of Anesthesiology and Pain Medicine, Wonkwang University School of Medicine, Iksan 570-749, Korea
| | - Hyun-Ock Pae
- Department of Anesthesiology and Pain Medicine, Wonkwang University School of Medicine, Iksan 570-749, Korea
| | - Stefan W Ryter
- Department of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065; and
| | - Young-Joon Surh
- College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Hun Taeg Chung
- School of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea;
| |
Collapse
|
59
|
Song BS, Yoon SB, Sim BW, Kim YH, Cha JJ, Choi SA, Jeong KJ, Kim JS, Huh JW, Lee SR, Kim SH, Kim SU, Chang KT. Valproic acid enhances early development of bovine somatic cell nuclear transfer embryos by alleviating endoplasmic reticulum stress. Reprod Fertil Dev 2015; 26:432-40. [PMID: 23506644 DOI: 10.1071/rd12336] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/23/2013] [Indexed: 11/23/2022] Open
Abstract
Despite the positive roles of histone deacetylase inhibitors in somatic cell nuclear transfer (SCNT), few studies have evaluated valproic acid (VPA) and its associated developmental events. Thus, the present study was conducted to elucidate the effect of VPA on the early development of bovine SCNT embryos and the underlying mechanisms of action. The histone acetylation level of SCNT embryos was successfully restored by VPA, with optimal results obtained by treatment with 3mM VPA for 24h. Importantly, the increases in blastocyst formation rate and inner cell mass and trophectoderm cell numbers were not different between the VPA and trichostatin A treatment groups, whereas cell survival was notably improved by VPA, indicating the improvement of developmental competence of SCNT embryos by VPA. Interestingly, VPA markedly reduced the transcript levels of endoplasmic reticulum (ER) stress markers, including sXBP-1 and CHOP. In contrast, the levels of GRP78/BiP, an ER stress-alleviating transcript, were significantly increased by VPA. Furthermore, VPA greatly reduced cell apoptosis in SCNT blastocysts, which was further evidenced by the increased levels of the anti-apoptotic transcript Bcl-xL and decreased level of the pro-apoptotic transcript Bax. Collectively, these results suggest that VPA enhances the developmental competence of bovine SCNT embryos by alleviating ER stress and its associated developmental damage.
Collapse
Affiliation(s)
- Bong-Seok Song
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Seung-Bin Yoon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Bo-Woong Sim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Jae-Jin Cha
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Seon-A Choi
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Kang-Jin Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Ji-Su Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Sang-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Sun-Uk Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| | - Kyu-Tae Chang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do 363-883, Republic of Korea
| |
Collapse
|
60
|
Endoplasmic Reticulum Stress-Activated Glycogen Synthase Kinase 3β Aggravates Liver Inflammation and Hepatotoxicity in Mice with Acute Liver Failure. Inflammation 2015; 38:1151-65. [DOI: 10.1007/s10753-014-0080-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
61
|
Ye C, Greenberg ML. Inositol synthesis regulates the activation of GSK-3α in neuronal cells. J Neurochem 2014; 133:273-83. [PMID: 25345501 DOI: 10.1111/jnc.12978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 12/26/2022]
Abstract
The synthesis of inositol provides precursors of inositol lipids and inositol phosphates that are pivotal for cell signaling. Mood stabilizers lithium and valproic acid, used for treating bipolar disorder, cause cellular inositol depletion, which has been proposed as a therapeutic mechanism of action of both drugs. Despite the importance of inositol, the requirement for inositol synthesis in neuronal cells is not well understood. Here, we examined inositol effects on proliferation of SK-N-SH neuroblastoma cells. The essential role of inositol synthesis in proliferation is underscored by the findings that exogenous inositol was dispensable for proliferation, and inhibition of inositol synthesis decreased proliferation. Interestingly, the inhibition of inositol synthesis by knocking down INO1, which encodes inositol-3-phosphate synthase, the rate-limiting enzyme of inositol synthesis, led to the inactivation of GSK-3α by increasing the inhibitory phosphorylation of this kinase. Similarly, the mood stabilizer valproic acid effected transient decreases in intracellular inositol, leading to inactivation of GSK-3α. As GSK-3 inhibition has been proposed as a likely therapeutic mechanism of action, the finding that inhibition of inositol synthesis results in the inactivation of GSK-3α suggests a unifying hypothesis for mechanism of mood-stabilizing drugs. Inositol is an essential metabolite that serves as a precursor for inositol lipids and inositol phosphates. We report that inhibition of the rate-limiting enzyme of inositol synthesis leads to the inactivation of glycogen synthase kinase (GSK) 3α by increasing inhibitory phosphorylation of this kinase. These findings have implications for the therapeutic mechanisms of mood stabilizers and suggest that inositol synthesis and GSK 3α activity are intrinsically related.
Collapse
Affiliation(s)
- Cunqi Ye
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | | |
Collapse
|
62
|
Banko NS, McAlpine CS, Venegas-Pino DE, Raja P, Shi Y, Khan MI, Werstuck GH. Glycogen synthase kinase 3α deficiency attenuates atherosclerosis and hepatic steatosis in high fat diet-fed low density lipoprotein receptor-deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3394-404. [PMID: 25451156 DOI: 10.1016/j.ajpath.2014.07.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 07/11/2014] [Accepted: 07/29/2014] [Indexed: 12/01/2022]
Abstract
Studies have implicated signaling through glycogen synthase kinase (GSK) 3α/β in the activation of pro-atherogenic pathways and the accelerated development of atherosclerosis. By using a mouse model, we examined the role of GSK3α in the development and progression of accelerated atherosclerosis. We crossed Gsk3a/GSK3α-knockout mice with low-density lipoprotein receptor (Ldlr) knockout mice. Five-week-old Ldlr(-/-);Gsk3a(+/+), Ldlr(-/-);Gsk3a(+/-), and Ldlr(-/-);Gsk3a(-/-) mice were fed a chow diet or a high-fat diet for 10 weeks and then sacrificed. GSK3α deficiency had no detectible effect on any measured parameters in chow-fed mice. High-fat-diet fed Ldlr(-/-) mice that were deficient for GSK3α had significantly less hepatic lipid accumulation and smaller atherosclerotic lesions (60% smaller in Ldlr(-/-);Gsk3a(+/-) mice, 80% smaller in Ldlr(-/-);Gsk3a(-/-) mice; P < 0.05), compared with Ldlr(-/-);Gsk3a(+/+) controls. GSK3α deficiency was associated with a significant increase in plasma IL-10 concentration and IL-10 expression in isolated macrophages. A twofold to threefold enhancement in endoplasmic reticulum stress-induced IL-10 expression was observed in Thp-1-derived macrophages that were pretreated with the GSK3α/β inhibitor CT99021. Together, these results suggest that GSK3α plays a pro-atherogenic role, possibly by mediating the effects of endoplasmic reticulum stress in the activation of pro-atherogenic pathways.
Collapse
Affiliation(s)
- Nicole S Banko
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Cameron S McAlpine
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Daniel E Venegas-Pino
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Preeya Raja
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Yuanyuan Shi
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Mohammad I Khan
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Geoff H Werstuck
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
63
|
Paeng J, Chang JH, Lee SH, Nam BY, Kang HY, Kim S, Oh HJ, Park JT, Han SH, Yoo TH, Kang SW. Enhanced glycogen synthase kinase-3β activity mediates podocyte apoptosis under diabetic conditions. Apoptosis 2014; 19:1678-90. [DOI: 10.1007/s10495-014-1037-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
64
|
McAlpine CS, Werstuck GH. Protein kinase R-like endoplasmic reticulum kinase and glycogen synthase kinase-3α/β regulate foam cell formation. J Lipid Res 2014; 55:2320-33. [PMID: 25183803 DOI: 10.1194/jlr.m051094] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Evidence suggests a causative role for endoplasmic reticulum (ER) stress in the development of atherosclerosis. This study investigated the potential role of glycogen synthase kinase (GSK)-3α/β in proatherogenic ER stress signaling. Thp1-derived macrophages were treated with the ER stress-inducing agents, glucosamine, thapsigargin, or palmitate. Using small-molecule inhibitors of specific unfolded protein response (UPR) signaling pathways, we found that protein kinase R-like ER kinase (PERK), but not inositol requiring enzyme 1 or activating transcription factor 6, is required for the activation of GSK3α/β by ER stress. GSK3α/β inhibition or siRNA-directed knockdown attenuated ER stress-induced expression of distal components of the PERK pathway. Macrophage foam cells within atherosclerotic plaques and isolated macrophages from ApoE(-/-) mice fed a diet supplemented with the GSK3α/β inhibitor valproate had reduced levels of C/EBP homologous protein (CHOP). GSK3α/β inhibition blocked ER stress-induced lipid accumulation and the upregulation of genes associated with lipid metabolism. In primary mouse macrophages, PERK inhibition blocked ER stress-induced lipid accumulation, whereas constitutively active S9A-GSK3β promoted foam cell formation and CHOP expression, even in cells treated with a PERK inhibitor. These findings suggest that ER stress-PERK-GSK3α/β signaling promotes proatherogenic macrophage lipid accumulation.
Collapse
Affiliation(s)
- Cameron S McAlpine
- Departments of Medicine McMaster University, Hamilton, Ontario, Canada Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Geoff H Werstuck
- Departments of Medicine McMaster University, Hamilton, Ontario, Canada Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
65
|
Ilie A, Weinstein E, Boucher A, McKinney RA, Orlowski J. Impaired posttranslational processing and trafficking of an endosomal Na+/H+ exchanger NHE6 mutant (Δ370WST372) associated with X-linked intellectual disability and autism. Neurochem Int 2014; 73:192-203. [DOI: 10.1016/j.neuint.2013.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 01/23/2023]
|
66
|
Huang S, Zhu M, Wu W, Rashid A, Liang Y, Hou L, Ning Q, Luo X. Valproate pretreatment protects pancreatic β-cells from palmitate-induced ER stress and apoptosis by inhibiting glycogen synthase kinase-3β. J Biomed Sci 2014; 21:38. [PMID: 24884462 PMCID: PMC4084580 DOI: 10.1186/1423-0127-21-38] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/29/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Reduction of pancreatic β-cells mass, major secondary to increased β-cells apoptosis, is increasingly recognized as one of the main contributing factors to the pathogenesis of type 2 diabetes (T2D), and saturated free fatty acid palmitate has been shown to induce endoplasmic reticulum (ER) stress that may contribute to promoting β-cells apoptosis. Recent literature suggests that valproate, a diffusely prescribed drug in the treatment of epilepsy and bipolar disorder, can inhibit glycogen synthase kinase-3β (GSK-3β) activity and has cytoprotective effects in neuronal cells and HepG2 cells. Thus, we hypothesized that valproate may protect INS-1 β-cells from palmitate-induced apoptosis via inhibiting GSK-3β. RESULTS Valproate pretreatment remarkable prevented palmitate-mediated cytotoxicity and apoptosis (lipotoxicity) as well as ER distension. Furthermore, palmitate triggered ER stress as evidenced by increased mRNA levels of C/EBP homologous protein (CHOP) and activating transcription factor 4 (ATF4) in a time-dependent fashion. However, valproate not only reduced the mRNA and protein expression of CHOP but also inhibited GSK-3β and caspase-3 activity induced by palmitate, whereas, the mRNA expression of ATF4 was not affected. Interestingly, TDZD-8, a specific GSK-3β inhibitor, also showed the similar effect on lipotoxicity and ER stress as valproate in INS-1 cells. Finally, compared with CHOP knockdown, valproate displayed better cytoprotection against palmitate. CONCLUSIONS Valproate may protect β-cells from palmitate-induced apoptosis and ER stress via GSK-3β inhibition, independent of ATF4/CHOP pathway. Besides, GSK-3β, rather than CHOP, may be a more promising therapeutic target for T2D.
Collapse
Affiliation(s)
- Shan Huang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, Hubei Province 430030, P.R. China
| | - Minghui Zhu
- Department of Neurology, Wuhan Integrated TCM & Western Medicine Hospital, Wuhan, China
| | - Wei Wu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, Hubei Province 430030, P.R. China
| | - Abid Rashid
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, Hubei Province 430030, P.R. China
| | - Yan Liang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, Hubei Province 430030, P.R. China
| | - Ling Hou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, Hubei Province 430030, P.R. China
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, Hubei Province 430030, P.R. China
| |
Collapse
|
67
|
McAlpine CS, Beriault DR, Behdinan T, Shi Y, Werstuck GH. Oral glucosamine sulfate supplementation does not induce endoplasmic reticulum stress or activate the unfolded protein response in circulating leukocytes of human subjects. Can J Physiol Pharmacol 2014; 92:285-91. [PMID: 24708210 DOI: 10.1139/cjpp-2013-0318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucosamine sulfate is a dietary supplement that is marketed as a treatment for osteoarthritis. Recent evidence from animal and cell culture models have suggested that glucosamine treatment can promote the misfolding of proteins and the activation of the unfolded protein response (UPR). We investigated whether glucosamine sulfate supplementation activates the UPR in circulating leukocytes of human subjects. Cultured Thp1 human monocytes were exposed to increasing concentrations of glucosamine (0, 0.25, 1.0, 4.0 mmol · L(-1)) for 18 h. We observed a dose-dependent increase in intracellular glucosamine levels as well as the activation of UPR. To test the effect of glucosamine sulfate supplementation in humans, 14 healthy human subjects took 1500 mg · day(-1) glucosamine sulfate for 14 days. Metabolic parameters and blood samples were collected before and after supplementation. In humans, glucosamine sulfate supplementation did not alter metabolic parameters including lipid levels and glucose tolerance. Further, glucosamine sulfate supplementation did not affect intracellular glucosamine levels or activate the UPR in the leukocytes of human subjects. Our results indicate that in healthy human subjects, the recommended dose of glucosamine sulfate (1500 mg · day(-1)) for 14 days does not significantly alter intracellular glucosamine levels and does not activate the UPR in circulating leukocytes.
Collapse
Affiliation(s)
- Cameron S McAlpine
- a Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
68
|
Marlinge E, Bellivier F, Houenou J. White matter alterations in bipolar disorder: potential for drug discovery and development. Bipolar Disord 2014; 16:97-112. [PMID: 24571279 DOI: 10.1111/bdi.12135] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 05/24/2013] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Brain white matter (WM) alterations have recently emerged as potentially relevant in bipolar disorder. New techniques such as diffusion tensor imaging allow precise exploration of these WM microstructural alterations in bipolar disorder. Our objective was to critically review WM alterations in bipolar disorder, using neuroimaging and neuropathological studies, in the context of neural models and the potential for drug discovery and development. METHODS We conducted a systematic PubMed and Google Scholar search of the WM and bipolar disorder literature up to and including January 2013. RESULTS Findings relating to WM alterations are consistent in neuroimaging and neuropathology studies of bipolar disorder, especially in regions involved in emotional processing such as the anterior frontal lobe, corpus callosum, cingulate cortex, and in fronto-limbic connections. Some of the structural alterations are related to genetic risk factors for bipolar disorder and may underlie the dysfunctional emotional processing described in recent neurobiological models of bipolar disorder. Medication effects in bipolar disorder, from lithium and other mood stabilizers, might impact myelinating processes, particularly by inhibition of glycogen synthase kinase-3 beta. CONCLUSIONS Pathways leading to WM alterations in bipolar disorder represent potential targets for the development and discovery of new drugs. Myelin damage in bipolar disorder suggests that the effects of existing pro-myelinating drugs should also be evaluated to improve our understanding and treatment of this disease.
Collapse
Affiliation(s)
- Emeline Marlinge
- AP-HP, Groupe Henri Mondor-Albert Chenevier, Pôle de Psychiatrie, Paris, France; Inserm, U955, Equipe 15 (Psychiatrie Génétique), Paris, France; Fondation Fondamental, Créteil, France; Neurospin, I2BM, CEA, Gif-Sur-Yvette, France
| | | | | |
Collapse
|
69
|
Bhatia H, Verma G, Datta M. miR-107 orchestrates ER stress induction and lipid accumulation by post-transcriptional regulation of fatty acid synthase in hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:334-43. [PMID: 24560669 DOI: 10.1016/j.bbagrm.2014.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/27/2014] [Accepted: 02/13/2014] [Indexed: 12/13/2022]
Abstract
MicroRNAs, a class of small non-coding RNAs, are believed to regulate several biological pathways and processes and are implicated in several diseases. They mostly regulate the levels of their target genes at the post transcriptional stage by primarily binding to the 3' UTR. Elevated hepatic levels of miR-107 are a consistent feature associated with several obese and diabetic models. Here, we show that miR-107 post-transcriptionally regulates fatty acid synthase (FASN) by binding to its 3' UTR and reduces its protein levels and the 3'UTR luciferase reporter activity, which are blunted by the miR-107 inhibitor and mutation in the miR-107 binding site in the 3' UTR. Knock-down of endogenous miR-107 levels increased FASN levels in a dose-dependent manner. Overexpression of miR-107 led to significant accumulation of malonyl CoA, accompanied by ER stress induction. All these events were prevented in the presence of the miR-107 inhibitor. While overexpression of FASN could attenuate miR-107 mediated ER stress markers' induction; the ER stress inhibitor, 4-phenyl-butyric acid did not rescue miR-107 induced FASN inhibition. This was followed by increased triglyceride formation and lipid accumulation in the presence of miR-107. These indicate that miR-107 inhibits FASN levels by binding to its 3' UTR and this interaction promotes ER stress induction and malonyl CoA and lipid accumulation in HepG2 cells and primary hepatocytes. Our results suggest that increased levels of miR-107 are critical in promoting lipid accumulation in hepatocytes and this might form the basis of diverse etiologies encountered in a fatty liver.
Collapse
Affiliation(s)
- Himanshi Bhatia
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110 007, India; AcSIR, Anusandhan Bhavan, Rafi Marg, New Delhi 110 001, India
| | - Gaurav Verma
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110 007, India; AcSIR, Anusandhan Bhavan, Rafi Marg, New Delhi 110 001, India
| | - Malabika Datta
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110 007, India.
| |
Collapse
|
70
|
Cao J, Feng XX, Yao L, Ning B, Yang ZX, Fang DL, Shen W. Saturated free fatty acid sodium palmitate-induced lipoapoptosis by targeting glycogen synthase kinase-3β activation in human liver cells. Dig Dis Sci 2014; 59:346-57. [PMID: 24132507 DOI: 10.1007/s10620-013-2896-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 09/20/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Elevated serum saturated fatty acid levels and hepatocyte lipoapoptosis are features of nonalcoholic fatty liver disease (NAFLD). AIM The purpose of this study was to investigate saturated fatty acid induction of lipoapoptosis in human liver cells and the underlying mechanisms. METHODS Human liver L02 and HepG2 cells were treated with sodium palmitate, a saturated fatty acid, for up to 48 h with or without lithium chloride, a glycogen synthase kinase-3β (GSK-3β) inhibitor, or GSK-3β shRNA transfection. Transmission electron microscopy was used to detect morphological changes, flow cytometry was used to detect apoptosis, a colorimetric assay was used to detect caspase-3 activity, and western blot analysis was used to detect protein expression. RESULTS The data showed that sodium palmitate was able to induce lipoapoptosis in L02 and HepG2 cells. Western blot analysis showed that sodium palmitate activated GSK-3β protein, which was indicated by dephosphorylation of GSK-3β at Ser-9. However, inhibition of GSK-3β activity with lithium chloride treatment or knockdown of GSK-3β expression with shRNA suppressed sodium palmitate-induced lipoapoptosis in L02 and HepG2 cells. On a molecular level, inhibition of GSK-3β expression or activity suppressed sodium palmitate-induced c-Jun-N-terminal kinase (JNK) phosphorylation and Bax upregulation, whereas GSK-3β inhibition did not affect endoplasmic reticulum stress-induced activation of unfolded protein response. CONCLUSIONS The present data demonstrated that saturated fatty acid sodium palmitate-induced lipoapoptosis in human liver L02 and HepG2 cells was regulated by GSK-3β activation, which led to JNK activation and Bax upregulation. This finding indicates that GSK-3β inhibition may be a potential therapeutic target to control NAFLD.
Collapse
Affiliation(s)
- Jie Cao
- Department of Gastroenterology and Hepatology, The 2nd Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Chongqing, 400010, China,
| | | | | | | | | | | | | |
Collapse
|
71
|
Szalowska E, van der Burg B, Man HY, Hendriksen PJM, Peijnenburg AACM. Model steatogenic compounds (amiodarone, valproic acid, and tetracycline) alter lipid metabolism by different mechanisms in mouse liver slices. PLoS One 2014; 9:e86795. [PMID: 24489787 PMCID: PMC3906077 DOI: 10.1371/journal.pone.0086795] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/04/2013] [Indexed: 12/21/2022] Open
Abstract
Although drug induced steatosis represents a mild type of hepatotoxicity it can progress into more severe non-alcoholic steatohepatitis. Current models used for safety assessment in drug development and chemical risk assessment do not accurately predict steatosis in humans. Therefore, new models need to be developed to screen compounds for steatogenic properties. We have studied the usefulness of mouse precision-cut liver slices (PCLS) as an alternative to animal testing to gain more insight into the mechanisms involved in the steatogenesis. To this end, PCLS were incubated 24 h with the model steatogenic compounds: amiodarone (AMI), valproic acid (VA), and tetracycline (TET). Transcriptome analysis using DNA microarrays was used to identify genes and processes affected by these compounds. AMI and VA upregulated lipid metabolism, whereas processes associated with extracellular matrix remodelling and inflammation were downregulated. TET downregulated mitochondrial functions, lipid metabolism, and fibrosis. Furthermore, on the basis of the transcriptomics data it was hypothesized that all three compounds affect peroxisome proliferator activated-receptor (PPAR) signaling. Application of PPAR reporter assays classified AMI and VA as PPARγ and triple PPARα/(β/δ)/γ agonist, respectively, whereas TET had no effect on any of the PPARs. Some of the differentially expressed genes were considered as potential candidate biomarkers to identify PPAR agonists (i.e. AMI and VA) or compounds impairing mitochondrial functions (i.e. TET). Finally, comparison of our findings with publicly available transcriptomics data showed that a number of processes altered in the mouse PCLS was also affected in mouse livers and human primary hepatocytes exposed to known PPAR agonists. Thus mouse PCLS are a valuable model to identify early mechanisms of action of compounds altering lipid metabolism.
Collapse
Affiliation(s)
- Ewa Szalowska
- Cluster of Bioassays and Toxicology, RIKILT - Institute of Food Safety, Wageningen University and Research Centre, Wageningen, The Netherlands
- * E-mail:
| | | | - Hai-Yen Man
- BDS BioDetection Systems, Amsterdam, The Netherlands
| | - Peter J. M. Hendriksen
- Cluster of Bioassays and Toxicology, RIKILT - Institute of Food Safety, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Ad A. C. M. Peijnenburg
- Cluster of Bioassays and Toxicology, RIKILT - Institute of Food Safety, Wageningen University and Research Centre, Wageningen, The Netherlands
| |
Collapse
|
72
|
Valproate recovers the inhibitory effect of dexamethasone on the proliferation of the adult dentate gyrus-derived neural precursor cells via GSK-3β and β-catenin pathway. Eur J Pharmacol 2014; 723:425-30. [DOI: 10.1016/j.ejphar.2013.10.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 10/28/2013] [Accepted: 10/31/2013] [Indexed: 11/23/2022]
|
73
|
Intracellular pathways of antipsychotic combined therapies: implication for psychiatric disorders treatment. Eur J Pharmacol 2013; 718:502-23. [PMID: 23834777 DOI: 10.1016/j.ejphar.2013.06.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 06/11/2013] [Accepted: 06/21/2013] [Indexed: 01/06/2023]
Abstract
Dysfunctions in the interplay among multiple neurotransmitter systems have been implicated in the wide range of behavioral, emotional and cognitive symptoms displayed by major psychiatric disorders, such as schizophrenia, bipolar disorder or major depression. The complex clinical presentation of these pathologies often needs the use of multiple pharmacological treatments, in particular (1) when monotherapy provides insufficient improvement of the core symptoms; (2) when there are concurrent additional symptoms requiring more than one class of medication and (3) in order to improve tolerability, by using two compounds below their individual dose thresholds to limit side effects. To date, the choice of drug combinations is based on empirical paradigm guided by clinical response. Nonetheless, several preclinical studies have demonstrated that drugs commonly used to treat psychiatric disorders may impact common intracellular target molecules (e.g. Akt/GSK-3 pathway, MAP kinases pathway, postsynaptic density proteins). These findings support the hypothesis that convergence at crucial steps of transductional pathways could be responsible for synergistic effects obtained in clinical practice by the co-administration of those apparently heterogeneous pharmacological compounds. Here we review the most recent evidence on the molecular crossroads in antipsychotic combined therapies with antidepressants, mood stabilizers, and benzodiazepines, as well as with antipsychotics. We first discuss clinical clues and efficacy of such combinations. Then we focus on the pharmacodynamics and on the intracellular pathways underpinning the synergistic, or concurrent, effects of each therapeutic add-on strategy, as well as we also critically appraise how pharmacological research may provide new insights on the putative molecular mechanisms underlying major psychiatric disorders.
Collapse
|
74
|
Jo SJ, Choi SJ, Yoon SY, Lee JY, Park WS, Park PJ, Kim KH, Eun HC, Kwon O. Valproic acid promotes human hair growth in in vitro culture model. J Dermatol Sci 2013; 72:16-24. [PMID: 23810771 DOI: 10.1016/j.jdermsci.2013.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND β-Catenin, the transducer of Wnt signaling, is critical for the development and growth of hair follicles. In the absence of Wnt signals, cytoplasmic β-catenin is phosphorylated by glycogen synthase kinase (GSK)-3 and then degraded. Therefore, inhibition of GSK-3 may enhance hair growth via β-catenin stabilization. Valproic acid is an anticonvulsant and a mood-stabilizing drug that has been used for decades. Recently, valproic acid was reported to inhibit GSK-3β in neuronal cells, but its effect on human hair follicles remains unknown. OBJECTIVES To determine the effect of VPA on human hair growth. METHODS We investigated the effect of VPA on cultured human dermal papilla cells and outer root sheath cells and on an in vitro culture of human hair follicles, which were obtained from scalp skin samples of healthy volunteers. Anagen induction by valproic acid was evaluated using C57BL/6 mice model. RESULTS Valproic acid not only enhanced the viability of human dermal papilla cells and outer root sheath cells but also promoted elongation of the hair shaft and reduced catagen transition of human hair follicles in organ culture model. Valproic acid treatment of human dermal papilla cells led to increased β-catenin levels and nuclear accumulation and inhibition of GSK-3β by phosphorylation. In addition, valproic acid treatment accelerated the induction of anagen hair in 7-week-old female C57BL/6 mice. CONCLUSIONS Valproic acid enhanced human hair growth by increasing β-catenin and therefore may serve as an alternative therapeutic option for alopecia.
Collapse
Affiliation(s)
- Seong Jin Jo
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University, Seoul, Republic of Korea; Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
The role of the Hsp90/Akt pathway in myocardial calpain-induced caspase-3 activation and apoptosis during sepsis. BMC Cardiovasc Disord 2013; 13:8. [PMID: 23425388 PMCID: PMC3598447 DOI: 10.1186/1471-2261-13-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/18/2013] [Indexed: 12/31/2022] Open
Abstract
Background Recent studies have demonstrated that myocardial calpain triggers caspase-3 activation and myocardial apoptosis in models of sepsis, whereas the inhibition of calpain activity down-regulates myocardial caspase-3 activation and apoptosis. However, the mechanism underlying this pathological process is unclear. Therefore, in this study, our aim was to explore whether the Hsp90/Akt signaling pathway plays a role in the induction of myocardial calpain activity, caspase-3 activation and apoptosis in the septic mice. Methods Adult male C57 mice were injected with lipopolysaccharide (LPS, 4 mg/kg, i.p.) to induce sepsis. Next, myocardial caspase-3 activity and the levels of Hsp90/p-Akt (phospho-Akt) proteins were detected, and apoptotic cells were assessed by performing the TUNEL assay. Results In the septic mice, there was an increase in myocardial calpain and caspase-3 activity in addition to an increase in the number of apoptotic cells; however, there was a time-dependent decrease in myocardial Hsp90/p-Akt protein levels. The administration of calpain inhibitors (calpain inhibitor-Ш or PD150606) prevented the LPS-induced degradation of myocardial Hsp90/p-Akt protein and its expression in cardiomyocytes in addition to inhibiting myocardial caspase-3 activation and apoptosis. The inhibition of Hsp90 by pretreatment with 17-AAG induced p-Akt degradation, and the inhibition of Akt activity by pretreatment with wortmannin resulted in caspase-3 activation in wildtype C57 murine heart tissues. Conclusions Myocardial calpain induces myocardial caspase-3 activation and apoptosis in septic mice via the activation of the Hsp90/Akt pathway.
Collapse
|
76
|
Gold PW, Licinio J, Pavlatou MG. Pathological parainflammation and endoplasmic reticulum stress in depression: potential translational targets through the CNS insulin, klotho and PPAR-γ systems. Mol Psychiatry 2013; 18:154-65. [PMID: 23183489 PMCID: PMC10064987 DOI: 10.1038/mp.2012.167] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Major depression and bipolar disorder are heterogeneous conditions in which there can be dysregulation of (1) the stress system response, (2) its capacity for counterregulation after danger has passed and (3) the phase in which damaging molecules generated by the stress response are effectively neutralized. The response to stress and depressed mood share common circuitries and mediators, and each sets into motion not only similar affective and cognitive changes, but also similar systemic manifestations. We focus here on two highly interrelated processes, parainflammation and endoplasmic reticulum (ER) stress, each of which can potentially interfere with all phases of a normal stress response in affective illness, including adaptive neuroplastic changes and the ability to generate neural stem cells. Parainflammation is an adaptive response of the innate immune system that occurs in the context of stressors to which we were not exposed during our early evolution, including overfeeding, underactivity, aging, artificial lighting and novel foodstuffs and drugs. We postulate that humans were not exposed through evolution to the current level of acute or chronic social stressors, and hence, that major depressive illness is associated with a parainflammatory state. ER stress refers to a complex program set into motion when the ER is challenged by the production or persistence of more proteins than it can effectively fold. If the ER response is overwhelmed, substantial amounts of calcium are released into the cytoplasm, leading to apoptosis. Parainflammation and ER stress generally occur simultaneously. We discuss three highly interrelated mediators that can effectively decrease parainflammation and ER stress, namely the central insulin, klotho and peroxisome proliferator-activated receptor-γ (PPAR-γ) systems and propose that these systems may represent conceptually novel therapeutic targets for the amelioration of the affective, cognitive and systemic manifestations of major depressive disorder.
Collapse
Affiliation(s)
- P W Gold
- National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD, USA.
| | | | | |
Collapse
|
77
|
Homocysteine inhibits hepatocyte proliferation via endoplasmic reticulum stress. PLoS One 2013; 8:e54265. [PMID: 23349842 PMCID: PMC3551933 DOI: 10.1371/journal.pone.0054265] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/10/2012] [Indexed: 01/30/2023] Open
Abstract
Homocysteine is an independent risk factor for coronary, cerebral, and peripheral vascular diseases. Recent studies have shown that levels of homocysteine are elevated in patients with impaired hepatic function, but the precise role of homocysteine in the development of hepatic dysfunction is unclear. In this study, we examined the effect of homocysteine on hepatocyte proliferation in vitro. Our results demonstrated that homocysteine inhibited hepatocyte proliferation by up-regulating protein levels of p53 as well as mRNA and protein levels of p21Cip1 in primary cultured hepatocytes. Homocysteine induced cell growth arrest in p53-positive hepatocarcinoma cell line HepG2, but not in p53-null hepatocarcinoma cell line Hep3B. A p53 inhibitor pifithrin-α inhibited the expression of p21Cip1 and attenuated homocysteine-induced cell growth arrest. Homocysteine induced TRB3 expression via endoplasmic reticulum stress pathway, resulting in Akt dephosphorylation. Knock-down of endogenous TRB3 significantly suppressed the inhibitory effect of homocysteine on cell proliferation and the phosphorylation of Akt. LiCl reversed homocysteine-mediated cell growth arrest by inhibiting TRB3-mediated Akt dephosphorylation. These results demonstrate that both TRB3 and p21Cip1 are critical molecules in the homocysteine signaling cascade and provide a mechanistic explanation for impairment of liver regeneration in hyperhomocysteinemia.
Collapse
|
78
|
Lafleur MA, Stevens JL, Lawrence JW. Xenobiotic perturbation of ER stress and the unfolded protein response. Toxicol Pathol 2013; 41:235-62. [PMID: 23334697 DOI: 10.1177/0192623312470764] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The proper folding, assembly, and maintenance of cellular proteins is a highly regulated process and is critical for cellular homeostasis. Multiple cellular compartments have adapted their own systems to ensure proper protein folding, and quality control mechanisms are in place to manage stress due to the accumulation of unfolded proteins. When the accumulation of unfolded proteins exceeds the capacity to restore homeostasis, these systems can result in a cell death response. Unfolded protein accumulation in the endoplasmic reticulum (ER) leads to ER stress with activation of the unfolded protein response (UPR) governed by the activating transcription factor 6 (ATF6), inositol requiring enzyme-1 (IRE1), and PKR-like endoplasmic reticulum kinase (PERK) signaling pathways. Many xenobiotics have been shown to influence ER stress and UPR signaling with either pro-survival or pro-death features. The ultimate outcome is dependent on many factors including the mechanism of action of the xenobiotic, concentration of xenobiotic, duration of exposure (acute vs. chronic), cell type affected, nutrient levels, oxidative stress, state of differentiation, and others. Assessing perturbations in activation or inhibition of ER stress and UPR signaling pathways are likely to be informative parameters to measure when analyzing mechanisms of action of xenobiotic-induced toxicity.
Collapse
Affiliation(s)
- Marc A Lafleur
- Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, California 91320, USA.
| | | | | |
Collapse
|
79
|
Pharmacological inhibition of GSK3 attenuates DNA damage-induced apoptosis via reduction of p53 mitochondrial translocation and Bax oligomerization in neuroblastoma SH-SY5Y cells. Cell Mol Biol Lett 2012; 18:58-74. [PMID: 23161404 PMCID: PMC6275584 DOI: 10.2478/s11658-012-0039-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 10/31/2012] [Indexed: 11/20/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK3) and p53 play crucial roles in the mitochondrial apoptotic pathway and are known to interact in the nucleus. However, it is not known if GSK3 has a regulatory role in the mitochondrial translocation of p53 that participates in apoptotic signaling following DNA damage. In this study, we demonstrated that lithium and SB216763, which are pharmacological inhibitors of GSK3, attenuated p53 accumulation and caspase-3 activation, as shown by PARP cleavage induced by the DNA-damaging agents doxorubicin, etoposide and camptothecin. Furthermore, each of these agents induced translocation of p53 to the mitochondria and activated the mitochondrial pathway of apoptosis, as evidenced by the release of cytochrome C from the mitochondria. Both mitochondrial translocation of p53 and mitochondrial release of cytochrome C were attenuated by inhibition of GSK3, indicating that GSK3 promotes the DNA damage-induced mitochondrial translocation of p53 and the mitochondrial apoptosis pathway. Interestingly, the regulation of p53 mitochondrial translocation by GSK3 was only evident with wild-type p53, not with mutated p53. GSK3 inhibition also reduced the phosphorylation of wild-type p53 at serine 33, which is induced by doxorubicin, etoposide and camptothecin in the mitochondria. Moreover, inhibition of GSK3 reduced etoposide-induced association of p53 with Bcl2 and Bax oligomerization. These findings show that GSK3 promotes the mitochondrial translocation of p53, enabling its interaction with Bcl2 to allow Bax oligomerization and the subsequent release of cytochrome C. This leads to caspase activation in the mitochondrial pathway of intrinsic apoptotic signaling.
Collapse
|
80
|
Chen L, Ren F, Zhang H, Wen T, Piao Z, Zhou L, Zheng S, Zhang J, Chen Y, Han Y, Duan Z, Ma Y. Inhibition of glycogen synthase kinase 3β ameliorates D-GalN/LPS-induced liver injury by reducing endoplasmic reticulum stress-triggered apoptosis. PLoS One 2012; 7:e45202. [PMID: 23028846 PMCID: PMC3461002 DOI: 10.1371/journal.pone.0045202] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 08/17/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Glycogen synthase kinase 3β(GSK3β) is a ubiquitous serine-threonine protein kinase that participates in numerous cellular processes and disease pathophysiology. We aimed to determine therapeutic potential of GSK3β inhibition and its mechanism in a well-characterized model of lipopolysaccharide (LPS)-induced model of acute liver failure (ALF). METHODOLOGY In a murine ALF model induced by D-GalN(700 mg/kg)/LPS(10 µg/kg), we analyzed GSK3β mechanisms using a specific chemical inhibitor, SB216763, and detected the role of endoplasmic reticulum stress (ERS). Mice were administered SB216763 at 2 h before or after D-GalN/LPS injection, respectively, and then sacrificed 6 h after D-GalN/LPS treatment to evaluate its prophylactic and therapeutic function. The lethality rate, liver damage, ERS, cytokine expression, MAP kinase, hepatocyte apoptosis and expression of TLR 4 were evaluated, respectively. Whether the inhibition of GSK3β activation protected hepatocyte from ERS-induced apoptosis was investigated in vitro. PRINCIPAL FINDINGS GSK3β became quickly activated (dephosphorylated) upon D-GalN/LPS exposure. Administration of SB216763 not only ameliorated liver injury, as evidenced by reduced transaminase levels, and well-preserved liver architecture, but also decreased lethality. Moreover, GSK3β inhibition resulted in down-regulation of pro-apoptotic proteins C/EBP-homologous protein(CHOP) and caspase-12, which are related to ERS. To further demonstrate the role of ERS, we found that GSK3β inhibition protected hepatocyte from ERS-induced cell death. GSK3β inhibition down-regulated the MAPK pathways, reduced expression of inflammatory cytokines and decreased expression of TLR4. CONCLUSIONS Our findings demonstrate the key function of GSK3β signaling in the pathophysiology of ALF, especially in regulating the ERS, and provide a rationale for targeting GSK3β as a potential therapeutic strategy to ameliorate ALF.
Collapse
Affiliation(s)
- Liyan Chen
- The 2nd Department of Infectious Diseases, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People’s Republic of China
| | - Feng Ren
- Beijing Institute of Liver Diseases, Capital Medical University, Beijing, People’s Republic of China
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Haiyan Zhang
- Beijing Institute of Liver Diseases, Capital Medical University, Beijing, People’s Republic of China
| | - Tao Wen
- Beijing Institute of Liver Diseases, Capital Medical University, Beijing, People’s Republic of China
| | - Zhengfu Piao
- Beijing Institute of Liver Diseases, Capital Medical University, Beijing, People’s Republic of China
| | - Li Zhou
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Sujun Zheng
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jing Zhang
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yu Chen
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yuanping Han
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhongping Duan
- Beijing Artificial Liver Treatment & Training Center, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yingji Ma
- The Department of Infectious Diseases, The 4th Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People’s Republic of China
| |
Collapse
|
81
|
Sani G, Napoletano F, Forte AM, Kotzalidis GD, Panaccione I, Porfiri GM, Simonetti A, Caloro M, Girardi N, Telesforo CL, Serra G, Romano S, Manfredi G, Savoja V, Tamorri SM, Koukopoulos AE, Serata D, Rapinesi C, Casale AD, Nicoletti F, Girardi P. The wnt pathway in mood disorders. Curr Neuropharmacol 2012; 10:239-253. [PMID: 23449817 PMCID: PMC3468878 DOI: 10.2174/157015912803217279] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/13/2012] [Accepted: 03/24/2012] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES To review the evidence of the involvement of the Wnt signalling pathway in mood disorders and in the action of drugs used to treat these disorders. METHODS We performed a careful PubMed search using as keywords all possible terms relevant to the Wnt pathway and crossing them with each of four areas, i.e., developmental effects, behavioural effects, mood disorders, and drugs used in their treatment. Papers were selected on the basis of their content and their data used for discussion. RESULTS Neurodevelopmental and behavioural data point to the possibility of involvement of the Wnt pathway in the pathophysiology of mood disorders. Clinical and post-mortem data are not sufficient to corroborate a definite role for Wnt alterations in any mood disorder. Combining genetic and pharmacological data, we may state that glycogen synthase kinase is the key molecule in bipolar disorder, as it is connected with many other signalling pathways that were shown to be involved in mood disorders, while Wnt molecules in the hippocampus appear to be mainly involved in depressive disorders. CONCLUSIONS Altered Wnt signalling may play a role in the pathophysiology of mood disorders, although not a central one. It is premature to draw conclusions regarding the possible usefulness of Wnt manipulations in the treatment of mood disorders.
Collapse
Affiliation(s)
- Gabriele Sani
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
| | - Flavia Napoletano
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Alberto Maria Forte
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
- NEUROMED, Pozzilli, Isernia, Italy
| | - Giorgio D Kotzalidis
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Isabella Panaccione
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
- NEUROMED, Pozzilli, Isernia, Italy
| | - Giulio Maria Porfiri
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Alessio Simonetti
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
| | - Matteo Caloro
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Nicoletta Girardi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Carla Ludovica Telesforo
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Giulia Serra
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
| | - Silvia Romano
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Giovanni Manfredi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Valeria Savoja
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Stefano Maria Tamorri
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Alexia E Koukopoulos
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
- Centro Lucio Bini, Rome, Italy
| | - Daniele Serata
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Chiara Rapinesi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
- Department of Neuropsychiatry, Villa Rosa, Suore Hospitaliere of the Sacred Heart of Jesus, Viterbo, Italy
| | - Antonio Del Casale
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| | - Ferdinando Nicoletti
- NEUROMED, Pozzilli, Isernia, Italy
- Department of Neuropharmacology, Sapienza University, School of Medicine and Pharmacy, Rome, Italy
| | - Paolo Girardi
- NESMOS Department (Neuroscience, Mental Health, and Sensory Organs), Sapienza University, School of Medicine and Psychology, Sant’Andrea Hospital, Rome, Italy
| |
Collapse
|
82
|
Wogonin induces reactive oxygen species production and cell apoptosis in human glioma cancer cells. Int J Mol Sci 2012; 13:9877-9892. [PMID: 22949836 PMCID: PMC3431834 DOI: 10.3390/ijms13089877] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/06/2012] [Accepted: 07/26/2012] [Indexed: 11/17/2022] Open
Abstract
Glioma is the most common primary adult brain tumor with poor prognosis because of the ease of spreading tumor cells to other regions of the brain. Cell apoptosis is frequently targeted for developing anti-cancer drugs. In the present study, we have assessed wogonin, a flavonoid compound isolated from Scutellaria baicalensis Georgi, induced ROS generation, endoplasmic reticulum (ER) stress and cell apoptosis. Wogonin induced cell death in two different human glioma cells, such as U251 and U87 cells but not in human primary astrocytes (IC 50 > 100 μM). Wogonin-induced apoptotic cell death in glioma cells was measured by propidine iodine (PI) analysis, Tunnel assay and Annexin V staining methods. Furthermore, wogonin also induced caspase-9 and caspase-3 activation as well as up-regulation of cleaved PARP expression. Moreover, treatment of wogonin also increased a number of signature ER stress markers glucose-regulated protein (GRP)-78, GRP-94, Calpain I, and phosphorylation of eukaryotic initiation factor-2α (eIF2α). Treatment of human glioma cells with wogonin was found to induce reactive oxygen species (ROS) generation. Wogonin induced ER stress-related protein expression and cell apoptosis was reduced by the ROS inhibitors apocynin and NAC (N-acetylcysteine). The present study provides evidence to support the fact that wogonin induces human glioma cell apoptosis mediated ROS generation, ER stress activation and cell apoptosis.
Collapse
|
83
|
Gupta A, Schulze TG, Nagarajan V, Akula N, Corona W, Jiang XY, Hunter N, McMahon FJ, Detera-Wadleigh SD. Interaction networks of lithium and valproate molecular targets reveal a striking enrichment of apoptosis functional clusters and neurotrophin signaling. THE PHARMACOGENOMICS JOURNAL 2012; 12:328-41. [PMID: 21383773 PMCID: PMC3134562 DOI: 10.1038/tpj.2011.9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 01/23/2011] [Accepted: 01/30/2011] [Indexed: 02/05/2023]
Abstract
The overall neurobiological mechanisms by which lithium and valproate stabilize mood in bipolar disorder patients have yet to be fully defined. The therapeutic efficacy and dissimilar chemical structures of these medications suggest that they perturb both shared and disparate cellular processes. To investigate key pathways and functional clusters involved in the global action of lithium and valproate, we generated interaction networks formed by well-supported drug targets. Striking functional similarities emerged. Intersecting nodes in lithium and valproate networks highlighted a strong enrichment of apoptosis clusters and neurotrophin signaling. Other enriched pathways included MAPK, ErbB, insulin, VEGF, Wnt and long-term potentiation indicating a widespread effect of both drugs on diverse signaling systems. MAPK1/3 and AKT1/2 were the most preponderant nodes across pathways suggesting a central role in mediating pathway interactions. The convergence of biological responses unveils a functional signature for lithium and valproate that could be key modulators of their therapeutic efficacy.
Collapse
Affiliation(s)
- A Gupta
- Human Genetics Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Viana RJS, Nunes AF, Rodrigues CMP. Endoplasmic reticulum enrollment in Alzheimer's disease. Mol Neurobiol 2012; 46:522-34. [PMID: 22815194 DOI: 10.1007/s12035-012-8301-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/05/2012] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) poses a huge challenge for society and health care worldwide as molecular pathogenesis of the disease is poorly understood and curative treatment does not exist. The mechanisms leading to accelerated neuronal cell death in AD are still largely unknown, but accumulation of misfolded disease-specific proteins has been identified as potentially involved. In the present review, we describe the essential role of endoplasmic reticulum (ER) in AD. Despite the function that mitochondria may play as the central major player in the apoptotic process, accumulating evidence highlights ER as a critical organelle in AD. Stress that impairs ER physiology leads to accumulation of unfolded or misfolded proteins, such as amyloid β (Aβ) peptide, the major component of amyloid plaques. In an attempt to ameliorate the accumulation of unfolded proteins, ER stress triggers a protective cellular mechanism, which includes the unfolded protein response (UPR). However, when activation of the UPR is severe or prolonged enough, the final cellular outcome is pathologic apoptotic cell death. Distinct pathways can be activated in this process, involving stress sensors such as the JNK pathway or ER chaperones such as Bip/GRP94, stress modulators such as Bcl-2 family proteins, or even stress effectors such as caspase-12. Here, we detail the involvement of the ER and associated stress pathways in AD and discuss potential therapeutic strategies targeting ER stress.
Collapse
Affiliation(s)
- Ricardo J S Viana
- Research Institute for Medicines and Pharmaceutical Sciences, University of Lisbon, Lisbon 1649-003, Portugal
| | | | | |
Collapse
|
85
|
Zamorano S, Rojas-Rivera D, Lisbona F, Parra V, Court FA, Villegas R, Cheng EH, Korsmeyer SJ, Lavandero S, Hetz C. A BAX/BAK and cyclophilin D-independent intrinsic apoptosis pathway. PLoS One 2012; 7:e37782. [PMID: 22719850 PMCID: PMC3373601 DOI: 10.1371/journal.pone.0037782] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 04/26/2012] [Indexed: 11/19/2022] Open
Abstract
Most intrinsic death signals converge into the activation of pro-apoptotic BCL-2 family members BAX and BAK at the mitochondria, resulting in the release of cytochrome c and apoptosome activation. Chronic endoplasmic reticulum (ER) stress leads to apoptosis through the upregulation of a subset of pro-apoptotic BH3-only proteins, activating BAX and BAK at the mitochondria. Here we provide evidence indicating that the full resistance of BAX and BAK double deficient (DKO) cells to ER stress is reverted by stimulation in combination with mild serum withdrawal. Cell death under these conditions was characterized by the appearance of classical apoptosis markers, caspase-9 activation, release of cytochrome c, and was inhibited by knocking down caspase-9, but insensitive to BCL-X(L) overexpression. Similarly, the resistance of BIM and PUMA double deficient cells to ER stress was reverted by mild serum withdrawal. Surprisingly, BAX/BAK-independent cell death did not require Cyclophilin D (CypD) expression, an important regulator of the mitochondrial permeability transition pore. Our results suggest the existence of an alternative intrinsic apoptosis pathway emerging from a cross talk between the ER and the mitochondria.
Collapse
Affiliation(s)
- Sebastián Zamorano
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Diego Rojas-Rivera
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Fernanda Lisbona
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Valentina Parra
- Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Faculty of Chemical & Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Felipe A. Court
- Millennium Nucleus for Regenerative Biology, Faculty of Biology, P. Catholic University of Chile, Santiago, Chile
| | - Rosario Villegas
- Millennium Nucleus for Regenerative Biology, Faculty of Biology, P. Catholic University of Chile, Santiago, Chile
| | - Emily H. Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Stanley J. Korsmeyer
- Dana–Farber Cancer Institute, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sergio Lavandero
- Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Faculty of Chemical & Pharmaceutical Sciences, University of Chile, Santiago, Chile
- Cardiology Division, Department of Internal medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Harvard School of Public Health, Boston, Massachusetts, United States of America
- Neurounion Biomedical Foundation, Santiago, Chile
| |
Collapse
|
86
|
Bartzokis G. Neuroglialpharmacology: myelination as a shared mechanism of action of psychotropic treatments. Neuropharmacology 2012; 62:2137-53. [PMID: 22306524 PMCID: PMC3586811 DOI: 10.1016/j.neuropharm.2012.01.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 12/20/2022]
Abstract
Current psychiatric diagnostic schema segregate symptom clusters into discrete entities, however, large proportions of patients suffer from comorbid conditions that fit neither diagnostic nor therapeutic schema. Similarly, psychotropic treatments ranging from lithium and antipsychotics to serotonin reuptake inhibitors (SSRIs) and acetylcholinesterase inhibitors have been shown to be efficacious in a wide spectrum of psychiatric disorders ranging from autism, schizophrenia (SZ), depression, and bipolar disorder (BD) to Alzheimer's disease (AD). This apparent lack of specificity suggests that psychiatric symptoms as well as treatments may share aspects of pathophysiology and mechanisms of action that defy current symptom-based diagnostic and neuron-based therapeutic schema. A myelin-centered model of human brain function can help integrate these incongruities and provide novel insights into disease etiologies and treatment mechanisms. Available data are integrated herein to suggest that widely used psychotropic treatments ranging from antipsychotics and antidepressants to lithium and electroconvulsive therapy share complex signaling pathways such as Akt and glycogen synthase kinase-3 (GSK3) that affect myelination, its plasticity, and repair. These signaling pathways respond to neurotransmitters, neurotrophins, hormones, and nutrition, underlie intricate neuroglial communications, and may substantially contribute to the mechanisms of action and wide spectra of efficacy of current therapeutics by promoting myelination. Imaging and genetic technologies make it possible to safely and non-invasively test these hypotheses directly in humans and can help guide clinical trial efforts designed to correct myelination abnormalities. Such efforts may provide insights into novel avenues for treatment and prevention of some of the most prevalent and devastating human diseases.
Collapse
Affiliation(s)
- George Bartzokis
- Department of Psychiatry, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
87
|
Ohadi M, Mirabzadeh A, Esmaeilzadeh-Gharehdaghi E, Rezazadeh M, Hosseinkhanni S, Oladnabi M, Firouzabadi SG, Darvish H. Novel evidence of the involvement of calreticulin in major psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2012; 37:276-81. [PMID: 22507216 DOI: 10.1016/j.pnpbp.2012.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/12/2012] [Accepted: 02/14/2012] [Indexed: 12/20/2022]
Abstract
Calreticulin (CALR) is a multi-functional protein that is strictly conserved across species. Two mRNA transcripts have been recognized for the CALR gene in humans, which use a common promoter sequence. We have recently reported mutations in the CALR promoter that co-occur with psychosis. One of those mutations at -220A increases gene expression in human BE(2)-C and HEK-293 cell lines. This mutation is the first instance of a functional cognition-deficit mutation reversing a human gene promoter to the primitive type. In the current study, we analyzed the effect of the most widely-used mood-stabilizing drug, valproic acid (VPA), on nucleotide -220 in two neuronal cell lines, LAN-5 and N2A. Remarkably, VPA increased gene expression in the cells with the wild-type -220C construct, whereas a dramatic decrease in gene expression was observed in the cell lines with the mutant construct (p<0.000004 and p<0.016, respectively). We also sequenced the 600-bp CALR promoter, and the highly conserved intron 1 sequence in an independent sample of patients afflicted with major psychiatric disorders and controls. A new case of major depressive disorder with psychotic features with the -220A mutation was identified. A novel 1-bp insertion was also detected in intron 1 at IVSI-310, in a case of amphetamine-induced psychosis. As for the psychosis-linked CALR promoter mutations identified to-date, the IVSI mutation was not detected in the control pool. This mutation creates a RREB-1 transcription factor binding site within the first intron. Our present findings identify the site of action of VPA in the CALR promoter, and introduce a novel mutation in a case of substance-induced psychosis in the first intron of CALR.
Collapse
Affiliation(s)
- M Ohadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Hoozemans JJM, Scheper W. Endoplasmic reticulum: the unfolded protein response is tangled in neurodegeneration. Int J Biochem Cell Biol 2012; 44:1295-8. [PMID: 22564438 DOI: 10.1016/j.biocel.2012.04.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/16/2012] [Accepted: 04/29/2012] [Indexed: 12/17/2022]
Abstract
The endoplasmic reticulum (ER) is involved in the folding and maturation of membrane-bound and secreted proteins. Disturbed homeostasis in the ER can lead to accumulation of misfolded proteins, which trigger a stress response called the unfolded protein response (UPR). In neurodegenerative diseases that are classified as tauopathies, activation of the UPR coincides with the pathogenic accumulation of the microtubule associated protein tau. Several lines of evidence indicate that UPR activation contributes to increased levels of phosphorylated tau, a prerequisite for the formation of tau aggregates. Increased understanding of the crosstalk between signaling pathways involved in protein quality control in the ER and tau phosphorylation will support the development of new therapeutic targets that promote neuronal survival.
Collapse
Affiliation(s)
- Jeroen J M Hoozemans
- Department of Pathology, VU University Medical Center, Amsterdam, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands.
| | | |
Collapse
|
89
|
Nijholt DAT, van Haastert ES, Rozemuller AJM, Scheper W, Hoozemans JJM. The unfolded protein response is associated with early tau pathology in the hippocampus of tauopathies. J Pathol 2012; 226:693-702. [PMID: 22102449 DOI: 10.1002/path.3969] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/21/2011] [Accepted: 11/09/2011] [Indexed: 11/06/2022]
Abstract
The unfolded protein response (UPR) is a stress response activated upon disturbed homeostasis in the endoplasmic reticulum (ER). Previously, we reported that the activation of the UPR closely correlates with the presence of phosphorylated tau (p-tau) in Alzheimer's disease (AD). As well as increased presence of intracellular p-tau, AD brains are characterized by extracellular deposits of β amyloid (Aβ). Recent in vitro studies have shown that Aβ can induce ER stress and activation of the UPR. The aim of the present study is to investigate UPR activation in sporadic tauopathies like progressive supranuclear palsy (PSP) and Pick's disease (PiD), and familial cases with frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) which carry mutations in the gene encoding for tau (MAPT). The presence of phosphorylated pancreatic ER kinase (pPERK) and phosphorylated inositol requiring enzyme 1α (pIRE1), which are indicative of an activated UPR, was assessed by immunohistochemistry in cases neuropathologically defined as frontotemporal lobar degeneration with tau pathology (FTLD-tau). Increased presence of UPR activation markers pPERK and pIRE1 was observed in neurons and glia in FTLD-tau cases, in contrast to FTLD subtypes negative for tau pathology or in non-neurological controls. pPERK and pIRE1 were also prominently present in relatively young carriers of MAPT mutation. A strong association between the presence of UPR activation markers and p-tau was observed in the hippocampus of FTLD-tau cases. Double immunohistochemical staining on FTLD-tau cases revealed that UPR activation is predominantly observed in neurons that show diffuse staining of p-tau. These data demonstrate that UPR activation is intimately connected with the accumulation and aggregation of p-tau, and occurs independently from Aβ deposits. Our findings provide new pathological insight into the close association between p-tau and UPR activation in tauopathies.
Collapse
Affiliation(s)
- Diana A T Nijholt
- Department of Genome Analysis, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
90
|
Endoplasmic Reticulum Stress-Associated Lipid Droplet Formation and Type II Diabetes. Biochem Res Int 2012; 2012:247275. [PMID: 22506114 PMCID: PMC3299243 DOI: 10.1155/2012/247275] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/14/2011] [Accepted: 11/15/2011] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM), a metabolic disorder characterized by hyperglycemia, is caused by insufficient insulin production due to excessive loss of pancreatic β cells (type I diabetes) or impaired insulin signaling due to peripheral insulin resistance (type II diabetes). Pancreatic β cell is the only insulin-secreting cell type that has highly developed endoplasmic reticulum (ER) to cope with high demands of insulin synthesis and secretion. Therefore, ER homeostasis is crucial to the proper function of insulin signaling. Accumulating evidence suggests that deleterious ER stress and excessive intracellular lipids in nonadipose tissues, such as myocyte, cardiomyocyte, and hepatocyte, cause pancreatic β-cell dysfunction and peripheral insulin resistance, leading to type II diabetes. The excessive deposition of lipid droplets (LDs) in specialized cell types, such as adipocytes, hepatocytes, and macrophages, has been found as a hallmark in ER stress-associated metabolic diseases, including obesity, diabetes, fatty liver disease, and atherosclerosis. However, much work remains to be done in understanding the mechanism by which ER stress response regulates LD formation and the pathophysiologic role of ER stress-associated LD in metabolic disease. This paper briefly summarizes the recent advances in ER stress-associated LD formation and its involvement in type II diabetes.
Collapse
|
91
|
The role of glucosamine-induced ER stress in diabetic atherogenesis. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:187018. [PMID: 22474416 PMCID: PMC3296270 DOI: 10.1155/2012/187018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 11/27/2011] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease (CVD) is the major cause of mortality in individuals with diabetes mellitus. However the molecular and cellular mechanisms that predispose individuals with diabetes to the development and progression of atherosclerosis, the underlying cause of most CVD, are not understood. This paper summarizes the current state of our knowledge of pathways and mechanisms that may link diabetes and hyperglycemia to atherogenesis. We highlight recent work from our lab, and others', that supports a role for ER stress in these processes. The continued investigation of existing pathways, linking hyperglycemia and diabetes mellitus to atherosclerosis, and the identification of novel mechanisms and targets will be important to the development of new and effective antiatherosclerotic therapies tailored to individuals with diabetes.
Collapse
|
92
|
Ferreiro E, Pereira CMF. Endoplasmic reticulum stress: a new playER in tauopathies. J Pathol 2012; 226:687-92. [PMID: 22190226 DOI: 10.1002/path.3977] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 12/05/2011] [Accepted: 12/12/2011] [Indexed: 01/23/2023]
Abstract
The accumulation of unfolded or misfolded proteins in the lumen of the endoplasmic reticulum (ER) activates the unfolded protein response (UPR), which involves a set of protein signalling pathways and transcription factors that re-establish homeostasis and normal ER function, adapting cells to ER stress. If this adaptive response is insufficient, the UPR triggers an apoptotic program to eliminate irreversibly damaged cells. Recent observations suggest that ER stress plays an important role in the pathogenesis of various neurodegenerative disorders such as Alzheimer's disease, which is characterized by the deposition of amyloid-beta (Aβ) and hyperphosphorylated tau in susceptible brain regions. Moreover, several studies demonstrate that Aβ induces UPR activation, which in turn promotes tau phosphorylation. In the study by Nijholt and colleagues, reported in the current issue of The Journal of Pathology, the association between UPR activation and tau pathology was investigated in the brain of patients diagnosed with sporadic or familial tauopathies in which Abeta deposits are absent. The authors described that increased levels of UPR activation markers are predominantly observed in neurons within the hippocampus, being correlated with early tau phosphorylation. These findings suggest that UPR activation, which occurs in an Abeta-independent manner, is an early event during tau pathology and point to a functional crosstalk between these molecular mechanisms in tauopathies. A better understanding of UPR activation in tauopathies can thus contribute to the design of new therapeutic strategies with the purpose of promoting neuronal cell survival in these disorders.
Collapse
Affiliation(s)
- Elisabete Ferreiro
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | | |
Collapse
|
93
|
Chaube R, Kallakunta VM, Espey MG, McLarty R, Faccenda A, Ananvoranich S, Mutus B. Endoplasmic reticulum stress-mediated inhibition of NSMase2 elevates plasma membrane cholesterol and attenuates NO production in endothelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:313-23. [DOI: 10.1016/j.bbalip.2011.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/12/2011] [Accepted: 10/17/2011] [Indexed: 12/20/2022]
|
94
|
Hoozemans JJM, van Haastert ES, Nijholt DAT, Rozemuller AJM, Scheper W. Activation of the unfolded protein response is an early event in Alzheimer's and Parkinson's disease. NEURODEGENER DIS 2012; 10:212-5. [PMID: 22302012 DOI: 10.1159/000334536] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/10/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by the accumulation and aggregation of misfolded proteins. Disturbed homeostasis in the endoplasmic reticulum leads to accumulation of misfolded proteins, which triggers a stress response called the unfolded protein response (UPR) that protects the cell against the toxic buildup of misfolded proteins. OBJECTIVE In this paper, we will briefly review the early involvement of the UPR in the pathology of AD and PD. METHODS Expression of UPR activation markers was analyzed in human brain tissue using immunohistochemistry and Western blot analysis. RESULTS Neuropathological studies demonstrate that UPR activation markers are increased in neurons in AD and PD. In AD, UPR activation markers are observed in neurons with diffuse staining of phosphorylated tau protein. In PD, increased immunoreactivity for UPR activation markers is detected in neuromelanin containing dopaminergic neurons of the substantia nigra, which colocalize with diffuse α-synuclein staining. CONCLUSION UPR activation is closely associated with the first stages of accumulation and aggregation of the toxic proteins involved in AD and PD. Studies of postmortem brain tissue indicate that UPR activation is an early event in neurodegeneration.
Collapse
Affiliation(s)
- Jeroen J M Hoozemans
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
95
|
Wang C, Guo F. Effects of activating transcription factor 4 deficiency on carbohydrate and lipid metabolism in mammals. IUBMB Life 2012; 64:226-30. [PMID: 22223547 DOI: 10.1002/iub.605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 11/23/2011] [Indexed: 01/13/2023]
Abstract
It has been shown that the mammalian activating transcription factor 4 (ATF4) is involved in many different physiological events, such as eye development, stress response, learning, and memory. However, several recent studies have demonstrated that ATF4 also plays an important role in the regulation of lipid and glucose metabolism, energy homeostasis, insulin secretion, and sensitivity, suggesting that ATF4 is a master regulator of metabolism. This review summarizes the most recent progress in the understanding of the novel roles of ATF4 in the regulation of metabolism.
Collapse
Affiliation(s)
- Chunxia Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, The Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | | |
Collapse
|
96
|
Li X, Frye MA, Shelton RC. Review of pharmacological treatment in mood disorders and future directions for drug development. Neuropsychopharmacology 2012; 37:77-101. [PMID: 21900884 PMCID: PMC3238080 DOI: 10.1038/npp.2011.198] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 08/06/2011] [Accepted: 08/06/2011] [Indexed: 02/07/2023]
Abstract
After a series of serendipitous discoveries of pharmacological treatments for mania and depression several decades ago, relatively little progress has been made for novel hypothesis-driven drug development in mood disorders. Multifactorial etiologies of, and lack of a full understanding of, the core neurobiology of these conditions clearly have contributed to these development challenges. There are, however, relatively novel targets that have raised opportunities for progress in the field, such as glutamate and cholinergic receptor modulators, circadian regulators, and enzyme inhibitors, for alternative treatment. This review will discuss these promising new treatments in mood disorders, the underlying mechanisms of action, and critical issues of their clinical application. For these new treatments to be successful in clinical practice, it is also important to design innovative clinical trials that identify the specific actions of new drugs, and, ideally, to develop biomarkers for monitoring individualized treatment response. It is predicted that future drug development will identify new agents targeting the molecular mechanisms involved in the pathophysiology of mood disorders.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Psychiatry and Behavioral Neuroscience, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|
97
|
Yang BZ, Ren F, Wen T, Yin JM, Wang XX, Piao ZF, Chen DX, Zheng SJ, Zhang J, Chen Y, Duan ZP, Shi SS. Role of glycogen synthase kinase 3β in the pathogenesis of D-GalN/LPS-induced acute liver injury in mice. Shijie Huaren Xiaohua Zazhi 2012; 20:3656. [DOI: 10.11569/wcjd.v20.i36.3656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
98
|
Creating a pro-survival and anti-inflammatory phenotype by modulation of acetylation in models of hemorrhagic and septic shock. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 710:107-33. [PMID: 22127890 DOI: 10.1007/978-1-4419-5638-5_11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Shock, regardless of etiology, is characterized by decreased tissue perfusion resulting in cell death, organ dysfunction, and poor survival. Current therapies largely focus on restoring tissue perfusion through resuscitation but have failed to address the specific cellular dysfunction caused by shock. Acetylation is rapidly emerging as a key mechanism that regulates the expression of numerous genes (epigenetic modulation through activation of nuclear histone proteins), as well as functions of multiple cytoplasmic proteins involved in key cellular functions such as cell survival, repair/healing, signaling, and proliferation. Cellular acetylation can be increased immediately through the administration of histone deacetylase inhibitors (HDACI). A series of studies have been performed using: (1) cultured cells; (2) single-organ ischemia-reperfusion injury models; (3) rodent models of lethal septic and hemorrhagic shock; (4) swine models of lethal hemorrhagic shock and multi-organ trauma; and (5) tissues from severely injured trauma patients, to fully characterize the changes in acetylation that occur following lethal insults and in response to treatment with HDACI. These data demonstrate that: (1) shock causes a decrease in acetylation of nuclear and cytoplasmic proteins; (2) hypoacetylation can be rapidly reversed through the administration of HDACI; (3) normalization of acetylation prevents cell death, decreases inflammation, attenuates activation of pro-apoptotic pathways, and augments pro-survival pathways; (4) the effect of HDACI significantly improves survival in lethal models of septic shock, hemorrhagic shock, and complex poly-trauma without need for conventional fluid resuscitation or blood transfusion; and (5) improvement in survival is not due to better resuscitation but due to an enhanced ability of cells to tolerate lethal insults.As different models of hemorrhagic or septic shock have specific strengths and limitations, this chapter will summarize our attempts to create "pro-survival and anti-inflammatory phenotype" in various models of hemorrhagic shock and septic shock.
Collapse
|
99
|
McAlpine CS, Bowes AJ, Khan MI, Shi Y, Werstuck GH. Endoplasmic Reticulum Stress and Glycogen Synthase Kinase-3β Activation in Apolipoprotein E–Deficient Mouse Models of Accelerated Atherosclerosis. Arterioscler Thromb Vasc Biol 2012; 32:82-91. [DOI: 10.1161/atvbaha.111.237941] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Cameron S. McAlpine
- From the Departments of Medicine (C.S.M., G.H.W.) and Biochemistry and Biomedical Sciences (A.J.B., G.H.W.) and the Thrombosis and Atherosclerosis Research Institute (C.S.M., A.J.B., M.I.K., Y.S., G.H.W.), McMaster University, Hamilton, Ontario, Canada
| | - Anna J. Bowes
- From the Departments of Medicine (C.S.M., G.H.W.) and Biochemistry and Biomedical Sciences (A.J.B., G.H.W.) and the Thrombosis and Atherosclerosis Research Institute (C.S.M., A.J.B., M.I.K., Y.S., G.H.W.), McMaster University, Hamilton, Ontario, Canada
| | - Mohammad I. Khan
- From the Departments of Medicine (C.S.M., G.H.W.) and Biochemistry and Biomedical Sciences (A.J.B., G.H.W.) and the Thrombosis and Atherosclerosis Research Institute (C.S.M., A.J.B., M.I.K., Y.S., G.H.W.), McMaster University, Hamilton, Ontario, Canada
| | - Yuanyuan Shi
- From the Departments of Medicine (C.S.M., G.H.W.) and Biochemistry and Biomedical Sciences (A.J.B., G.H.W.) and the Thrombosis and Atherosclerosis Research Institute (C.S.M., A.J.B., M.I.K., Y.S., G.H.W.), McMaster University, Hamilton, Ontario, Canada
| | - Geoff H. Werstuck
- From the Departments of Medicine (C.S.M., G.H.W.) and Biochemistry and Biomedical Sciences (A.J.B., G.H.W.) and the Thrombosis and Atherosclerosis Research Institute (C.S.M., A.J.B., M.I.K., Y.S., G.H.W.), McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
100
|
Glucosamine-supplementation promotes endoplasmic reticulum stress, hepatic steatosis and accelerated atherogenesis in apoE−/− mice. Atherosclerosis 2011; 219:134-40. [DOI: 10.1016/j.atherosclerosis.2011.07.108] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/23/2011] [Accepted: 07/21/2011] [Indexed: 11/17/2022]
|