51
|
Abstract
In response to nitrogen starvation in the presence of a poor carbon source, diploid cells of the yeast Saccharomyces cerevisiae undergo meiosis and package the haploid nuclei produced in meiosis into spores. The formation of spores requires an unusual cell division event in which daughter cells are formed within the cytoplasm of the mother cell. This process involves the de novo generation of two different cellular structures: novel membrane compartments within the cell cytoplasm that give rise to the spore plasma membrane and an extensive spore wall that protects the spore from environmental insults. This article summarizes what is known about the molecular mechanisms controlling spore assembly with particular attention to how constitutive cellular functions are modified to create novel behaviors during this developmental process. Key regulatory points on the sporulation pathway are also discussed as well as the possible role of sporulation in the natural ecology of S. cerevisiae.
Collapse
|
52
|
Shin JJH, Loewen CJR. Putting the pH into phosphatidic acid signaling. BMC Biol 2011; 9:85. [PMID: 22136116 PMCID: PMC3229452 DOI: 10.1186/1741-7007-9-85] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 12/02/2011] [Indexed: 01/03/2023] Open
Abstract
The lipid phosphatidic acid (PA) has important roles in cell signaling and metabolic regulation in all organisms. New evidence indicates that PA also has an unprecedented role as a pH biosensor, coupling changes in pH to intracellular signaling pathways. pH sensing is a property of the phosphomonoester headgroup of PA. A number of other potent signaling lipids also contain headgroups with phosphomonoesters, implying that pH sensing by lipids may be widespread in biology.
Collapse
Affiliation(s)
- John J H Shin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada, V6T 1Z3
| | | |
Collapse
|
53
|
The conserved foot domain of RNA pol II associates with proteins involved in transcriptional initiation and/or early elongation. Genetics 2011; 189:1235-48. [PMID: 21954159 DOI: 10.1534/genetics.111.133215] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
RNA polymerase (pol) II establishes many protein-protein interactions with transcriptional regulators to coordinate different steps of transcription. Although some of these interactions have been well described, little is known about the existence of RNA pol II regions involved in contact with transcriptional regulators. We hypothesize that conserved regions on the surface of RNA pol II contact transcriptional regulators. We identified such an RNA pol II conserved region that includes the majority of the "foot" domain and identified interactions of this region with Mvp1, a protein required for sorting proteins to the vacuole, and Spo14, a phospholipase D. Deletion of MVP1 and SPO14 affects the transcription of their target genes and increases phosphorylation of Ser5 in the carboxy-terminal domain (CTD). Genetic, phenotypic, and functional analyses point to a role for these proteins in transcriptional initiation and/or early elongation, consistent with their genetic interactions with CEG1, a guanylyltransferase subunit of the Saccharomyces cerevisiae capping enzyme.
Collapse
|
54
|
Testerink C, Munnik T. Molecular, cellular, and physiological responses to phosphatidic acid formation in plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2349-61. [PMID: 21430291 DOI: 10.1093/jxb/err079] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phosphatidic acid (PA) is an essential phospholipid involved in membrane biosynthesis and signal transduction in all eukaryotes. This review focuses on its role as lipid second messenger during plant stress, metabolism, and development. The contribution of different individual isoforms of enzymes that generate and break down PA will be discussed and the downstream responses highlighted, with particular focus on proteins that bind PA. Through characterization of several of these PA targets, a molecular and genetic basis for PA's role in plant stress and development is emerging.
Collapse
Affiliation(s)
- Christa Testerink
- University of Amsterdam, Swammerdam Institute for Life Sciences, Section of Plant Physiology, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | | |
Collapse
|
55
|
Huang H, Gao Q, Peng X, Choi SY, Sarma K, Ren H, Morris AJ, Frohman MA. piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev Cell 2011; 20:376-87. [PMID: 21397848 PMCID: PMC3061402 DOI: 10.1016/j.devcel.2011.01.004] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 11/15/2010] [Accepted: 12/28/2010] [Indexed: 10/18/2022]
Abstract
The mammalian Phospholipase D MitoPLD facilitates mitochondrial fusion by generating the signaling lipid phosphatidic acid (PA). The Drosophila MitoPLD homolog Zucchini (Zuc), a proposed cytoplasmic nuclease, is required for piRNA generation, a critical event in germline development. We show that Zuc localizes to mitochondria and has MitoPLD-like activity. Conversely, MitoPLD(-/-) mice exhibit the meiotic arrest, DNA damage, and male sterility characteristic of mice lacking piRNAs. The primary function of MitoPLD seems to be the generation of mitochondrial-surface PA. This PA in turn recruits the phosphatase Lipin 1, which converts PA to diacylglycerol and promotes mitochondrial fission, suggesting a mechanism for mitochondrial morphology homeostasis. MitoPLD and Lipin 1 have opposing effects on mitochondria length and on intermitochondrial cement (nuage), a structure found between aggregated mitochondria that is implicated in piRNA generation. We propose that mitochondrial-surface PA generated by MitoPLD/Zuc recruits or activates nuage components critical for piRNA production.
Collapse
Affiliation(s)
- Huiyan Huang
- Department of Pharmacology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794–5140, USA
| | - Qun Gao
- Department of Pharmacology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794–5140, USA
| | - Xiaoxue Peng
- Department of Pharmacology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794–5140, USA
| | - Seok-Yong Choi
- Department of Pharmacology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794–5140, USA
- Department of Biomedical Sciences, Chonnam National University Medical School, Hak-Dong, Gwangju, 501-746, Korea
| | - Krishna Sarma
- Department of Pharmacology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794–5140, USA
| | - Hongmei Ren
- Division of Cardiovascular Medicine, The Gill Heart Institute, University of Kentucky, Lexington, Kentucky 40536-0200, USA
| | - Andrew J. Morris
- Division of Cardiovascular Medicine, The Gill Heart Institute, University of Kentucky, Lexington, Kentucky 40536-0200, USA
| | - Michael A. Frohman
- Department of Pharmacology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794–5140, USA
| |
Collapse
|
56
|
Rolli E, Ragni E, de Medina-Redondo M, Arroyo J, de Aldana CRV, Popolo L. Expression, stability, and replacement of glucan-remodeling enzymes during developmental transitions in Saccharomyces cerevisiae. Mol Biol Cell 2011; 22:1585-98. [PMID: 21389112 PMCID: PMC3084680 DOI: 10.1091/mbc.e10-03-0268] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Sporulation is a developmental variation of the yeast life cycle whereby four spores are produced within a diploid cell, with proliferation resuming after germination. The GAS family of glycosylphosphatidylinositol-anchored glucan-remodeling enzymes exemplifies functional interplay between paralogous genes during the yeast life cycle. GAS1 and GAS5 are expressed in vegetative cells and repressed during sporulation while GAS2 and GAS4 exhibit a reciprocal pattern. GAS3 is weakly expressed in all the conditions and encodes an inactive protein. Although Gas1p functions in cell wall formation, we show that it persists during sporulation but is relocalized from the plasma membrane to the epiplasm in a process requiring End3p-mediated endocytosis and the Sps1 protein kinase of the p21-activated kinase family. Some Gas1p is also newly synthesized and localized to the spore membrane, but this fraction is dispensable for spore formation. By way of contrast, the Gas2-Gas4 proteins, which are essential for spore wall assembly, are rapidly degraded after spore formation. On germination, Gas1p is actively synthesized and concentrated in the growing part of the spore, which is essential for its elongation. Thus Gas1p is the primary glucan-remodeling enzyme required in vegetative growth and during reentry into the proliferative state. The dynamic interplay among Gas proteins is crucial to couple glucan remodeling with morphogenesis in developmental transitions.
Collapse
Affiliation(s)
- Eleonora Rolli
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | |
Collapse
|
57
|
Mathieson EM, Schwartz C, Neiman AM. Membrane assembly modulates the stability of the meiotic spindle-pole body. J Cell Sci 2010; 123:2481-90. [PMID: 20592185 DOI: 10.1242/jcs.062794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Spore formation in Saccharomyces cerevisiae is driven by de novo assembly of new membranes termed prospore membranes. A vesicle-docking complex called the meiosis II outer plaque (MOP) forms on the cytoplasmic faces of the spindle-pole bodies at the onset of meiosis II and serves as the initiation site for membrane formation. In this study, a fluorescence-recovery assay was used to demonstrate that the dynamics of the MOP proteins change coincident with the coalescence of precursor vesicles into a membrane. Proteins within the MOP exchange freely with a soluble pool prior to membrane assembly, but after membranes are formed they remain stably within the MOP. By contrast, constitutive spindle-pole-body proteins display low exchange in both conditions. The MOP component Ady4p plays a role in maintaining the integrity of the MOP complex, but this role differs depending on whether the MOP is associated with docked vesicles or a fully formed membrane. These results suggest an architectural rearrangement of the MOP coincident with vesicle fusion.
Collapse
Affiliation(s)
- Erin M Mathieson
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | |
Collapse
|
58
|
Wickner W. Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu Rev Cell Dev Biol 2010; 26:115-36. [PMID: 20521906 DOI: 10.1146/annurev-cellbio-100109-104131] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although fusion mechanisms are highly conserved in evolution and among organelles of the exocytic and endocytic pathways, yeast vacuole homotypic fusion offers unique technical advantages: excellent genetics, clear organelle cytology, in vitro colorimetric fusion assays, and reconstitution of fusion from all-pure components, including a Rab GTPase, HOPS (homotypic fusion and vacuole protein sorting complex), four SNAREs [soluble N-ethylmaleimide-sensitive factor (NSF) attachment receptors] that snare (bind) each other, SNARE-complex disassembly chaperones, and vacuolar lipids. Vacuole fusion studies offer paradigms of the interdependence of lipids and fusion proteins to assemble a fusion microdomain, distinct lipid functions, SNARE complex proofreading through the synergy between HOPS and the SNARE disassembly chaperones, and the role of each fusion protein in promoting radical bilayer restructuring for fusion without lysis.
Collapse
Affiliation(s)
- William Wickner
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755-3844, USA.
| |
Collapse
|
59
|
Mathieson EM, Suda Y, Nickas M, Snydsman B, Davis TN, Muller EGD, Neiman AM. Vesicle docking to the spindle pole body is necessary to recruit the exocyst during membrane formation in Saccharomyces cerevisiae. Mol Biol Cell 2010; 21:3693-707. [PMID: 20826607 PMCID: PMC2965686 DOI: 10.1091/mbc.e10-07-0563] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The meiosis II outer plaque (MOP) acts a vesicle tethering complex that is a site for de novo membrane formation. Novel mutants in a MOP protein reveal that interaction of vesicles with the MOP surface is required to recruit a second tethering complex, the exocyst, to the vesicles, suggesting a mechanism by which the MOP promotes vesicle fusion. During meiosis II in Saccharomyces cerevisiae, the cytoplasmic face of the spindle pole body, referred to as the meiosis II outer plaque (MOP), is modified in both composition and structure to become the initiation site for de novo formation of a membrane called the prospore membrane. The MOP serves as a docking complex for precursor vesicles that are targeted to its surface. Using fluorescence resonance energy transfer analysis, the orientation of coiled-coil proteins within the MOP has been determined. The N-termini of two proteins, Mpc54p and Spo21p, were oriented toward the outer surface of the structure. Mutations in the N-terminus of Mpc54p resulted in a unique phenotype: precursor vesicles loosely tethered to the MOP but did not contact its surface. Thus, these mpc54 mutants separate the steps of vesicle association and docking. Using these mpc54 mutants, we determined that recruitment of the Rab GTPase Sec4p, as well as the exocyst components Sec3p and Sec8p, to the precursor vesicles requires vesicle docking to the MOP. This suggests that the MOP promotes membrane formation both by localization of precursor vesicles to a particular site and by recruitment of a second tethering complex, the exocyst, that stimulates downstream events of fusion.
Collapse
Affiliation(s)
- Erin M Mathieson
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Harkins AL, Yuan G, London SD, Dolan JW. An oleate-stimulated, phosphatidylinositol 4,5-bisphosphate-independent phospholipase D in Schizosaccharomyces pombe. FEMS Yeast Res 2010; 10:717-26. [DOI: 10.1111/j.1567-1364.2010.00646.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
61
|
Rajakumari S, Daum G. Multiple functions as lipase, steryl ester hydrolase, phospholipase, and acyltransferase of Tgl4p from the yeast Saccharomyces cerevisiae. J Biol Chem 2010; 285:15769-76. [PMID: 20332534 PMCID: PMC2871444 DOI: 10.1074/jbc.m109.076331] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 03/23/2010] [Indexed: 11/06/2022] Open
Abstract
Triacylglycerol (TAG) hydrolysis, membrane lipid biosynthesis, and lipid turnover are largely interlinked processes. In yeast, TAG is mobilized by three TAG lipases named Tgl3p, Tgl4p, and Tgl5p, which are localized to lipid particles/droplets. These TAG lipases posses a conserved GXSXG motif that is characteristic of hydrolytic enzymes. Here, we demonstrated that the yeast TAG lipase Tgl4p, the functional ortholog of the adipose TAG lipase, ATGL, catalyzes multiple functions in lipid metabolism. An extended domain and motif search analysis revealed that Tgl4p bears not only a lipase consensus domain but also a conserved motif for calcium-independent phospholipase A(2). We show that Tgl4p exhibits TAG lipase, steryl ester hydrolase, and phospholipase A(2) activities, but surprisingly it also catalyzed the acyl-CoA-dependent acylation of lysophosphatidic acid to phosphatidic acid (PA). Heterologous overexpression of Tgl4p in Pichia pastoris increased total phospholipid and specifically PA synthesis. Moreover, deletion of TGL4 in Saccharomyces cerevisiae showed an altered pattern of phosphatidylcholine and PA molecular species. Altogether, our data suggest that yeast Tgl4p functions as a hydrolytic enzyme in lipid degradation but also contributes to fatty acid channeling and phospholipid remodeling.
Collapse
Affiliation(s)
- Sona Rajakumari
- From the Institute of Biochemistry, Graz University of Technology, A-8010 Graz, Austria
| | - Günther Daum
- From the Institute of Biochemistry, Graz University of Technology, A-8010 Graz, Austria
| |
Collapse
|
62
|
Hong SY, So J, Lee J, Min K, Son H, Park C, Yun SH, Lee YW. Functional analyses of two syntaxin-like SNARE genes, GzSYN1 and GzSYN2, in the ascomycete Gibberella zeae. Fungal Genet Biol 2010; 47:364-72. [DOI: 10.1016/j.fgb.2010.01.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Revised: 12/24/2009] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
|
63
|
Manjithaya R, Anjard C, Loomis WF, Subramani S. Unconventional secretion of Pichia pastoris Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation. ACTA ACUST UNITED AC 2010; 188:537-46. [PMID: 20156962 PMCID: PMC2828923 DOI: 10.1083/jcb.200911149] [Citation(s) in RCA: 279] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Evidence is presented for an unconventional protein secretion pathway that is conserved from yeast to Dictyostelium discoideum in which Acb1 may be sequestered into autophagosomal vesicles, which then fuse (either directly or indirectly) with the plasma membrane (see also the companion paper from Duran et al. in this issue). In contrast to the enormous advances made regarding mechanisms of conventional protein secretion, mechanistic insights into the unconventional secretion of proteins are lacking. Acyl coenzyme A (CoA)–binding protein (ACBP; AcbA in Dictyostelium discoideum), an unconventionally secreted protein, is dependent on Golgi reassembly and stacking protein (GRASP) for its secretion. We discovered, surprisingly, that the secretion, processing, and function of an AcbA-derived peptide, SDF-2, are conserved between the yeast Pichia pastoris and D. discoideum. We show that in yeast, the secretion of SDF-2–like activity is GRASP dependent, triggered by nitrogen starvation, and requires autophagy proteins as well as medium-chain fatty acyl CoA generated by peroxisomes. Additionally, a phospholipase D implicated in soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor–mediated vesicle fusion at the plasma membrane is necessary, but neither peroxisome turnover nor fusion between autophagosomes and the vacuole is essential. Moreover, yeast Acb1 and several proteins required for its secretion are necessary for sporulation in P. pastoris. Our findings implicate currently unknown, evolutionarily conserved pathways in unconventional secretion.
Collapse
Affiliation(s)
- Ravi Manjithaya
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
64
|
Yang HJ, Neiman AM. A guaninine nucleotide exchange factor is a component of the meiotic spindle pole body in Schizosaccharomyces pombe. Mol Biol Cell 2010; 21:1272-81. [PMID: 20130084 PMCID: PMC2847530 DOI: 10.1091/mbc.e09-10-0842] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Spore morphogenesis in yeast is driven by the formation of membrane compartments that initiate growth at the spindle poles during meiosis II and grow to encapsulate daughter nuclei. Vesicle docking complexes, called meiosis II outer plaques (MOPs), form on each meiosis II spindle pole body (SPB) and serve as sites of membrane nucleation. How the MOP stimulates membrane assembly is not known. Here, we report that SpSpo13, a component of the MOP in Schizosaccharomyces pombe, shares homology with the guanine nucleotide exchange factor (GEF) domain of the Saccharomyces cerevisiae Sec2 protein. ScSec2 acts as a GEF for the small Rab GTPase ScSec4, which regulates vesicle trafficking from the late-Golgi to the plasma membrane. A chimeric protein in which the ScSec2-GEF domain is replaced with SpSpo13 is capable of supporting the growth of a sec2Delta mutant. SpSpo13 binds preferentially to the nucleotide-free form of ScSec4 and facilitates nucleotide exchange in vitro. In vivo, a Spspo13 mutant defective in GEF activity fails to support membrane assembly. In vitro specificity experiments suggest that SpYpt2 is the physiological substrate of SpSpo13. These results demonstrate that stimulation of Rab-GTPase activity is a property of the S. pombe MOP essential for the initiation of membrane formation.
Collapse
Affiliation(s)
- Hui-Ju Yang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | |
Collapse
|
65
|
Dall’Armi C, Hurtado-Lorenzo A, Tian H, Morel E, Nezu A, Chan RB, Yu WH, Robinson KS, Yeku O, Small SA, Duff K, Frohman MA, Wenk MR, Yamamoto A, Di Paolo G. The phospholipase D1 pathway modulates macroautophagy. Nat Commun 2010; 1:142. [PMID: 21266992 PMCID: PMC3328354 DOI: 10.1038/ncomms1144] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/23/2010] [Indexed: 12/15/2022] Open
Abstract
Although macroautophagy is known to be an essential degradative process whereby autophagosomes mediate the engulfment and delivery of cytoplasmic components into lysosomes, the lipid changes underlying autophagosomal membrane dynamics are undetermined. Here, we show that phospholipase D1 (PLD1), which is primarily associated with the endosomal system, partially relocalizes to the outer membrane of autophagosome-like structures upon nutrient starvation. The localization of PLD1, as well as the starvation-induced increase in PLD activity, are altered by wortmannin, a phosphatidylinositol 3-kinase inhibitor, suggesting PLD1 may act downstream of Vps34. Pharmacological inhibition of PLD and genetic ablation of PLD1 in mouse cells decreased the starvation-induced expansion of LC3-positive compartments, consistent with a role of PLD1 in the regulation of autophagy. Furthermore, inhibition of PLD results in higher levels of Tau and p62 aggregates in organotypic brain slices. Our in vitro and in vivo findings establish a role for PLD1 in autophagy.
Collapse
Affiliation(s)
- Claudia Dall’Armi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Andres Hurtado-Lorenzo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Huasong Tian
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Etienne Morel
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Akiko Nezu
- Department of Animal Bio-Science, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Robin B. Chan
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - W. Haung Yu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Kimberly S. Robinson
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Oladapo Yeku
- Center for Developmental Genetics and Department of Pharmacology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Scott A. Small
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Karen Duff
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael A. Frohman
- Center for Developmental Genetics and Department of Pharmacology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Markus R. Wenk
- Departments of Biochemistry and Biological Sciences, The Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597 and 117543, respectively
| | - Akitsugu Yamamoto
- Department of Animal Bio-Science, Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
66
|
|
67
|
Phospholipase D function in Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:970-4. [DOI: 10.1016/j.bbalip.2009.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 01/07/2009] [Accepted: 01/08/2009] [Indexed: 11/21/2022]
|
68
|
Bader MF, Vitale N. Phospholipase D in calcium-regulated exocytosis: Lessons from chromaffin cells. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:936-41. [DOI: 10.1016/j.bbalip.2009.02.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Revised: 02/23/2009] [Accepted: 02/26/2009] [Indexed: 10/21/2022]
|
69
|
Arisz SA, Testerink C, Munnik T. Plant PA signaling via diacylglycerol kinase. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:869-75. [DOI: 10.1016/j.bbalip.2009.04.006] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/09/2009] [Accepted: 04/16/2009] [Indexed: 10/20/2022]
|
70
|
Mima J, Wickner W. Complex lipid requirements for SNARE- and SNARE chaperone-dependent membrane fusion. J Biol Chem 2009; 284:27114-22. [PMID: 19654322 DOI: 10.1074/jbc.m109.010223] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Membrane fusion without lysis has been reconstituted with purified yeast vacuolar SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), the SNARE chaperones Sec17p/Sec18p and the multifunctional HOPS complex, which includes a subunit of the SNARE-interactive Sec1-Munc18 family, and vacuolar lipids: phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidic acid (PA), cardiolipin (CL), ergosterol (ERG), diacylglycerol (DAG), and phosphatidylinositol 3-phosphate (PI3P). We now report that many of these lipids are required for rapid and efficient fusion of the reconstituted SNARE proteoliposomes in the presence of SNARE chaperones. Omission of either PE, PA, or PI3P from the complete set of lipids strongly reduces fusion, and PC, PE, PA, and PI3P constitute a minimal set of lipids for fusion. PA could neither be replaced by other lipids with small headgroups such as DAG or ERG nor by the acidic lipids PS or PI. PA is needed for full association of HOPS and Sec18p with proteoliposomes having a minimal set of lipids. Strikingly, PA and PE are as essential for SNARE complex assembly as for fusion, suggesting that these lipids facilitate functional interactions among SNAREs and SNARE chaperones.
Collapse
Affiliation(s)
- Joji Mima
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755-3844, USA
| | | |
Collapse
|
71
|
Phosphatidylinositol-4,5-bisphosphate and phospholipase D-generated phosphatidic acid specify SNARE-mediated vesicle fusion for prospore membrane formation. EUKARYOTIC CELL 2009; 8:1094-105. [PMID: 19502581 DOI: 10.1128/ec.00076-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) family of proteins is required for eukaryotic intracellular membrane fusions. Vesicle fusion for formation of the prospore membrane (PSM), a membrane compartment that forms de novo during yeast sporulation, requires SNARE function, phosphatidylinositol-4,5-bisphosphate [PI(4,5)P(2)], and the activity of the phospholipase D (PLD) Spo14p, which generates phosphatidic acid (PA). The SNARE syntaxin Sso1p is essential for PSM production while the functionally redundant homolog in vegetative growth, Sso2p, is not. We demonstrate that Sso1p and Sso2p bind similarly in vitro to PA or phosphoinositide-containing liposomes and that the conserved SNARE (H3) domain largely mediates PA-binding. Both green fluorescent protein-Sso fusion proteins localize to the developing PSM in wild-type cells and to the spindle pole body in spo14Delta cells induced to sporulate. However, the autoregulatory region of Sso1p binds PI(4,5)P(2)-containing liposomes in vitro with a greater ability than the equivalent region of Sso2p. Overexpression of the phosphatidylinositol-4-phosphate 5-kinase MSS4 in sso1Delta cells induced to sporulate stimulates PSM production; PLD activity is not increased under these conditions, indicating that PI(4,5)P(2) has roles in addition to stimulating PLD in PSM formation. These data suggest that PLD-generated PA and PI(4,5)P(2) collaborate at multiple levels to promote SNARE-mediated fusion for PSM formation.
Collapse
|
72
|
Protein phosphatase type 1-interacting protein Ysw1 is involved in proper septin organization and prospore membrane formation during sporulation. EUKARYOTIC CELL 2009; 8:1027-37. [PMID: 19465564 DOI: 10.1128/ec.00095-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sporulation of Saccharomyces cerevisiae is a developmental process in which four haploid spores are generated inside a diploid cell. Gip1, a sporulation-specific targeting subunit of protein phosphatase type 1, together with its catalytic subunit, Glc7, colocalizes with septins along the extending prospore membrane and is required for septin organization and spore wall formation. However, the mechanism by which Gip1-Glc7 phosphatase promotes these events is unclear. We show here that Ysw1, a sporulation-specific coiled-coil protein, has a functional relationship to Gip1-Glc7 phosphatase. Overexpression of YSW1 partially suppresses the sporulation defect of a temperature-sensitive allele of gip1. Ysw1 interacts with Gip1 in a two-hybrid assay, and this interaction is required for suppression. Ysw1 tagged with green fluorescent protein colocalizes with septins and Gip1 along the extending prospore membrane during spore formation. Sporulation is partially defective in ysw1Delta mutant, and cytological analysis revealed that septin structures are perturbed and prospore membrane extension is aberrant in ysw1Delta cells. These results suggest that Ysw1 functions with the Gip1-Glc7 phosphatase to promote proper septin organization and prospore membrane formation.
Collapse
|
73
|
Raghu P, Coessens E, Manifava M, Georgiev P, Pettitt T, Wood E, Garcia-Murillas I, Okkenhaug H, Trivedi D, Zhang Q, Razzaq A, Zaid O, Wakelam M, O'Kane CJ, Ktistakis N. Rhabdomere biogenesis in Drosophila photoreceptors is acutely sensitive to phosphatidic acid levels. J Cell Biol 2009; 185:129-45. [PMID: 19349583 PMCID: PMC2700502 DOI: 10.1083/jcb.200807027] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 02/26/2009] [Indexed: 11/28/2022] Open
Abstract
Phosphatidic acid (PA) is postulated to have both structural and signaling functions during membrane dynamics in animal cells. In this study, we show that before a critical time period during rhabdomere biogenesis in Drosophila melanogaster photoreceptors, elevated levels of PA disrupt membrane transport to the apical domain. Lipidomic analysis shows that this effect is associated with an increase in the abundance of a single, relatively minor molecular species of PA. These transport defects are dependent on the activation state of Arf1. Transport defects via PA generated by phospholipase D require the activity of type I phosphatidylinositol (PI) 4 phosphate 5 kinase, are phenocopied by knockdown of PI 4 kinase, and are associated with normal endoplasmic reticulum to Golgi transport. We propose that PA levels are critical for apical membrane transport events required for rhabdomere biogenesis.
Collapse
Affiliation(s)
- Padinjat Raghu
- Inositide Laboratory, Babraham Institute, Babraham Research Campus, Cambridge, England, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Cockcroft S. Phosphatidic acid regulation of phosphatidylinositol 4-phosphate 5-kinases. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:905-12. [PMID: 19298865 DOI: 10.1016/j.bbalip.2009.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 11/18/2022]
Abstract
Phosphatidic acid (PA) production by receptor-stimulated phospholipase D is believed to play an important role in the regulation of cell function. The second messenger function of PA remains to be elucidated. PA can bind and affect the activities of different enzymes and here we summarise the current status of activation of Type I phosphatidylinositol 4-phosphate 5-kinase by PA. Type 1 phosphatidylinositol 4-phosphate 5-kinase is also regulated by ARF proteins as is phospholipase D and we discuss the contributions of ARF and PA towards phosphatidylinositol(4,5)bisphosphate synthesis at the plasma membrane.
Collapse
Affiliation(s)
- Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
75
|
Yang HJ, Nakanishi H, Liu S, McNew JA, Neiman AM. Binding interactions control SNARE specificity in vivo. ACTA ACUST UNITED AC 2008; 183:1089-100. [PMID: 19064671 PMCID: PMC2600744 DOI: 10.1083/jcb.200809178] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Saccharomyces cerevisiae contains two SNAP25 paralogues, Sec9 and Spo20, which mediate vesicle fusion at the plasma membrane and the prospore membrane, respectively. Fusion at the prospore membrane is sensitive to perturbation of the central ionic layer of the SNARE complex. Mutation of the central glutamine of the t-SNARE Sso1 impaired sporulation, but does not affect vegetative growth. Suppression of the sporulation defect of an sso1 mutant requires expression of a chimeric form of Spo20 carrying the SNARE helices of Sec9. Mutation of two residues in one SNARE domain of Spo20 to match those in Sec9 created a form of Spo20 that restores sporulation in the presence of the sso1 mutant and can replace SEC9 in vegetative cells. This mutant form of Spo20 displayed enhanced activity in in vitro fusion assays, as well as tighter binding to Sso1 and Snc2. These results demonstrate that differences within the SNARE helices can discriminate between closely related SNAREs for function in vivo.
Collapse
Affiliation(s)
- Hui-Ju Yang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | | | |
Collapse
|
76
|
Sorting signals within the Saccharomyces cerevisiae sporulation-specific dityrosine transporter, Dtr1p, C terminus promote Golgi-to-prospore membrane transport. EUKARYOTIC CELL 2008; 7:1674-84. [PMID: 18676951 DOI: 10.1128/ec.00151-08] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During sporulation in Saccharomyces cerevisiae, the dityrosine transporter Dtr1p, which is required for formation of the outermost layer of the spore wall, is specifically expressed and transported to the prospore membrane, a novel double-lipid-bilayer membrane. Dtr1p consists of 572 amino acids with predicted N- and C-terminal cytoplasmic extensions and 12 transmembrane domains. Dtr1p missing the largest internal cytoplasmic loop was trapped in the endoplasmic reticulum in both mitotically dividing cells and cells induced to sporulate. Deletion of the carboxyl 15 amino acids, but not the N-terminal extension of Dtr1p, resulted in a protein that failed to localize to the prospore membrane and was instead observed in cytoplasmic puncta. The puncta colocalized with a cis-Golgi marker, suggesting that Dtr1p missing the last 15 amino acids was trapped in an early Golgi compartment. Deletion of the C-terminal 10 amino acids resulted in a protein that localized to the prospore membrane with a delay and accumulated in cytoplasmic puncta that partially colocalized with a trans-Golgi marker. Both full-length Dtr1p and Dtr1p missing the last 10 amino acids expressed in vegetative cells localized to the plasma membrane and vacuoles, while Dtr1p deleted for the carboxyl-terminal 15 amino acids was observed only at vacuoles, suggesting that transport to the prospore membrane is mediated by distinct signals from those that specify plasma membrane localization. Transfer-of-function experiments revealed that both the carboxyl transmembrane domain and the C-terminal tail are important for Golgi complex-to-prospore membrane transport.
Collapse
|
77
|
Abstract
The two mammalian phosphatidylcholine (PC)-selective phospholipase D (PLD) enzymes remove the choline head group from PC to produce phosphatidic acid (PA). PA stimulates phosphatidylinositol(4)phosphate 5-kinases, can function as a binding site for membrane proteins, is required for certain membrane fusion or fission events and is an important precursor for the production of diacylglycerol (DAG). Both PA and DAG are lipids that favor negatively curved membranes rather than planar bilayers and can reduce the energetic barrier to membrane fission and fusion. Recent data provide a mechanistic explanation for the role PLDs play in some aspects of membrane traffic and provide an explanation for why some membrane fusion reactions require PA and some do not. PLDs also act as guanosine triphosphatase-activating proteins for dynamin and may participate with dynamin in the process of vesicle fission.
Collapse
Affiliation(s)
- Michael G Roth
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9038, USA.
| |
Collapse
|
78
|
Carman GM, Henry SA. Phosphatidic acid plays a central role in the transcriptional regulation of glycerophospholipid synthesis in Saccharomyces cerevisiae. J Biol Chem 2007; 282:37293-7. [PMID: 17981800 PMCID: PMC3565216 DOI: 10.1074/jbc.r700038200] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|
79
|
Suda Y, Nakanishi H, Mathieson EM, Neiman AM. Alternative modes of organellar segregation during sporulation in Saccharomyces cerevisiae. EUKARYOTIC CELL 2007; 6:2009-17. [PMID: 17905927 PMCID: PMC2168413 DOI: 10.1128/ec.00238-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Formation of ascospores in the yeast Saccharomyces cerevisiae is driven by an unusual cell division in which daughter nuclei are encapsulated within de novo-formed plasma membranes, termed prospore membranes. Generation of viable spores requires that cytoplasmic organelles also be captured along with nuclei. In mitotic cells segregation of mitochondria into the bud requires a polarized actin cytoskeleton. In contrast, genes involved in actin-mediated transport are not essential for sporulation. Instead, efficient segregation of mitochondria into spores requires Ady3p, a component of a protein coat found at the leading edge of the prospore membrane. Other organelles whose mitotic segregation is promoted by actin, such as the vacuole and the cortical endoplasmic reticulum, are not actively segregated during sporulation but are regenerated within spores. These results reveal that organellar segregation into spores is achieved by mechanisms distinct from those in mitotic cells.
Collapse
Affiliation(s)
- Yasuyuki Suda
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | | | |
Collapse
|
80
|
Liu S, Wilson KA, Rice-Stitt T, Neiman AM, McNew JA. In vitro fusion catalyzed by the sporulation-specific t-SNARE light-chain Spo20p is stimulated by phosphatidic acid. Traffic 2007; 8:1630-43. [PMID: 17714435 DOI: 10.1111/j.1600-0854.2007.00628.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sec9p and Spo20p are two SNAP25 family SNARE proteins specialized for different developmental stages in yeast. Sec9p interacts with Sso1/2p and Snc1/2p to mediate intracellular trafficking between post-Golgi vesicles and the plasma membrane during vegetative growth. Spo20p replaces Sec9p in the generation of prospore membranes during sporulation. The function of Spo20p requires enzymatically active Spo14p, which is a phosphatidylcholine (PC)-specific phospholipase D that hydrolyzes PC to generate phosphatidic acid (PA). Phosphatidic acid is required to localize Spo20p properly during sporulation; however, it seems to have additional roles that are not fully understood. Here we compared the fusion mediated by all combinations of the Sec9p or Spo20p C-terminal domains with Sso1p/Sso2p and Snc1p/Snc2p. Our results show that Spo20p forms a less efficient SNARE complex than Sec9p. The combination of Sso2p/Spo20c is the least fusogenic t-SNARE complex. Incorporation of PA in the lipid bilayer stimulates SNARE-mediated membrane fusion by all t-SNARE complexes, likely by decreasing the energetic barrier during membrane merger. This effect may allow the weak SNARE complex containing Spo20p to function during sporulation. In addition, PA can directly interact with the juxtamembrane region of Sso1p, which contributes to the stimulatory effects of PA on membrane fusion. Our results suggest that the fusion strength of SNAREs, the composition of organelle lipids and lipid-SNARE interactions may be coordinately regulated to control the rate and specificity of membrane fusion.
Collapse
Affiliation(s)
- Song Liu
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street MS-140, Houston, TX 77251-1892, USA
| | | | | | | | | |
Collapse
|
81
|
Haucke V, Di Paolo G. Lipids and lipid modifications in the regulation of membrane traffic. Curr Opin Cell Biol 2007; 19:426-35. [PMID: 17651957 PMCID: PMC2042035 DOI: 10.1016/j.ceb.2007.06.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 05/23/2007] [Accepted: 06/08/2007] [Indexed: 01/21/2023]
Abstract
Lipids play a multitude of roles in intracellular protein transport and membrane traffic. While a large body of data implicates phosphoinositides in these processes, much less is known about other glycerophospholipids such as phosphatidic acid, diacylglycerol, and phosphatidylserine. Growing evidence suggests that these lipids may also play an important role, either by mediating protein recruitment to membranes or by directly affecting membrane dynamics. Although membrane lipids are believed to be organized in microdomains, recent advances in cellular imaging methods paired with sophisticated reporters and proteomic analysis have led to the formulation of alternative ideas regarding the characteristics and putative functions of lipid microdomains and their associated proteins. In fact, the traditional view that membrane proteins may freely diffuse in a large 'sea of lipids' may need to be revised. Lastly, modifications of proteins by lipids or related derivatives have surprisingly complex roles on regulated intracellular transport of a wide range of molecules.
Collapse
Affiliation(s)
- Volker Haucke
- Institute of Chemistry & Biochemistry, Department of Membrane Biochemistry, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany.
| | | |
Collapse
|
82
|
Morishita M, Mendonsa R, Wright J, Engebrecht J. Snc1p v-SNARE Transport to the Prospore Membrane During Yeast Sporulation is Dependent on Endosomal Retrieval Pathways. Traffic 2007; 8:1231-45. [PMID: 17645731 DOI: 10.1111/j.1600-0854.2007.00606.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vesicular traffic is essential for sporulation in Saccharomyces cerevisiae. The Golgi-associated retrograde protein (GARP) tethering complex is required for retrograde traffic from both the early and late endosomes to the Golgi. Analyses of GARP complex mutants in sporulation reveal defects in meiotic progression and spore formation. In contrast, inactivation of the retromer complex, which mediates vesicle budding and cargo selection from the late endosome, or Snx4p, which is involved in retrieval of proteins from the early endosome, has little effect on sporulation. A retromer GARP double mutant is defective in the formation of the prospore membrane (PSM) that surrounds the haploid nuclei. In the retromer GARP double mutant, PSM precursor vesicles carrying the cargo, Dtr1p, are transported to the spindle pole body (SPB), where PSM formation is initiated. However, the v-SNARE Snc1p is not transported to the SPB in the double mutant, suggesting that the defect in PSM formation is because of the failure to retrieve Snc1p, and perhaps other proteins, from the endosomal pathway. Taken together, these results indicate that retrograde trafficking from the endosome is essential for sporulation by retrieving molecules important for PSM and spore wall formation.
Collapse
Affiliation(s)
- Masayo Morishita
- Section of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
83
|
Zeniou-Meyer M, Zabari N, Ashery U, Chasserot-Golaz S, Haeberlé AM, Demais V, Bailly Y, Gottfried I, Nakanishi H, Neiman AM, Du G, Frohman MA, Bader MF, Vitale N. Phospholipase D1 Production of Phosphatidic Acid at the Plasma Membrane Promotes Exocytosis of Large Dense-core Granules at a Late Stage. J Biol Chem 2007; 282:21746-57. [PMID: 17540765 DOI: 10.1074/jbc.m702968200] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Substantial efforts have recently been made to demonstrate the importance of lipids and lipid-modifying enzymes in various membrane trafficking processes, including calcium-regulated exocytosis of hormones and neurotransmitters. Among bioactive lipids, phosphatidic acid (PA) is an attractive candidate to promote membrane fusion through its ability to change membrane topology. To date, however, the biosynthetic pathway, the dynamic location, and actual function of PA in secretory cells remain unknown. Using a short interference RNA strategy on chromaffin and PC12 cells, we demonstrate here that phospholipase D1 is activated in secretagogue-stimulated cells and that it produces PA at the plasma membrane at the secretory granule docking sites. We show that phospholipase D1 activation and PA production represent key events in the exocytotic progression. Membrane capacitance measurements indicate that reduction of endogenous PA impairs the formation of fusion-competent granules. Finally, we show that the PLD1 short interference RNA-mediated inhibition of exocytosis can be rescued by exogenous provision of a lipid that favors the transition of opposed bi-layer membranes to hemifused membranes having the outer leaflets fused. Our findings demonstrate that PA synthesis is required during exocytosis to facilitate a late event in the granule fusion pathway. We propose that the underlying mechanism is related to the ability of PA to alter membrane curvature and promote hemi-fusion.
Collapse
Affiliation(s)
- Maria Zeniou-Meyer
- Département Neurotransmission & Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives, CNRS and Université Louis Pasteur, 5 rue Blaise Pascal, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Ye Y, Fujii M, Hirata A, Kawamukai M, Shimoda C, Nakamura T. Geranylgeranyl diphosphate synthase in fission yeast is a heteromer of farnesyl diphosphate synthase (FPS), Fps1, and an FPS-like protein, Spo9, essential for sporulation. Mol Biol Cell 2007; 18:3568-81. [PMID: 17596513 PMCID: PMC1951748 DOI: 10.1091/mbc.e07-02-0112] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Both farnesyl diphosphate synthase (FPS) and geranylgeranyl diphosphate synthase (GGPS) are key enzymes in the synthesis of various isoprenoid-containing compounds and proteins. Here, we describe two novel Schizosaccharomyces pombe genes, fps1(+) and spo9(+), whose products are similar to FPS in primary structure, but whose functions differ from one another. Fps1 is essential for vegetative growth, whereas, a spo9 null mutant exhibits temperature-sensitive growth. Expression of fps1(+), but not spo9(+), suppresses the lethality of a Saccharomyces cerevisiae FPS-deficient mutant and also restores ubiquinone synthesis in an Escherichia coli ispA mutant, which lacks FPS activity, indicating that S. pombe Fps1 in fact functions as an FPS. In contrast to a typical FPS gene, no apparent GGPS homologues have been found in the S. pombe genome. Interestingly, although neither fps1(+) nor spo9(+) expression alone in E. coli confers clear GGPS activity, coexpression of both genes induces such activity. Moreover, the GGPS activity is significantly reduced in the spo9 mutant. In addition, the spo9 mutation perturbs the membrane association of a geranylgeranylated protein, but not that of a farnesylated protein. Yeast two-hybrid and coimmunoprecipitation analyses indicate that Fps1 and Spo9 physically interact. Thus, neither Fps1 nor Spo9 alone functions as a GGPS, but the two proteins together form a complex with GGPS activity. Because spo9 was originally identified as a sporulation-deficient mutant, we show here that expansion of the forespore membrane is severely inhibited in spo9Delta cells. Electron microscopy revealed significant accumulation membrane vesicles in spo9Delta cells. We suggest that lack of GGPS activity in a spo9 mutant results in impaired protein prenylation in certain proteins responsible for secretory function, thereby inhibiting forespore membrane formation.
Collapse
Affiliation(s)
- Yanfang Ye
- *Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Makoto Fujii
- Department of Applied Bioscience and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue 690-8504, Japan
| | - Aiko Hirata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan; and
| | - Makoto Kawamukai
- Department of Applied Bioscience and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue 690-8504, Japan
| | - Chikashi Shimoda
- *Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Taro Nakamura
- *Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
85
|
Abstract
Membrane fusion of enveloped viruses with cellular membranes is mediated by viral glycoproteins (GP). Interaction of GP with cellular receptors alone or coupled to exposure to the acidic environment of endosomes induces extensive conformational changes in the fusion protein which pull two membranes into close enough proximity to trigger bilayer fusion. The refolding process provides the energy for fusion and repositions both membrane anchors, the transmembrane and the fusion peptide regions, at the same end of an elongated hairpin structure in all fusion protein structures known to date. The fusion process follows several lipidic intermediate states, which are generated by the refolding process. Although the major principles of viral fusion are understood, the structures of fusion protein intermediates and their mode of lipid bilayer interaction, the structures and functions of the membrane anchors and the number of fusion proteins required for fusion, necessitate further investigations.
Collapse
Affiliation(s)
- Winfried Weissenhorn
- European Molecular Biology Laboratory, 6 Rue Jules Horowitz, 38042 Grenoble, France
- Corresponding author.
| | - Andreas Hinz
- European Molecular Biology Laboratory, 6 Rue Jules Horowitz, 38042 Grenoble, France
| | - Yves Gaudin
- CNRS, UMR2472, INRA, UMR1157, IFR115, Laboratoire de Virologie Moléculaire et Structurale, 91198, Gif sur Yvette, France
| |
Collapse
|
86
|
Nakanishi H, Suda Y, Neiman AM. Erv14 family cargo receptors are necessary for ER exit during sporulation in Saccharomyces cerevisiae. J Cell Sci 2007; 120:908-16. [PMID: 17298976 DOI: 10.1242/jcs.03405] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sporulation of Saccharomyces cerevisiae is a developmental process in which four haploid spores are created within a single mother cell. During this process, the prospore membrane is generated de novo on the spindle pole body, elongates along the nuclear envelope and engulfs the nucleus. By screening previously identified sporulation-defective mutants, we identified additional genes required for prospore membrane formation. Deletion of either ERV14, which encodes a COPII cargo receptor, or the meiotically induced SMA2 gene resulted in misshapen prospore membranes. Sma2p is a predicted integral membrane that localized to the prospore membrane in wild-type cells but was retained in the ER in erv14 cells, suggesting that the prospore membrane morphology defect of erv14 cells is due to mislocalization of Sma2p. Overexpression of the ERV14 paralog ERV15 largely suppressed the sporulation defect in erv14 cells. Although deletion of ERV15 alone had no phenotype, erv14 erv15 double mutants displayed a complete block of prospore membrane formation. Plasma membrane proteins, including the t-SNARE Sso1p, accumulated in the ER upon transfer of the double mutant cells to sporulation medium. These results reveal a developmentally regulated change in the requirements for ER export in S. cerevisiae.
Collapse
Affiliation(s)
- Hideki Nakanishi
- Department of Biochemistry and Cell Biology and Institute for Cell and Developmental Biology, SUNY Stony Brook, Stony Brook, NY 11794-5215, USA
| | | | | |
Collapse
|
87
|
Abstract
Most membrane-bound organelles have elaborate, dynamic shapes and often include regions with distinct morphologies. These complex structures are relatively conserved throughout evolution, which indicates that they are important for optimal organelle function. Various mechanisms of determining organelle shape have been proposed - proteins that stabilize highly curved membranes, the tethering of organelles to other cellular components and the regulation of membrane fission and fusion might all contribute.
Collapse
Affiliation(s)
- Gia K Voeltz
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA.
| | | |
Collapse
|
88
|
Li G, Xue HW. Arabidopsis PLDzeta2 regulates vesicle trafficking and is required for auxin response. THE PLANT CELL 2007; 19:281-95. [PMID: 17259265 PMCID: PMC1820954 DOI: 10.1105/tpc.106.041426] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Phospholipase D (PLD) and its product, phosphatidic acid (PA), play key roles in cellular processes, including stress and hormonal responses, vesicle trafficking, and cytoskeletal rearrangements. We isolated and functionally characterized Arabidopsis thaliana PLDzeta2, which is expressed in various tissues and enhanced by auxin. A PLDzeta2-defective mutant, pldzeta2, and transgenic plants deficient in PLDzeta2 were less sensitive to auxin, had reduced root gravitropism, and suppressed auxin-dependent hypocotyl elongation at 29 degrees C, whereas transgenic seedlings overexpressing PLDzeta2 showed opposite phenotypes, suggesting that PLDzeta2 positively mediates auxin responses. Studies on the expression of auxin-responsive genes and observation of the beta-glucuronidase (GUS) expression in crosses between pldzeta2 and lines containing DR5-GUS indicated that PLDzeta2, or PA, stimulated auxin responses. Observations of the membrane-selective dye FM4-64 showed suppressed vesicle trafficking under PLDzeta2 deficiency or by treatment with 1-butanol, a PLD-specific inhibitor. By contrast, vesicle trafficking was enhanced by PA or PLDzeta2 overexpression. Analyses of crosses between pldzeta2 and lines containing PIN-FORMED2 (PIN2)-enhanced green fluorescent protein showed that PLDzeta2 deficiency had no effect on the localization of PIN2 but blocked the inhibition of brefeldin A on PIN2 cycling. These results suggest that PLDzeta2 and PA are required for the normal cycling of PIN2-containing vesicles as well as for function in auxin transport and distribution, and hence auxin responses.
Collapse
Affiliation(s)
- Gang Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | |
Collapse
|
89
|
Tevzadze GG, Pierce JV, Esposito RE. Genetic evidence for a SPO1-dependent signaling pathway controlling meiotic progression in yeast. Genetics 2006; 175:1213-27. [PMID: 17179081 PMCID: PMC1840080 DOI: 10.1534/genetics.106.069252] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The yeast spindle pole body (SPB) plays a unique role in meiosis, initiating both spindle assembly and prospore membrane synthesis. SPO1, induced early in development, encodes a meiosis-specific phospholipase B (PLB) homolog required at three stages of SPB morphogenesis: MI, MII, and spore formation. Here we report in-depth analysis of the SPO1 gene including its transcriptional control by regulators of early gene expression, protein localization to the ER lumen and periplasmic space, and molecular genetic studies of its role in meiosis. Evidence is presented that multiple arrest points in spo1Delta occur independently, demonstrating that Spo1 acts at distinct steps. Loss of Spo1 is suppressed by high-copy glycosylphosphatidylinositol (GPI) proteins, dependent on sequence, timing, and strength of induction in meiosis. Since phosphatidylinositol (PI) serves as both an anchor component and a lipase substrate, we hypothesized that GPI-protein expression might substitute for Spo1 by decreasing levels of its potential substrates, PI and phosphatidylinositol phosphates (PIPs). Partial spo1Delta complementation by PLB3 (encoding a unique PLB capable of cleaving PI) and relatively strong Spo1 binding to PI(4)P derivatives (via a novel N-terminal lysine-rich fragment essential for Spo1 function) are consistent with this view. Epistasis of SPO1 mutations to those in SPO14 (encoding a PLD involved in signaling) and physical interaction of Spo1 with Spo23, a protein regulating PI synthesis required for wild-type sporulation, further support this notion. Taken together these findings implicate PI and/or PIPs in Spo1 function and suggest the existence of a novel Spo1-dependent meiosis-specific signaling pathway required for progression of MI, MII, and spore formation via regulation of the SPB.
Collapse
Affiliation(s)
- Gela G Tevzadze
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
90
|
Li J, Agarwal S, Roeder GS. SSP2 and OSW1, two sporulation-specific genes involved in spore morphogenesis in Saccharomyces cerevisiae. Genetics 2006; 175:143-54. [PMID: 17110477 PMCID: PMC1774994 DOI: 10.1534/genetics.106.066381] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spore formation in Saccharomyces cerevisiae requires the synthesis of prospore membranes (PSMs) followed by the assembly of spore walls (SWs). We have characterized extensively the phenotypes of mutants in the sporulation-specific genes, SSP2 and OSW1, which are required for spore formation. A striking feature of the osw1 phenotype is asynchrony of spore development, with some spores displaying defects in PSM formation and others spores in the same ascus blocked at various stages in SW development. The Osw1 protein localizes to spindle pole bodies (SPBs) during meiotic nuclear division and subsequently to PSMs/SWs. We propose that Osw1 performs a regulatory function required to coordinate the different stages of spore morphogenesis. In the ssp2 mutant, nuclei are surrounded by PSMs and SWs; however, PSMs and SWs often also encapsulate anucleate bodies both inside and outside of spores. In addition, the SW is not as thick as in wild type. The ssp2 mutant defect is partially suppressed by overproduction of either Spo14 or Sso1, both of which promote the fusion of vesicles at the outer plaque of the SPB early in PSM formation. We propose that Ssp2 plays a role in vesicle fusion during PSM formation.
Collapse
Affiliation(s)
- Jing Li
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | | | |
Collapse
|
91
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
92
|
Choi SY, Huang P, Jenkins GM, Chan DC, Schiller J, Frohman MA. A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat Cell Biol 2006; 8:1255-62. [PMID: 17028579 DOI: 10.1038/ncb1487] [Citation(s) in RCA: 362] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 08/10/2006] [Indexed: 11/09/2022]
Abstract
Fusion of vesicles into target membranes during many types of regulated exocytosis requires both SNARE-complex proteins and fusogenic lipids, such as phosphatidic acid. Mitochondrial fusion is less well understood but distinct, as it is mediated instead by the protein Mitofusin (Mfn). Here, we identify an ancestral member of the phospholipase D (PLD) superfamily of lipid-modifying enzymes that is required for mitochondrial fusion. Mitochondrial PLD (MitoPLD) targets to the external face of mitochondria and promotes trans-mitochondrial membrane adherence in a Mfn-dependent manner by hydrolysing cardiolipin to generate phosphatidic acid. These findings reveal that although mitochondrial fusion and regulated exocytic fusion are mediated by distinct sets of protein machinery, the underlying processes are unexpectedly linked by the generation of a common fusogenic lipid. Moreover, our findings suggest a novel basis for the mitochondrial fragmentation observed during apoptosis.
Collapse
Affiliation(s)
- Seok-Yong Choi
- Graduate Program in Molecular and Cellular Biology, Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5140, USA
| | | | | | | | | | | |
Collapse
|
93
|
Vicogne J, Vollenweider D, Smith JR, Huang P, Frohman MA, Pessin JE. Asymmetric phospholipid distribution drives in vitro reconstituted SNARE-dependent membrane fusion. Proc Natl Acad Sci U S A 2006; 103:14761-6. [PMID: 17001002 PMCID: PMC1595425 DOI: 10.1073/pnas.0606881103] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insulin-stimulated glucose uptake requires the fusion of GLUT4 transporter-containing vesicles with the plasma membrane, a process that depends on the SNARE (soluble N-ethylmaleimide-sensitive fusion factor attachment receptor) proteins VAMP2 (vesicle-associated membrane protein 2) and syntaxin 4 (Stx4)/SNAP23 (soluble N-ethylmaleimide-sensitive fusion factor attachment protein 23). Efficient SNARE-dependent fusion has been shown in many settings in vivo to require the generation of both phosphatidylinositol-4,5-bisphosphate (PIP2) and phosphatidic acid (PA). Addition of PA to Stx4/SNAP23 vesicles markedly enhanced the fusion rate, whereas its addition to VAMP2 vesicles was inhibitory. In contrast, addition of PIP2 to Stx4/SNAP23 vesicles inhibited the fusion reaction, and its addition to VAMP2 vesicles was stimulatory. The optimal distribution of phospholipids was found to trigger the progression from the hemifused state to full fusion. These findings reveal an unanticipated dependence of SNARE complex-mediated fusion on asymmetrically distributed acidic phospholipids and provide mechanistic insights into the roles of phospholipase D and PIP kinases in the late stages of regulated exocytosis.
Collapse
Affiliation(s)
| | | | | | - Ping Huang
- *Department of Pharmacological Sciences and
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794
| | - Michael A. Frohman
- *Department of Pharmacological Sciences and
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794
| | - Jeffrey E. Pessin
- *Department of Pharmacological Sciences and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
94
|
Connolly JE, Engebrecht J. The Arf-GTPase-activating protein Gcs1p is essential for sporulation and regulates the phospholipase D Spo14p. EUKARYOTIC CELL 2006; 5:112-24. [PMID: 16400173 PMCID: PMC1360266 DOI: 10.1128/ec.5.1.112-124.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
SPO14, encoding the major Saccharomyces cerevisiae phospholipase D (PLD), is essential for sporulation and mediates synthesis of the new membrane that encompasses the haploid nuclei that arise through meiotic divisions. PLD catalyzes the hydrolysis of phosphatidylcholine to phosphatidic acid (PA) and choline. PA stimulates Arf-GTPase-activating proteins (Arf-GAPs), which are involved in membrane trafficking events and actin cytoskeletal function. To determine if Spo14p-generated PA mediates its biological response through Arf-GAPs, we analyzed the sporulation efficiencies of cells deleted for each of the five known and potential yeast Arf-GAPs. Only gcs1delta mutants display a sporulation defect similar to that of spo14 mutants: cells deleted for GCS1 initiate the sporulation program but are defective in synthesis of the prospore membrane. Endosome-to-vacuole transport is also impaired in gcs1delta cells during sporulation. Furthermore, Arf-GAP catalytic activity, but not the pleckstrin homology domain, is required for both prospore membrane formation and endosome-to-vacuole trafficking. An examination of Gcs1p-green fluorescent protein revealed that it is a soluble protein. Interestingly, cells deleted for GCS1 have reduced levels of Spo14p-generated PA. Taken together, these results indicate that GCS1 is essential for sporulation and suggest that GCS1 positively regulates SPO14.
Collapse
Affiliation(s)
- Jaime E Connolly
- Molecular and Cellular Pharmacology, Graduate Program, State University of New York at Stony Brook, 11794-8651, USA
| | | |
Collapse
|