51
|
Zheng D, Chen CYA, Shyu AB. Unraveling regulation and new components of human P-bodies through a protein interaction framework and experimental validation. RNA (NEW YORK, N.Y.) 2011; 17:1619-34. [PMID: 21750099 PMCID: PMC3162328 DOI: 10.1261/rna.2789611] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The cellular factors involved in mRNA degradation and translation repression can aggregate into cytoplasmic domains known as GW bodies or mRNA processing bodies (P-bodies). However, current understanding of P-bodies, especially the regulatory aspect, remains relatively fragmentary. To provide a framework for studying the mechanisms and regulation of P-body formation, maintenance, and disassembly, we compiled a list of P-body proteins found in various species and further grouped both reported and predicted human P-body proteins according to their functions. By analyzing protein-protein interactions of human P-body components, we found that many P-body proteins form complex interaction networks with each other and with other cellular proteins that are not recognized as P-body components. The observation suggests that these other cellular proteins may play important roles in regulating P-body dynamics and functions. We further used siRNA-mediated gene knockdown and immunofluorescence microscopy to demonstrate the validity of our in silico analyses. Our combined approach identifies new P-body components and suggests that protein ubiquitination and protein phosphorylation involving 14-3-3 proteins may play critical roles for post-translational modifications of P-body components in regulating P-body dynamics. Our analyses provide not only a global view of human P-body components and their physical interactions but also a wealth of hypotheses to help guide future research on the regulation and function of human P-bodies.
Collapse
Affiliation(s)
- Dinghai Zheng
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, Texas 77021, USA
| | - Chyi-Ying A. Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, Texas 77021, USA
| | - Ann-Bin Shyu
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, Texas 77021, USA
- Corresponding author.E-mail .
| |
Collapse
|
52
|
D'Autréaux F, Margolis KG, Roberts J, Stevanovic K, Mawe G, Li Z, Karamooz N, Ahuja A, Morikawa Y, Cserjesi P, Setlick W, Gershon MD. Expression level of Hand2 affects specification of enteric neurons and gastrointestinal function in mice. Gastroenterology 2011; 141:576-87, 587.e1-6. [PMID: 21669203 PMCID: PMC3152642 DOI: 10.1053/j.gastro.2011.04.059] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 03/20/2011] [Accepted: 04/12/2011] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Hand2 is a basic helix-loop-helix transcription factor required for terminal differentiation of enteric neurons. We studied Hand2 haploinsufficient mice, to determine whether reduced expression of Hand2 allows sufficient enteric neurogenesis for survival, but not for development of a normal enteric nervous system (ENS). METHODS Enteric transcripts that encode Hand2 and the neuron-specific embryonic lethal abnormal vision proteins HuB, HuC, and HuD were quantified. Immunocytochemistry was used to identify and quantify neurons. Apoptosis was analyzed with the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling procedure. Intracellular microelectrodes were used to record inhibitory junction potentials. Gastrointestinal transit and colonic motility were measured in vivo. RESULTS Levels of of enteric Hand2 transcripts were associated with genotypes of mice, in the following order: Hand2(+/+) > Hand2(LoxP/+) > Hand2(+/-) > Hand2(LoxP/-). Parallel reductions were found in expression of HuD and in regional and phenotypic manners. Numbers of neurons, numbers of neuronal nitric oxide synthase(+) and calretinin(+), but not substance P(+) or vasoactive intestinal peptide(+) neurons, decreased. No effects were observed in stomach or cecum. Apoptosis was not detected, consistent with the concept that Hand2 inhibits neuronal differentiation, rather than regulates survival. The amplitude of inhibitory junction potentials in colonic circular muscle was similar in Hand2 wild-type and haploinsufficient mice, although in haploinsufficient mice, the purinergic component was reduced and a nitrergic component appeared. The abnormal ENS of haploinsufficient mice slowed gastrointestinal motility but protected mice against colitis. CONCLUSIONS Reduced expression of factors required for development of the ENS can cause defects in the ENS that are subtle enough to escape detection yet cause significant abnormalities in bowel function.
Collapse
Affiliation(s)
- Fabien D'Autréaux
- Département de Biologie, Dévelopement et évolution du système nerveux, CNRS-Ecole Normale Supérieure, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Yu T, Lan SY, Wu B, Pan QH, Shi L, Huang KH, Lin Y, Chen QK. Musashi1 and hairy and enhancer of split 1 high expression cells derived from embryonic stem cells enhance the repair of small-intestinal injury in the mouse. Dig Dis Sci 2011; 56:1354-1368. [PMID: 21221806 DOI: 10.1007/s10620-010-1441-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 09/19/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND Embryonic stem cells have great plasticity. In this study, we repaired impaired small intestine by transplanting putative intestinal epithelial stem cells (Musashi1 and hairy and enhancer of split 1 high expression cells) derived from embryonic stem cells. METHODS The differentiation of definitive endoderm in embryoid bodies, derived from male ES-E14TG2a cells by the hanging-drop method, was monitored to define a time point for maximal induction of putative intestinal epithelial stem cells by epidermal growth factor. Furthermore, to evaluate the regenerative potential of intestinal epithelium, these putative stem cells were engrafted into NOD/SCID mice and female mice with enteritis. Donor cells were located by SRY DNA in situ hybridization. RESULTS The results revealed that definitive endodermal markers were highly expressed in 5-day embryoid bodies. These embryoid body cells were induced into putative intestinal epithelial stem cells on the 5th day of epidermal growth factor administration. Grafts from these cells consisted of adenoid structures and nonspecific structural cells with strong expression of small-intestinal epithelial cell markers. In situ hybridization revealed that the donor cells could specifically locate in damaged intestinal epithelium, contribute to epithelial structures, and enhance regeneration. CONCLUSIONS In conclusion, the Musashi1 and hairy and enhancer of split 1 high expression cells, derived from mouse embryonic stem cells, locate predominantly in impaired small-intestinal epithelium after transplantation and contribute to epithelial regeneration.
Collapse
Affiliation(s)
- Tao Yu
- Department of Gastroenterology, The Second Affiliated Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Road, 510120, Guangzhou, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Mittal N, Scherrer T, Gerber AP, Janga SC. Interplay between posttranscriptional and posttranslational interactions of RNA-binding proteins. J Mol Biol 2011; 409:466-79. [PMID: 21501624 DOI: 10.1016/j.jmb.2011.03.064] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/02/2011] [Accepted: 03/29/2011] [Indexed: 11/17/2022]
Abstract
RNA-binding proteins (RBPs) play important roles in the posttranscriptional control of gene expression. However, our understanding of how RBPs interact with each other at different regulatory levels to coordinate the RNA metabolism of the cell is rather limited. Here, we construct the posttranscriptional regulatory network among 69 experimentally studied RBPs in yeast to show that more than one-third of the RBPs autoregulate their expression at the posttranscriptional level and demonstrate that autoregulatory RBPs show reduced protein noise with a tendency to encode for hubs in this network. We note that in- and outdegrees in the posttranscriptional RBP-RBP regulatory network exhibit gaussian and scale-free distributions, respectively. This network was also densely interconnected with extensive cross-talk between RBPs belonging to different posttranscriptional steps, regulating varying numbers of cellular RNA targets. We show that feed-forward loops and superposed feed-forward/feedback loops are the most significant three-node subgraphs in this network. Analysis of the corresponding protein-protein interaction (posttranslational) network revealed that it is more modular than the posttranscriptional regulatory network. There is significant overlap between the regulatory and protein-protein interaction networks, with RBPs that potentially control each other at the posttranscriptional level tending to physically interact and being part of the same ribonucleoprotein (RNP) complex. Our observations put forward a model wherein RBPs could be classified into those that can stably interact with a limited number of protein partners, forming stable RNP complexes, and others that form transient hubs, having the ability to interact with multiple RBPs forming many RNPs in the cell.
Collapse
Affiliation(s)
- Nitish Mittal
- Biozentrum, University of Basel, Klingelbergstrasse, Switzerland
| | | | | | | |
Collapse
|
55
|
MacNicol MC, Cragle CE, MacNicol AM. Context-dependent regulation of Musashi-mediated mRNA translation and cell cycle regulation. Cell Cycle 2011; 10:39-44. [PMID: 21191181 DOI: 10.4161/cc.10.1.14388] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Musashi-mediated mRNA translational control has been implicated in the promotion of physiological and pathological stem cell proliferation. During self-renewal of mammalian stem cells, Musashi has been proposed to act to repress the translation of mRNAs encoding inhibitors of cell cycle progression. By contrast, in maturing Xenopus oocytes Musashi activates translation of target mRNAs that encode proteins promoting cell cycle progression. The mechanisms directing Musashi to differentially control mRNA translation in mammalian stem cells and Xenopus oocytes is unknown. In this study, we demonstrate that the mechanisms defining Musashi function lie within the cellular context. Specifically, we show that murine Musashi acts as an activator of translation in maturing Xenopus oocytes while Xenopus Musashi functions as a repressor of target mRNA translation in mammalian cells. We further demonstrate that within the context of a primary mammalian neural stem/progenitor cell, Musashi can be converted from a repressor of mRNA translation to an activator of translation in response to extracellular stimuli. We present current models of Musashi-mediated mRNA translational control and discuss possible mechanisms for regulating Musashi function. An understanding of these mechanisms presents exciting possibilities for development of therapeutic targets to control physiological and pathological stem cell proliferation.
Collapse
Affiliation(s)
- Melanie C MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | |
Collapse
|
56
|
Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer RP, Horvat V, Volk B, Kempermann G. Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS One 2010; 5:e8809. [PMID: 20126454 PMCID: PMC2813284 DOI: 10.1371/journal.pone.0008809] [Citation(s) in RCA: 490] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 12/23/2009] [Indexed: 02/06/2023] Open
Abstract
Background Essentially all knowledge about adult hippocampal neurogenesis in humans still comes from one seminal study by Eriksson et al. in 1998, although several others have provided suggestive findings. But only little information has been available in how far the situation in animal models would reflect the conditions in the adult and aging human brain. We therefore here mapped numerous features associated with adult neurogenesis in rodents in samples from human hippocampus across the entire lifespan. Such data would not offer proof of adult neurogenesis in humans, because it is based on the assumption that humans and rodents share marker expression patterns in adult neurogenesis. Nevertheless, together the data provide valuable information at least about the presence of markers, for which a link to adult neurogenesis might more reasonably be assumed than for others, in the adult human brain and their change with increasing age. Methods and Findings In rodents, doublecortin (DCX) is transiently expressed during adult neurogenesis and within the neurogenic niche of the dentate gyrus can serve as a valuable marker. We validated DCX as marker of granule cell development in fetal human tissue and used DCX expression as seed to examine the dentate gyrus for additional neurogenesis-associated features across the lifespan. We studied 54 individuals and detected DCX expression between birth and 100 years of age. Caveats for post-mortem analyses of human tissues apply but all samples were free of signs of ischemia and activated caspase-3. Fourteen markers related to adult hippocampal neurogenesis in rodents were assessed in DCX-positive cells. Total numbers of DCX expressing cells declined exponentially with increasing age, and co-expression of DCX with the other markers decreased. This argued against a non-specific re-appearance of immature markers in specimen from old brains. Early postnatally all 14 markers were co-expressed in DCX-positive cells. Until 30 to 40 years of age, for example, an overlap of DCX with Ki67, Mcm2, Sox2, Nestin, Prox1, PSA-NCAM, Calretinin, NeuN, and others was detected, and some key markers (Nestin, Sox2, Prox1) remained co-expressed into oldest age. Conclusions Our data suggest that in the adult human hippocampus neurogenesis-associated features that have been identified in rodents show patterns, as well as qualitative and quantitative age-related changes, that are similar to the course of adult hippocampal neurogenesis in rodents. Consequently, although further validation as well as the application of independent methodology (e.g. electron microscopy and cell culture work) is desirable, our data will help to devise the framework for specific research on cellular plasticity in the aging human hippocampus.
Collapse
Affiliation(s)
- Rolf Knoth
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Ilyas Singec
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
- Burnham Institute for Medical Research, Stem Cell and Regeneration Program, La Jolla, California, United States of America
| | - Margarethe Ditter
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Georgios Pantazis
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Philipp Capetian
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
- Laboratory of Molecular Neurosurgery, Department of Stereotactic and Functional Neurosurgery, University of Freiburg, Freiburg, Germany
| | - Ralf P. Meyer
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Volker Horvat
- CRTD – Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Benedikt Volk
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Gerd Kempermann
- CRTD – Center for Regenerative Therapies Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
57
|
Multiple neurogenic and neurorescue effects of human mesenchymal stem cell after transplantation in an experimental model of Parkinson's disease. Brain Res 2010; 1311:12-27. [DOI: 10.1016/j.brainres.2009.11.041] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 11/13/2009] [Accepted: 11/18/2009] [Indexed: 01/19/2023]
|
58
|
Sekii K, Salvenmoser W, De Mulder K, Scharer L, Ladurner P. Melav2, an elav-like gene, is essential for spermatid differentiation in the flatworm Macrostomum lignano. BMC DEVELOPMENTAL BIOLOGY 2009; 9:62. [PMID: 19995429 PMCID: PMC2795745 DOI: 10.1186/1471-213x-9-62] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 12/08/2009] [Indexed: 11/10/2022]
Abstract
Background Failure of sperm differentiation is one of the major causes of male sterility. During spermiogenesis, spermatids undergo a complex metamorphosis, including chromatin condensation and cell elongation. Although the resulting sperm morphology and property can vary depending on the species, these processes are fundamental in many organisms. Studying genes involved in such processes can thus provide important information for a better understanding of spermatogenesis, which might be universally applied to many other organisms. Results In a screen for genes that have gonad-specific expression we isolated an elav-like gene, melav2, from Macrostomum lignano, containing the three RNA recognition motifs characteristic of elav-like genes. We found that melav2 mRNA was expressed exclusively in the testis, as opposed to the known elav genes, which are expressed in the nervous system. The RNAi phenotype of melav2 was characterized by an aberrant spermatid morphology, where sperm elongation often failed, and an empty seminal vesicle. Melav2 RNAi treated worms were thus male-sterile. Further analysis revealed that in melav2 RNAi treated worms precocious chromatin condensation occurred during spermatid differentiation, resulting in an abnormally tightly condensed chromatin and large vacuoles in round spermatids. In addition, immunostaining using an early-spermatid specific antibody revealed that melav2 RNAi treated worms had a larger amount of signal positive cells, suggesting that many cells failed the transition from early spermatid stage. Conclusion We characterize a new function for elav-like genes, showing that melav2 plays a crucial role during spermatid differentiation, especially in the regulation of chromatin condensation and/or cell elongation.
Collapse
Affiliation(s)
- Kiyono Sekii
- Department of Evolutionary Biology, Zoological Institute, University of Basel, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
59
|
Transplantation of undifferentiated human mesenchymal stem cells protects against 6-hydroxydopamine neurotoxicity in the rat. Cell Transplant 2009; 19:203-17. [PMID: 19906332 DOI: 10.3727/096368909x479839] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stem cells have been increasingly recognized as a potential tool to replace or support cells damaged by the neurodegenerative process that underlies Parkinson's disease (PD). In this frame, human adult mesenchymal stem cells (hMSCs) have been proposed as an attractive alternative to heterologous embryonic or neural precursor cells. To address this issue, in this study we implanted undifferentiated hMSCs into the striatum of rats bearing a lesion of the nigrostriatal pathway induced by local injection of 6-hydroxydopamine (6-OHDA), a widely recognized rodent model of PD. Before grafting, cultured hMSCs expressed markers of both undifferentiated and committed neural cells, including nestin, GAP-43, NSE, beta-tubulin III, and MAP-2, as well as several cytokine mRNAs. No glial or specific neuronal markers were detected. Following transplantation, some hMSCs acquired a glial-like phenotype, as shown by immunoreactivity for glial fibrillary acid protein (GFAP), but only in animals bearing the nigrostriatal lesion. More importantly, rats that received the striatal graft showed increased survival of both cell bodies and terminals of dopaminergic, nigrostriatal neurons, coupled with a reduction of the behavioral abnormalities (apomorphine-induced turning behavior) associated with the lesion. No differentiation of the MSCs toward a neuronal (dopaminergic) phenotype was observed in vivo. In conclusion, our results suggest that grafted hMSCs exert neuroprotective effects against nigrostriatal degeneration induced by 6-OHDA. The mechanisms underlying this effect remain to be clarified, although it is likely that the acquisition of a glial phenotype by grafted hMSCs may lead to the release of prosurvival cytokines within the lesioned striatum.
Collapse
|
60
|
Pilotte J, Cunningham BA, Edelman GM, Vanderklish PW. Developmentally regulated expression of the cold-inducible RNA-binding motif protein 3 in euthermic rat brain. Brain Res 2009; 1258:12-24. [DOI: 10.1016/j.brainres.2008.12.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 12/10/2008] [Accepted: 12/11/2008] [Indexed: 01/07/2023]
|
61
|
Sharova LV, Sharov AA, Nedorezov T, Piao Y, Shaik N, Ko MS. Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res 2009; 16:45-58. [PMID: 19001483 PMCID: PMC2644350 DOI: 10.1093/dnares/dsn030] [Citation(s) in RCA: 440] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 10/21/2008] [Indexed: 12/29/2022] Open
Abstract
Degradation of mRNA is one of the key processes that control the steady-state level of gene expression. However, the rate of mRNA decay for the majority of genes is not known. We successfully obtained the rate of mRNA decay for 19 977 non-redundant genes by microarray analysis of RNA samples obtained from mouse embryonic stem (ES) cells. Median estimated half-life was 7.1 h and only <100 genes, including Prdm1, Myc, Gadd45 g, Foxa2, Hes5 and Trib1, showed half-life less than 1 h. In general, mRNA species with short half-life were enriched among genes with regulatory functions (transcription factors), whereas mRNA species with long half-life were enriched among genes related to metabolism and structure (extracellular matrix, cytoskeleton). The stability of mRNAs correlated more significantly with the structural features of genes than the function of genes: mRNA stability showed the most significant positive correlation with the number of exon junctions per open reading frame length, and negative correlation with the presence of PUF-binding motifs and AU-rich elements in 3'-untranslated region (UTR) and CpG di-nucleotides in the 5'-UTR. The mRNA decay rates presented in this report are the largest data set for mammals and the first for ES cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Minoru S.H. Ko
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| |
Collapse
|
62
|
Abstract
One of the earliest genes identified with stem and early progenitor cells is the RNA-binding protein, Musashi1 (Msi1). Through gene profiling of mammary epithelial cells transduced with Msi1, a unique autocrine signaling pathway was identified that activates both the Wnt and Notch pathways. This process was associated with increased secretion of the growth factor, PLF1 and inhibition of the secreted Wnt pathway inhibitor, DKK3. Identification of PLF1 as an effector of these pathways in the absence of the DKK3 tumor suppressor provides a new avenue for investigating differences between normal and malignant tissues, and potentially targeting tumor stem cells.
Collapse
Affiliation(s)
- Robert I Glazer
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA.
| | | | | | | |
Collapse
|
63
|
MacNicol AM, Wilczynska A, MacNicol MC. Function and regulation of the mammalian Musashi mRNA translational regulator. Biochem Soc Trans 2008; 36:528-30. [PMID: 18481998 PMCID: PMC2562719 DOI: 10.1042/bst0360528] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The evolutionarily conserved RNA-binding protein, Musashi, regulates neural stem cell self-renewal. Musashi expression is also indicative of stem cell populations in breast and intestinal tissues and is linked to cell overproliferation in cancers of these tissues. Musashi has been primarily implicated as a repressor of target mRNAs in stem cell populations. However, little is known about the mechanism by which Musashi exerts mRNA translational control or how Musashi function is regulated. Recent findings in oocytes of the frog, Xenopus, indicate an unexpected role for Musashi as an activator of a number of maternal mRNAs during meiotic cell cycle progression. Given the importance of Musashi function in stem cell biology and the implications of aberrant Musashi expression in cancer, it is critical that we understand the molecular processes that regulate Musashi function.
Collapse
Affiliation(s)
- Angus M MacNicol
- Department of Neurobiology and Developmental Sciences, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham, Little Rock, AR 72205, USA.
| | | | | |
Collapse
|
64
|
Ratti A, Fallini C, Colombrita C, Pascale A, Laforenza U, Quattrone A, Silani V. Post-transcriptional Regulation of Neuro-oncological Ventral Antigen 1 by the Neuronal RNA-binding Proteins ELAV. J Biol Chem 2008; 283:7531-41. [DOI: 10.1074/jbc.m706082200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
65
|
Takeda A, Nakano M, Goris R, Funakoshi K. Adult neurogenesis with 5-HT expression in lesioned goldfish spinal cord. Neuroscience 2008; 151:1132-41. [DOI: 10.1016/j.neuroscience.2007.10.059] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 10/06/2007] [Accepted: 12/14/2007] [Indexed: 12/20/2022]
|
66
|
Bolognani F, Perrone-Bizzozero NI. RNA–protein interactions and control of mRNA stability in neurons. J Neurosci Res 2008; 86:481-9. [PMID: 17853436 DOI: 10.1002/jnr.21473] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In addition to transcription, posttranscriptional mechanisms play a vital role in the control of gene expression. There are multiple levels of posttranscriptional regulation, including mRNA processing, splicing, editing, transport, stability, and translation. Among these, mRNA stability is estimated to control about 5-10% of all human genes. The rate of mRNA decay is regulated by the interaction of cis-acting elements in the transcripts and sequence-specific RNA-binding proteins. One of the most studied cis-acting elements is the AU-rich element (ARE) present in the 3' untranslated region (3'UTR) of several unstable mRNAs. These sequences are targets of many ARE-binding proteins; some of which induce degradation whereas others promote stabilization of the mRNA. Recently, these mechanisms were uncovered in neurons, where they have been associated with different physiological phenomena, from early development and nerve regeneration to learning and memory processes. In this Mini-Review, we briefly discuss the general mechanisms of control of mRNA turnover and present evidence supporting the importance of these mechanisms in the expression of an increasing number of neuronal genes.
Collapse
Affiliation(s)
- Federico Bolognani
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | | |
Collapse
|
67
|
Moncini S, Bevilacqua A, Venturin M, Fallini C, Ratti A, Nicolin A, Riva P. The 3' untranslated region of human Cyclin-Dependent Kinase 5 Regulatory subunit 1 contains regulatory elements affecting transcript stability. BMC Mol Biol 2007; 8:111. [PMID: 18053171 PMCID: PMC2222623 DOI: 10.1186/1471-2199-8-111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 12/03/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CDK5R1 plays a central role in neuronal migration and differentiation during central nervous system development. CDK5R1 has been implicated in neurodegenerative disorders and proposed as a candidate gene for mental retardation. The remarkable size of CDK5R1 3'-untranslated region (3'-UTR) suggests a role in post-transcriptional regulation of CDK5R1 expression. RESULTS The bioinformatic study shows a high conservation degree in mammals and predicts several AU-Rich Elements (AREs). The insertion of CDK5R1 3'-UTR into luciferase 3'-UTR causes a decreased luciferase activity in four transfected cell lines. We identified 3'-UTR subregions which tend to reduce the reporter gene expression, sometimes in a cell line-dependent manner. In most cases the quantitative analysis of luciferase mRNA suggests that CDK5R1 3'-UTR affects mRNA stability. A region, leading to a very strong mRNA destabilization, showed a significantly low half-life, indicating an accelerated mRNA degradation. The 3' end of the transcript, containing a class I ARE, specifically displays a stabilizing effect in neuroblastoma cell lines. We also observed the interaction of the stabilizing neuronal RNA-binding proteins ELAV with the CDK5R1 transcript in SH-SY5Y cells and identified three 3'-UTR sub-regions showing affinity for ELAV proteins. CONCLUSION Our findings evince the presence of both destabilizing and stabilizing regulatory elements in CDK5R1 3'-UTR and support the hypothesis that CDK5R1 gene expression is post-transcriptionally controlled in neurons by ELAV-mediated mechanisms. This is the first evidence of the involvement of 3'-UTR in the modulation of CDK5R1 expression. The fine tuning of CDK5R1 expression by 3'-UTR may have a role in central nervous system development and functioning, with potential implications in neurodegenerative and cognitive disorders.
Collapse
Affiliation(s)
- Silvia Moncini
- Department of Biology and Genetics, Medical Faculty, University of Milan, Via Viotti 3/5, 20133 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
68
|
Sathyan P, Golden HB, Miranda RC. Competing interactions between micro-RNAs determine neural progenitor survival and proliferation after ethanol exposure: evidence from an ex vivo model of the fetal cerebral cortical neuroepithelium. J Neurosci 2007; 27:8546-57. [PMID: 17687032 PMCID: PMC2915840 DOI: 10.1523/jneurosci.1269-07.2007] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 06/17/2007] [Accepted: 06/26/2007] [Indexed: 12/28/2022] Open
Abstract
The fetal brain is sensitive to a variety of teratogens, including ethanol. We showed previously that ethanol induced mitosis and stem cell maturation, but not death, in fetal cerebral cortex-derived progenitors. We tested the hypothesis that micro-RNAs (miRNAs) could mediate the teratogenic effects of ethanol in a fetal mouse cerebral cortex-derived neurosphere culture model. Ethanol, at a level attained by alcoholics, significantly suppressed the expression of four miRNAs, miR-21, -335, -9, and -153, whereas a lower ethanol concentration, attainable during social drinking, induced miR-335 expression. A GABA(A) receptor-dependent mechanism mediated miR-21, but not miR-335 suppression, suggesting that divergent mechanisms regulate ethanol-sensitive miRNAs. Antisense-mediated suppression of miR-21 expression resulted in apoptosis, suggesting that miR-21 is an antiapoptotic factor. miR-335 knockdown promoted cell proliferation and prevented death induced by concurrently suppressing miR-21, indicating that miR-335 is a proapoptotic, antimitogenic factor whose actions are antagonistic to miR-21. Computational analyses identified two genes, Jagged-1, a Notch-receptor ligand, and embryonic-lethal abnormal vision, Drosophila-like 2 (ELAVL2), a brain-specific regulator of RNA stability, as presumptive targets of three of four ethanol-sensitive micro-RNAs. Combined knockdown of miR-335, -21, and -153 significantly increased Jagged-1 mRNA. Furthermore, ethanol induced both Jagged-1 and ELAVL2 mRNA. The collective suppression of micro-RNAs is consistent with ethanol induction of cell cycle and neuroepithelial maturation in the absence of apoptosis. These data identify a role for micro-RNAs as epigenetic intermediaries, which permit teratogens to shape complex, divergent developmental processes, and additionally demonstrate that coordinately regulated miRNAs exhibit both functional synergy and antagonism toward each other.
Collapse
Affiliation(s)
- Pratheesh Sathyan
- Department Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Texas 77843-1114
| | - Honey B. Golden
- Department Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Texas 77843-1114
| | - Rajesh C. Miranda
- Department Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Texas 77843-1114
| |
Collapse
|
69
|
Wilson JM, Sato K, Chernoff EAG, Belecky-Adams TL. Expression patterns of chick Musashi-1 in the developing nervous system. Gene Expr Patterns 2007; 7:817-25. [PMID: 17544341 DOI: 10.1016/j.modgep.2007.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 03/26/2007] [Accepted: 04/15/2007] [Indexed: 10/23/2022]
Abstract
Vertebrate homologues of musashi have recently been referred to as neural stem cell markers because of their expression patterns and RNA-binding interactions. In the context of the notch signaling pathway, Musashi-1 (Msi-1) is a regulator of neural cell generation, cooperating with notch to maintain mitosis. In an effort to identify definitive stem cell markers of the neural retina, a portion of the Msi-1 cDNA was cloned, and the expression of Msi-1 in the chick eye was analyzed. Using an Msi-1-specific antibody and RNA probe, we show that expression of Msi-1 in the early neural tube is consistent with neural stem identity. In the neural retina, expression starts shortly before embryonic day 3 (E3) and continues up to and including E18. A BrdU incorporation assay shows Msi-1 to be found in both proliferating and differentiating cells of E5 neural retina. At E8 (when proliferation is complete in the fundus of the retina) and E18 (mature retina) Msi-1 expression was found in the ciliary marginal zone (CMZ) as well as in a subpopulation of differentiated cells, including photoreceptors and ganglion cells.
Collapse
Affiliation(s)
- Jonathan M Wilson
- Department of Biology and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
70
|
Abstract
This review addresses the scope of influence of mRNA decay on cellular functions and its potential role in normal and malignant hematopoiesis. Evidence is emerging that leukemic oncogenes and hematopoietic cytokines interact with mRNA decay pathways. These pathways can co-regulate functionally related genes through specific motifs in the 3'-untranslated region of targeted transcripts. The steps that link external stimuli to transcript turnover are not fully understood, but include subcellular relocalization or post-transcriptional modification of specific transcript-stabilizing or -destabilizing proteins. Improper functioning of these regulators of mRNA turnover can impede normal cellular differentiation or promote cancers. By delineating how subsets of transcripts decay in synchrony during normal hematopoiesis, it may be possible to determine whether this post-transcriptional regulatory pathway is hijacked in leukemogenesis.
Collapse
Affiliation(s)
- R A Steinman
- University of Pittsburgh Cancer Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
71
|
Bellavia D, Mecarozzi M, Campese AF, Grazioli P, Talora C, Frati L, Gulino A, Screpanti I. Notch3 and the Notch3-upregulated RNA-binding protein HuD regulate Ikaros alternative splicing. EMBO J 2007; 26:1670-80. [PMID: 17332745 PMCID: PMC1829386 DOI: 10.1038/sj.emboj.7601626] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 02/05/2007] [Indexed: 11/08/2022] Open
Abstract
Constitutive activation of the transmembrane receptor, Notch3, and loss of function of the hematopoietic transcription repressor, Ikaros (IK), play direct roles in T-cell differentiation and leukemogenesis that are dependent on pre-T-cell receptor (pre-TCR) signaling. We demonstrate the occurrence of crosstalk between Notch3 and IK that results in transcriptional regulation of the gene encoding the pTalpha chain of the pre-TCR. We also show that, in the presence of the pre-TCR, constitutive activation of Notch3 in thymocytes causes increased expression of dominantnegative non-DNA-binding IK isoforms, which are able to restrain the IK inhibition of Notch3's transcriptional activation of pTalpha. This effect appears to be mediated by Notch3's pre-TCR-dependent upregulation of the RNA-binding protein, HuD. Notch3 signaling thus appears to play a critical role in the diminished IK activity described in several lymphoid leukemias. By exerting transcription-activating and transcription-repressing effects on the pTalpha promoter, Notch3 and IK cooperate in the fine-tuning of pre-TCR expression and function, which has important implications for the regulation of thymocyte differentiation and proliferation.
Collapse
Affiliation(s)
- Diana Bellavia
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
| | - Marco Mecarozzi
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
| | - Antonio F Campese
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
| | - Paola Grazioli
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
| | - Claudio Talora
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
| | | | - Alberto Gulino
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
- Neuromed Institute, Pozzilli, Italy
| | - Isabella Screpanti
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, University ‘La Sapienza', Roma, Italy
- Laboratory of Molecular Pathology, Dipartimento di Medicina Sperimentale, University ‘La Sapienza', Viale Regina Elena 324, Roma 00161, Italy. Tel.: +39 06 44700816; Fax: +39 06 4464129; E-mail:
| |
Collapse
|