51
|
Zanin E, Desai A, Poser I, Toyoda Y, Andree C, Moebius C, Bickle M, Conradt B, Piekny A, Oegema K. A conserved RhoGAP limits M phase contractility and coordinates with microtubule asters to confine RhoA during cytokinesis. Dev Cell 2013; 26:496-510. [PMID: 24012485 DOI: 10.1016/j.devcel.2013.08.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 05/22/2013] [Accepted: 08/07/2013] [Indexed: 12/27/2022]
Abstract
During animal cell cytokinesis, the spindle directs contractile ring assembly by activating RhoA in a narrow equatorial zone. Rapid GTPase activating protein (GAP)-mediated inactivation (RhoA flux) is proposed to limit RhoA zone dimensions. Testing the significance of RhoA flux has been hampered by the fact that the GAP targeting RhoA is not known. Here, we identify M phase GAP (MP-GAP) as the primary GAP targeting RhoA during mitosis and cytokinesis. MP-GAP inhibition caused excessive RhoA activation in M phase, leading to the uncontrolled formation of large cortical protrusions and late cytokinesis failure. RhoA zone width was broadened by attenuation of the centrosomal asters but was not affected by MP-GAP inhibition alone. Simultaneous aster attenuation and MP-GAP inhibition led to RhoA accumulation around the entire cell periphery. These results identify the major GAP restraining RhoA during cell division and delineate the relative contributions of RhoA flux and centrosomal asters in controlling RhoA zone dimensions.
Collapse
Affiliation(s)
- Esther Zanin
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA; Center for Integrated Protein Science CIPSM, Department Biology II, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Takeda T, Robinson IM, Savoian MM, Griffiths JR, Whetton AD, McMahon HT, Glover DM. Drosophila F-BAR protein Syndapin contributes to coupling the plasma membrane and contractile ring in cytokinesis. Open Biol 2013; 3:130081. [PMID: 23926047 PMCID: PMC3758542 DOI: 10.1098/rsob.130081] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cytokinesis is a highly ordered cellular process driven by interactions between central spindle microtubules and the actomyosin contractile ring linked to the dynamic remodelling of the plasma membrane. The mechanisms responsible for reorganizing the plasma membrane at the cell equator and its coupling to the contractile ring in cytokinesis are poorly understood. We report here that Syndapin, a protein containing an F-BAR domain required for membrane curvature, contributes to the remodelling of the plasma membrane around the contractile ring for cytokinesis. Syndapin colocalizes with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the cleavage furrow, where it directly interacts with a contractile ring component, Anillin. Accordingly, Anillin is mislocalized during cytokinesis in Syndapin mutants. Elevated or diminished expression of Syndapin leads to cytokinesis defects with abnormal cortical dynamics. The minimal segment of Syndapin, which is able to localize to the cleavage furrow and induce cytokinesis defects, is the F-BAR domain and its immediate C-terminal sequences. Phosphorylation of this region prevents this functional interaction, resulting in reduced ability of Syndapin to bind to and deform membranes. Thus, the dephosphorylated form of Syndapin mediates both remodelling of the plasma membrane and its proper coupling to the cytokinetic machinery.
Collapse
Affiliation(s)
- Tetsuya Takeda
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK.
| | | | | | | | | | | | | |
Collapse
|
53
|
Capalbo L, Montembault E, Takeda T, Bassi ZI, Glover DM, D'Avino PP. The chromosomal passenger complex controls the function of endosomal sorting complex required for transport-III Snf7 proteins during cytokinesis. Open Biol 2013; 2:120070. [PMID: 22724069 PMCID: PMC3376741 DOI: 10.1098/rsob.120070] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 04/12/2012] [Indexed: 12/11/2022] Open
Abstract
Cytokinesis controls the proper segregation of nuclear and cytoplasmic materials at the end of cell division. The chromosomal passenger complex (CPC) has been proposed to monitor the final separation of the two daughter cells at the end of cytokinesis in order to prevent cell abscission in the presence of DNA at the cleavage site, but the precise molecular basis for this is unclear. Recent studies indicate that abscission could be mediated by the assembly of filaments comprising components of the endosomal sorting complex required for transport-III (ESCRT-III). Here, we show that the CPC subunit Borealin interacts directly with the Snf7 components of ESCRT-III in both Drosophila and human cells. Moreover, we find that the CPC's catalytic subunit, Aurora B kinase, phosphorylates one of the three human Snf7 paralogues-CHMP4C-in its C-terminal tail, a region known to regulate its ability to form polymers and associate with membranes. Phosphorylation at these sites appears essential for CHMP4C function because their mutation leads to cytokinesis defects. We propose that CPC controls abscission timing through inhibition of ESCRT-III Snf7 polymerization and membrane association using two concurrent mechanisms: interaction of its Borealin component with Snf7 proteins and phosphorylation of CHMP4C by Aurora B.
Collapse
Affiliation(s)
- Luisa Capalbo
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | | | | | |
Collapse
|
54
|
Citron kinase controls a molecular network required for midbody formation in cytokinesis. Proc Natl Acad Sci U S A 2013; 110:9782-7. [PMID: 23716662 DOI: 10.1073/pnas.1301328110] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cytokinesis partitions cytoplasmic and genomic materials at the end of cell division. Failure in this process causes polyploidy, which in turn can generate chromosomal instability, a hallmark of many cancers. Successful cytokinesis requires cooperative interaction between contractile ring and central spindle components, but how this cooperation is established is poorly understood. Here we show that Sticky (Sti), the Drosophila ortholog of the contractile ring component Citron kinase (CIT-K), interacts directly with two kinesins, Nebbish [the fly counterpart of human kinesin family member 14 (KIF14)] and Pavarotti [the Drosophila ortholog of human mitotic kinesin-like protein 1 (MKLP1)], and that in turn these kinesins interact with each other and with another central spindle protein, Fascetto [the fly ortholog of protein regulator of cytokinesis 1 (PRC1)]. Sti recruits Nebbish to the cleavage furrow, and both proteins are required for midbody formation and proper localization of Pavarotti and Fascetto. These functions require Sti kinase activity, indicating that Sti plays both structural and regulatory roles in midbody formation. Finally, we show that CIT-K's role in midbody formation is conserved in human cells. Our findings indicate that CIT-K is likely to act at the top of the midbody-formation hierarchy by connecting and regulating a molecular network of contractile ring components and microtubule-associated proteins.
Collapse
|
55
|
Kotadia S, Montembault E, Sullivan W, Royou A. Cell elongation is an adaptive response for clearing long chromatid arms from the cleavage plane. ACTA ACUST UNITED AC 2013. [PMID: 23185030 PMCID: PMC3514784 DOI: 10.1083/jcb.201208041] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A cortical myosin-dependent mechanism induces cell elongation to ensure clearance of trailing chromatids from the cleavage plane at the correct time during cytokinesis. Chromosome segregation must be coordinated with cell cleavage to ensure correct transmission of the genome to daughter cells. Here we identify a novel mechanism by which Drosophila melanogaster neuronal stem cells coordinate sister chromatid segregation with cleavage furrow ingression. Cells adapted to a dramatic increase in chromatid arm length by transiently elongating during anaphase/telophase. The degree of cell elongation correlated with the length of the trailing chromatid arms and was concomitant with a slight increase in spindle length and an enlargement of the zone of cortical myosin distribution. Rho guanine-nucleotide exchange factor (Pebble)–depleted cells failed to elongate during segregation of long chromatids. As a result, Pebble-depleted adult flies exhibited morphological defects likely caused by cell death during development. These studies reveal a novel pathway linking trailing chromatid arms and cortical myosin that ensures the clearance of chromatids from the cleavage plane at the appropriate time during cytokinesis, thus preserving genome integrity.
Collapse
Affiliation(s)
- Shaila Kotadia
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
56
|
Bastos RN, Penate X, Bates M, Hammond D, Barr FA. CYK4 inhibits Rac1-dependent PAK1 and ARHGEF7 effector pathways during cytokinesis. ACTA ACUST UNITED AC 2013; 198:865-80. [PMID: 22945935 PMCID: PMC3432774 DOI: 10.1083/jcb.201204107] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In mitosis, animal cells lose their adhesion to the surrounding surfaces and become rounded. During mitotic exit, they reestablish these adhesions and at the same time physically contract and divide. How these competing processes are spatially segregated at the cell cortex remains mysterious. To address this question, we define the specific effector pathways used by RhoA and Rac1 in mitotic cells. We demonstrate that the MKlp1-CYK4 centralspindlin complex is a guanosine triphosphatase-activating protein (GAP) for Rac1 and not RhoA and that CYK4 negatively regulated Rac1 activity at the cell equator in anaphase. Cells expressing a CYK4 GAP mutant had defects in cytokinesis and showed elevated staining for the cell adhesion marker vinculin. These defects could be rescued by depletion of ARHGEF7 and p21-activated kinase, Rac1-specific effector proteins required for cell adhesion. Based on these findings, we propose that CYK4 GAP activity is required during anaphase to inhibit Rac1-dependent effector pathways associated with control of cell spreading and adhesion.
Collapse
|
57
|
Zebrowski DC, Engel FB. The Cardiomyocyte Cell Cycle in Hypertrophy, Tissue Homeostasis, and Regeneration. Rev Physiol Biochem Pharmacol 2013; 165:67-96. [DOI: 10.1007/112_2013_12] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
58
|
Tseng KF, Foss M, Zhang D. Astral microtubules physically redistribute cortical actin filaments to the incipient contractile ring. Cytoskeleton (Hoboken) 2012; 69:983-91. [DOI: 10.1002/cm.21073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/05/2012] [Indexed: 11/09/2022]
|
59
|
Izumiyama T, Minoshima S, Yoshida T, Shimizu N. A novel big protein TPRBK possessing 25 units of TPR motif is essential for the progress of mitosis and cytokinesis. Gene 2012; 511:202-17. [PMID: 23036704 DOI: 10.1016/j.gene.2012.09.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/07/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022]
Abstract
Through the comprehensive analysis of the genomic DNA sequence of human chromosome 22, we identified a novel gene of 702 kb encoding a big protein of 2481 amino acid residues, and named it as TPRBK (TPR containing big gene cloned at Keio). A novel protein TPRBK possesses 25 units of the TPR motif, which has been known to associate with a diverse range of biological functions. Orthologous genes of human TPRBK were found widely in animal species, from insecta to mammal, but not found in plants, fungi and nematoda. Northern blotting and RT-PCR analyses revealed that TPRBK gene is expressed ubiquitously in the human and mouse fetal tissues and various cell lines of human, monkey and mouse. Immunofluorescent staining of the synchronized monkey COS-7 cells with several relevant antibodies indicated that TPRBK changes its subcellular localization during the cell cycle: at interphase TPRBK locates on the centrosomes, during mitosis it translocates from spindle poles to mitotic spindles then to spindle midzone, and through a period of cytokinesis it stays on the midbody. Co-immunoprecipitation assay and immunofluorescent staining with adequate antibodies revealed that TPRBK binds to Aurora B, and those proteins together translocate throughout mitosis and cytokinesis. Treatments of cells with two drugs (Blebbistatin and Y-27632), that are known to inhibit the contractility of actin-myosin, disturbed the proper intracellular localization of TPRBK. Moreover, the knockdown of TPRBK expression by small interfering RNA (siRNA) suppressed the bundling of spindle midzone microtubules and disrupted the midbody formation, arresting the cells at G(2)+M phase. These observations indicated that a novel big protein TPRBK is essential for the formation and integrity of the midbody, hence we postulated that TPRBK plays a critical role in the progress of mitosis and cytokinesis during mammalian cell cycle.
Collapse
Affiliation(s)
- Tomohiro Izumiyama
- Advanced Research Center for Genome Super Power, Keio University, Tsukuba, Japan
| | | | | | | |
Collapse
|
60
|
Giansanti MG, Fuller MT. What Drosophila spermatocytes tell us about the mechanisms underlying cytokinesis. Cytoskeleton (Hoboken) 2012; 69:869-81. [PMID: 22927345 DOI: 10.1002/cm.21063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/13/2012] [Accepted: 08/17/2012] [Indexed: 12/21/2022]
Abstract
Cytokinesis separates the genomic material and organelles of a dividing cell equitably into two physically distinct daughter cells at the end of cell division. This highly choreographed process involves coordinated reorganization and regulated action of the actin and microtubule cytoskeletal systems, an assortment of motor proteins, and membrane trafficking components. Due to their large size, the ease with which exquisite cytological analysis may be performed on them, and the availability of numerous mutants and other genetic tools, Drosophila spermatocytes have provided an excellent system for exploring the mechanistic basis for the temporally programmed and precise spatially localized events of cytokinesis. Mutants defective in male meiotic cytokinesis can be easily identified in forward genetic screens by the production of multinucleate spermatids. In addition, the weak spindle assembly checkpoint in spermatocytes, which causes only a small delay of anaphase onset in the presence of unattached chromosomes, allows investigation of whether gene products required for spindle assembly and chromosome segregation are also involved in cytokinesis. Perhaps due to the large size of spermatocytes and the requirement for two rapid-fire rounds of division without intervening S or growth phases during meiosis, male meiotic mutants have also revealed much about molecular mechanisms underlying new membrane addition during cytokinesis. Finally, cell type-specific differences in the events that set up and complete cytokinesis are emerging from comparison of spermatocytes with cells undergoing mitosis either elsewhere in the organism or in tissue culture.
Collapse
Affiliation(s)
- Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie Università Sapienza di Roma, Piazzale A. Moro 5, Roma, Italy.
| | | |
Collapse
|
61
|
Menant A, Karess RE. Inducing "cytokinesis" without mitosis in unfertilized Drosophila eggs. Cell Cycle 2012; 11:2856-63. [PMID: 22801541 DOI: 10.4161/cc.21190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Selection of the cleavage plane during cytokinesis in dividing cells is linked to the position of the mitotic spindle. A major player in cleavage plane positioning is believed to be the anaphase central spindle and its associated signaling complex called centralspindlin, composed of MgcRacGap and MKLP1. Centralspindlin has the capacity to induce furrowing of the cell cortex by promoting the localized activation of RhoA, which in turn promotes assembly of the contractile ring. We have found a way to induce a cytokinesis-like process in unfertilized Drosophila eggs and very early embryos, when spindle structures are few and located far from invaginating egg cortex. The simple injection of a small molecule inhibitor of Cdk1/Cyclin B (either Roscovitin or RO3306) is sufficient to promote membrane invagination near the site of injection. The furrow generated is in many respects similar to a classical cleavage furrow. Actin, myosin, anillin and MKLP1 are all associated with the forming furrow, which in some cases can entirely circumscribe the unfertilized egg. A similar furrow can also be generated by the localized injection of constitutively active RhoA protein, suggesting that Cdk1 is normally an upstream inhibitor of RhoA activation. We show further that this process apparently is not associated with microtubules. Since simple localized inhibition of Cdk1 is sufficient to induce a furrow, we suggest that in real cytokinesis in normal cells, the localized downregulation of Cdk1 activity at the metaphase-anaphase transition may contribute, along with the spindle, to the positioning of the cleavage furrow.
Collapse
Affiliation(s)
- Alexandra Menant
- CNRS, Institut Jacques Monod, UMR7592, Université Paris Diderot, Paris, France
| | | |
Collapse
|
62
|
Abstract
Cytokinesis, the final step in cell division, partitions the contents of a single cell into two. In animal cells, cytokinesis occurs through cortical remodeling orchestrated by the anaphase spindle. Cytokinesis relies on a tight interplay between signaling and cellular mechanics and has attracted the attention of both biologists and physicists for more than a century. In this review, we provide an overview of four topics in animal cell cytokinesis: (a) signaling between the anaphase spindle and cortex, (b) the mechanics of cortical remodeling, (c) abscission, and (d) regulation of cytokinesis by the cell cycle machinery. We report on recent progress in these areas and highlight some of the outstanding questions that these findings bring into focus.
Collapse
Affiliation(s)
- Rebecca A Green
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
63
|
Wainman A, Giansanti MG, Goldberg ML, Gatti M. The Drosophila RZZ complex - roles in membrane trafficking and cytokinesis. J Cell Sci 2012; 125:4014-25. [PMID: 22685323 DOI: 10.1242/jcs.099820] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Zw10 protein, in the context of the conserved Rod-Zwilch-Zw10 (RZZ) complex, is a kinetochore component required for proper activity of the spindle assembly checkpoint in both Drosophila and mammals. In mammalian and yeast cells, the Zw10 homologues, together with the conserved RINT1/Tip20p and NAG/Sec39p proteins, form a second complex involved in vesicle transport between Golgi and ER. However, it is currently unknown whether Zw10 and the NAG family member Rod are also involved in Drosophila membrane trafficking. Here we show that Zw10 is enriched at both the Golgi stacks and the ER of Drosophila spermatocytes. Rod is concentrated at the Golgi but not at the ER, whereas Zwilch does not accumulate in any membrane compartment. Mutations in zw10 and RNAi against the Drosophila homologue of RINT1 (rint1) cause strong defects in Golgi morphology and reduce the number of Golgi stacks. Mutations in rod also affect Golgi morphology, whereas zwilch mutants do not exhibit gross Golgi defects. Loss of either Zw10 or Rint1 results in frequent failures of spermatocyte cytokinesis, whereas Rod or Zwilch are not required for this process. Spermatocytes lacking zw10 or rint1 function assemble regular central spindles and acto-myosin rings, but furrow ingression halts prematurely due to defective plasma membrane addition. Collectively, our results suggest that Zw10 and Rint1 cooperate in the ER-Golgi trafficking and in plasma membrane formation during spermatocyte cytokinesis. Our findings further suggest that Rod plays a Golgi-related function that is not required for spermatocyte cytokinesis.
Collapse
Affiliation(s)
- Alan Wainman
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Sapienza, Università di Roma, P. le A. Moro 5, 00185 Roma, Italy
| | | | | | | |
Collapse
|
64
|
Florindo C, Perdigão J, Fesquet D, Schiebel E, Pines J, Tavares AA. Human Mob1 proteins are required for cytokinesis by controlling microtubule stability. J Cell Sci 2012; 125:3085-90. [PMID: 22454515 DOI: 10.1242/jcs.097147] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The completion of cytokinesis requires abscission of the midbody, a microtubule-rich cytoplasmic bridge that connects the daughter cells before their final separation. Although it has been established that both the midbody structure and membrane fusion are essential for abscission, the biochemical machinery and the cellular processes of abscission remain ill-defined. Here we report that human Mob1A and Mob1B proteins are involved in the regulation of abscission of the intercellular bridge. The Mob family is a group of highly conserved proteins in eukaryotes, described as binding partners as well as co-activators of protein kinases of the Ndr family, and as members of the Hippo pathway. We show that depletion of Mob1A and Mob1B by RNAi causes abscission failure as a consequence of hyper-stabilization of microtubules in the midbody region. Interestingly, depleting Mob1 also increases cell motility after cytokinesis, and induces prolonged centriole separation in G1 phase. In contrast, centrosomes fail to split when either Mob1A or Mob1B is overexpressed. Our findings indicate that human Mob1 proteins are involved in the regulation of microtubule stability at the midbody. We conclude that Mob1A and Mob1B are needed for cell abscission and centriole re-joining after telophase and cytokinesis.
Collapse
|
65
|
Koyama H, Umeda T, Nakamura K, Higuchi T, Kimura A. A high-resolution shape fitting and simulation demonstrated equatorial cell surface softening during cytokinesis and its promotive role in cytokinesis. PLoS One 2012; 7:e31607. [PMID: 22359606 PMCID: PMC3281004 DOI: 10.1371/journal.pone.0031607] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/10/2012] [Indexed: 11/17/2022] Open
Abstract
Different models for animal cell cytokinesis posit that the stiffness of the equatorial cortex is either increased or decreased relative to the stiffness of the polar cortex. A recent work has suggested that the critical cytokinesis signaling complex centralspindlin may reduce the stiffness of the equatorial cortex by inactivating the small GTPase Rac. To determine if such a reduction occurs and if it depends on centralspindlin, we devised a method to estimate cortical bending stiffness with high spatio-temporal resolution from in vivo cell shapes. Using the early Caenorhabditis elegans embryo as a model, we show that the stiffness of the equatorial cell surface is reduced during cytokinesis, whereas the stiffness of the polar cell surface remains stiff. The equatorial reduction of stiffness was compromised in cells with a mutation in the gene encoding the ZEN-4/kinesin-6 subunit of centralspindlin. Theoretical modeling showed that the absence of the equatorial reduction of stiffness could explain the arrest of furrow ingression in the mutant. By contrast, the equatorial reduction of stiffness was sufficient to generate a cleavage furrow even without the constriction force of the contractile ring. In this regime, the contractile ring had a supportive contribution to furrow ingression. We conclude that stiffness is reduced around the equator in a centralspindlin-dependent manner. In addition, computational modeling suggests that proper regulation of stiffness could be sufficient for cleavage furrow ingression.
Collapse
Affiliation(s)
- Hiroshi Koyama
- Cell Architecture Laboratory, Center for Frontier Research, National Institute of Genetics, Mishima, Japan
| | | | | | | | | |
Collapse
|
66
|
Su KC, Takaki T, Petronczki M. Targeting of the RhoGEF Ect2 to the equatorial membrane controls cleavage furrow formation during cytokinesis. Dev Cell 2012; 21:1104-15. [PMID: 22172673 DOI: 10.1016/j.devcel.2011.11.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/09/2011] [Accepted: 11/09/2011] [Indexed: 12/16/2022]
Abstract
In animal cells, formation of the cytokinetic furrow requires activation of the GTPase RhoA by the guanine nucleotide exchange factor Ect2. How Ect2, which is associated with the spindle midzone, controls RhoA activity at the equatorial cortex during anaphase is not understood. Here, we show that Ect2 concentrates at the equatorial membrane during cytokinesis in live cells. Ect2 membrane association requires a pleckstrin homology domain and a polybasic cluster that bind to phosphoinositide lipids. Both guanine nucleotide exchange function and membrane targeting of Ect2 are essential for RhoA activation and cleavage furrow formation in human cells. Membrane localization of Ect2 is spatially confined to the equator by centralspindlin, Ect2's spindle midzone anchor complex, and is temporally coordinated with chromosome segregation through the activation state of CDK1. We propose that targeting of Ect2 to the equatorial membrane represents a key step in the delivery of the cytokinetic signal to the cortex.
Collapse
Affiliation(s)
- Kuan-Chung Su
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, UK
| | | | | |
Collapse
|
67
|
The RhoGAP domain of CYK-4 has an essential role in RhoA activation. Curr Biol 2012; 22:213-9. [PMID: 22226748 DOI: 10.1016/j.cub.2011.12.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 11/11/2011] [Accepted: 12/01/2011] [Indexed: 01/09/2023]
Abstract
Cytokinesis in animal cells is mediated by a cortical actomyosin-based contractile ring. The GTPase RhoA is a critical regulator of this process as it activates both nonmuscle myosin and a nucleator of actin filaments [1]. The site at which active RhoA and its effectors accumulate is controlled by the microtubule-based spindle during anaphase [2]. ECT-2, the guanine nucleotide exchange factor (GEF) that activates RhoA during cytokinesis, is regulated by phosphorylation and subcellular localization [3-5]. ECT2 localization depends on interactions with CYK-4/MgcRacGAP, a Rho GTPase-activating protein (GAP) domain containing protein [5, 6]. Here we show that, contrary to expectations, the Rho GTPase-activating protein (GAP) domain of CYK-4 promotes activation of RhoA during cytokinesis. Furthermore, we show that the primary phenotype caused by mutations in the GAP domain of CYK-4 is not caused by ectopic activation of CED-10/Rac1 and ARX-2/Arp2. However, inhibition of CED-10/Rac1 and ARX-2/Arp2 facilitates ingression of weak cleavage furrows. These results demonstrate that a GAP domain can contribute to activation of a small GTPase. Furthermore, cleavage furrow ingression is sensitive to the balance of contractile forces and cortical tension.
Collapse
|
68
|
Kitazawa D, Yamaguchi M, Mori H, Inoue YH. COPI-mediated membrane trafficking is required for cytokinesis in Drosophila male meiotic divisions. J Cell Sci 2012; 125:3649-60. [DOI: 10.1242/jcs.103317] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The coatomer protein complex, COPI, mediates retrograde vesicle transport from the Golgi apparatus to the ER. Here, we investigated the meiotic phenotype of Drosophila spermatocytes expressing dsRNA of 52 genes encoding membrane trafficking-related factors. We identified COPI as an essential factor for male meiosis. In Drosophila male meiotic divisions, COPI is localized in the ER-Golgi intermediate compartment of tER-Golgi units scattered throughout the spermatocyte cytoplasm. Prior to chromosome segregation, the vesicles assemble at the spindle pole periphery through a poleward movement, mediated by minus-ended motor dynein along astral microtubules. At the end of each meiotic division, COPI-containing vesicles are equally partitioned between 2 daughter cells. Our present data strongly suggest that spermatocytes possess a regulatory mechanism, to fulfill equal inheritance of several types of membrane vesicles. Using testis-specific knockdown of COPI subunits or small GTPase Arf, or mutations of the γCOP gene, we examined the role of COPI in male meiosis. COPI depletion resulted in the failure of cytokinesis, through disrupted accumulation of essential proteins and lipid components at the cleavage furrow region. Furthermore, it caused a reduction in the number of overlapping central spindle microtubules, which are essential for cytokinesis. Drosophila spermatocytes construct ER-based intracellular structures associated with astral and spindle microtubules. COPI depletion resulted in severe disruption of these ER-based structures. Thus, we propose that COPI plays an important role in Drosophila male meiosis, not only through vesicle transport to the cleavage furrow region, but also via the formation of ER-based structures.
Collapse
|
69
|
Tang BL. Membrane Trafficking Components in Cytokinesis. Cell Physiol Biochem 2012; 30:1097-108. [DOI: 10.1159/000343301] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2012] [Indexed: 12/11/2022] Open
|
70
|
Brüning-Richardson A, Langford KJ, Ruane P, Lee T, Askham JM, Morrison EE. EB1 is required for spindle symmetry in mammalian mitosis. PLoS One 2011; 6:e28884. [PMID: 22216133 PMCID: PMC3244432 DOI: 10.1371/journal.pone.0028884] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 11/16/2011] [Indexed: 12/30/2022] Open
Abstract
Most information about the roles of the adenomatous polyposis coli protein (APC) and its binding partner EB1 in mitotic cells has come from siRNA studies. These suggest functions in chromosomal segregation and spindle positioning whose loss might contribute to tumourigenesis in cancers initiated by APC mutation. However, siRNA-based approaches have drawbacks associated with the time taken to achieve significant expression knockdown and the pleiotropic effects of EB1 and APC gene knockdown. Here we describe the effects of microinjecting APC- or EB1- specific monoclonal antibodies and a dominant-negative EB1 protein fragment into mammalian mitotic cells. The phenotypes observed were consistent with the roles proposed for EB1 and APC in chromosomal segregation in previous work. However, EB1 antibody injection also revealed two novel mitotic phenotypes, anaphase-specific cortical blebbing and asymmetric spindle pole movement. The daughters of microinjected cells displayed inequalities in microtubule content, with the greatest differences seen in the products of mitoses that showed the severest asymmetry in spindle pole movement. Daughters that inherited the least mobile pole contained the fewest microtubules, consistent with a role for EB1 in processes that promote equality of astral microtubule function at both poles in a spindle. We propose that these novel phenotypes represent APC-independent roles for EB1 in spindle pole function and the regulation of cortical contractility in the later stages of mitosis. Our work confirms that EB1 and APC have important mitotic roles, the loss of which could contribute to CIN in colorectal tumour cells.
Collapse
Affiliation(s)
- Anke Brüning-Richardson
- Leeds Institute of Molecular Medicine, University of Leeds, St. James's University Hospital, Leeds, United Kingdom.
| | | | | | | | | | | |
Collapse
|
71
|
Aguirre-Armenta B, López-Godínez J, Martínez-Cadena G, García-Soto J. Rho-kinase in sea urchin eggs and embryos. Dev Growth Differ 2011; 53:704-14. [PMID: 21671918 DOI: 10.1111/j.1440-169x.2011.01280.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The activation of sea urchin eggs at fertilization provides an ideal system for studying the molecular events involved in cellular activation. Rho GTPases, which are key signaling enzymes in eukaryotes, are involved in sustaining the activation of sea urchin eggs; however, their downstream effectors have not yet been characterized. In somatic cells, RhoA regulates a serine/threonine kinase known as Rho-kinase (ROCK). The activity of ROCK in early sea urchin development has been inferred, but not tested directly. A ROCK gene was identified in the sea urchin (Strongylocentrotus purpuratus) genome and the sequence of its cDNA determined. The sea urchin ROCK (SpROCK) sequence predicts a protein of 158 kDa with >72% and 45% identities with different protein orthologues of the kinase catalytic domain and the complete protein sequence, respectively. SpROCK mRNA levels are high in unfertilized eggs and decrease to 35% after 15 min postfertilization and remain low up to the 4 cell stage. Antibodies to the human ROCK-I kinase domain revealed SpROCK to be concentrated in the cortex of eggs and early embryos. Co-immunoprecipitation assays indicate that RhoA and SpROCK are physically associated. This association is destroyed by treatment with the C3 exoenzyme and with the ROCK antagonist H-1152. H-1152 also inhibited DNA synthesis in embryos. We conclude that the Rho-dependent signaling pathway, via SpROCK, is essential for early embryonic development.
Collapse
Affiliation(s)
- Beatriz Aguirre-Armenta
- División de Ciencias Naturales y Exactas, Departamento de Biología, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, 36000 México
| | | | | | | |
Collapse
|
72
|
Keerthivasan G, Wickrema A, Crispino JD. Erythroblast enucleation. Stem Cells Int 2011; 2011:139851. [PMID: 22007239 PMCID: PMC3189604 DOI: 10.4061/2011/139851] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 08/10/2011] [Indexed: 12/22/2022] Open
Abstract
Even though the production of orthochromatic erythroblasts can be scaled up to fulfill clinical requirements, enucleation remains one of the critical rate-limiting steps in the production of transfusable red blood cells. Mammalian erythrocytes extrude their nucleus prior to entering circulation, likely to impart flexibility and improve the ability to traverse through capillaries that are half the size of erythrocytes. Recently, there have been many advances in our understanding of the mechanisms underlying mammalian erythrocyte enucleation. This review summarizes these advances, discusses the possible future directions in the field, and evaluates the prospects for improved ex vivo production of red blood cells.
Collapse
Affiliation(s)
- Ganesan Keerthivasan
- Division of Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
73
|
Evans JP, Robinson DN. The spatial and mechanical challenges of female meiosis. Mol Reprod Dev 2011; 78:769-77. [PMID: 21774026 PMCID: PMC3196790 DOI: 10.1002/mrd.21358] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 06/15/2011] [Indexed: 12/31/2022]
Abstract
Recent work shows that cytokinesis and other cellular morphogenesis events are tuned by an interplay among biochemical signals, cell shape, and cellular mechanics. In cytokinesis, this includes cross-talk between the cortical cytoskeleton and the mitotic spindle in coordination with cell cycle control, resulting in characteristic changes in cellular morphology and mechanics through metaphase and cytokinesis. The changes in cellular mechanics affect not just overall cell shape, but also mitotic spindle morphology and function. This review will address how these principles apply to oocytes undergoing the asymmetric cell divisions of meiosis I and II. The biochemical signals that regulate cell cycle timing during meiotic maturation and egg activation are crucial for temporal control of meiosis. Spatial control of the meiotic divisions is also important, ensuring that the chromosomes are segregated evenly and that meiotic division is clearly asymmetric, yielding two daughter cells - oocyte and polar body - with enormous volume differences. In contrast to mitotic cells, the oocyte does not undergo overt changes in cell shape with its progression through meiosis, but instead maintains a relatively round morphology with the exception of very localized changes at the time of polar body emission. Placement of the metaphase-I and -II spindles at the oocyte periphery is clearly important for normal polar body emission, although this is likely not the only control element. Here, consideration is given to how cellular mechanics could contribute to successful mammalian female meiosis, ultimately affecting egg quality and competence to form a healthy embryo.
Collapse
Affiliation(s)
- Janice P Evans
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
74
|
Tse YC, Piekny A, Glotzer M. Anillin promotes astral microtubule-directed cortical myosin polarization. Mol Biol Cell 2011; 22:3165-75. [PMID: 21737681 PMCID: PMC3164463 DOI: 10.1091/mbc.e11-05-0399] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Assembly of a cytokinetic contractile ring is a form of cell polarization in which the equatorial cell cortex becomes differentiated from the polar regions. Microtubules direct cytokinetic polarization via the central spindle and astral microtubules. The mechanism of central spindle-directed furrow formation is reasonably well understood, but the aster-directed pathway is not. In aster-directed furrowing, cytoskeletal factors accumulate to high levels at sites distal to the asters and at reduced levels at cortical sites near the asters. In this paper, we demonstrate that the cytoskeletal organizing protein anillin (ANI-1) promotes the formation of an aster-directed furrow in Caenorhabditis elegans embryos. Microtubule-directed nonmuscle myosin II polarization is aberrant in embryos depleted of ANI-1. In contrast, microtubule-directed polarized ANI-1 localization is largely unaffected by myosin II depletion. Consistent with a role in the induction of cortical asymmetry, ANI-1 also contributes to the polarization of arrested oocytes. Anillin has an evolutionarily conserved capacity to associate with microtubules, possibly providing an inhibitory mechanism to promote polarization of the cell cortex.
Collapse
Affiliation(s)
- Yu Chung Tse
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
75
|
Lewellyn L, Carvalho A, Desai A, Maddox AS, Oegema K. The chromosomal passenger complex and centralspindlin independently contribute to contractile ring assembly. ACTA ACUST UNITED AC 2011; 193:155-69. [PMID: 21464231 PMCID: PMC3082186 DOI: 10.1083/jcb.201008138] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In contrast to their sequential roles in midzone assembly, the CPC and centralspindlin act through independent mechanisms to regulate contractile ring assembly. The chromosomal passenger complex (CPC) and centralspindlin are conserved cytokinesis regulators that localize to the spindle midzone, which forms between the separating chromosomes. Previous work placed the CPC and centralspindlin in a linear pathway that governs midzone formation. Using Caenorhabditis elegans embryos, we test whether there is a similar linear relationship between centralspindlin and the CPC in contractile ring constriction during cytokinesis. We show that simultaneous inhibition of the CPC kinase Aurora BAIR-2 and the centralspindlin component MKLP1ZEN-4 causes an additive constriction defect. Consistent with distinct roles for the proteins, inhibition of filamentous septin guanosine triphosphatases alleviates constriction defects in Aurora BAIR-2–inhibited embryos, whereas inhibition of Rac does so in MKLP1ZEN-4-inhibited embryos. Centralspindlin and the CPC are not required to enrich ring proteins at the cell equator but instead regulate formation of a compact mature ring. Therefore, in contrast to the linear midzone assembly pathway, centralspindlin and the CPC make independent contributions to control transformation of the sheet-like equatorial band into a ribbon-like contractile ring at the furrow tip.
Collapse
Affiliation(s)
- Lindsay Lewellyn
- Department of Cellular and Molecular Medicine, Biomedical Sciences Graduate Program, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
76
|
Montembault E, Zhang W, Przewloka MR, Archambault V, Sevin EW, Laue ED, Glover DM, D'Avino PP. Nessun Dorma, a novel centralspindlin partner, is required for cytokinesis in Drosophila spermatocytes. ACTA ACUST UNITED AC 2011; 191:1351-65. [PMID: 21187330 PMCID: PMC3010078 DOI: 10.1083/jcb.201007060] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nessun Dorma is a component of the ring canal with a polysaccharide-binding domain, which is important for cytokinesis during male meiosis. Cytokinesis, the final step of cell division, usually ends with the abscission of the two daughter cells. In some tissues, however, daughter cells never completely separate and remain interconnected by intercellular bridges or ring canals. In this paper, we report the identification and analysis of a novel ring canal component, Nessun Dorma (Nesd), isolated as an evolutionarily conserved partner of the centralspindlin complex, a key regulator of cytokinesis. Nesd contains a pectin lyase–like domain found in proteins that bind to polysaccharides, and we present evidence that it has high affinity for β-galactosides in vitro. Moreover, nesd is an essential gene in Drosophila melanogaster, in which it is required for completion of cytokinesis during male meiosis and possibly in female germline cells. Our findings indicate that Nesd is a novel carbohydrate-binding protein that functions together with centralspindlin in late cytokinesis, thus highlighting the importance of glycosylation in this process.
Collapse
Affiliation(s)
- Emilie Montembault
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Wood S, Sivaramakrishnan G, Engel J, Shafikhani SH. Cell migration regulates the kinetics of cytokinesis. Cell Cycle 2011; 10:648-54. [PMID: 21293189 DOI: 10.4161/cc.10.4.14813] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cytokinesis is the final stage of cell division in which the daughter cells separate. Although a growing body of evidence suggests that cell migration-induced traction forces may be required to provide physical assistance for daughter cells to dissociate during abscission, the role of cell migration in cytokinesis has not been directly elucidated. Recently, we have demonstrated that Crk and paxillin, which are pivotal components of the cell migration machinery, localize to the midbody and are essential for the abscission. These findings provided an important link between the cell migration and cytokinesis machineries and prompted us to dissect the role of cell migration in cytokinesis. We show that cell migration controls the kinetics of cleavage furrowing, midbody extension and abscission and coordinates proper subcellular redistribution of Crk and syntaxin-2 to the midbody after ingression.
Collapse
Affiliation(s)
- Stephen Wood
- Department of Immunology, Rush University Medical Center; Chicago, IL USA
| | | | | | | |
Collapse
|
78
|
Yan J, Jin S, Li J, Zhan Q. Aurora B interaction of centrosomal Nlp regulates cytokinesis. J Biol Chem 2010; 285:40230-9. [PMID: 20864540 PMCID: PMC3001004 DOI: 10.1074/jbc.m110.140541] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 09/22/2010] [Indexed: 11/06/2022] Open
Abstract
Cytokinesis is a fundamental cellular process, which ensures equal abscission and fosters diploid progenies. Aberrant cytokinesis may result in genomic instability and cell transformation. However, the underlying regulatory machinery of cytokinesis is largely undefined. Here, we demonstrate that Nlp (Ninein-like protein), a recently identified BRCA1-associated centrosomal protein that is required for centrosomes maturation at interphase and spindle formation in mitosis, also contributes to the accomplishment of cytokinesis. Through immunofluorescent analysis, Nlp is found to localize at midbody during cytokinesis. Depletion of endogenous Nlp triggers aborted division and subsequently leads to multinucleated phenotypes. Nlp can be recruited by Aurora B to the midbody apparatus via their physical association at the late stage of mitosis. Disruption of their interaction induces aborted cytokinesis. Importantly, Nlp is characterized as a novel substrate of Aurora B and can be phosphorylated by Aurora B. The specific phosphorylation sites are mapped at Ser-185, Ser-448, and Ser-585. The phosphorylation at Ser-448 and Ser-585 is likely required for Nlp association with Aurora B and localization at midbody. Meanwhile, the phosphorylation at Ser-185 is vital to Nlp protein stability. Disruptions of these phosphorylation sites abolish cytokinesis and lead to chromosomal instability. Collectively, these observations demonstrate that regulation of Nlp by Aurora B is critical for the completion of cytokinesis, providing novel insights into understanding the machinery of cell cycle progression.
Collapse
Affiliation(s)
- Jie Yan
- From the State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China and
| | - Shunqian Jin
- From the State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China and
- the Department of Radiation Oncology, Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Jia Li
- From the State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China and
| | - Qimin Zhan
- From the State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China and
| |
Collapse
|
79
|
Ishida N, Nakamura Y, Tanabe K, Li SA, Takei K. Dynamin 2 associates with microtubules at mitosis and regulates cell cycle progression. Cell Struct Funct 2010; 36:145-54. [PMID: 21150131 DOI: 10.1247/csf.10016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dynamin, a ~100 kDa large GTPase, is known as a key player for membrane traffic. Recent evidence shows that dynamin also regulates the dynamic instability of microtubules by a mechanism independent of membrane traffic. As microtubules are highly dynamic during mitosis, we investigated whether the regulation of microtubules by dynamin is essential for cell cycle progression. Dynamin 2 intensely localized at the mitotic spindle, and the localization depended on its proline-rich domain (PRD), which is required for microtubule association. The deletion of PRD resulted in the impairment of cytokinesis, whereby the mutant had less effect on endocytosis. Interestingly, dominant-negative dynamin (K44A), which blocks membrane traffic but has no effect on microtubules, also blocked cytokinesis. On the other hand, the deletion of the middle domain, which binds to γ-tubulin, impaired the entry into mitosis. As both deletion mutants had no significant effect on endocytosis, dynamin 2 may participate in cell cycle progression by regulating the microtubules. These data suggest that dynamin may play a key role for cell cycle progression by two distinct pathways, membrane traffic and cytoskeleton.
Collapse
Affiliation(s)
- Nobuhisa Ishida
- Department of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | | | | | | | | |
Collapse
|
80
|
Higgins J, Midgley C, Bergh AM, Bell SM, Askham JM, Roberts E, Binns RK, Sharif SM, Bennett C, Glover DM, Woods CG, Morrison EE, Bond J. Human ASPM participates in spindle organisation, spindle orientation and cytokinesis. BMC Cell Biol 2010; 11:85. [PMID: 21044324 PMCID: PMC2988714 DOI: 10.1186/1471-2121-11-85] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 11/02/2010] [Indexed: 12/20/2022] Open
Abstract
Background Mutations in the Abnormal Spindle Microcephaly related gene (ASPM) are the commonest cause of autosomal recessive primary microcephaly (MCPH) a disorder characterised by a small brain and associated mental retardation. ASPM encodes a mitotic spindle pole associated protein. It is suggested that the MCPH phenotype arises from proliferation defects in neural progenitor cells (NPC). Results We show that ASPM is a microtubule minus end-associated protein that is recruited in a microtubule-dependent manner to the pericentriolar matrix (PCM) at the spindle poles during mitosis. ASPM siRNA reduces ASPM protein at the spindle poles in cultured U2OS cells and severely perturbs a number of aspects of mitosis, including the orientation of the mitotic spindle, the main determinant of developmental asymmetrical cell division. The majority of ASPM depleted mitotic cells fail to complete cytokinesis. In MCPH patient fibroblasts we show that a pathogenic ASPM splice site mutation results in the expression of a novel variant protein lacking a tripeptide motif, a minimal alteration that correlates with a dramatic decrease in ASPM spindle pole localisation. Moreover, expression of dominant-negative ASPM C-terminal fragments cause severe spindle assembly defects and cytokinesis failure in cultured cells. Conclusions These observations indicate that ASPM participates in spindle organisation, spindle positioning and cytokinesis in all dividing cells and that the extreme C-terminus of the protein is required for ASPM localisation and function. Our data supports the hypothesis that the MCPH phenotype caused by ASPM mutation is a consequence of mitotic aberrations during neurogenesis. We propose the effects of ASPM mutation are tolerated in somatic cells but have profound consequences for the symmetrical division of NPCs, due to the unusual morphology of these cells. This antagonises the early expansion of the progenitor pool that underpins cortical neurogenesis, causing the MCPH phenotype.
Collapse
Affiliation(s)
- Julie Higgins
- Section of Ophthalmology and Neuroscience, Wellcome Trust Brenner Building, Leeds Institute of Molecular Medicine, University of Leeds, St. James's University Hospital, Leeds LS9 7TF, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Naik MU, Naik UP. Calcium- and integrin-binding protein 1 regulates microtubule organization and centrosome segregation through polo like kinase 3 during cell cycle progression. Int J Biochem Cell Biol 2010; 43:120-9. [PMID: 20951827 DOI: 10.1016/j.biocel.2010.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/28/2010] [Accepted: 10/10/2010] [Indexed: 10/18/2022]
Abstract
Polo-like kinases (Plks) are a family of serine/threonine protein kinases that are involved in the regulation of the various stages of the cell cycle. Plk2 and Plk3, two members of this family, are known to interact with calcium- and integrin-binding protein 1 (CIB1). Activity of both Plk2 and Plk3 is inhibited by CIB1 in a calcium-dependent manner. However, the physiological consequences of this inhibition are not known. Here, we show that overexpression of CIB1 inhibits T47D cell proliferation. Overexpression of CIB1 or knockdown of Plk3 using shRNA produced a multinucleated phenotype in T47D cells. This phenotype was not cancer cell specific, since it also occurred in normal cells. The cells overexpressing CIB1 appear to undergo proper nuclear division, but are unable to complete the process of cytokinesis, thus forming large multinucleated cells. Both CIB1 overexpression and Plk3 knockdown disrupted microtubule organization and centrosomal segregation, which may have led to incomplete cytokinesis. The observed effect of CIB1 overexpression is not due to the inhibition of Plk2 by CIB1. Plk3 and CIB1 both colocalize at the centrosomes, however, localization of CIB1 is dependent on the expression of Plk3. Furthermore, expression of Plk3 blocks the multinucleated phenotype induced by expression of CIB1 in these cells. These results suggest that CIB1 tightly regulates Plk3 activity during cell division and that either over- or underexpression results in a multinucleated phenotype.
Collapse
Affiliation(s)
- Meghna U Naik
- Delaware Cardiovascular Research Center, Department of Biological Sciences, University of Delaware, Newark, DE 19716, United States
| | | |
Collapse
|
82
|
von Schubert C, Xue G, Schmuckli-Maurer J, Woods KL, Nigg EA, Dobbelaere DAE. The transforming parasite Theileria co-opts host cell mitotic and central spindles to persist in continuously dividing cells. PLoS Biol 2010; 8:e1000499. [PMID: 20927361 PMCID: PMC2946958 DOI: 10.1371/journal.pbio.1000499] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 08/17/2010] [Indexed: 12/01/2022] Open
Abstract
The protozoan parasite Theileria inhabits the host cell cytoplasm and possesses the unique capacity to transform the cells it infects, inducing continuous proliferation and protection against apoptosis. The transforming schizont is a multinucleated syncytium that resides free in the host cell cytoplasm and is strictly intracellular. To maintain transformation, it is crucial that this syncytium is divided over the two daughter cells at each host cell cytokinesis. This process was dissected using different cell cycle synchronization methods in combination with the targeted application of specific inhibitors. We found that Theileria schizonts associate with newly formed host cell microtubules that emanate from the spindle poles, positioning the parasite at the equatorial region of the mitotic cell where host cell chromosomes assemble during metaphase. During anaphase, the schizont interacts closely with host cell central spindle. As part of this process, the schizont recruits a host cell mitotic kinase, Polo-like kinase 1, and we established that parasite association with host cell central spindles requires Polo-like kinase 1 catalytic activity. Blocking the interaction between the schizont and astral as well as central spindle microtubules prevented parasite segregation between the daughter cells during cytokinesis. Our findings provide a striking example of how an intracellular eukaryotic pathogen that evolved ways to induce the uncontrolled proliferation of the cells it infects usurps the host cell mitotic machinery, including Polo-like kinase 1, one of the pivotal mitotic kinases, to ensure its own persistence and survival.
Collapse
Affiliation(s)
- Conrad von Schubert
- Molecular Pathobiology, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Gongda Xue
- Molecular Pathobiology, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Kerry L. Woods
- Molecular Pathobiology, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Erich A. Nigg
- Max-Planck Institute for Biochemistry, Martinsried, Germany
| | - Dirk A. E. Dobbelaere
- Molecular Pathobiology, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
83
|
Still entangled: assembly of the central spindle by multiple microtubule modulators. Semin Cell Dev Biol 2010; 21:899-908. [PMID: 20732438 DOI: 10.1016/j.semcdb.2010.08.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/25/2010] [Accepted: 08/03/2010] [Indexed: 01/10/2023]
Abstract
The central spindle is a microtubule-based structure that assembles during anaphase of mitosis in animal cells and is essential for multiple steps of cytokinesis. Central spindle assembly occurs by the cooperative action of multiple microtubule motors and modulators. Here, we review the mechanism by which the central spindle is formed, the role of several key proteins in this process and how central spindle assembly is temporally and spatially coordinated with mitosis.
Collapse
|
84
|
Precocious (pre-anaphase) cleavage furrows in Mesostoma spermatocytes. Eur J Cell Biol 2010; 89:607-18. [PMID: 20434231 DOI: 10.1016/j.ejcb.2010.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 03/10/2010] [Accepted: 03/11/2010] [Indexed: 12/22/2022] Open
Abstract
It generally is assumed that cleavage furrows start ingression at anaphase, but this is not always true. Cleavage furrows are initiated during prometaphase in spermatocytes of the flatworm Mesostoma, becoming detectable soon after the spindles achieve bipolarity. The furrows deepen during prometaphase, but ingression soon arrests. After anaphase the pre-existing furrow recommences its ingression and rapidly cleaves the cell. Such "precocious" furrowing also commonly occurs in diatoms and other algae. The position of the "precocious" cleavage furrow changes when there are changes in the distribution of chromosomes. Each of the 4 unipolarly-oriented univalent chromosomes moves to a pole at the start of prometaphase but later in prometaphase may move to the opposite pole. The furrow position adjusts during prometaphase according to the numbers of univalents at the two poles: when there are two univalent chromosomes at each pole the furrow is symmetrical at the spindle equator, but when there are unequal numbers at the poles the furrow shifts 2-3 microm toward the half-spindle with fewer univalents. Nocodazole causes spindle microtubules to disappear. After addition of nocodazole, bivalents become detached from one pole and move toward the other, which causes the furrow to shift 2-3 microm toward the pole with fewer chromosomes. Furrow positioning thus is sensitive to the positioning of chromosomes in the spindle and furrow positions change in the absence of spindle microtubules.
Collapse
|
85
|
Foussard H, Ferrer P, Valenti P, Polesello C, Carreno S, Payre F. LRCH proteins: a novel family of cytoskeletal regulators. PLoS One 2010; 5:e12257. [PMID: 20805893 PMCID: PMC2923620 DOI: 10.1371/journal.pone.0012257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 07/22/2010] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Comparative genomics has revealed an unexpected level of conservation for gene products across the evolution of animal species. However, the molecular function of only a few proteins has been investigated experimentally, and the role of many animal proteins still remains unknown. Here we report the characterization of a novel family of evolutionary conserved proteins, which display specific features of cytoskeletal scaffolding proteins, referred to as LRCHs. PRINCIPAL FINDINGS Taking advantage of the existence of a single LRCH gene in flies, dLRCH, we explored its function in cultured cells, and show that dLRCH act to stabilize the cell cortex during cell division. dLRCH depletion leads to ectopic cortical blebs and alters positioning of the mitotic spindle. We further examined the consequences of dLRCH deletion throughout development and adult life. Although dLRCH is not essential for cell division in vivo, flies lacking dLRCH display a reduced fertility and fitness, particularly when raised at extreme temperatures. CONCLUSION/SIGNIFICANCE These results support the idea that some cytoskeletal regulators are important to buffer environmental variations and ensure the proper execution of basic cellular processes, such as the control of cell shape, under environmental variations.
Collapse
Affiliation(s)
- Hélène Foussard
- Université de Toulouse UPS, Centre de Biologie du Développement, Toulouse, France
- CNRS, UMR5547, Centre de Biologie du Développement, Toulouse, France
| | - Pierre Ferrer
- Université de Toulouse UPS, Centre de Biologie du Développement, Toulouse, France
- CNRS, UMR5547, Centre de Biologie du Développement, Toulouse, France
| | - Philippe Valenti
- Université de Toulouse UPS, Centre de Biologie du Développement, Toulouse, France
- CNRS, UMR5547, Centre de Biologie du Développement, Toulouse, France
| | - Cédric Polesello
- Université de Toulouse UPS, Centre de Biologie du Développement, Toulouse, France
- CNRS, UMR5547, Centre de Biologie du Développement, Toulouse, France
| | - Sébastien Carreno
- Université de Toulouse UPS, Centre de Biologie du Développement, Toulouse, France
- CNRS, UMR5547, Centre de Biologie du Développement, Toulouse, France
| | - François Payre
- Université de Toulouse UPS, Centre de Biologie du Développement, Toulouse, France
- CNRS, UMR5547, Centre de Biologie du Développement, Toulouse, France
- * E-mail:
| |
Collapse
|
86
|
Wenzl C, Yan S, Laupsien P, Großhans J. Localization of RhoGEF2 during Drosophila cellularization is developmentally controlled by slam. Mech Dev 2010; 127:371-84. [DOI: 10.1016/j.mod.2010.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 01/04/2010] [Indexed: 11/29/2022]
|
87
|
Wilmeth LJ, Shrestha S, Montaño G, Rashe J, Shuster CB. Mutual dependence of Mob1 and the chromosomal passenger complex for localization during mitosis. Mol Biol Cell 2010; 21:380-92. [PMID: 19955215 PMCID: PMC2814784 DOI: 10.1091/mbc.e09-06-0471] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 11/19/2009] [Accepted: 11/20/2009] [Indexed: 01/11/2023] Open
Abstract
The spatial and temporal coordination of chromosome segregation with cytokinesis is essential to ensure that each daughter cell receives the correct complement of chromosomal and cytoplasmic material. In yeast, mitotic exit and cytokinesis are coordinated by signaling cascades whose terminal components include a nuclear Dbf2-related family kinase and a noncatalytic subunit, Mps one binding (Mob) 1. There are five human Mob1 isoforms, all of which display redundant localization patterns at the spindle poles and kinetochores in early mitosis, and the spindle midzone during cytokinesis. Mob1 shares similar localization patterns to Polo-like kinase (Plk1) and the chromosomal passenger complex (CPC), and although depletion of Plk1 resulted in a loss of Mob1 from the spindle poles, Mob1 recruitment to kinetochores was unaffected. Conversely, disruption of CPC signaling resulted in a loss of Mob1 from kinetochores without disrupting recruitment to the spindle poles. In Mob1-depleted cells, the relocalization of the CPC and mitotic kinesin-like protein (MKLP) 2 to the spindle midzone was delayed during early anaphase, and as a consequence, the midzone recruitment of MKLP1 also was affected. Together, these results suggest that Mob1 and the other mammalian orthologues of the mitotic exit network regulate mitotic progression by facilitating the timely mobilization of the CPC to the spindle midzone.
Collapse
Affiliation(s)
- Lori Jo Wilmeth
- Department of Biology, New Mexico State University, Las Cruces, NM 88003,
| | | | | | | | | |
Collapse
|
88
|
Webb RL, Rozov O, Watkins SC, McCartney BM. Using total internal reflection fluorescence (TIRF) microscopy to visualize cortical actin and microtubules in the Drosophila syncytial embryo. Dev Dyn 2010; 238:2622-32. [PMID: 19718762 DOI: 10.1002/dvdy.22076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Drosophila syncytial embryo is a powerful developmental model system for studying dynamic coordinated cytoskeletal rearrangements. Confocal microscopy has begun to reveal more about the cytoskeletal changes that occur during embryogenesis. Total internal reflection fluorescence (TIRF) microscopy provides a promising new approach for the visualization of cortical events with heightened axial resolution. We have applied TIRF microscopy to the Drosophila embryo to visualize cortical microtubule and actin dynamics in the syncytial blastoderm. Here, we describe the details of this technique, and report qualitative assessments of cortical microtubules and actin in the Drosophila syncytial embryo. In addition, we identified a peak of cortical microtubules during anaphase of each nuclear cycle in the syncytial blastoderm, and using images generated by TIRF microscopy, we quantitatively analyzed microtubule dynamics during this time.
Collapse
Affiliation(s)
- Rebecca L Webb
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
89
|
Atilla-Gokcumen GE, Castoreno AB, Sasse S, Eggert US. Making the cut: the chemical biology of cytokinesis. ACS Chem Biol 2010; 5:79-90. [PMID: 20014865 DOI: 10.1021/cb900256m] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cytokinesis is the last step in the cell cycle, where daughter cells finally separate. It is precisely regulated in both time and space to ensure that each daughter cell receives an equal share of DNA and other cellular materials. Chemical biology approaches have been used very successfully to study the mechanism of cytokinesis. In this review, we discuss the use of small molecule probes to perturb cytokinesis, as well as the role naturally occurring small molecule metabolites such as lipids play during cytokinesis.
Collapse
Affiliation(s)
- G. Ekin Atilla-Gokcumen
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Adam B. Castoreno
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Sofia Sasse
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
- Westfälische Wilhelms-Universität Münster, Germany
| | - Ulrike S. Eggert
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
90
|
Vale RD, Spudich JA, Griffis ER. Dynamics of myosin, microtubules, and Kinesin-6 at the cortex during cytokinesis in Drosophila S2 cells. J Cell Biol 2009; 186:727-38. [PMID: 19720876 PMCID: PMC2742194 DOI: 10.1083/jcb.200902083] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 07/27/2009] [Indexed: 12/22/2022] Open
Abstract
Signals from the mitotic spindle during anaphase specify the location of the actomyosin contractile ring during cytokinesis, but the detailed mechanism remains unresolved. Here, we have imaged the dynamics of green fluorescent protein-tagged myosin filaments, microtubules, and Kinesin-6 (which carries activators of Rho guanosine triphosphatase) at the cell cortex using total internal reflection fluorescence microscopy in flattened Drosophila S2 cells. At anaphase onset, Kinesin-6 relocalizes to microtubule plus ends that grow toward the cortex, but refines its localization over time so that it concentrates on a subset of stable microtubules and along a diffuse cortical band at the equator. The pattern of Kinesin-6 localization closely resembles where new myosin filaments appear at the cortex by de novo assembly. While accumulating at the equator, myosin filaments disappear from the poles of the cell, a process that also requires Kinesin-6 as well as possibly other signals that emanate from the elongating spindle. These results suggest models for how Kinesin-6 might define the position of cortical myosin during cytokinesis.
Collapse
Affiliation(s)
- Ronald D Vale
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | | |
Collapse
|
91
|
Cinnamon Y, Feine O, Hochegger H, Bershadsky A, Brandeis M. Cellular contractility requires ubiquitin mediated proteolysis. PLoS One 2009; 4:e6155. [PMID: 19597551 PMCID: PMC2705188 DOI: 10.1371/journal.pone.0006155] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 06/06/2009] [Indexed: 12/26/2022] Open
Abstract
Background Cellular contractility, essential for cell movement and proliferation, is regulated by microtubules, RhoA and actomyosin. The RhoA dependent kinase ROCK ensures the phosphorylation of the regulatory Myosin II Light Chain (MLC) Ser19, thereby activating actomyosin contractions. Microtubules are upstream inhibitors of contractility and their depolymerization or depletion cause cells to contract by activating RhoA. How microtubule dynamics regulates RhoA remains, a major missing link in understanding contractility. Principal Findings We observed that contractility is inhibited by microtubules not only, as previously reported, in adherent cells, but also in non-adhering interphase and mitotic cells. Strikingly we observed that contractility requires ubiquitin mediated proteolysis by a Cullin-RING ubiquitin ligase. Inhibition of proteolysis, ubiquitination and neddylation all led to complete cessation of contractility and considerably reduced MLC Ser19 phosphorylation. Conclusions Our results imply that cells express a contractility inhibitor that is degraded by ubiquitin mediated proteolysis, either constitutively or in response to microtubule depolymerization. This degradation seems to depend on a Cullin-RING ubiquitin ligase and is required for cellular contractions.
Collapse
Affiliation(s)
- Yuval Cinnamon
- The Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Oren Feine
- The Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Helfrid Hochegger
- Sussex Centre for Genome Damage and Stability, University of Sussex, Brighton, United Kingdom
| | - Alexander Bershadsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Michael Brandeis
- The Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
92
|
D'Avino PP. How to scaffold the contractile ring for a safe cytokinesis - lessons from Anillin-related proteins. J Cell Sci 2009; 122:1071-9. [PMID: 19339546 DOI: 10.1242/jcs.034785] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ingression of a cleavage furrow separates the two daughter cells at the end of cell division. In many organisms this furrow ingression is driven by the assembly and contraction of actomyosin filaments, forming a contractile ring. To achieve a successful cytokinesis, these actomyosin filaments need to be assembled in an organized manner. For this purpose, a network of cytoskeletal proteins is built at the cleavage site to act as a scaffold for actomyosin filaments and to connect them to the plasma membrane. The Drosophila melanogaster protein Anillin, and its related proteins in other organisms, has a pivotal role in the organization of this scaffold in many species, ranging from yeast to humans. Recent studies indicate that Anillin-related proteins interact not only with the structural components of the contractile ring, but also with the signalling factors that control their dynamics. In addition, Drosophila Anillin connects the actomyosin ring to the spindle microtubules through its interaction with the RacGAP component of the centralspindlin complex. Here I review the structures and functions of Anillin and Anillin-related proteins in various model systems, and aim to highlight both the common and distinctive features of these essential organizers of the molecular machinery that drives furrow ingression.
Collapse
Affiliation(s)
- Pier Paolo D'Avino
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.
| |
Collapse
|
93
|
Yabe T, Ge X, Lindeman R, Nair S, Runke G, Mullins MC, Pelegri F. The maternal-effect gene cellular island encodes aurora B kinase and is essential for furrow formation in the early zebrafish embryo. PLoS Genet 2009; 5:e1000518. [PMID: 19543364 PMCID: PMC2686166 DOI: 10.1371/journal.pgen.1000518] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 05/13/2009] [Indexed: 12/30/2022] Open
Abstract
Females homozygous for a mutation in cellular island (cei) produce embryos with defects in cytokinesis during early development. Analysis of the cytoskeletal events associated with furrow formation reveal that these defects include a general delay in furrow initiation as well as a complete failure to form furrow-associated structures in distal regions of the blastodisc. A linkage mapping-based candidate gene approach, including transgenic rescue, shows that cei encodes the zebrafish Aurora B kinase homologue. Genetic complementation analysis between the cei mutation and aurB zygotic lethal mutations corroborate gene assignment and reveal a complex nature of the maternal-effect cei allele, which appears to preferentially affect a function important for cytokinesis in the early blastomeres. Surprisingly, in cei mutant embryos a short yet otherwise normal furrow forms in the center of the blastodisc. Furrow formation is absent throughout the width of the blastodisc in cei mutant embryos additionally mutant for futile cycle, which lack a spindle apparatus, showing that the residual furrow signal present in cei mutants is derived from the mitotic spindle. Our analysis suggests that partially redundant signals derived from the spindle and astral apparatus mediate furrow formation in medial and distal regions of the early embryonic blastomeres, respectively, possibly as a spatial specialization to achieve furrow formation in these large cells. In addition, our data also suggest a role for Cei/AurB function in the reorganization of the furrow-associated microtubules in both early cleavage- and somite-stage embryos. In accordance with the requirement for cei/aurB in furrow induction in the early cleavage embryo, germ plasm recruitment to the forming furrow is also affected in embryos lacking normal cei/aurB function.
Collapse
Affiliation(s)
- Taijiro Yabe
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Xiaoyan Ge
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Robin Lindeman
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Sreelaja Nair
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Greg Runke
- Department of Cell and Developmental Biology, University of Pennsylvania Medical School, Philadelphia, Pennsylvania, United States of America
| | - Mary C. Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Medical School, Philadelphia, Pennsylvania, United States of America
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
94
|
Kao LR, Megraw TL. Centrocortin cooperates with centrosomin to organize Drosophila embryonic cleavage furrows. Curr Biol 2009; 19:937-42. [PMID: 19427213 DOI: 10.1016/j.cub.2009.04.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 03/21/2009] [Accepted: 04/07/2009] [Indexed: 11/25/2022]
Abstract
In the Drosophila early embryo, the centrosome coordinates assembly of cleavage furrows. Currently, the molecular pathway that links the centrosome and the cortical microfilaments is unknown. In centrosomin (cnn) mutants, in which the centriole forms but the centrosome pericentriolar material (PCM) fails to assemble, actin microfilaments are not organized into furrows at the syncytial cortex [6]. Although CNN is required for centrosome assembly and function, little is known of its molecular activities. Here, we show the novel protein Centrocortin (CEN), which associates with centrosomes and also with cleavage furrows in early embryos, is required for cleavage furrow assembly. CEN binds to CNN within CNN Motif 2 (CM2), a conserved 60 amino acid domain at CNN's C terminus. The cnn(B4) allele, which contains a missense mutation at a highly conserved residue within CM2, blocks the binding of CEN and disrupts cleavage furrow assembly. Together, these findings show that the C terminus of CNN coordinates cleavage furrow formation through binding to CEN, thereby providing a molecular link between the centrosome and cleavage furrow assembly.
Collapse
Affiliation(s)
- Ling-Rong Kao
- Department of Pharmacology and The Cecil and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9051, USA
| | | |
Collapse
|
95
|
Wolfe BA, Takaki T, Petronczki M, Glotzer M. Polo-like kinase 1 directs assembly of the HsCyk-4 RhoGAP/Ect2 RhoGEF complex to initiate cleavage furrow formation. PLoS Biol 2009; 7:e1000110. [PMID: 19468300 PMCID: PMC2680334 DOI: 10.1371/journal.pbio.1000110] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 03/31/2009] [Indexed: 11/19/2022] Open
Abstract
To complete cell division with high fidelity, cytokinesis must be coordinated with chromosome segregation. Mammalian Polo-like kinase 1, Plk1, may function as a critical link because it is required for chromosome segregation and establishment of the cleavage plane following anaphase onset. A central spindle-localized pool of the RhoGEF Ect2 promotes activation of the small GTPase RhoA, which drives contractile ring assembly at the equatorial cortex. Here, we have investigated how Plk1 promotes the central spindle recruitment of Ect2. Plk1 phosphorylates the noncatalytic N terminus of the RhoGAP HsCyk-4 at the central spindle, creating a phospho-epitope recognized by the BRCA1 C-terminal (BRCT) repeats of Ect2. Failure to phosphorylate HsCyk-4 blocks Ect2 recruitment to the central spindle and the subsequent induction of furrowing. Microtubules, as well as the microtubule-associated protein (MAP) Prc1, facilitate Plk1 phosphorylation of HsCyk-4. Characterization of a phosphomimetic version of HsCyk-4 indicates that Plk1 promotes Ect2 recruitment through multiple targets. Collectively, our data reveal that formation of the HsCyk-4-Ect2 complex is subject to multiple layers of regulation to ensure that RhoA activation occurs between the segregated sister chromatids during anaphase.
Collapse
Affiliation(s)
- Benjamin A. Wolfe
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Tohru Takaki
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, Hertfordshire, United Kingdom
| | - Mark Petronczki
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, Hertfordshire, United Kingdom
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
96
|
Fujiyama-Nakamura S, Yoshikawa H, Homma K, Hayano T, Tsujimura-Takahashi T, Izumikawa K, Ishikawa H, Miyazawa N, Yanagida M, Miura Y, Shinkawa T, Yamauchi Y, Isobe T, Takahashi N. Parvulin (Par14), a peptidyl-prolyl cis-trans isomerase, is a novel rRNA processing factor that evolved in the metazoan lineage. Mol Cell Proteomics 2009; 8:1552-65. [PMID: 19369196 PMCID: PMC2716718 DOI: 10.1074/mcp.m900147-mcp200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Although parvulin (Par14/eukaryotic parvulin homolog), a peptidyl-prolyl
cis-trans isomerase, is found associated
with the preribosomal ribonucleoprotein (pre-rRNP) complexes, its roles in
ribosome biogenesis remain undetermined. In this study, we describe a
comprehensive proteomics analysis of the Par14-associated pre-rRNP complexes
using LC-MS/MS and a knockdown analysis of Par14. Together with our previous
results, we finally identified 115 protein components of the complexes,
including 39 ribosomal proteins and 54 potential trans-acting factors whose
yeast homologs are found in the pre-rRNP complexes formed at various stages of
ribosome biogenesis. We give evidence that, although Par14 exists in both the
phosphorylated and unphosphorylated forms in the cell, only the latter form is
associated with the pre-40 S and pre-60 S ribosomal complexes. We also show that
Par14 co-localizes with the nucleolar protein B23 during the interphase and in
the spindle apparatus during mitosis and that actinomycin D treatment results in
the exclusion of Par14 from the nucleolus. Finally we demonstrate that knockdown
of Par14 mRNA decelerates the processing of pre-rRNA to 18 and 28 S rRNAs. We
propose that Par14 is a component of the pre-rRNA complexes and functions as an
rRNA processing factor in ribosome biogenesis. As the amino acid sequence of
Par14 including that in the amino-terminal pre-rRNP binding region is conserved
only in metazoan homologs, we suggest that its roles in ribosome biogenesis have
evolved in the metazoan lineage.
Collapse
Affiliation(s)
- Sally Fujiyama-Nakamura
- Department of Biotechnology, United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Cdk1 negatively regulates midzone localization of the mitotic kinesin Mklp2 and the chromosomal passenger complex. Curr Biol 2009; 19:607-12. [PMID: 19303298 DOI: 10.1016/j.cub.2009.02.046] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 02/02/2009] [Accepted: 02/18/2009] [Indexed: 11/21/2022]
Abstract
The survival of eukaryotes depends on the accurate coordination of mitosis with cytokinesis. Key for the coordination of both processes is the chromosomal passenger complex (CPC) comprising Aurora-B, INCENP, survivin, and borealin. The translocation of the CPC from centromeres to the spindle midzone, a structure composed of antiparallel microtubules, at anaphase onset is critical for the completion of cytokinesis. In mammalian cells, the mitotic kinesin Mklp2 is essential for recruitment of the CPC to the spindle midzone. However, the mechanism regulating the binding of Mklp2 to microtubules has remained unknown. Here, we demonstrate that Mklp2 and the CPC mutually depend on each other for midzone localization; i.e., Mklp2 is mislocalized in INCENP-RNAi cells and vice versa. Remarkably, INCENP is required for localization of Mklp2 to the ends of stable microtubules in cells with low Cdk1 activity. In vitro assays revealed that the association between the CPC and Mklp2 is negatively regulated by Cdk1. Collectively, our data suggest that anaphase onset triggers the association between the CPC and Mklp2 and that this association targets the CPC-Mklp2 complex to the ends of stable microtubules in the spindle midzone.
Collapse
|
98
|
|
99
|
von Dassow G. Concurrent cues for cytokinetic furrow induction in animal cells. Trends Cell Biol 2009; 19:165-73. [PMID: 19285868 DOI: 10.1016/j.tcb.2009.01.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 01/19/2009] [Accepted: 01/27/2009] [Indexed: 01/23/2023]
Abstract
Animal cells are deformable, yet live together bound into tissues. Consequently, physical perturbations imposed by neighbors threaten to disrupt the spatial coordination of cell cleavage with chromosome segregation during mitosis. Emerging evidence demonstrates that animal cells integrate multiple positional cues during cleavage-furrow induction, perhaps to facilitate error correction. Classical work indicated that the asters provide the stimulus for furrow induction, but recent results implicate the central spindle at least as much. Similarly, although classical work concluded that the stimulus occurs at the cell equator, new evidence shows that asters modulate cortical contractility outside the equator as well. Meanwhile, a newly revealed distinction between stable and dynamic astral microtubules suggests that these subsets might have complementary effects on furrow induction.
Collapse
Affiliation(s)
- George von Dassow
- Oregon Institute of Marine Biology, University of Oregon, Charleston, 97420, USA.
| |
Collapse
|
100
|
Vazquez-Martin A, Oliveras-Ferraros C, Bernadó L, López-Bonet E, Menendez JA. The serine 2481-autophosphorylated form of mammalian Target Of Rapamycin (mTOR) is localized to midzone and midbody in dividing cancer cells. Biochem Biophys Res Commun 2009; 380:638-43. [PMID: 19285014 DOI: 10.1016/j.bbrc.2009.01.153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
Abstract
Using a high-resolution, automated confocal high-content imaging system, we investigated the sub-cellular localization of the Serine 2481-autophosphorylated form of mTOR (PP-mTOR(Ser2481)) during mitosis and cytokinesis in human cancer cells. PP-mTOR(Ser2481) exhibited a punctate nuclear distribution in interphase cancer cells, with the number of PP-mTOR(Ser2481) nuclear speckles positively relating with the proliferative capacity of cancer cells. PP-mTOR(Ser2481) expression dynamically rearranged within the cytoplasm in a close association near and between separating chromosomes during early stages of mitosis. Towards the end of anaphase and in telophase, PP-mTOR(Ser2481) drastically focused on the midzone and ultimately in the centre of the midbody at the presumptive cleavage furrow. In cells at cytokinesis, PP-mTOR(Ser2481) appeared as a doublet facing each other at the apical ends of two daughter cells. Three-dimensional analysis confirmed that PP-mTOR(Ser2481) positioned at a ring structure wrapped round by microtubule bundles to connect daughter cells. These results reveal for the first time that PP-mTOR(Ser2481) may be unexpectedly involved in the terminal stages of cytokinesis.
Collapse
Affiliation(s)
- Alejandro Vazquez-Martin
- Catalan Institute of Oncology (ICO Girona), Dr. Josep Trueta University Hospital of Girona, Avenida de Francia s/n, E-17007 Girona, Catalonia, Spain
| | | | | | | | | |
Collapse
|