51
|
Wu JN, Lin L, Luo SB, Qiu XZ, Zhu LY, Chen D, Wei ED, Fu ZH, Qin MB, Liang ZH, Huang JA, Liu SQ. SphK1-driven autophagy potentiates focal adhesion paxillin-mediated metastasis in colorectal cancer. Cancer Med 2021; 10:6010-6021. [PMID: 34268882 PMCID: PMC8419751 DOI: 10.1002/cam4.4129] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
Invasion and metastasis are the main causes of colorectal cancer (CRC)‐related death. Accumulating evidence suggested that sphingosine kinase 1 (SphK1) promoted the metastasis of CRC and autophagy played an important role in SphK1 promoting the metastasis of malignancy. However, the mechanism by which SphK1‐driven autophagy promotes invasion and metastasis in CRC remains to be clarified. In the present study, immunohistochemical detection showed the expression of SphK1 and paxillin was higher in human CRC tissues than those of normal colorectal mucosal tissues, they were both associated with TNM staging, lymphatic, and distance metastasis. In addition, study of in situ tumor transplantation model in nude mice showed that the suppression of SphK1 inhibited the growth of colonic orthotopic implantation tumors and the expression of paxillin, p‐paxillin, LC3 in the tumor. So, SphK1 may promote CRC metastasis via inducing the expression of paxillin expression and its phosphorylation, in vivo. Furthermore, results of CCK8 assay, transwell and wound healing assays showed that SphK1 promoted the viability, invasion, and metastasis of CRC cells. Transmission electron microscopy detection showed that SphK1 is the key factor in autophagy induction in CRC cells. Moreover, western blot examination indicated that the expression of LC3Ⅱ/Ⅰ, paxillin, p‐paxillin, MMP‐2, and vimentin was enhanced in SphK1‐overexpressed CRC cells and suppressed in SphK1 knockdown CRC cells, meanwhile, the expression of E‐cadherin was suppressed in SphK1‐overexpressed CRC cells and enhanced in SphK1 knockdown CRC cells. Suppression of autophagy by 3MA reversed the expression of paxillin and its phosphorylation in SphK1‐overexpressed CRC cells, indicated that SphK1‐driven autophagy induced the expression of paxillin and its phosphorylation in CRC cells. Together, these findings reveal that SphK1‐driven autophagy may promote the invasion and metastasis of CRC via promoting the expression of focal adhesion paxillin and its phosphorylation.
Collapse
Affiliation(s)
- Jiang-Ni Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Lan Lin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Shi-Bo Luo
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Xin-Ze Qiu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Li-Ye Zhu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Da Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Er-Dan Wei
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Zhen-Hua Fu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Meng-Bin Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Zhi-Hai Liang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Jie-An Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Shi-Quan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| |
Collapse
|
52
|
Ruiz-Cañada C, Bernabé-García Á, Liarte S, Rodríguez-Valiente M, Nicolás FJ. Chronic Wound Healing by Amniotic Membrane: TGF-β and EGF Signaling Modulation in Re-epithelialization. Front Bioeng Biotechnol 2021; 9:689328. [PMID: 34295882 PMCID: PMC8290337 DOI: 10.3389/fbioe.2021.689328] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022] Open
Abstract
The application of amniotic membrane (AM) on chronic wounds has proven very effective at resetting wound healing, particularly in re-epithelialization. Historically, several aspects of AM effect on wound healing have been evaluated using cell models. In keratinocytes, the presence of AM induces the activation of mitogen-activated protein (MAP) kinase and c-Jun N-terminal kinase (JNK) pathways, together with the high expression of c-Jun, an important transcription factor for the progression of the re-epithelialization tongue. In general, the levels of transforming growth factor (TGF)-β present in a wound are critical for the process of wound healing; they are elevated during the inflammation phase and remain high in some chronic wounds. Interestingly, the presence of AM, through epidermal growth factor (EGF) signaling, produces a fine-tuning of the TGF-β signaling pathway that re-conducts the stalled process of wound healing. However, the complete suppression of TGF-β signaling has proven negative for the AM stimulation of migration, suggesting that a minimal amount of TGF-β signaling is required for proper wound healing. Regarding migration machinery, AM contributes to the dynamics of focal adhesions, producing a high turnover and thus speeding up remodeling. This is clear because proteins, such as Paxillin, are activated upon treatment with AM. On top of this, AM also produces changes in the expression of Paxillin. Although we have made great progress in understanding the effects of AM on chronic wound healing, a long way is still ahead of us to fully comprehend its effects.
Collapse
Affiliation(s)
- Catalina Ruiz-Cañada
- Laboratorio de Regeneración, Oncología Molecular y TGF-β, IMIB-Arrixaca, Murcia, Spain
| | - Ángel Bernabé-García
- Laboratorio de Regeneración, Oncología Molecular y TGF-β, IMIB-Arrixaca, Murcia, Spain
| | - Sergio Liarte
- Laboratorio de Regeneración, Oncología Molecular y TGF-β, IMIB-Arrixaca, Murcia, Spain
| | - Mónica Rodríguez-Valiente
- Laboratorio de Regeneración, Oncología Molecular y TGF-β, IMIB-Arrixaca, Murcia, Spain.,Unidad de Heridas Crónicas y Úlcera de Pie Diabético, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | | |
Collapse
|
53
|
Speer J, Barcellona M, Jing L, Liu B, Lu M, Kelly M, Buchowski J, Zebala L, Luhmann S, Gupta M, Setton L. Integrin-mediated interactions with a laminin-presenting substrate modulate biosynthesis and phenotypic expression for cells of the human nucleus pulposus. Eur Cell Mater 2021; 41:793-810. [PMID: 34160056 PMCID: PMC8378851 DOI: 10.22203/ecm.v041a50] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
With aging and pathology, cells of the nucleus pulposus (NP) de-differentiate towards a fibroblast-like phenotype, a change that contributes to degeneration of the intervertebral disc (IVD). Laminin isoforms are a component of the NP extracellular matrix during development but largely disappear in the adult NP tissue. Exposing human adult NP cells to hydrogels made from PEGylated-laminin-111 (PEGLM) has been shown to regulate NP cell behaviors and promote cells to assume a biosynthetically active state with gene/protein expression and morphology consistent with those observed in juvenile NP cells. However, the mechanism regulating this effect has remained unknown. In the present study, the integrin subunits that promote adult degenerative NP cell interactions with laminin-111 are identified by performing integrin blocking studies along with assays of intracellular signaling and cell phenotype. The findings indicate that integrin α3 is a primary regulator of cell attachment to laminin and is associated with phosphorylation of signaling molecules downstream of integrin engagement (ERK 1/2 and GSK3β). Sustained effects of blocking integrin α3 were also demonstrated including decreased expression of phenotypic markers, reduced biosynthesis, and altered cytoskeletal organization. Furthermore, blocking both integrin α3 and additional integrin subunits elicited changes in cell clustering, but did not alter the phenotype of single cells. These findings reveal that integrin- mediated interactions through integrin α3 are critical in the process by which NP cells sense and alter phenotype in response to culture upon laminin and further suggest that targeting integrin α3 has potential for reversing or slowing degenerative changes to the NP cell.
Collapse
Affiliation(s)
- J. Speer
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA
| | - M. Barcellona
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA
| | - L. Jing
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA
| | - B. Liu
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA
| | - M. Lu
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA
| | - M. Kelly
- Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA
| | - J. Buchowski
- Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA
| | - L. Zebala
- Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA
| | - S. Luhmann
- Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA
| | - M. Gupta
- Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA
| | - L. Setton
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, MO, USA,Department of Orthopedic Surgery, Washington University School of Medicine; St. Louis, MO, USA,Address for correspondence: Dr. Lori A. Setton, Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, Campus Box 1097, St. Louis, MO 63130, USA. Telephone number: +1 3149356164,
| |
Collapse
|
54
|
Anderson CA, Kovar DR, Gardel ML, Winkelman JD. LIM domain proteins in cell mechanobiology. Cytoskeleton (Hoboken) 2021; 78:303-311. [PMID: 34028199 DOI: 10.1002/cm.21677] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
The actin cytoskeleton is important for maintaining mechanical homeostasis in adherent cells, largely through its regulation of adhesion and cortical tension. The LIM (Lin-11, Isl1, MEC-3) domain-containing proteins are involved in a myriad of cellular mechanosensitive pathways. Recent work has discovered that LIM domains bind to mechanically stressed actin filaments, suggesting a novel and widely conserved mechanism of mechanosensing. This review summarizes the current state of knowledge of LIM protein mechanosensitivity.
Collapse
Affiliation(s)
- Caitlin A Anderson
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, USA
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA.,James Franck Institute, University of Chicago, Chicago, Illinois, USA.,Department of Physics, University of Chicago, Chicago, Illinois, USA.,Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| | - Jonathan D Winkelman
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
55
|
Alday-Parejo B, Ghimire K, Coquoz O, Albisetti GW, Tamò L, Zaric J, Stalin J, Rüegg C. MAGI1 localizes to mature focal adhesion and modulates endothelial cell adhesion, migration and angiogenesis. Cell Adh Migr 2021; 15:126-139. [PMID: 33823745 PMCID: PMC8115569 DOI: 10.1080/19336918.2021.1911472] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MAGI1 is an intracellular adaptor protein that stabilizes cell junctions and regulates epithelial and endothelial integrity. Here, we report that that in endothelial cells MAGI1 colocalizes with paxillin, β3-integrin, talin 1, tensin 3 and α-4-actinin at mature focal adhesions and actin stress fibers, and regulates their dynamics. Downregulation of MAGI1 reduces focal adhesion formation and maturation, cell spreading, actin stress fiber formation and RhoA/Rac1 activation. MAGI1 silencing increases phosphorylation of paxillin at Y118, an indicator of focal adhesion turnover. MAGI1 promotes integrin-dependent endothelial cells adhesion to ECM, reduces invasion and tubulogenesisin vitro and suppresses angiogenesis in vivo. Our results identify MAGI1 as anovel component of focal adhesions, and regulator of focal adhesion dynamics, cell adhesion, invasion and angiogenesis.
Collapse
Affiliation(s)
- Begoña Alday-Parejo
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Kedar Ghimire
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Westmead Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Oriana Coquoz
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Gioele W Albisetti
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Institute of Pharmacology and Toxicology, Section of Neuropharmacology, University of Zürich, Zürich, Switzerland
| | - Luca Tamò
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Clinical Trials Unit, University of Bern, Bern, Switzerland
| | - Jelena Zaric
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale De Lausanne, Lausanne, Switzerland
| | - Jimmy Stalin
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Curzio Rüegg
- Laboratory of Experimental and Translational Oncology, Pathology, Department of Oncology, Microbiology and Immunology, Faculty of Sciences and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
56
|
Han SJ, Azarova EV, Whitewood AJ, Bachir A, Guttierrez E, Groisman A, Horwitz AR, Goult BT, Dean KM, Danuser G. Pre-complexation of talin and vinculin without tension is required for efficient nascent adhesion maturation. eLife 2021; 10:66151. [PMID: 33783351 PMCID: PMC8009661 DOI: 10.7554/elife.66151] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/11/2021] [Indexed: 12/23/2022] Open
Abstract
Talin and vinculin are mechanosensitive proteins that are recruited early to integrin-based nascent adhesions (NAs). In two epithelial cell systems with well-delineated NA formation, we find these molecules concurrently recruited to the subclass of NAs maturing to focal adhesions. After the initial recruitment under minimal load, vinculin accumulates in maturing NAs at a ~ fivefold higher rate than in non-maturing NAs, and is accompanied by a faster traction force increase. We identify the R8 domain in talin, which exposes a vinculin-binding-site (VBS) in the absence of load, as required for NA maturation. Disruption of R8 domain function reduces load-free vinculin binding to talin, and reduces the rate of additional vinculin recruitment. Taken together, these data show that the concurrent recruitment of talin and vinculin prior to mechanical engagement with integrins is essential for the traction-mediated unfolding of talin, exposure of additional VBSs, further recruitment of vinculin, and ultimately, NA maturation.
Collapse
Affiliation(s)
- Sangyoon J Han
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biomedical Engineering, Michigan Technological University, Houghton, United States
| | - Evgenia V Azarova
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | | | - Alexia Bachir
- Department of Cell Biology, University of Virginia, Charlottesville, United States
| | - Edgar Guttierrez
- Department of Physics, University of California San Diego, San Diego, United States
| | - Alex Groisman
- Department of Physics, University of California San Diego, San Diego, United States
| | - Alan R Horwitz
- Department of Cell Biology, University of Virginia, Charlottesville, United States
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Kevin M Dean
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
57
|
Structural and functional analysis of LIM domain-dependent recruitment of paxillin to αvβ3 integrin-positive focal adhesions. Commun Biol 2021; 4:380. [PMID: 33782527 PMCID: PMC8007706 DOI: 10.1038/s42003-021-01886-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
The LIM domain-dependent localization of the adapter protein paxillin to β3 integrin-positive focal adhesions (FAs) is not mechanistically understood. Here, by combining molecular biology, photoactivation and FA-isolation experiments, we demonstrate specific contributions of each LIM domain of paxillin and reveal multiple paxillin interactions in adhesion-complexes. Mutation of β3 integrin at a putative paxillin binding site (β3VE/YA) leads to rapidly inward-sliding FAs, correlating with actin retrograde flow and enhanced paxillin dissociation kinetics. Induced mechanical coupling of paxillin to β3VE/YA integrin arrests the FA-sliding, thereby disclosing an essential structural function of paxillin for the maturation of β3 integrin/talin clusters. Moreover, bimolecular fluorescence complementation unveils the spatial orientation of the paxillin LIM-array, juxtaposing the positive LIM4 to the plasma membrane and the β3 integrin-tail, while in vitro binding assays point to LIM1 and/or LIM2 interaction with talin-head domain. These data provide structural insights into the molecular organization of β3 integrin-FAs.
Collapse
|
58
|
Osseni A, Ravel-Chapuis A, Thomas JL, Gache V, Schaeffer L, Jasmin BJ. HDAC6 regulates microtubule stability and clustering of AChRs at neuromuscular junctions. J Cell Biol 2021; 219:151966. [PMID: 32697819 PMCID: PMC7401804 DOI: 10.1083/jcb.201901099] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/20/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Microtubules (MTs) are known to be post-translationally modified at the neuromuscular junction (NMJ), hence increasing their stability. To date however, the function(s) of the dynamic MT network and its relative stability in the formation and maintenance of NMJs remain poorly described. Stabilization of the MT is dependent in part on its acetylation status, and HDAC6 is capable of reversing this post-translational modification. Here, we report that HDAC6 preferentially accumulates at NMJs and that it contributes to the organization and the stability of NMJs. Indeed, pharmacological inhibition of HDAC6 protects against MT disorganization and reduces the size of acetylcholine receptor (AChR) clusters. Moreover, the endogenous HDAC6 inhibitor paxillin interacts with HDAC6 in skeletal muscle cells, colocalizes with AChR aggregates, and regulates the formation of AChR. Our findings indicate that the focal insertion of AChRs into the postsynaptic membrane is regulated by stable MTs and highlight how an MT/HDAC6/paxillin axis participates in the regulation of AChR insertion and removal to control the structure of NMJs.
Collapse
Affiliation(s)
- Alexis Osseni
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Éric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Éric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Luc Thomas
- Institut NeuroMyoGene, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5310, Institut National de la Santé et de la Recherche Médicale Unité 1217, Université de Lyon, Lyon, France
| | - Vincent Gache
- Institut NeuroMyoGene, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5310, Institut National de la Santé et de la Recherche Médicale Unité 1217, Université de Lyon, Lyon, France
| | - Laurent Schaeffer
- Institut NeuroMyoGene, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5310, Institut National de la Santé et de la Recherche Médicale Unité 1217, Université de Lyon, Lyon, France.,Centre de Biotechnologie Cellulaire, Hospices Civils de Lyon, Lyon, France
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Éric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
59
|
Paxillin Is Required for Proper Spinal Motor Axon Growth into the Limb. J Neurosci 2021; 41:3808-3821. [PMID: 33727334 DOI: 10.1523/jneurosci.2863-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 11/21/2022] Open
Abstract
To assemble the functional circuits of the nervous system, the neuronal axonal growth cones must be precisely guided to their proper targets, which can be achieved through cell-surface guidance receptor activation by ligand binding in the periphery. We investigated the function of paxillin, a focal adhesion protein, as an essential growth cone guidance intermediary in the context of spinal lateral motor column (LMC) motor axon trajectory selection in the limb mesenchyme. Using in situ mRNA detection, we first show paxillin expression in LMC neurons of chick and mouse embryos at the time of spinal motor axon extension into the limb. Paxillin loss-of-function and gain-of-function using in ovo electroporation in chick LMC neurons, of either sex, perturbed LMC axon trajectory selection, demonstrating an essential role of paxillin in motor axon guidance. In addition, a neuron-specific paxillin deletion in mice led to LMC axon trajectory selection errors. We also show that knocking down paxillin attenuates the growth preference of LMC neurites against ephrins in vitro, and erythropoietin-producing human hepatocellular (Eph)-mediated retargeting of LMC axons in vivo, suggesting paxillin involvement in Eph-mediated LMC motor axon guidance. Finally, both paxillin knockdown and ectopic expression of a nonphosphorylable paxillin mutant attenuated the retargeting of LMC axons caused by Src overexpression, implicating paxillin as a Src target in Eph signal relay in this context. In summary, our findings demonstrate that paxillin is required for motor axon guidance and suggest its essential role in the ephrin-Eph signaling pathway resulting in motor axon trajectory selection.SIGNIFICANCE STATEMENT During the development of neural circuits, precise connections need to be established among neurons or between neurons and their muscle targets. A protein family found in neurons, Eph, is essential at different stages of neural circuit formation, including nerve outgrowth and pathfinding, and is proposed to mediate the onset and progression of several neurodegenerative diseases, such as Alzheimer's disease. To investigate how Ephs relay their signals to mediate nerve growth, we investigated the function of a molecule called paxillin and found it important for the development of spinal nerve growth toward their muscle targets, suggesting its role as an effector of Eph signals. Our work could thus provide new information on how neuromuscular connectivity is properly established during embryonic development.
Collapse
|
60
|
Liu X, Xu D, Xu X, Xue Q, Gao X, Tang C. MiR-216b regulates the tumorigenesis of gastric cancer by targeting PXN. Pathol Res Pract 2021; 218:153325. [PMID: 33422779 DOI: 10.1016/j.prp.2020.153325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Accumulating evidence has demonstrated that microRNAs (miRNAs) are associated with tumorigenesis. miR-216b can play a vital role in the genesis and development of gastric cancer (GC), and its molecular mechanisms require further elucidation. METHODS The biological effects of miR-216b in GC cells were investigated by MTT, transwell assays, and cell cycle. Western blot and luciferase assay were performed to demonstrate the direct binding of miR-216b on PXN 3'UTR. Furthermore, MTT, colony formation assays, transwell assays, and flow cytometry analysis, as well as xenograft mice model, were used to measure the effects of miR-216b-PXN on GC cell proliferation, migration, and invasion indicated by in vitro and in vivo. RESULTS Our results showed that miR-216b acted as a tumor suppressor in GC progression. miR-216b overexpression suppressed GC cell proliferation, migration, and invasion in vitro. Luciferase reporter assays identified paxillin (PXN) as a novel target gene of miR-216b. PXN overexpression could partially rescue miR-216b-induced the inhibitory effects in GC cells. Besides, overexpression of miR-216b contributed to the activation of PI3K/AKT signaling via partly regulating PXN in GC cells. CONCLUSIONS The above results showed that miR-216b could offer a novel therapeutic avenue by targeting PXN in GC.
Collapse
Affiliation(s)
- Xianchen Liu
- Departmentof Radiation Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Dong Xu
- Departmentof Obstetrics and Gynecology, Huai'an First People's Hospital, Huai'an, Jiangsu, China
| | - Xiaodong Xu
- Departmentof General Surgery, Yancheng NO.1 People's Hospital, Yancheng, Jiangsu, China
| | - Qiang Xue
- Departmentof Radiation Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xuesong Gao
- Departmentof General Surgery, Affiliated Hospital 2 of Nantong University, No.6 haierxiang North Road, 226000, Nantong, Jiangsu, China.
| | - Chong Tang
- Departmentof General Surgery, Affiliated Hospital 2 of Nantong University, No.6 haierxiang North Road, 226000, Nantong, Jiangsu, China.
| |
Collapse
|
61
|
Nikolopoulou PA, Koufaki MA, Kostourou V. The Adhesome Network: Key Components Shaping the Tumour Stroma. Cancers (Basel) 2021; 13:525. [PMID: 33573141 PMCID: PMC7866493 DOI: 10.3390/cancers13030525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Beyond the conventional perception of solid tumours as mere masses of cancer cells, advanced cancer research focuses on the complex contributions of tumour-associated host cells that are known as "tumour microenvironment" (TME). It has been long appreciated that the tumour stroma, composed mainly of blood vessels, cancer-associated fibroblasts and immune cells, together with the extracellular matrix (ECM), define the tumour architecture and influence cancer cell properties. Besides soluble cues, that mediate the crosstalk between tumour and stroma cells, cell adhesion to ECM arises as a crucial determinant in cancer progression. In this review, we discuss how adhesome, the intracellular protein network formed at cell adhesions, regulate the TME and control malignancy. The role of adhesome extends beyond the physical attachment of cells to ECM and the regulation of cytoskeletal remodelling and acts as a signalling and mechanosensing hub, orchestrating cellular responses that shape the tumour milieu.
Collapse
Affiliation(s)
| | | | - Vassiliki Kostourou
- Biomedical Sciences Research Centre “Alexander Fleming”, Institute of Bioinnovation, 34 Fleming Str., 16672 Vari-Athens, Greece; (P.A.N.); (M.A.K.)
| |
Collapse
|
62
|
Dilshat R, Fock V, Kenny C, Gerritsen I, Lasseur RMJ, Travnickova J, Eichhoff OM, Cerny P, Möller K, Sigurbjörnsdóttir S, Kirty K, Einarsdottir BÓ, Cheng PF, Levesque M, Cornell RA, Patton EE, Larue L, de Tayrac M, Magnúsdóttir E, Ögmundsdóttir MH, Steingrimsson E. MITF reprograms the extracellular matrix and focal adhesion in melanoma. eLife 2021; 10:e63093. [PMID: 33438577 PMCID: PMC7857731 DOI: 10.7554/elife.63093] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
The microphthalmia-associated transcription factor (MITF) is a critical regulator of melanocyte development and differentiation. It also plays an important role in melanoma where it has been described as a molecular rheostat that, depending on activity levels, allows reversible switching between different cellular states. Here, we show that MITF directly represses the expression of genes associated with the extracellular matrix (ECM) and focal adhesion pathways in human melanoma cells as well as of regulators of epithelial-to-mesenchymal transition (EMT) such as CDH2, thus affecting cell morphology and cell-matrix interactions. Importantly, we show that these effects of MITF are reversible, as expected from the rheostat model. The number of focal adhesion points increased upon MITF knockdown, a feature observed in drug-resistant melanomas. Cells lacking MITF are similar to the cells of minimal residual disease observed in both human and zebrafish melanomas. Our results suggest that MITF plays a critical role as a repressor of gene expression and is actively involved in shaping the microenvironment of melanoma cells in a cell-autonomous manner.
Collapse
Affiliation(s)
- Ramile Dilshat
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of IcelandReykjavikIceland
| | - Valerie Fock
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of IcelandReykjavikIceland
| | - Colin Kenny
- Department of Anatomy and Cell biology, Carver College of Medicine, University of IowaIowa CityUnited States
| | - Ilse Gerritsen
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of IcelandReykjavikIceland
| | - Romain Maurice Jacques Lasseur
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of IcelandReykjavikIceland
| | - Jana Travnickova
- MRC Institute of Genetics and Molecular Medicine, MRC Human Genetics Unit, University of EdinburghEdinburghUnited Kingdom
| | - Ossia M Eichhoff
- Department of Dermatology, University Hospital ZurichZurichSwitzerland
| | - Philipp Cerny
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of IcelandReykjavikIceland
| | - Katrin Möller
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of IcelandReykjavikIceland
| | - Sara Sigurbjörnsdóttir
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of IcelandReykjavikIceland
| | - Kritika Kirty
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of IcelandReykjavikIceland
| | - Berglind Ósk Einarsdottir
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of IcelandReykjavikIceland
| | - Phil F Cheng
- Department of Dermatology, University Hospital ZurichZurichSwitzerland
| | - Mitchell Levesque
- Department of Dermatology, University Hospital ZurichZurichSwitzerland
| | - Robert A Cornell
- Department of Anatomy and Cell biology, Carver College of Medicine, University of IowaIowa CityUnited States
| | - E Elizabeth Patton
- MRC Institute of Genetics and Molecular Medicine, MRC Human Genetics Unit, University of EdinburghEdinburghUnited Kingdom
| | - Lionel Larue
- Institut Curie, CNRS UMR3347, INSERM U1021, Centre UniversitaireOrsayFrance
| | - Marie de Tayrac
- Service de Génétique Moléculaire et Génomique, CHURennesFrance
- Univ Rennes1, CNRS, IGDR (Institut de Génétique et Développement de Rennes)RennesFrance
| | - Erna Magnúsdóttir
- Department of Anatomy, BioMedical Center, Faculty of Medicine, University of IcelandReykjavikIceland
| | - Margrét Helga Ögmundsdóttir
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of IcelandReykjavikIceland
| | - Eirikur Steingrimsson
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of IcelandReykjavikIceland
| |
Collapse
|
63
|
Wang W, Hu D, Feng Y, Wu C, Song Y, Liu W, Li A, Wang Y, Chen K, Tian M, Xiao F, Zhang Q, Chen W, Pan P, Wan P, Liu Y, Lan H, Wu K, Wu J. Paxillin mediates ATP-induced activation of P2X7 receptor and NLRP3 inflammasome. BMC Biol 2020; 18:182. [PMID: 33243234 PMCID: PMC7694937 DOI: 10.1186/s12915-020-00918-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Background Extracellular adenosine triphosphate (ATP), a key danger-associated molecular pattern (DAMP) molecule, is released to the extracellular medium during inflammation by injured parenchymal cells, dying leukocytes, and activated platelets. ATP directly activates the plasma membrane channel P2X7 receptor (P2X7R), leading to an intracellular influx of K+, a key trigger inducing NLRP3 inflammasome activation. However, the mechanism underlying P2X7R-mediated activation of NLRP3 inflammasome is poorly understood, and additional molecular mediators have not been identified. Here, we demonstrate that Paxillin is the molecule connecting the P2X7 receptor and NLRP3 inflammasome through protein interactions. Results We show a distinct mechanism by which Paxillin promotes ATP-induced activation of the P2X7 receptor and NLRP3 inflammasome. Extracellular ATP induces Paxillin phosphorylation and then facilitates Paxillin-NLRP3 interaction. Interestingly, Paxillin enhances NLRP3 deubiquitination and activates NLRP3 inflammasome upon ATP treatment and K+ efflux. Moreover, we demonstrated that USP13 is a key enzyme for Paxillin-mediated NLRP3 deubiquitination upon ATP treatment. Notably, extracellular ATP promotes Paxillin and NLRP3 migration from the cytosol to the plasma membrane and facilitates P2X7R-Paxillin interaction and PaxillinNLRP3 association, resulting in the formation of the P2X7R-Paxillin-NLRP3 complex. Functionally, Paxillin is essential for ATP-induced NLRP3 inflammasome activation in mouse BMDMs and BMDCs as well as in human PBMCs and THP-1-differentiated macrophages. Conclusions We have identified paxillin as a mediator of NLRP3 inflammasome activation. Paxillin plays key roles in ATP-induced activation of the P2X7 receptor and NLRP3 inflammasome by facilitating the formation of the P2X7R-Paxillin-NLRP3 complex. Supplementary information The online version contains supplementary material available at 10.1186/s12915-020-00918-w.
Collapse
Affiliation(s)
- Wenbiao Wang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China.,Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| | - Dingwen Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuqian Feng
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Caifeng Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Yunting Song
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Weiyong Liu
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Aixin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yingchong Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Keli Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Feng Xiao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Weijie Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Pan Pan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Pin Wan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Yingle Liu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China.,State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Huiyao Lan
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China.
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China. .,State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
64
|
Masuzaki R, Ray KC, Roland J, Zent R, Lee YA, Karp SJ. Integrin β1 Establishes Liver Microstructure and Modulates Transforming Growth Factor β during Liver Development and Regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:309-319. [PMID: 33159885 DOI: 10.1016/j.ajpath.2020.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 01/16/2023]
Abstract
A unique and complex microstructure underlies the diverse functions of the liver. Breakdown of this organization, as occurs in fibrosis and cirrhosis, impairs liver function and leads to disease. The role of integrin β1 was examined both in establishing liver microstructure and recreating it after injury. Embryonic deletion of integrin β1 in the liver disrupts the normal development of hepatocyte polarity, specification of cell-cell junctions, and canalicular formation. This in turn leads to the expression of transforming growth factor β (TGF-β) and widespread fibrosis. Targeted deletion of integrin β1 in adult hepatocytes prevents recreation of normal hepatocyte architecture after liver injury, with resultant fibrosis. In vitro, integrin β1 is essential for canalicular formation and is needed to prevent stellate cell activation by modulating TGF-β. Taken together, these findings identify integrin β1 as a key determinant of liver architecture with a critical role as a regulator of TGF-β secretion. These results suggest that disrupting the hepatocyte-extracellular matrix interaction is sufficient to drive fibrosis.
Collapse
Affiliation(s)
- Ryota Masuzaki
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Kevin C Ray
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Joseph Roland
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Roy Zent
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Medicine, Nashville Veterans Affairs Hospital, Nashville, Tennessee
| | - Youngmin A Lee
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Seth J Karp
- Section of Surgical Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee.
| |
Collapse
|
65
|
PAK4 methylation by the methyltransferase SETD6 attenuates cell adhesion. Sci Rep 2020; 10:17068. [PMID: 33051544 PMCID: PMC7555502 DOI: 10.1038/s41598-020-74081-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Abstract
P21-activated kinase 4 (PAK4), a member of serine/threonine kinases family is over-expressed in numerous cancer tumors and is associated with oncogenic cell proliferation, migration and invasion. Our recent work demonstrated that the SET-domain containing protein 6 (SETD6) interacts with and methylates PAK4 at chromatin in mammalian cells, leading to activation of the Wnt/β-catenin signaling pathway. In our current work, we identified lysine 473 (K473) on PAK4 as the primary methylation site by SETD6. Methylation of PAK4 at K473 activates β-catenin transcriptional activity and inhibits cell adhesion. Specific methylation of PAK4 at K473 also attenuates paxillin localization to focal adhesions leading to overall reduction in adhesion-related features, such as filopodia and actin structures. The altered adhesion of the PAK4 wild-type cells is accompanied with a decrease in the migrative and invasive characteristics of the cells. Taken together, our results suggest that methylation of PAK4 at K473 plays a vital role in the regulation of cell adhesion and migration.
Collapse
|
66
|
Torrisi F, Vicario N, Spitale FM, Cammarata FP, Minafra L, Salvatorelli L, Russo G, Cuttone G, Valable S, Gulino R, Magro G, Parenti R. The Role of Hypoxia and SRC Tyrosine Kinase in Glioblastoma Invasiveness and Radioresistance. Cancers (Basel) 2020; 12:E2860. [PMID: 33020459 PMCID: PMC7599682 DOI: 10.3390/cancers12102860] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Advances in functional imaging are supporting neurosurgery and radiotherapy for glioblastoma, which still remains the most aggressive brain tumor with poor prognosis. The typical infiltration pattern of glioblastoma, which impedes a complete surgical resection, is coupled with a high rate of invasiveness and radioresistance, thus further limiting efficient therapy, leading to inevitable and fatal recurrences. Hypoxia is of crucial importance in gliomagenesis and, besides reducing radiotherapy efficacy, also induces cellular and molecular mediators that foster proliferation and invasion. In this review, we aimed at analyzing the biological mechanism of glioblastoma invasiveness and radioresistance in hypoxic niches of glioblastoma. We also discussed the link between hypoxia and radiation-induced radioresistance with activation of SRC proto-oncogene non-receptor tyrosine kinase, prospecting potential strategies to overcome the current limitation in glioblastoma treatment.
Collapse
Affiliation(s)
- Filippo Torrisi
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Physiology, University of Catania, 95123 Catania, Italy; (F.T.); (N.V.); (F.M.S.); (R.G.)
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Physiology, University of Catania, 95123 Catania, Italy; (F.T.); (N.V.); (F.M.S.); (R.G.)
| | - Federica M. Spitale
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Physiology, University of Catania, 95123 Catania, Italy; (F.T.); (N.V.); (F.M.S.); (R.G.)
| | - Francesco P. Cammarata
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy; (L.M.); (G.R.)
| | - Luigi Minafra
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy; (L.M.); (G.R.)
| | - Lucia Salvatorelli
- Department G.F. Ingrassia, Azienda Ospedaliero-Universitaria “Policlinico-Vittorio Emanuele” Anatomic Pathology, University of Catania, 95125 Catania, Italy; (L.S.); (G.M.)
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy; (L.M.); (G.R.)
| | - Giacomo Cuttone
- National Laboratory of South, National Institute for Nuclear Physics (LNS-INFN), 95125 Catania, Italy;
| | - Samuel Valable
- ISTCT/CERVOxy Group, GIP Cyceron, CEA, CNRS, Normandie Université, UNICAEN, 14074 Caen, France;
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Physiology, University of Catania, 95123 Catania, Italy; (F.T.); (N.V.); (F.M.S.); (R.G.)
| | - Gaetano Magro
- Department G.F. Ingrassia, Azienda Ospedaliero-Universitaria “Policlinico-Vittorio Emanuele” Anatomic Pathology, University of Catania, 95125 Catania, Italy; (L.S.); (G.M.)
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Physiology, University of Catania, 95123 Catania, Italy; (F.T.); (N.V.); (F.M.S.); (R.G.)
| |
Collapse
|
67
|
Alam T, Alazmi M, Naser R, Huser F, Momin AA, Astro V, Hong S, Walkiewicz KW, Canlas CG, Huser R, Ali AJ, Merzaban J, Adamo A, Jaremko M, Jaremko Ł, Bajic VB, Gao X, Arold ST. Proteome-level assessment of origin, prevalence and function of leucine-aspartic acid (LD) motifs. Bioinformatics 2020; 36:1121-1128. [PMID: 31584626 PMCID: PMC7703752 DOI: 10.1093/bioinformatics/btz703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 09/03/2019] [Accepted: 09/28/2019] [Indexed: 01/08/2023] Open
Abstract
Motivation Leucine-aspartic acid (LD) motifs are short linear interaction motifs (SLiMs) that link paxillin family proteins to factors controlling cell adhesion, motility and survival. The existence and importance of LD motifs beyond the paxillin family is poorly understood. Results To enable a proteome-wide assessment of LD motifs, we developed an active learning based framework (LD motif finder; LDMF) that iteratively integrates computational predictions with experimental validation. Our analysis of the human proteome revealed a dozen new proteins containing LD motifs. We found that LD motif signalling evolved in unicellular eukaryotes more than 800 Myr ago, with paxillin and vinculin as core constituents, and nuclear export signal as a likely source of de novo LD motifs. We show that LD motif proteins form a functionally homogenous group, all being involved in cell morphogenesis and adhesion. This functional focus is recapitulated in cells by GFP-fused LD motifs, suggesting that it is intrinsic to the LD motif sequence, possibly through their effect on binding partners. Our approach elucidated the origin and dynamic adaptations of an ancestral SLiM, and can serve as a guide for the identification of other SLiMs for which only few representatives are known. Availability and implementation LDMF is freely available online at www.cbrc.kaust.edu.sa/ldmf; Source code is available at https://github.com/tanviralambd/LD/. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Tanvir Alam
- Computational Bioscience Research Center (CBRC), Division of Computer, Electrical and Mathematical Sciences & Engineering (CEMSE), Saudi Arabia
| | - Meshari Alazmi
- Computational Bioscience Research Center (CBRC), Division of Computer, Electrical and Mathematical Sciences & Engineering (CEMSE), Saudi Arabia
| | - Rayan Naser
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Franceline Huser
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Afaque A Momin
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Veronica Astro
- Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - SeungBeom Hong
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Katarzyna W Walkiewicz
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | | | - Raphaël Huser
- Division of Computer, Electrical and Mathematical Sciences & Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Amal J Ali
- Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Jasmeen Merzaban
- Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Antonio Adamo
- Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Łukasz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| | - Vladimir B Bajic
- Computational Bioscience Research Center (CBRC), Division of Computer, Electrical and Mathematical Sciences & Engineering (CEMSE), Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), Division of Computer, Electrical and Mathematical Sciences & Engineering (CEMSE), Saudi Arabia
| | - Stefan T Arold
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Saudi Arabia
| |
Collapse
|
68
|
Alpha KM, Xu W, Turner CE. Paxillin family of focal adhesion adaptor proteins and regulation of cancer cell invasion. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:1-52. [PMID: 32859368 PMCID: PMC7737098 DOI: 10.1016/bs.ircmb.2020.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The paxillin family of proteins, including paxillin, Hic-5, and leupaxin, are focal adhesion adaptor/scaffolding proteins which localize to cell-matrix adhesions and are important in cell adhesion and migration of both normal and cancer cells. Historically, the role of these proteins in regulating the actin cytoskeleton through focal adhesion-mediated signaling has been well documented. However, studies in recent years have revealed additional functions in modulating the microtubule and intermediate filament cytoskeletons to affect diverse processes including cell polarization, vesicle trafficking and mechanosignaling. Expression of paxillin family proteins in stromal cells is also important in regulating tumor cell migration and invasion through non-cell autonomous effects on the extracellular matrix. Both paxillin and Hic-5 can also influence gene expression through a variety of mechanisms, while their own expression is frequently dysregulated in various cancers. Accordingly, these proteins may serve as valuable targets for novel diagnostic and treatment approaches in cancer.
Collapse
Affiliation(s)
- Kyle M Alpha
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Weiyi Xu
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Christopher E Turner
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|
69
|
Wen L, Zhang X, Zhang J, Chen S, Ma Y, Hu J, Yue T, Wang J, Zhu J, Wu T, Wang X. Paxillin knockdown suppresses metastasis and epithelial‑mesenchymal transition in colorectal cancer via the ERK signalling pathway. Oncol Rep 2020; 44:1105-1115. [PMID: 32705241 PMCID: PMC7388420 DOI: 10.3892/or.2020.7687] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
Paxillin (PXN) is a cytoplasmic protein that plays an important role in regulating focal adhesion, cytoskeletal rearrangements and cell motility. The present study aimed to investigate the role of PXN in the metastasis of human colorectal cancer (CRC) and its possible mechanisms. Immunohistochemical staining of tissues from 102 surgical CRC patients revealed that high PXN expression was positively correlated with tumour‑node‑metastasis (TNM) stage, lymph node metastasis, distant metastasis, and recurrence at distant sites after radical surgery. In 24 cases of stage IV CRC, PXN expression in liver metastasis was higher than that in the matched primary tumour. The knockdown of PXN inhibited the proliferation, migration and invasion potential of SW480 cells in vitro and in vivo. Transmission electron microscopy revealed the effect of PXN on ultrastructural characteristics, observed mainly in microvilli and desmosomes. The downregulation of PXN decreased the activation of extracellular regulated protein kinase (ERK) and suppressed the epithelial‑mesenchymal transition (EMT) process. Following the downregulation of PXN, the addition of an ERK activator or inhibitor restored or further suppressed EMT, respectively, accompanied by corresponding changes in cell migration and invasion. Collectively, the present results confirmed the important role of PXN in CRC metastasis and revealed that PXN regulated EMT progression via the ERK signalling pathway. PXN may represent a future therapeutic strategy to prevent the EMT‑associated progression and invasion of CRC.
Collapse
Affiliation(s)
- Long Wen
- Department of General Surgery, Peking University First Hospital, Beijing 100034, P.R. China
| | - Xiaoqian Zhang
- Department of General Surgery, Peking University First Hospital, Beijing 100034, P.R. China
| | - Junling Zhang
- Department of General Surgery, Peking University First Hospital, Beijing 100034, P.R. China
| | - Shanwen Chen
- Department of General Surgery, Peking University First Hospital, Beijing 100034, P.R. China
| | - Yongchen Ma
- Department of Endoscopic Center, Peking University First Hospital, Beijing 100034, P.R. China
| | - Jianwen Hu
- Department of General Surgery, Peking University First Hospital, Beijing 100034, P.R. China
| | - Taohua Yue
- Department of General Surgery, Peking University First Hospital, Beijing 100034, P.R. China
| | - Jingui Wang
- Department of General Surgery, Peking University First Hospital, Beijing 100034, P.R. China
| | - Jing Zhu
- Department of General Surgery, Peking University First Hospital, Beijing 100034, P.R. China
| | - Tao Wu
- Department of General Surgery, Peking University First Hospital, Beijing 100034, P.R. China
| | - Xin Wang
- Department of General Surgery, Peking University First Hospital, Beijing 100034, P.R. China
| |
Collapse
|
70
|
Actin polymerization downstream of integrins: signaling pathways and mechanotransduction. Biochem J 2020; 477:1-21. [PMID: 31913455 DOI: 10.1042/bcj20170719] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/17/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023]
Abstract
A cell constantly adapts to its environment. Cell decisions to survive, to proliferate or to migrate are dictated not only by soluble growth factors, but also through the direct interaction of the cell with the surrounding extracellular matrix (ECM). Integrins and their connections to the actin cytoskeleton are crucial for monitoring cell attachment and the physical properties of the substratum. Cell adhesion dynamics are modulated in complex ways by the polymerization of branched and linear actin arrays, which in turn reinforce ECM-cytoskeleton connection. This review describes the major actin regulators, Ena/VASP proteins, formins and Arp2/3 complexes, in the context of signaling pathways downstream of integrins. We focus on the specific signaling pathways that transduce the rigidity of the substrate and which control durotaxis, i.e. directed migration of cells towards increased ECM rigidity. By doing so, we highlight several recent findings on mechanotransduction and put them into a broad integrative perspective that is the result of decades of intense research on the actin cytoskeleton and its regulation.
Collapse
|
71
|
Pan K, Xie Y. LncRNA FOXC2-AS1 enhances FOXC2 mRNA stability to promote colorectal cancer progression via activation of Ca 2+-FAK signal pathway. Cell Death Dis 2020; 11:434. [PMID: 32513911 PMCID: PMC7280533 DOI: 10.1038/s41419-020-2633-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been confirmed, which are involved in tumorigenesis and metastasis in colorectal cancer (CRC). FOXC2 antisense RNA 1 (FOXC2-AS1) was reported, facilitating the proliferation and progression in several cancers. However, the role of FOXC2-AS1 in CRC cell migration and metastasis is not unclear. In this study, we observed that lncRNA FOXC2-AS1 was upregulated in CRC tissues, and its high expression indicated the poor survival in CRC patients. Meanwhile, FOXC2-AS1 was higher in CRC tissues with metastasis than that of nonmetastatic tumor tissues. We found that FOXC2-AS1 was predominately expressed in the nucleus of tissues and cells. FOXC2-AS1 knockdown suppressed CRC cell growth, invasion, and metastasis in vitro and in vivo. Moreover, FOXC2-AS1 could positively regulate the neighboring gene FOXC2 and stabilized FOXC2 mRNA by forming a RNA duplex. Meanwhile, ectopic expression of FOXC2 could obviously alleviate the suppressed effects caused by silencing FOXC2-AS1. For the mechanism, FOXC2-AS1 knockdown could reduce intracellular Ca2+ levels, inhibited FA formation and FAK signaling, and these suppressed effects were mitigated by increasing FOXC2 expression. These results demonstrated that FOXC2-AS1 enhances FOXC2 mRNA stability to promote CRC proliferation, migration, and invasion by activation of Ca2+-FAK signaling, which implicates that FOXC2-AS1 may represent a latent effective therapeutic target for CRC progression.
Collapse
Affiliation(s)
- Ke Pan
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yong Xie
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
72
|
Wang Y, Wang R, Tang DD. Ste20-like Kinase-mediated Control of Actin Polymerization Is a New Mechanism for Thin Filament-associated Regulation of Airway Smooth Muscle Contraction. Am J Respir Cell Mol Biol 2020; 62:645-656. [PMID: 31913659 PMCID: PMC7193783 DOI: 10.1165/rcmb.2019-0310oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/07/2020] [Indexed: 12/26/2022] Open
Abstract
It has been reported that actin polymerization is regulated by protein tyrosine phosphorylation in smooth muscle on contractile stimulation. The role of protein serine/threonine phosphorylation in modulating actin dynamics is underinvestigated. SLK (Ste20-like kinase) is a serine/threonine protein kinase that plays a role in apoptosis, cell cycle, proliferation, and migration. The function of SLK in smooth muscle is mostly unknown. Here, SLK knockdown (KD) inhibited acetylcholine (ACh)-induced actin polymerization and contraction without affecting myosin light chain phosphorylation at Ser-19 in human airway smooth muscle. Stimulation with ACh induced paxillin phosphorylation at Ser-272, which was reduced in SLK KD cells. However, SLK did not catalyze paxillin Ser-272 phosphorylation in vitro. But, SLK KD attenuated Plk1 (polo-like kinase 1) phosphorylation at Thr-210. Plk1 mediated paxillin phosphorylation at Ser-272 in vitro. Expression of the nonphosphorylatable paxillin mutant S272A (substitution of alanine at Ser-272) attenuated the agonist-enhanced F-actin/G-actin ratios without affecting myosin light chain phosphorylation. Because N-WASP (neuronal Wiskott-Aldrich Syndrome Protein) phosphorylation at Tyr-256 (an indication of its activation) promotes actin polymerization, we also assessed the role of paxillin phosphorylation in N-WASP activation. S272A paxillin inhibited the ACh-enhanced N-WASP phosphorylation at Tyr-256. Together, these results suggest that SLK regulates paxillin phosphorylation at Ser-272 via Plk1, which modulates N-WASP activation and actin polymerization in smooth muscle. SLK-mediated actin cytoskeletal reorganization may facilitate force transmission between the contractile units and the extracellular matrix.
Collapse
Affiliation(s)
- Yinna Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| |
Collapse
|
73
|
Kadry YA, Calderwood DA. Chapter 22: Structural and signaling functions of integrins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183206. [PMID: 31991120 PMCID: PMC7063833 DOI: 10.1016/j.bbamem.2020.183206] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023]
Abstract
The integrin family of transmembrane adhesion receptors is essential for sensing and adhering to the extracellular environment. Integrins are heterodimers composed of non-covalently associated α and β subunits that engage extracellular matrix proteins and couple to intracellular signaling and cytoskeletal complexes. Humans have 24 different integrin heterodimers with differing ligand binding specificities and non-redundant functions. Complex structural rearrangements control the ability of integrins to engage ligands and to activate diverse downstream signaling networks, modulating cell adhesion and dynamics, processes which are crucial for metazoan life and development. Here we review the structural and signaling functions of integrins focusing on recent advances which have enhanced our understanding of how integrins are activated and regulated, and the cytoplasmic signaling networks downstream of integrins.
Collapse
Affiliation(s)
- Yasmin A Kadry
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, United States of America
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, United States of America; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, United States of America..
| |
Collapse
|
74
|
Konkel ME, Talukdar PK, Negretti NM, Klappenbach CM. Taking Control: Campylobacter jejuni Binding to Fibronectin Sets the Stage for Cellular Adherence and Invasion. Front Microbiol 2020; 11:564. [PMID: 32328046 PMCID: PMC7161372 DOI: 10.3389/fmicb.2020.00564] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/16/2020] [Indexed: 12/18/2022] Open
Abstract
Campylobacter jejuni, a foodborne pathogen, is one of the most common bacterial causes of gastroenteritis in the world. Undercooked poultry, raw (unpasteurized) dairy products, untreated water, and contaminated produce are the most common sources associated with infection. C. jejuni establishes a niche in the gut by adhering to and invading epithelial cells, which results in diarrhea with blood and mucus in the stool. The process of colonization is mediated, in part, by surface-exposed molecules (adhesins) that bind directly to host cell ligands or the extracellular matrix (ECM) surrounding cells. In this review, we introduce the known and putative adhesins of the foodborne pathogen C. jejuni. We then focus our discussion on two C. jejuni Microbial Surface Components Recognizing Adhesive Matrix Molecule(s) (MSCRAMMs), termed CadF and FlpA, which have been demonstrated to contribute to C. jejuni colonization and pathogenesis. In vitro studies have determined that these two surface-exposed proteins bind to the ECM glycoprotein fibronectin (FN). In vivo studies have shown that cadF and flpA mutants exhibit impaired colonization of chickens compared to the wild-type strain. Additional studies have revealed that CadF and FlpA stimulate epithelial cell signaling pathways necessary for cell invasion. Interestingly, CadF and FlpA have distinct FN-binding domains, suggesting that the functions of these proteins are non-redundant. In summary, the binding of FN by C. jejuni CadF and FlpA adhesins has been demonstrated to contribute to adherence, invasion, and cell signaling.
Collapse
Affiliation(s)
- Michael E. Konkel
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | | | | | | |
Collapse
|
75
|
Guadarrama Bello D, Fouillen A, Badia A, Nanci A. Nanoporosity Stimulates Cell Spreading and Focal Adhesion Formation in Cells with Mutated Paxillin. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14924-14932. [PMID: 32155329 DOI: 10.1021/acsami.0c01172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We have evaluated the response to nanotopography of CHO-K1 cells that express wild-type paxillin or paxillin with mutations at serine 273 that inhibit phosphorylation. Cells were grown on nanoporous and polished titanium surfaces. With all cell types, immunofluorescence showed that adhesion and spreading were minimally affected on the treated surface and that the actin filaments were more abundant and well-aligned. Scanning electron microscopy revealed changes in cell shape and abundant filopodia with lateral nanoprotrusions in response to nanoporosity. Gene expression of proteins associated with cellular adhesion and protrusions was significantly increased on the nanoporous surface regardless of the cell type. In particular, α-actinin, Rac1, Cdc42, and ITGα1 were upregulated in S273 cells with alanine substitutions, whereas FAK, Pxn, and Src were downregulated, leading to improved focal adhesion formation. These findings suggest that the surface nanoporosity can "compensate for" the genetic mutations that affect the biomechanical relationship of cells to surfaces.
Collapse
Affiliation(s)
- Dainelys Guadarrama Bello
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec H3C3J7, Canada
| | - Aurélien Fouillen
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec H3C3J7, Canada
| | - Antonella Badia
- Department of Chemistry, Faculty of Arts and Sciences, Université de Montréal, Québec H3C3J7, Canada
| | - Antonio Nanci
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec H3C3J7, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec H3C3J7, Canada
| |
Collapse
|
76
|
Miller AE, Hu P, Barker TH. Feeling Things Out: Bidirectional Signaling of the Cell-ECM Interface, Implications in the Mechanobiology of Cell Spreading, Migration, Proliferation, and Differentiation. Adv Healthc Mater 2020; 9:e1901445. [PMID: 32037719 PMCID: PMC7274903 DOI: 10.1002/adhm.201901445] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/10/2020] [Indexed: 12/16/2022]
Abstract
Biophysical cues stemming from the extracellular environment are rapidly transduced into discernible chemical messages (mechanotransduction) that direct cellular activities-placing the extracellular matrix (ECM) as a potent regulator of cell behavior. Dynamic reciprocity between the cell and its associated matrix is essential to the maintenance of tissue homeostasis and dysregulation of both ECM mechanical signaling, via pathological ECM turnover, and internal mechanotransduction pathways contribute to disease progression. This review covers the current understandings of the key modes of signaling used by both the cell and ECM to coregulate one another. By taking an outside-in approach, the inherent complexities and regulatory processes at each level of signaling (ECM, plasma membrane, focal adhesion, and cytoplasm) are captured to give a comprehensive picture of the internal and external mechanoregulatory environment. Specific emphasis is placed on the focal adhesion complex which acts as a central hub of mechanical signaling, regulating cell spreading, migration, proliferation, and differentiation. In addition, a wealth of available knowledge on mechanotransduction is curated to generate an integrated signaling network encompassing the central components of the focal adhesion, cytoplasm and nucleus that act in concert to promote durotaxis, proliferation, and differentiation in a stiffness-dependent manner.
Collapse
Affiliation(s)
- Andrew E Miller
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| | - Ping Hu
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| |
Collapse
|
77
|
Liu H, Zhu L, Dudiki T, Gabanic B, Good L, Podrez EA, Cherepanova OA, Qin J, Byzova TV. Macrophage Migration and Phagocytosis Are Controlled by Kindlin-3's Link to the Cytoskeleton. THE JOURNAL OF IMMUNOLOGY 2020; 204:1954-1967. [PMID: 32094207 DOI: 10.4049/jimmunol.1901134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/15/2020] [Indexed: 01/08/2023]
Abstract
Major myeloid cell functions from adhesion to migration and phagocytosis are mediated by integrin adhesion complexes, also known as adhesome. The presence of a direct integrin binding partner Kindlin-3 is crucial for these functions, and its lack causes severe immunodeficiency in humans. However, how Kindlin-3 is incorporated into the adhesome and how its function is regulated is poorly understood. In this study, using nuclear magnetic resonance spectroscopy, we show that Kindlin-3 directly interacts with paxillin (PXN) and leupaxin (LPXN) via G43/L47 within its F0 domain. Surprisingly, disruption of Kindlin-3-PXN/LPXN interactions in Raw 264.7 macrophages promoted cell spreading and polarization, resulting in upregulation of both general cell motility and directed cell migration, which is in a drastic contrast to the consequences of Kindlin-3 knockout. Moreover, disruption of Kindlin-3-PXN/LPXN binding promoted the transition from mesenchymal to amoeboid mode of movement as well as augmented phagocytosis. Thus, these novel links between Kindlin-3 and key adhesome members PXN/LPXN limit myeloid cell motility and phagocytosis, thereby providing an important immune regulatory mechanism.
Collapse
Affiliation(s)
- Huan Liu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Liang Zhu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Tejasvi Dudiki
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Benjamin Gabanic
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Logan Good
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Eugene A Podrez
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Olga A Cherepanova
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Jun Qin
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Tatiana V Byzova
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195;
| |
Collapse
|
78
|
Zonderland J, Moldero IL, Anand S, Mota C, Moroni L. Dimensionality changes actin network through lamin A/C and zyxin. Biomaterials 2020; 240:119854. [PMID: 32087459 DOI: 10.1016/j.biomaterials.2020.119854] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/08/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022]
Abstract
Mechanosensing proteins have mainly been investigated in 2D culture platforms, while understanding their regulation in 3D enviroments is critical for tissue engineering. Among mechanosensing proteins, the actin cytoskeleton plays a key role in human mesenchymal stromal cells (hMSCs) activity, but its regulation in 3D tissue engineered scaffolds remains poorly studied. Here, we show that human mesenchymal stromal cells (hMSCs) cultured on 3D electrospun scaffolds made of a stiff material do not form actin stress fibers, contrary to hMSCs on 2D films of the same material. On 3D electrospun and additive manufactured scaffolds, hMSCs also displayed fewer focal adhesions, lower lamin A and C expression and less YAP1 nuclear localization and myosin light chain phosphorylation. Together, this strongly suggests that dimensionality prevents the build-up of cellular tension, even on stiff materials. Knock down of either lamin A and C or zyxin resulted in fewer stress fibers in the cell center. Zyxin knock down reduced lamin A and C expression, but not vice versa, showing that this signal chain starts from the outside of the cell. Lineage commitment was not affected by the lack of these important osteogenic proteins in 3D, as all cells committed to osteogenesis in bi-potential medium. Our study demonstrates that dimensionality changes the actin cytoskeleton through lamin A and C and zyxin, and highlights the difference in the regulation of lineage commitment in 3D enviroments. Together, these results can have important implications for future scaffold design for both stiff- and soft tissue engineering constructs.
Collapse
Affiliation(s)
- Jip Zonderland
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ET, Maastricht, the Netherlands
| | - Ivan Lorenzo Moldero
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ET, Maastricht, the Netherlands
| | - Shivesh Anand
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ET, Maastricht, the Netherlands
| | - Carlos Mota
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ET, Maastricht, the Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ET, Maastricht, the Netherlands.
| |
Collapse
|
79
|
Makhija EP, Espinosa-Hoyos D, Jagielska A, Van Vliet KJ. Mechanical regulation of oligodendrocyte biology. Neurosci Lett 2020; 717:134673. [PMID: 31838017 PMCID: PMC12023767 DOI: 10.1016/j.neulet.2019.134673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 12/27/2022]
Abstract
Oligodendrocytes (OL) are a subset of glial cells in the central nervous system (CNS) comprising the brain and spinal cord. The CNS environment is defined by complex biochemical and biophysical cues during development and response to injury or disease. In the last decade, significant progress has been made in understanding some of the key biophysical factors in the CNS that modulate OL biology, including their key role in myelination of neurons. Taken together, those studies offer translational implications for remyelination therapies, pharmacological research, identification of novel drug targets, and improvements in methods to generate human oligodendrocyte progenitor cells (OPCs) and OLs from donor stem cells in vitro. This review summarizes current knowledge of how various physical and mechanical cues affect OL biology and its implications for disease, therapeutic approaches, and generation of human OPCs and OLs.
Collapse
Affiliation(s)
- Ekta P Makhija
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Critical Analytics for Manufacturing Personalized-Medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, 138602, Singapore
| | - Daniela Espinosa-Hoyos
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Anna Jagielska
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
| | - Krystyn J Van Vliet
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Critical Analytics for Manufacturing Personalized-Medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, 138602, Singapore; Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
| |
Collapse
|
80
|
Guan X, Guan X, Dong C, Jiao Z. Rho GTPases and related signaling complexes in cell migration and invasion. Exp Cell Res 2020; 388:111824. [PMID: 31926148 DOI: 10.1016/j.yexcr.2020.111824] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
Cell migration and invasion play an important role in the development of cancer. Cell migration is associated with several specific actin filament-based structures, including lamellipodia, filopodia, invadopodia and blebs, and with cell-cell adhesion, cell-extracellular matrix adhesion. Migration occurs via different modes, human epithelial cancer cells mainly migrate collectively, while in vivo imaging studies in laboratory animals have found that most cells migrate as single cells. Rho GTPases play an important role in the process of cell migration, and several Rho GTPase-related signaling complexes are also involved. However, the exact mechanism by which these signaling complexes act remains unclear. This paper reviews how Rho GTPases and related signaling complexes interact with other proteins, how their expression is regulated, how tumor microenvironment-related factors play a role in invasion and metastasis, and the mechanism of these complex signaling networks in cell migration and invasion.
Collapse
Affiliation(s)
- Xiaoying Guan
- Pathology Department, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Xiaoli Guan
- General Medicine Department, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Chi Dong
- Pathology Department, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Zuoyi Jiao
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
81
|
Wu WS. The role of hydrogen peroxide-inducible clone-5 in tumor progression. Tzu Chi Med J 2020; 32:1-4. [PMID: 32110512 PMCID: PMC7015009 DOI: 10.4103/tcmj.tcmj_120_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/04/2019] [Accepted: 06/19/2019] [Indexed: 11/30/2022] Open
Abstract
The poor prognosis of cancers such as hepatocellular carcinoma is due to high recurrence rate mainly caused by metastasis. Target therapy aiming at critical signal molecules within these pathways is one of the promising strategies for the prevention of metastasis. Hydrogen peroxide-inducible clone-5 (Hic-5), which belongs to the paxillin superfamily, is emerging as a potential target along the metastatic signaling pathway. Hic-5 and paxillin share similar structural features; however, there are a lot of different biochemical properties between them, including tissue-specific distribution, regulation of gene expression, critical signal cascade, and the impacts on cellular phenotypes. This review focus on the recent studies of Hic-5 related to its impacts on signal transduction and transcription responsible for tumor progression. Hic-5 may regulate mitogen-activated protein kinase cascade for cell migration and invasion in various systems. Hic-5 can mediate transforming growth factor-β1-induced epithelial-mesenchymal transition (EMT) via RhoA- and Src-dependent signaling. Moreover, Hic-5 plays a central role in a positive feedback Hic-5-NADPH oxidase-ROS-JNK signal cascade. This sustained signaling is required for regulating EMT-related genes including E-cadherin, Snail, MMP9, and Zeb-1. In addition, Hic-5 can be a transcription coregulatory factor for a lot of nuclear receptors. Owing to the critical role of Hic-5 in signal transduction and transcription responsible for tumor progression, it can be a potential therapeutic target for the prevention of tumor metastasis.
Collapse
Affiliation(s)
- Wen-Sheng Wu
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
82
|
Rohwedder I, Kurz ARM, Pruenster M, Immler R, Pick R, Eggersmann T, Klapproth S, Johnson JL, Alsina SM, Lowell CA, Mócsai A, Catz SD, Sperandio M. Src family kinase-mediated vesicle trafficking is critical for neutrophil basement membrane penetration. Haematologica 2019; 105:1845-1856. [PMID: 31699792 PMCID: PMC7327629 DOI: 10.3324/haematol.2019.225722] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/05/2019] [Indexed: 01/07/2023] Open
Abstract
Leukocyte recruitment into inflamed tissue is highly dependent on the activation and binding of integrins to their respective ligands, followed by the induction of various signaling events within the cell referred to as outside-in signaling. Src family kinases (SFK) are the central players in the outside-in signaling process, assigning them a critical role for proper immune cell function. Our study investigated the role of SFK on neutrophil recruitment in vivo using Hck−/- Fgr−/- Lyn−/- mice, which lack SFK expressed in neutrophils. We show that loss of SFK strongly reduces neutrophil adhesion and post-arrest modifications in a shear force dependent manner. Additionally, we found that in the absence of SFK, neutrophils display impaired Rab27a-dependent surface mobilization of neutrophil elastase, VLA3 and VLA6 containing vesicles. This results in a defect in neutrophil vascular basement membrane penetration and thus strongly impaired extravasation. Taken together, we demonstrate that SFK play a role in neutrophil post-arrest modifications and extravasation during acute inflammation. These findings may support the current efforts to use SFK-inhibitors in inflammatory diseases with unwanted neutrophil recruitment.
Collapse
Affiliation(s)
- Ina Rohwedder
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Angela R M Kurz
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Monika Pruenster
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Roland Immler
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Robert Pick
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Tanja Eggersmann
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Sarah Klapproth
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Jennifer L Johnson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Sergi Masgrau Alsina
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Sergio D Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Markus Sperandio
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
83
|
Lyda JK, Tan ZL, Rajah A, Momi A, Mackay L, Brown CM, Khadra A. Rac activation is key to cell motility and directionality: An experimental and modelling investigation. Comput Struct Biotechnol J 2019; 17:1436-1452. [PMID: 31871589 PMCID: PMC6906685 DOI: 10.1016/j.csbj.2019.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023] Open
Abstract
Cell migration is a tightly-regulated process that involves protein gradients formed by the Rho family of GTPases, including Rho and Rac. The front (rear) of cells is generally characterized by higher active Rac (Rho) and lower active Rho (Rac) concentrations. Protein clusters, called adhesions, that anchor cells to their external environment have been shown to be dynamic and small (stable and large) at the cell front (rear), forming the force-transmission points necessary for persistent movement. Differences in adhesion sizes and dynamics have been linked to gradients in Rac and Rho activity. Here, we study the effects of Rac activation and gradients in Rac and Rho concentrations and activities on cellular polarity and adhesion size using mathematical and experimental approaches. The former is accomplished by expanding an existing reaction-diffusion model to a 2D domain utilizing stochastic dynamics. The model revealed that a hysteresis between the induced/uninduced states (corresponding to higher/lower Rac concentrations, respectively) along with Rac and Rho activation gradients, generated by chemical cues, were vital for forming polarity. Experimentally, the induced state was generated by increasing the cellular βPIX (a Rac-GEF) level and/or decreasing ROCK (a Rac-GAP effector protein) activity with Y-27632 (a ROCK-inhibitor). In agreement with the simulations, our results showed that cells with elevated RacGTP migrated faster, indicating more robust cellular polarization. However, the directionality of cells was not changed significantly, suggesting that external and/or internal physical or chemical cues were needed. Complementing the faster migration observed, adhesions were smaller, generating the phenotype expected with the induced state.
Collapse
Affiliation(s)
- Jessica K Lyda
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Zhang L Tan
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Abira Rajah
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Asheesh Momi
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Laurent Mackay
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Claire M Brown
- Department of Physiology, McGill University, Montréal, Québec, Canada.,Advanced BioImaging Facility (ABIF), McGill University, Montréal, Québec, Canada.,Cell Information Systems, McGill University, Montréal, Québec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
84
|
Abstract
Integrins are heterodimeric cell surface receptors ensuring the mechanical connection between cells and the extracellular matrix. In addition to the anchorage of cells to the extracellular matrix, these receptors have critical functions in intracellular signaling, but are also taking center stage in many physiological and pathological conditions. In this review, we provide some historical, structural, and physiological notes so that the diverse functions of these receptors can be appreciated and put into the context of the emerging field of mechanobiology. We propose that the exciting journey of the exploration of these receptors will continue for at least another new generation of researchers.
Collapse
Affiliation(s)
- Michael Bachmann
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Sampo Kukkurainen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Vesa P Hytönen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| |
Collapse
|
85
|
Vohnoutka RB, Gulvady AC, Goreczny G, Alpha K, Handelman SK, Sexton JZ, Turner CE. The focal adhesion scaffold protein Hic-5 regulates vimentin organization in fibroblasts. Mol Biol Cell 2019; 30:3037-3056. [PMID: 31644368 PMCID: PMC6880880 DOI: 10.1091/mbc.e19-08-0442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Focal adhesion (FA)-stimulated reorganization of the F-actin cytoskeleton regulates cellular size, shape, and mechanical properties. However, FA cross-talk with the intermediate filament cytoskeleton is poorly understood. Genetic ablation of the FA-associated scaffold protein Hic-5 in mouse cancer-associated fibroblasts (CAFs) promoted a dramatic collapse of the vimentin network, which was rescued following EGFP-Hic-5 expression. Vimentin collapse correlated with a loss of detergent-soluble vimentin filament precursors and decreased vimentin S72/S82 phosphorylation. Additionally, fluorescence recovery after photobleaching analysis indicated impaired vimentin dynamics. Microtubule (MT)-associated EB1 tracking and Western blotting of MT posttranslational modifications indicated no change in MT dynamics that could explain the vimentin collapse. However, pharmacological inhibition of the RhoGTPase Cdc42 in Hic-5 knockout CAFs rescued the vimentin collapse, while pan-formin inhibition with SMIFH2 promoted vimentin collapse in Hic-5 heterozygous CAFs. Our results reveal novel regulation of vimentin organization/dynamics by the FA scaffold protein Hic-5 via modulation of RhoGTPases and downstream formin activity.
Collapse
Affiliation(s)
- Rishel B Vohnoutka
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Anushree C Gulvady
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Gregory Goreczny
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Kyle Alpha
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Samuel K Handelman
- Division of Gastroenterology, Department of Internal Medicine, Michigan Medicine at the University of Michigan, Ann Arbor, MI 48109
| | - Jonathan Z Sexton
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
86
|
Klapproth S, Bromberger T, Türk C, Krüger M, Moser M. A kindlin-3-leupaxin-paxillin signaling pathway regulates podosome stability. J Cell Biol 2019; 218:3436-3454. [PMID: 31537712 PMCID: PMC6781449 DOI: 10.1083/jcb.201903109] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/08/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
Kindlin-3 regulates podosome stability by recruiting leupaxin to podosomes, which in turn controls PTP-PEST activity and paxillin phosphorylation. Kindlin-3 deficiency allows formation of initial adhesion patches containing talin, vinculin, and paxillin, whereas paxillin family proteins are dispensable for podosome formation. Binding of kindlins to integrins is required for integrin activation, stable ligand binding, and subsequent intracellular signaling. How hematopoietic kindlin-3 contributes to the assembly and stability of the adhesion complex is not known. Here we report that kindlin-3 recruits leupaxin into podosomes and thereby regulates paxillin phosphorylation and podosome turnover. We demonstrate that the activity of the protein tyrosine phosphatase PTP-PEST, which controls paxillin phosphorylation, requires leupaxin. In contrast, despite sharing the same binding mode with leupaxin, paxillin recruitment into podosomes is kindlin-3 independent. Instead, we found paxillin together with talin and vinculin in initial adhesion patches of kindlin-3–null cells. Surprisingly, despite its presence in these early adhesion patches, podosomes can form in the absence of paxillin or any paxillin member. In conclusion, our findings show that kindlin-3 not only activates and clusters integrins into podosomes but also regulates their lifetime by recruiting leupaxin, which controls PTP-PEST activity and thereby paxillin phosphorylation and downstream signaling.
Collapse
Affiliation(s)
- Sarah Klapproth
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Thomas Bromberger
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Clara Türk
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Markus Moser
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany .,Institute of Experimental Hematology, Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| |
Collapse
|
87
|
Kircher DA, Trombetti KA, Silvis MR, Parkman GL, Fischer GM, Angel SN, Stehn CM, Strain SC, Grossmann AH, Duffy KL, Boucher KM, McMahon M, Davies MA, Mendoza MC, VanBrocklin MW, Holmen SL. AKT1 E17K Activates Focal Adhesion Kinase and Promotes Melanoma Brain Metastasis. Mol Cancer Res 2019; 17:1787-1800. [PMID: 31138602 PMCID: PMC6726552 DOI: 10.1158/1541-7786.mcr-18-1372] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/18/2019] [Accepted: 05/22/2019] [Indexed: 02/03/2023]
Abstract
Alterations in the PI3K/AKT pathway occur in up to 70% of melanomas and are associated with disease progression. The three AKT paralogs are highly conserved but data suggest they have distinct functions. Activating mutations of AKT1 and AKT3 occur in human melanoma but their role in melanoma formation and metastasis remains unclear. Using an established melanoma mouse model, we evaluated E17K, E40K, and Q79K mutations in AKT1, AKT2, and AKT3 and show that mice harboring tumors expressing AKT1E17K had the highest incidence of brain metastasis and lowest mean survival. Tumors expressing AKT1E17K displayed elevated levels of focal adhesion factors and enhanced phosphorylation of focal adhesion kinase (FAK). AKT1E17K expression in melanoma cells increased invasion and this was reduced by pharmacologic inhibition of either AKT or FAK. These data suggest that the different AKT paralogs have distinct roles in melanoma brain metastasis and that AKT and FAK may be promising therapeutic targets. IMPLICATIONS: This study suggests that AKT1E17K promotes melanoma brain metastasis through activation of FAK and provides a rationale for the therapeutic targeting of AKT and/or FAK to reduce melanoma metastasis.
Collapse
Affiliation(s)
- David A Kircher
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Kirby A Trombetti
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Mark R Silvis
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Gennie L Parkman
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Grant M Fischer
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephanie N Angel
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Christopher M Stehn
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Sean C Strain
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Allie H Grossmann
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Keith L Duffy
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Kenneth M Boucher
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Martin McMahon
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Michael A Davies
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michelle C Mendoza
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Matthew W VanBrocklin
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Sheri L Holmen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah.
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah
| |
Collapse
|
88
|
Montalto FI, Giordano F, Chiodo C, Marsico S, Mauro L, Sisci D, Aquila S, Lanzino M, Panno ML, Andò S, De Amicis F. Progesterone Receptor B signaling Reduces Breast Cancer Cell Aggressiveness: Role of Cyclin-D1/Cdk4 Mediating Paxillin Phosphorylation. Cancers (Basel) 2019; 11:E1201. [PMID: 31426542 PMCID: PMC6721542 DOI: 10.3390/cancers11081201] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/01/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022] Open
Abstract
Progesterone-Receptor (PR) positivity is related with an enhanced response to breast cancer therapy, conversely cyclin D1 (CD1) is a retained marker of poor outcome. Herein, we demonstrate that hydroxyprogesterone (OHPg) through progesterone receptor B (PR-B) reduces breast cancer cell aggressiveness, by targeting the cytoplasmic CD1. Specifically, OHPg diminishes CD1 expression by a transcriptional regulation due to the recruitment of PR-B at a canonical half-PRE site of the CD1 promoter, together with HDAC1, determining a chromatin conformation less prone for gene transcription. CD1, together with its kinase partner Cdk4, regulates cell migration and metastasis, through the association with key components of focal adhesion, such as Paxillin (Pxn). Kaplan-Meier analysis shows that low Pxn expression was associated with increased distant metastasis-free survival in luminal A PR+ breast carcinomas. Interestingly, OHPg treatment reduced Pxn content in T47-D and MCF-7 cells; besides, the interaction between endogenous cytoplasmic CD1/Cdk4 with Pxn was reduced. This was consistent with the reduction of p-Ser83Pxn levels, crucially causing the delay in cell migration and a concomitant inhibition of Rac1 activity and p-PAK. Collectively, these findings support the role of PR-B in breast epithelial cell integrity and reinforce the importance in targeting PR-B as a potential strategy to restrict breast tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- Francesca Ida Montalto
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Rende, Italy
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Chiara Chiodo
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Rende, Italy
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Stefania Marsico
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Rende, Italy
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Diego Sisci
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Rende, Italy
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Saveria Aquila
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Rende, Italy
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Marilena Lanzino
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Rende, Italy
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Maria Luisa Panno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Sebastiano Andò
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Rende, Italy.
| | - Francesca De Amicis
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Rende, Italy.
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende, Italy.
| |
Collapse
|
89
|
Bailey EC, Alrowaished SS, Kilroy EA, Crooks ES, Drinkert DM, Karunasiri CM, Belanger JJ, Khalil A, Kelley JB, Henry CA. NAD+ improves neuromuscular development in a zebrafish model of FKRP-associated dystroglycanopathy. Skelet Muscle 2019; 9:21. [PMID: 31391079 PMCID: PMC6685180 DOI: 10.1186/s13395-019-0206-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/17/2019] [Indexed: 01/26/2023] Open
Abstract
Background Secondary dystroglycanopathies are muscular dystrophies that result from mutations in genes that participate in Dystroglycan glycosylation. Glycosylation of Dystroglycan is essential for muscle fibers to adhere to the muscle extracellular matrix (myomatrix). Although the myomatrix is disrupted in a number of secondary dystroglycanopathies, it is unknown whether improving the myomatrix is beneficial for these conditions. We previously determined that either NAD+ supplementation or overexpression of Paxillin are sufficient to improve muscle structure and the myomatrix in a zebrafish model of primary dystroglycanopathy. Here, we investigate how these modulations affect neuromuscular phenotypes in zebrafish fukutin-related protein (fkrp) morphants modeling FKRP-associated secondary dystroglycanopathy. Results We found that NAD+ supplementation prior to muscle development improved muscle structure, myotendinous junction structure, and muscle function in fkrp morphants. However, Paxillin overexpression did not improve any of these parameters in fkrp morphants. As movement also requires neuromuscular junction formation, we examined early neuromuscular junction development in fkrp morphants. The length of neuromuscular junctions was disrupted in fkrp morphants. NAD+ supplementation prior to neuromuscular junction development improved length. We investigated NMJ formation in dystroglycan (dag1) morphants and found that although NMJ morphology is disrupted in dag1 morphants, NAD+ is not sufficient to improve NMJ morphology in dag1 morphants. Ubiquitous overexpression of Fkrp rescued the fkrp morphant phenotype but muscle-specific overexpression only improved myotendinous junction structure. Conclusions These data indicate that Fkrp plays an early and essential role in muscle, myotendinous junction, and neuromuscular junction development. These data also indicate that, at least in the zebrafish model, FKRP-associated dystroglycanopathy does not exactly phenocopy DG-deficiency. Paxillin overexpression improves muscle structure in dag1 morphants but not fkrp morphants. In contrast, NAD+ supplementation improves NMJ morphology in fkrp morphants but not dag1 morphants. Finally, these data show that muscle-specific expression of Fkrp is insufficient to rescue muscle development and homeostasis. Electronic supplementary material The online version of this article (10.1186/s13395-019-0206-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erin C Bailey
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, 217 Hitchner Hall, Orono, ME, 04469, USA
| | | | - Elisabeth A Kilroy
- Graduate School of Biomedical Sciences and Engineering, University of Maine, 217 Hitchner Hall, Orono, ME, 04469, USA
| | - Emma S Crooks
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA
| | - Daisy M Drinkert
- Molecular and Biomedical Sciences, University of Maine, Orono, ME, 04469, USA
| | - Chaya M Karunasiri
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA.,Present Address: Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Joseph J Belanger
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA.,Present Address: Lake Erie College of Osteopathic Medicine, Erie, PA, 16509, USA
| | - Andre Khalil
- Chemical and Biomedical Engineering, University of Maine, Orono, ME, 04469, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, 217 Hitchner Hall, Orono, ME, 04469, USA
| | - Joshua B Kelley
- Molecular and Biomedical Sciences, University of Maine, Orono, ME, 04469, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, 217 Hitchner Hall, Orono, ME, 04469, USA
| | - Clarissa A Henry
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA. .,Graduate School of Biomedical Sciences and Engineering, University of Maine, 217 Hitchner Hall, Orono, ME, 04469, USA.
| |
Collapse
|
90
|
Sosnowska M, Kutwin M, Jaworski S, Strojny B, Wierzbicki M, Szczepaniak J, Łojkowski M, Święszkowski W, Bałaban J, Chwalibog A, Sawosz E. Mechano-signalling, induced by fullerene C 60 nanofilms, arrests the cell cycle in the G2/M phase and decreases proliferation of liver cancer cells. Int J Nanomedicine 2019; 14:6197-6215. [PMID: 31496681 PMCID: PMC6689765 DOI: 10.2147/ijn.s206934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION AND OBJECTIVE Degradation of the extracellular matrix (ECM) changes the physicochemical properties and dysregulates ECM-cell interactions, leading to several pathological conditions, such as invasive cancer. Carbon nanofilm, as a biocompatible and easy to functionalize material, could be used to mimic ECM structures, changing cancer cell behavior to perform like normal cells. METHODS Experiments were performed in vitro with HS-5 cells (as a control) and HepG2 and C3A cancer cells. An aqueous solution of fullerene C60 was used to form a nanofilm. The morphological properties of cells cultivated on C60 nanofilms were evaluated with light, confocal, electron and atomic force microscopy. The cell viability and proliferation were measured by XTT and BrdU assays. Immunoblotting and flow cytometry were used to evaluate the expression level of proliferating cell nuclear antigen and determine the number of cells in the G2/M phase. RESULTS All cell lines were spread on C60 nanofilms, showing a high affinity to the nanofilm surface. We found that C60 nanofilm mimicked the niche/ECM of cells, was biocompatible and non-toxic, but the mechanical signal from C60 nanofilm created an environment that affected the cell cycle and reduced cell proliferation. CONCLUSION The results indicate that C60 nanofilms might be a suitable, substitute component for the niche of cancer cells. The incorporation of fullerene C60 in the ECM/niche may be an alternative treatment for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Malwina Sosnowska
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw02-786, Poland
| | - Marta Kutwin
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw02-786, Poland
| | - Sławomir Jaworski
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw02-786, Poland
| | - Barbara Strojny
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw02-786, Poland
| | - Mateusz Wierzbicki
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw02-786, Poland
| | - Jarosław Szczepaniak
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw02-786, Poland
| | - Maciej Łojkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw00-661, Poland
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw00-661, Poland
| | - Jaśmina Bałaban
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw02-786, Poland
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg1870, Denmark
| | - Ewa Sawosz
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw02-786, Poland
| |
Collapse
|
91
|
May CJ, Welsh GI, Chesor M, Lait PJ, Schewitz-Bowers LP, Lee RWJ, Saleem MA. Human Th17 cells produce a soluble mediator that increases podocyte motility via signaling pathways that mimic PAR-1 activation. Am J Physiol Renal Physiol 2019; 317:F913-F921. [PMID: 31339775 DOI: 10.1152/ajprenal.00093.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The specific pathogenesis of idiopathic nephrotic syndrome (NS) is poorly understood, and the role of immune mediators remains contentious. However, there is good evidence for the role of a circulating factor, and we recently postulated circulating proteases as candidate factors. Immunosuppressive therapy with glucocorticoids (GCs) and T cell inhibitors are widely used in the clinical treatment of NS. Given that T helper (CD4+) cells expressing IL-17A (so-called Th17 cells) have recently been reported to be resistant to GC treatment, and GC resistance remains a major challenge in the management of NS, we hypothesized that Th17 cells produce a circulating factor that is capable of signaling to the podocyte and inducing deleterious phenotypic changes. To test this, we generated human Th17 cells from healthy volunteers and added the supernatants from these T cell cultures to conditionally immortalized human podocytes in vitro. This demonstrated that podocytes treated with Th17 cell culture supernatant, as well as with patient disease plasma, showed significant stimulation of JNK and p38 MAPK pathways and an increase in motility, which was blocked using a JNK inhibitor. We have previously shown that nephrotic plasma elicits a podocyte response via protease-activated receptor-1 (PAR-1). Stimulation of PAR-1 in podocytes elicited the same signaling response as Th17 cell culture supernatant treatment. Equally, protease inhibitors with Th17 cell culture treatment blocked the signaling response. This was not replicated by the reagents added to Th17 cell cultures or by IL-17A. Hence, we conclude that an undefined soluble mediator produced by Th17 cells mimics the deleterious effect of PAR-1 activation in vitro. Given the association between pathogenic subsets of Th17 cells and GC resistance, these observations have potential therapeutic relevance for patients with NS.
Collapse
Affiliation(s)
- Carl J May
- Bristol Renal, University of Bristol, Bristol, United Kingdom
| | - Gavin I Welsh
- Bristol Renal, University of Bristol, Bristol, United Kingdom
| | - Musleeha Chesor
- Bristol Renal, University of Bristol, Bristol, United Kingdom
| | - Phillipa J Lait
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Lauren P Schewitz-Bowers
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Richard W J Lee
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Moin A Saleem
- Bristol Renal, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
92
|
Chiarini A, Onorati F, Marconi M, Pasquali A, Patuzzo C, Malashicheva A, Irtyega O, Faggian G, Pignatti PF, Trabetti E, Armato U, Dal Pra I. Studies on sporadic non-syndromic thoracic aortic aneurysms: II. Alterations of extra-cellular matrix components and focal adhesion proteins. Eur J Prev Cardiol 2019; 25:51-58. [PMID: 29708036 DOI: 10.1177/2047487318759120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background Sporadic non-syndromic thoracic aortic aneurysms (SNSTAAs) are less well understood than familial non-syndromic or syndromic ones. Here, we focused on morphologic and molecular changes of the extracellular matrix of the tunica media of SNSTAAs. Design Single centre design. Methods Surgical media samples from seven SNSTAAs and seven controls underwent quantitative polymerase chain reaction, proteomics-bioinformatics, immunoblotting, histology and immunohistochemistry analysis. Results A down-regulation of Decorin mRNA with unchanged protein levels associated with a remarkable increase of collagen fibres. A reduced and distorted network of elastic fibres partnered with an attenuated expression of microfibril-associated glycoprotein1 despite the rise of MFAP2 gene-encoded mRNA levels. An increasingly proteolysed paxillin (55 kDa PXN), a focal adhesion protein, combined with an upregulated 62 kDa PXN holoprotein, without changes in amount and phosphorylation of focal adhesion kinase (pp125FAK). The upregulation of SPOCK2-encoded Testican2 proteoglycan and of ectodysplasin (EDA) protein was coupled with a down-regulation of EDA2 receptor (EDA2R). Conclusions Several tunica media extracellular matrix-related changes favour SNSTAA development. A steady level of decorin and a microfibril-associated glycoprotein1 protein shortage cause the assembly of structurally defective collagen and elastic fibres. Up-regulation of PXN holoproteins perturbs PXN/pp125FAK interaction and focal adhesion functioning. Testican2 up-regulation suppresses the membrane-type matrix metalloproteinase inhibiting activities of other SPOCK family members thus enhancing extracellular matrix proteolysis. Finally, the altered EDA•EDA2R signalling would impact on the remodelling of SNSTAA tunica media. Altogether, our results pave the way to a deeper molecular understanding of SNSTAAs necessary to identify their early diagnostic biochemical markers.
Collapse
Affiliation(s)
- Anna Chiarini
- 1 Histology and Embryology Section, University of Verona Medical School, Italy
| | - Francesco Onorati
- 2 Department of Surgical Sciences, University of Verona Medical School, Italy
| | - Maddalena Marconi
- 1 Histology and Embryology Section, University of Verona Medical School, Italy
| | | | - Cristina Patuzzo
- 3 Biology and Genetics Section, University of Verona Medical School, Italy
| | | | - Olga Irtyega
- 4 Federal Almazov Medical Research Centre, Saint Petersburg, Russia
| | - Giuseppe Faggian
- 2 Department of Surgical Sciences, University of Verona Medical School, Italy
| | - Pier F Pignatti
- 3 Biology and Genetics Section, University of Verona Medical School, Italy
| | | | - Ubaldo Armato
- 1 Histology and Embryology Section, University of Verona Medical School, Italy
| | - Ilaria Dal Pra
- 1 Histology and Embryology Section, University of Verona Medical School, Italy
| |
Collapse
|
93
|
Di Donato M, Cernera G, Migliaccio A, Castoria G. Nerve Growth Factor Induces Proliferation and Aggressiveness In Prostate Cancer Cells. Cancers (Basel) 2019; 11:E784. [PMID: 31174415 PMCID: PMC6627659 DOI: 10.3390/cancers11060784] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
Resistance to hormone therapy and disease progression is the major challenge in clinical management of prostate cancer (PC). Drugs currently used in PC therapy initially show a potent antitumor effects, but PC gradually develops resistance, relapses and spreads. Most patients who fail primary therapy and have recurrences eventually develop castration-resistant prostate cancer (CRPC), which is almost incurable. The nerve growth factor (NGF) acts on a variety of non-neuronal cells by activating the NGF tyrosine-kinase receptor, tropomyosin receptor kinase A (TrkA). NGF signaling is deregulated in PC. In androgen-dependent PC cells, TrkA mediates the proliferative action of NGF through its crosstalk with the androgen receptor (AR). Epithelial PC cells, however, acquire the ability to express NGF and TrkA, as the disease progresses, indicating a role for NGF/TrkA axis in PC progression and androgen-resistance. We here report that once activated by NGF, TrkA mediates proliferation, invasiveness and epithelial-mesenchymal transition (EMT) in various CRPC cells. NGF promotes organoid growth in 3D models of CRPC cells, and specific inhibition of TrkA impairs all these responses. Thus TrkA represents a new biomarker to target in CRPC.
Collapse
Affiliation(s)
- Marzia Di Donato
- Department of Precision Medicine-University of Campania 'L. Vanvitelli'-via L. De Crecchio, 7-80138 Naples, Italy.
| | - Gustavo Cernera
- Department of Precision Medicine-University of Campania 'L. Vanvitelli'-via L. De Crecchio, 7-80138 Naples, Italy.
| | - Antimo Migliaccio
- Department of Precision Medicine-University of Campania 'L. Vanvitelli'-via L. De Crecchio, 7-80138 Naples, Italy.
| | - Gabriella Castoria
- Department of Precision Medicine-University of Campania 'L. Vanvitelli'-via L. De Crecchio, 7-80138 Naples, Italy.
| |
Collapse
|
94
|
Zaballos MA, Acuña-Ruiz A, Morante M, Crespo P, Santisteban P. Regulators of the RAS-ERK pathway as therapeutic targets in thyroid cancer. Endocr Relat Cancer 2019; 26:R319-R344. [PMID: 30978703 DOI: 10.1530/erc-19-0098] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/30/2022]
Abstract
Thyroid cancer is mostly an ERK-driven carcinoma, as up to 70% of thyroid carcinomas are caused by mutations that activate the RAS/ERK mitogenic signaling pathway. The incidence of thyroid cancer has been steadily increasing for the last four decades; yet, there is still no effective treatment for advanced thyroid carcinomas. Current research efforts are focused on impairing ERK signaling with small-molecule inhibitors, mainly at the level of BRAF and MEK. However, despite initial promising results in animal models, the clinical success of these inhibitors has been limited by the emergence of tumor resistance and relapse. The RAS/ERK pathway is an extremely complex signaling cascade with multiple points of control, offering many potential therapeutic targets: from the modulatory proteins regulating the activation state of RAS proteins to the scaffolding proteins of the pathway that provide spatial specificity to the signals, and finally, the negative feedbacks and phosphatases responsible for inactivating the pathway. The aim of this review is to give an overview of the biology of RAS/ERK regulators in human cancer highlighting relevant information on thyroid cancer and future areas of research.
Collapse
Affiliation(s)
- Miguel A Zaballos
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Adrián Acuña-Ruiz
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Morante
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander, Spain
| | - Piero Crespo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
95
|
Klomp JE, Shaaya M, Matsche J, Rebiai R, Aaron JS, Collins KB, Huyot V, Gonzalez AM, Muller WA, Chew TL, Malik AB, Karginov AV. Time-Variant SRC Kinase Activation Determines Endothelial Permeability Response. Cell Chem Biol 2019; 26:1081-1094.e6. [PMID: 31130521 DOI: 10.1016/j.chembiol.2019.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 12/31/2022]
Abstract
In the current model of endothelial barrier regulation, the tyrosine kinase SRC is purported to induce disassembly of endothelial adherens junctions (AJs) via phosphorylation of VE cadherin, and thereby increase junctional permeability. Here, using a chemical biology approach to temporally control SRC activation, we show that SRC exerts distinct time-variant effects on the endothelial barrier. We discovered that the immediate effect of SRC activation was to transiently enhance endothelial barrier function as the result of accumulation of VE cadherin at AJs and formation of morphologically distinct reticular AJs. Endothelial barrier enhancement via SRC required phosphorylation of VE cadherin at Y731. In contrast, prolonged SRC activation induced VE cadherin phosphorylation at Y685, resulting in increased endothelial permeability. Thus, time-variant SRC activation differentially phosphorylates VE cadherin and shapes AJs to fine-tune endothelial barrier function. Our work demonstrates important advantages of synthetic biology tools in dissecting complex signaling systems.
Collapse
Affiliation(s)
- Jennifer E Klomp
- Department of Pharmacology, The University of Illinois College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Mark Shaaya
- Department of Pharmacology, The University of Illinois College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Jacob Matsche
- Department of Pharmacology, The University of Illinois College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Rima Rebiai
- Department of Pharmacology, The University of Illinois College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Jesse S Aaron
- Advanced Imaging Center at Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Kerrie B Collins
- Department of Pharmacology, The University of Illinois College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Vincent Huyot
- Department of Pharmacology, The University of Illinois College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Annette M Gonzalez
- Department of Pathology, The Feinberg School of Medicine at Northwestern University, Chicago, IL 60611, USA
| | - William A Muller
- Department of Pathology, The Feinberg School of Medicine at Northwestern University, Chicago, IL 60611, USA
| | - Teng-Leong Chew
- Advanced Imaging Center at Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Asrar B Malik
- Department of Pharmacology, The University of Illinois College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Andrei V Karginov
- Department of Pharmacology, The University of Illinois College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612, USA.
| |
Collapse
|
96
|
Dent LG, Manning SA, Kroeger B, Williams AM, Saiful Hilmi AJ, Crea L, Kondo S, Horne-Badovinac S, Harvey KF. The dPix-Git complex is essential to coordinate epithelial morphogenesis and regulate myosin during Drosophila egg chamber development. PLoS Genet 2019; 15:e1008083. [PMID: 31116733 PMCID: PMC6555532 DOI: 10.1371/journal.pgen.1008083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 06/07/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
How biochemical and mechanical information are integrated during tissue development is a central question in morphogenesis. In many biological systems, the PIX-GIT complex localises to focal adhesions and integrates both physical and chemical information. We used Drosophila melanogaster egg chamber formation to study the function of PIX and GIT orthologues (dPix and Git, respectively), and discovered a central role for this complex in controlling myosin activity and epithelial monolayering. We found that Git's focal adhesion targeting domain mediates basal localisation of this complex to filament structures and the leading edge of migrating cells. In the absence of dpix and git, tissue disruption is driven by contractile forces, as reduction of myosin activators restores egg production and morphology. Further, dpix and git mutant eggs closely phenocopy defects previously reported in pak mutant epithelia. Together, these results indicate that the dPix-Git complex controls egg chamber morphogenesis by controlling myosin contractility and Pak kinase downstream of focal adhesions.
Collapse
Affiliation(s)
- Lucas G. Dent
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (LGD); (KFH)
| | - Samuel A. Manning
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Benjamin Kroeger
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Audrey M. Williams
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States of America
| | | | - Luke Crea
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, Yata, Mishima, Shizuoka, Japan
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States of America
| | - Kieran F. Harvey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Department of Anatomy and Developmental Biology, and Biomedicine Discovery Institute, Monash University, Clayton, Australia
- * E-mail: (LGD); (KFH)
| |
Collapse
|
97
|
Rezey AC, Gerlach BD, Wang R, Liao G, Tang DD. Plk1 Mediates Paxillin Phosphorylation (Ser-272), Centrosome Maturation, and Airway Smooth Muscle Layer Thickening in Allergic Asthma. Sci Rep 2019; 9:7555. [PMID: 31101859 PMCID: PMC6525254 DOI: 10.1038/s41598-019-43927-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 05/01/2019] [Indexed: 01/09/2023] Open
Abstract
Allergic asthma is characterized by airway smooth muscle layer thickening, which is largely attributed to cell division that requires the formation of centrosomes. Centrosomes play a pivotal role in regulating bipolar spindle formation and cell division. Before mitosis, centrosomes undergo maturation characterized by expansion of pericentriolar material proteins, which facilitates spindle formation and mitotic efficiency of many cell types. Although polo-like kinase 1 (Plk1) has been implicated in centrosome maturation, the mechanisms by which Plk1 regulates the cellular process are incompletely elucidated. Here, we identified paxillin as a new Plk1-interacting protein in human airway smooth muscle cells. We unexpectedly found that phosphorylated paxillin (Ser-272) was localized in centrosomes of human smooth muscle cells, which regulated centrosome maturation and spindle assembly. Plk1 knockdown inhibited paxillin Ser-272 phosphorylation, centrosome maturation, and cell division. Furthermore, exposure to allergens enhanced airway smooth muscle layer and paxillin phosphorylation at this residue in mice, which was reduced by smooth muscle conditional knockout of Plk1. These findings suggest that Plk1 regulates centrosome maturation and cell division in part by modulating paxillin phosphorylation on Ser-272. Furthermore, Plk1 contributes to the pathogenesis of allergen-induced thickening of the airway smooth muscle layer by affecting paxillin phosphorylation at this position.
Collapse
Affiliation(s)
- Alyssa C Rezey
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, New York, USA
| | - Brennan D Gerlach
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, New York, USA
| | - Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, New York, USA
| | - Guoning Liao
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, New York, USA
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, New York, USA.
| |
Collapse
|
98
|
Xu W, Gulvady AC, Goreczny GJ, Olson EC, Turner CE. Paxillin-dependent regulation of apical-basal polarity in mammary gland morphogenesis. Development 2019; 146:dev.174367. [PMID: 30967426 DOI: 10.1242/dev.174367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/03/2019] [Indexed: 01/31/2023]
Abstract
Establishing apical-basal epithelial cell polarity is fundamental for mammary gland duct morphogenesis during mammalian development. While the focal adhesion adapter protein paxillin is a well-characterized regulator of mesenchymal cell adhesion signaling, F-actin cytoskeleton remodeling and single cell migration, its role in epithelial tissue organization and mammary gland morphogenesis in vivo has not been investigated. Here, using a newly developed paxillin conditional knockout mouse model with targeted ablation in the mammary epithelium, in combination with ex vivo three-dimensional organoid and acini cultures, we identify new roles for paxillin in the establishment of apical-basal epithelial cell polarity and lumen formation, as well as mammary gland duct diameter and branching. Paxillin is shown to be required for the integrity and apical positioning of the Golgi network, Par complex and the Rab11/MyoVb trafficking machinery. Paxillin depletion also resulted in reduced levels of apical acetylated microtubules, and rescue experiments with the HDAC6 inhibitor tubacin highlight the central role for paxillin-dependent regulation of HDAC6 activity and associated microtubule acetylation in controlling epithelial cell apical-basal polarity and tissue branching morphogenesis.
Collapse
Affiliation(s)
- Weiyi Xu
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Anushree C Gulvady
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Gregory J Goreczny
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Eric C Olson
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, 505 Irving Ave, Syracuse, NY 13210, USA
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
99
|
Androgens Induce Invasiveness of Triple Negative Breast Cancer Cells Through AR/Src/PI3-K Complex Assembly. Sci Rep 2019; 9:4490. [PMID: 30872694 PMCID: PMC6418124 DOI: 10.1038/s41598-019-41016-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 02/25/2019] [Indexed: 12/22/2022] Open
Abstract
Breast cancer (BC) is still characterized by high morbidity and mortality. A specific BC subtype named triple negative BC (TNBC) lacks estrogen and progesterone receptors (ER and PR, respectively) and is characterized by the absence of overexpression/amplification of human epidermal growth factor receptor 2 (HER2). The androgen receptor (AR) is expressed in TNBC, although its function in these cancers is still debated. Moreover, few therapeutic options are currently available for the treatment of TNBC. In this study, we have used TNBC-derived MDA-MB231 and MDA-MB453 cells that, albeit at different extent, both express AR. Androgen challenging induces migration and invasiveness of these cells. Use of the anti-androgen bicalutamide or AR knockdown experiments show that these effects depend on AR. Furthermore, the small peptide, S1, which mimics the AR proline-rich motif responsible for the interaction of AR with SH3-Src, reverses the effects in both cell lines, suggesting that the assembly of a complex made up of AR and Src drives the androgen-induced motility and invasiveness. Co-immunoprecipitation experiments in androgen-treated MDA-MB231 and MDA-MB453 cells show that the AR/Src complex recruits p85α, the regulatory subunit of PI3-K. In such a way, the basic machinery leading to migration and invasiveness is turned-on. The S1 peptide inhibits motility and invasiveness of TNBC cells and disrupts the AR/Src/p85α complex assembly in MDA-MB231 cells. This study shows that the rapid androgen activation of Src/PI3-K signaling drives migration and invasiveness of TNBC cells and suggests that the S1 peptide is a promising therapeutic option for these cancers.
Collapse
|
100
|
Integrin intracellular machinery in action. Exp Cell Res 2019; 378:226-231. [PMID: 30853446 DOI: 10.1016/j.yexcr.2019.03.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
Integrin-mediated adhesion to the extracellular matrix involves a surprisingly large number of intracellular proteins, the integrin-associated proteins (IAPs), which are a fraction of the total integrin adhesome. In this review we discuss how genetic approaches have improved our understanding of how each IAP contributes to integrin function, especially in the context of building a functional organism during development. We then begin the process of assembling IAP roles together into an integrated mechanism.
Collapse
|