51
|
Sukprasansap M, Chanvorachote P, Tencomnao T. Cleistocalyx nervosum var. paniala berry fruit protects neurotoxicity against endoplasmic reticulum stress-induced apoptosis. Food Chem Toxicol 2017; 103:279-288. [PMID: 28315776 DOI: 10.1016/j.fct.2017.03.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/05/2017] [Accepted: 03/13/2017] [Indexed: 12/29/2022]
Abstract
Oxidative and endoplasmic reticulum (ER) stresses cause neuronal damage leading to neurodegenerative disorders. Cleistocalyx nervosum var. paniala (CNP) berry fruit has been shown to possess powerful antioxidant properties. Here, we investigated the neuroprotective effect of CNP extract against glutamate-mediated oxidative/ER stress-induced cell death in mouse hippocampal neuronal HT22 cells. CNP extract was clarified for its radical scavenging activities, total phenolic and anthocyanin contents. The key anthocyanin cyanidin-3-glucoside was used as a marker to standardize the extract used in the study. We found that pretreated cells with CNP extract (0.05-1 μg/ml) prevented neuronal cell death in response to 5 mM glutamate evaluated by cell viability MTT, LDH and apoptosis/necrosis Annexin V/propidium iodide co-staining assays. For mechanistic approach, glutamate-induced cell death through reactive oxygen species (ROS)-mediated ER stress pathways, indicating the increase of ROS and ER stress signature molecules including calpain, caspases-12 and C/EBP homologous proteins (CHOP). CNP extract inhibited ROS production. Moreover, the extract also suppressed the specific-ER stress apoptotic proteins level in glutamate-induced cells by upregulating the gene expression of cellular antioxidant enzymes (SODs, CAT, GPx and GSTs). Taken together, our results provide information about and the molecular mechanism of CNP extract as a promising neuroprotectant and antioxidant.
Collapse
Affiliation(s)
- Monruedee Sukprasansap
- Ph.D. program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Pathumwan, 10330 Bangkok, Thailand.
| |
Collapse
|
52
|
Chowdhury S, Sinha K, Banerjee S, Sil PC. Taurine protects cisplatin induced cardiotoxicity by modulating inflammatory and endoplasmic reticulum stress responses. Biofactors 2016; 42:647-664. [PMID: 27297806 DOI: 10.1002/biof.1301] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/22/2016] [Accepted: 05/09/2016] [Indexed: 11/11/2022]
Abstract
Oxidative stress, ER stress, inflammation, and apoptosis results in the pathogenesis of cisplatin-induced cardiotoxicity. The present study was designed to investigate the signaling mechanisms involved in the ameliorating effect of taurine, a conditionally essential amino acid, against cisplatin-mediated cardiac ER stress dependent apoptotic death and inflammation. Mice were simultaneously treated with taurine (150 mg kg-1 body wt, i.p.) and cisplatin (10 mg kg-1 body wt, i.p.) for a week. Cisplatin exposure significantly altered serum creatine kinase and troponin T levels. In addition, histological studies revealed disintegration in the normal radiation pattern of cardiac muscle fibers. However, taurine administration could abate such adverse effects of cisplatin. Taurine administration significantly mitigated the reactive oxygen species production, alleviated the overexpression of nuclear factor-κB (NF-κB), and inhibited the elevation of proinflammatoy cytokines, adhesion molecules, and chemokines. Cisplatin exposure resulted in the unfolded protein response (UPR)-regulated CCAAT/enhancer binding protein (CHOP) up-regulation, induction of GRP78: a marker of ER stress and eIF2α signaling. Increase in calpain-1 expression level, activation of caspase-12 and caspase-3, cleavage of the PARP protein as well as the inhibition of antiapoptotic protein Bcl-2 were reflected on cisplatin-triggered apoptosis. Taurine could, however, combat against such cisplatin induced cardiac-abnormalities. The above mentioned findings suggest that taurine plays a beneficial role in providing protection against cisplatin-induced cardiac damage by modulating inflammatory responses and ER stress. © 2016 BioFactors, 42(6):647-664, 2016.
Collapse
Affiliation(s)
- Sayantani Chowdhury
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, India
| | - Krishnendu Sinha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, India
| | - Sharmistha Banerjee
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, India
| |
Collapse
|
53
|
Lin T, Lee JE, Oqani RK, Kim SY, Cho ES, Jeong YD, Baek JJ, Jin DI. Tauroursodeoxycholic acid improves pre-implantation development of porcine SCNT embryo by endoplasmic reticulum stress inhibition. Reprod Biol 2016; 16:269-278. [PMID: 27765486 DOI: 10.1016/j.repbio.2016.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/03/2016] [Accepted: 10/08/2016] [Indexed: 10/20/2022]
Abstract
The aim of this study is to investigate whether endoplasmic reticulum (ER) stress attenuation could improve porcine somatic cell nuclear transfer (SCNT) embryo developmental competence. We treated porcine SCNT embryos with TUDCA (tauroursodeoxycholic acid, an inhibitor of ER stress) and/or TM (tunicamycin, an ER stress inducer), and examined embryonic developmental potential, embryo quality, the levels of ER stress markers (XBP1 protein and mRNA) and apoptosis-related-genes (BAX and BCL2 mRNA). Immunostaining detected X-box-binding protein (XBP1), a key gene regulator during ER stress, at all stages of SCNT embryo development. Embryo development analysis revealed that TUDCA treatment markedly increased (p<0.05) blastocyst formation rate, total cell number and inner cell mass (ICM) cell number compared to untreated control group. The TUDCA and TM groups showed significant alterations in XBP1 protein and XBP1-s mRNA levels compared to controls (lower and higher, respectively; p<0.05). Also, TUDCA treatment reduced oxidative stress by up-regulation of the antioxidant, GSH. TUNEL assay showed that TUDCA treatment significantly reduced apoptosis in porcine SCNT blastocysts confirmed by decreased pro-apoptotic BAX and increased anti-apoptotic BCL2 mRNA levels. Collectively, our results indicated that TUDCA can enhance the developmental potential of porcine SCNT embryos by attenuating ER-stress and reducing apoptosis.
Collapse
Affiliation(s)
- Tao Lin
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jae Eun Lee
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Reza K Oqani
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon 34134, Republic of Korea
| | - So Yeon Kim
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun Seok Cho
- Department of Animal Resource Development, National Institute of Animal Science, Cheonan, 31001, Republic of Korea
| | - Yong Dae Jeong
- Department of Animal Resource Development, National Institute of Animal Science, Cheonan, 31001, Republic of Korea
| | - Jun Jong Baek
- Department of Animal Improvement, Chungnam Livestock Institute, Cheongyang-gun, Chungman, 33350, Republic of Korea
| | - Dong Il Jin
- Department of Animal Science & Biotechnology, Research Center for Transgenic Cloned Pigs, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
54
|
Bahar E, Kim H, Yoon H. ER Stress-Mediated Signaling: Action Potential and Ca(2+) as Key Players. Int J Mol Sci 2016; 17:ijms17091558. [PMID: 27649160 PMCID: PMC5037829 DOI: 10.3390/ijms17091558] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 01/24/2023] Open
Abstract
The proper functioning of the endoplasmic reticulum (ER) is crucial for multiple cellular activities and survival. Disturbances in the normal ER functions lead to the accumulation and aggregation of unfolded proteins, which initiates an adaptive response, the unfolded protein response (UPR), in order to regain normal ER functions. Failure to activate the adaptive response initiates the process of programmed cell death or apoptosis. Apoptosis plays an important role in cell elimination, which is essential for embryogenesis, development, and tissue homeostasis. Impaired apoptosis can lead to the development of various pathological conditions, such as neurodegenerative and autoimmune diseases, cancer, or acquired immune deficiency syndrome (AIDS). Calcium (Ca(2+)) is one of the key regulators of cell survival and it can induce ER stress-mediated apoptosis in response to various conditions. Ca(2+) regulates cell death both at the early and late stages of apoptosis. Severe Ca(2+) dysregulation can promote cell death through apoptosis. Action potential, an electrical signal transmitted along the neurons and muscle fibers, is important for conveying information to, from, and within the brain. Upon the initiation of the action potential, increased levels of cytosolic Ca(2+) (depolarization) lead to the activation of the ER stress response involved in the initiation of apoptosis. In this review, we discuss the involvement of Ca(2+) and action potential in ER stress-mediated apoptosis.
Collapse
Affiliation(s)
- Entaz Bahar
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea.
| | - Hyongsuk Kim
- Department of Electronics Engineering, Chonbuk National University, Jeonju 54896, Jeonbuk, Korea.
| | - Hyonok Yoon
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea.
| |
Collapse
|
55
|
Ye W, Zhu S, Liao C, Xiao J, Wu Q, Lin Z, Chen J. Advanced oxidation protein products induce apoptosis of human chondrocyte through reactive oxygen species-mediated mitochondrial dysfunction and endoplasmic reticulum stress pathways. Fundam Clin Pharmacol 2016; 31:64-74. [PMID: 27483042 DOI: 10.1111/fcp.12229] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 07/04/2016] [Accepted: 07/29/2016] [Indexed: 12/25/2022]
Abstract
Advanced oxidation production products (AOPPs) have been confirmed to accumulate in patients with rheumatoid arthritis (RA). Previous study demonstrated that AOPPs could accelerate cartilage destruction in rabbit arthritis model. However, the effect of AOPP stimulation on apoptosis of human chondrocyte and the underlying mechanisms remains unclear. This study demonstrated that exposure of chondrocyte to AOPPs resulted in cell apoptosis. AOPP stimulation triggered reactive oxygen species (ROS) production, which induced mitochondrial dysfunction and endoplasmic reticulum stress (ER stress) resulted in caspase activation. Furthermore, an antioxidant, N-acetylcysteine, markedly blocked these signals. Our study demonstrated that AOPPs induce apoptosis via ROS-related mitochondria- and ER-dependent signals in human chondrocyte. Targeting AOPP-triggered ROS generation might be as a promising option for patients with RA.
Collapse
Affiliation(s)
- Wenbin Ye
- Department of Orthopaedic Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Siyuan Zhu
- Department of Orthopaedic Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Congrui Liao
- Department of Orthopaedic Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Jun Xiao
- Department of Orthopedic Joint Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Qian Wu
- Department of Orthopaedic Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Zhen Lin
- Department of Orthopaedic Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| | - Jianting Chen
- Department of Orthopaedic Spinal Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, China
| |
Collapse
|
56
|
Barrera MJ, Aguilera S, Castro I, Cortés J, Bahamondes V, Quest AFG, Molina C, González S, Hermoso M, Urzúa U, Leyton C, González MJ. Pro-inflammatory cytokines enhance ERAD and ATF6α pathway activity in salivary glands of Sjögren's syndrome patients. J Autoimmun 2016; 75:68-81. [PMID: 27461470 DOI: 10.1016/j.jaut.2016.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/21/2016] [Accepted: 07/15/2016] [Indexed: 12/12/2022]
Abstract
Salivary gland (SG) acinar-cells are susceptible to endoplasmic reticulum (ER) stress related to their secretory activity and the complexity of synthesized secretory products. SGs of Sjögren's syndrome patients (SS)-patients show signs of inflammation and altered proteostasis, associated with low IRE1α/XBP-1 pathway activity without avert increases in apoptosis. Acinar-cells may avoid apoptosis by activation of the ATF6α pathway and ER-associated protein degradation (ERAD). The aim of this study was to evaluate the role of pro-inflammatory cytokines in ATF6α pathway/ERAD activation and cell viability in labial salivary glands (LSG) of SS-patients. In biopsies from SS-patients increased ATF6α signaling pathway activity, as evidenced by generation of the ATF6f cleavage fragment, and increased expression of ERAD machinery components, such as EDEM1, p97, SEL1L, gp78, UBE2J1, UBE2G2, HERP and DERLIN1, were observed compared to controls. Alternatively, for pro- (active-caspase-3) and anti-apoptotic (cIAP2) markers no significant difference between the two experimental groups was detected. Increased presence of ATF6f and ERAD molecules correlated significantly with increased expression of pro-inflammatory cytokines. These observations were corroborated in vitro in 3D-acini treated with TNF-α and/or IFN-γ, where an increase in the expression and activation of the ATF6α sensor and ERAD machinery components was detected under ER stress conditions, while changes in cell viability and caspase-3 activation were not observed. Cytokine stimulation protected cells from death when co-incubated with an ERAD machinery inhibitor. Alternatively, when cytokines were eliminated from the medium prior to ERAD inhibition, cell death increased, suggesting that the presence of pro-inflammatory cytokines in the medium is essential to maintain cell viability. In conclusion, the ATF6α pathway and the ERAD machinery are active in LSG of SS-patients. Both were also activated by TNF-α and IFN-γ in vitro in 3D-acini and aided in preventing apoptosis. IFN-γ levels were elevated in SS-patients and UPR responses triggered in vitro by this cytokine closely matched those observed in LSG from SS-patients, suggesting that cytokines may induce ER stress.
Collapse
Affiliation(s)
- María-José Barrera
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio Aguilera
- Departamento de Reumatología, Clínica INDISA, Santiago, Chile
| | - Isabel Castro
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan Cortés
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Verónica Bahamondes
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrew F G Quest
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Claudio Molina
- Escuela Dental, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Sergio González
- Escuela Dental, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Marcela Hermoso
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ulises Urzúa
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cecilia Leyton
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - María-Julieta González
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
57
|
Tripathi R, Singh P, Singh A, Chagtoo M, Khan S, Tiwari S, Agarwal G, Meeran SM, Godbole MM. Zoledronate and Molecular Iodine Cause Synergistic Cell Death in Triple Negative Breast Cancer through Endoplasmic Reticulum Stress. Nutr Cancer 2016; 68:679-88. [DOI: 10.1080/01635581.2016.1158293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
58
|
Robinson KS, Aw R. The Commonalities in Bacterial Effector Inhibition of Apoptosis. Trends Microbiol 2016; 24:665-680. [PMID: 27117049 DOI: 10.1016/j.tim.2016.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/13/2016] [Accepted: 04/01/2016] [Indexed: 02/09/2023]
Abstract
Antiapoptotic pathways of the host cell play integral roles in bacterial pathogenesis, with inhibition of those pathways resulting in halted disease pathology. Certain pathogens have developed elegant mechanisms to modulate the fate of the host cell, many of which target novel pathways that are poorly understood in the context of the cell biology. Bacterial pathogenesis research not only promotes the understanding of the role of antiapoptotic pathways in bacterial infection, but has a broader context in understanding the epitome of human disease, that is, developing the understanding of tumorigenic or inflammatory pathways. Here we review host antiapoptotic signalling pathways manipulated by translocated bacterial effectors that propagate the disease state, drawing common parallels and showing the novel differences.
Collapse
Affiliation(s)
- Keith S Robinson
- Department of Life Science, Imperial College London, London, UK.
| | - Rochelle Aw
- Department of Life Science, Imperial College London, London, UK
| |
Collapse
|
59
|
Park SH, Kang MK, Choi YJ, Kim YH, Antika LD, Lim SS, Kang YH. Dietary compound α-asarone alleviates ER stress-mediated apoptosis in 7β-hydroxycholesterol-challenged macrophages. Mol Nutr Food Res 2016; 60:1033-47. [DOI: 10.1002/mnfr.201500750] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/26/2015] [Accepted: 02/03/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Sin-Hye Park
- Department of Food Science and Nutrition; Hallym University; Chuncheon Korea
| | - Min-Kyung Kang
- Department of Food Science and Nutrition; Hallym University; Chuncheon Korea
| | - Yean-Jung Choi
- Department of Food Science and Nutrition; Hallym University; Chuncheon Korea
| | - Yun-Ho Kim
- Department of Food Science and Nutrition; Hallym University; Chuncheon Korea
| | - Lucia Dwi Antika
- Department of Food Science and Nutrition; Hallym University; Chuncheon Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition; Hallym University; Chuncheon Korea
| | - Young-Hee Kang
- Department of Food Science and Nutrition; Hallym University; Chuncheon Korea
| |
Collapse
|
60
|
Cheng JS, Chou CT, Liu YY, Sun WC, Shieh P, Kuo DH, Kuo CC, Jan CR, Liang WZ. The effect of oleuropein from olive leaf (Olea europaea) extract on Ca²⁺ homeostasis, cytotoxicity, cell cycle distribution and ROS signaling in HepG2 human hepatoma cells. Food Chem Toxicol 2016; 91:151-66. [PMID: 27016494 DOI: 10.1016/j.fct.2016.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/23/2016] [Accepted: 03/21/2016] [Indexed: 12/28/2022]
Abstract
Oleuropein, a phenolic compound found in the olive leaf (Olea europaea), has been shown to have biological activities in different models. However, the effects of oleuropein on Ca(2+) homeostasis, cytotoxicity, cell cycle distribution and ROS signaling in liver cells have not been analyzed. Oleuropein induced [Ca(2+)]i rises only in HepG2 cells but not in AML12, HA22T or HA59T cells due to the different status of 3-hydroxy-3-methylglutaryl-CoA reductase expression. In HepG2 cells, this Ca(2+) signaling response was reduced by removing extracellular Ca(2+), and was inhibited by the store-operated Ca(2+) channel blockers 2-APB and SKF96365. In Ca(2+)-free medium, pretreatment with the ER Ca(2+) pump inhibitor thapsigargin abolished oleuropein-induced [Ca(2+)]i rises. Oleuropein induced cell cycle arrest which was associated with the regulation of p53, p21, CDK1 and cyclin B1 levels. Furthermore, oleuropein elevated intracellular ROS levels but reduced GSH levels. Treatment with the intracellular Ca(2+) chelator BAPTA-AM or the antioxidant NAC partially reversed oleuropein-induced cytotoxicity. Together, in HepG2 cells, oleuropein induced [Ca(2+)]i rises by releasing Ca(2+) from the ER and causing Ca(2+) influx through store-operated Ca(2+) channels. Moreover, oleuropein induced Ca(2+)-associated cytotoxicity that involved ROS signaling and cell cycle arrest. This compound may offer a potential therapy for treatment of human hepatoma.
Collapse
Affiliation(s)
- Jin-Shiung Cheng
- Department of Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Chiang-Ting Chou
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi 613, Taiwan; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chia-Yi 613, Taiwan
| | - Yuan-Yuarn Liu
- Division of Trauma, Department of Emergency, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Wei-Chih Sun
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Pochuen Shieh
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan
| | - Daih-Huang Kuo
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan
| | - Chun-Chi Kuo
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung 907, Taiwan
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| |
Collapse
|
61
|
KoraMagazi A, Wang D, Yousef B, Guerram M, Yu F. Rhein triggers apoptosis via induction of endoplasmic reticulum stress, caspase-4 and intracellular calcium in primary human hepatic HL-7702 cells. Biochem Biophys Res Commun 2016; 473:230-236. [PMID: 27003256 DOI: 10.1016/j.bbrc.2016.03.084] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/18/2016] [Indexed: 12/31/2022]
Abstract
Rhein is an active component of rhubarb; a traditional Chinese medicine reported to induce apoptosis and cause liver toxicity. However, rhein's apoptotic-inducing effects, as well as its molecular mechanisms of action on hepatic cells need to be further explored. In the present study, rhein was found to trigger apoptosis in primary human hepatic HL-7702 cells as showed by annexin V/PI double staining assay and nuclear morphological changes demonstrated by Hoechst 33258 staining. Moreover, it was observed that the mechanism implicated in rhein-induced apoptosis was caspase-dependent, presumably via ER-stress associated pathways, as illustrated by up-regulation of glucose-regulated protein 78 (GRP 78), PKR-like ER kinase (PERK), C-Jun N-terminal kinase (JNK) and CCAAT/enhancer-binding protein homologous protein (CHOP). Meanwhile, caspase-4 as a hallmark of ER-stress, was also showed to be activated following by caspase-3 activation. Furthermore, rhein also promoted intracellular elevation of calcium that contributed in apoptosis induction. Interestingly, pre-treatment with calpain inhibitor I reduced the effects of rhein on apoptosis induction and JNK activation. These data suggested that rhein-induced apoptosis through ER-stress and elevated intracellular calcium level in HL-7702 cells.
Collapse
Affiliation(s)
- Arouna KoraMagazi
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Dandan Wang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Bashir Yousef
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Mounia Guerram
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Feng Yu
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China; Department of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
62
|
Marchildon F, Fu D, Lala-Tabbert N, Wiper-Bergeron N. CCAAT/enhancer binding protein beta protects muscle satellite cells from apoptosis after injury and in cancer cachexia. Cell Death Dis 2016; 7:e2109. [PMID: 26913600 PMCID: PMC4849162 DOI: 10.1038/cddis.2016.4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/22/2015] [Accepted: 12/27/2015] [Indexed: 12/28/2022]
Abstract
CCAAT/enhancer binding protein beta (C/EBPβ), a transcription factor expressed in muscle satellite cells (SCs), inhibits the myogenic program and is downregulated early in differentiation. In a conditional null model in which C/EBPβ expression is knocked down in paired box protein 7+ (Pax7+) SCs, cardiotoxin (CTX) injury is poorly repaired, although muscle regeneration is efficient in control littermates. While myoblasts lacking C/EBPβ can differentiate efficiently in culture, after CTX injury poor regeneration was attributed to a smaller than normal Pax7+ population, which was not due to a failure of SCs to proliferate. Rather, the percentage of apoptotic SCs was increased in muscle lacking C/EBPβ. Given that an injury induced by BaCl2 is repaired with greater efficiency than controls in the absence of C/EBPβ, we investigated the inflammatory response following BaCl2 and CTX injury and found that the levels of interleukin-1β (IL-1β), a proinflammatory cytokine, were robustly elevated following CTX injury and could induce C/EBPβ expression in myoblasts. High levels of C/EBPβ expression in myoblasts correlated with resistance to apoptotic stimuli, while its loss increased sensitivity to thapsigargin-induced cell death. Using cancer cachexia as a model for chronic inflammation, we found that C/EBPβ expression was increased in SCs and myoblasts of tumor-bearing cachectic animals. Further, in cachectic conditional knockout animals lacking C/EBPβ in Pax7+ cells, the SC compartment was reduced because of increased apoptosis, and regeneration was impaired. Our findings indicate that the stimulation of C/EBPβ expression by IL-1β following muscle injury and in cancer cachexia acts to promote SC survival, and is therefore a protective mechanism for SCs and myoblasts in the face of inflammation.
Collapse
Affiliation(s)
- F Marchildon
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - D Fu
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - N Lala-Tabbert
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - N Wiper-Bergeron
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
63
|
Wan Nor Hafiza WAG, Yazan LS, Tor YS, Foo JB, Armania N, Rahman HS. Endoplasmic reticulum stress-induced apoptotic pathway and mitochondrial dysregulation in HeLa cells treated with dichloromethane extract of Dillenia suffruticosa. Pharmacogn Mag 2016; 12:S86-95. [PMID: 27041866 PMCID: PMC4792007 DOI: 10.4103/0973-1296.176107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/18/2014] [Indexed: 01/21/2023] Open
Abstract
Ethyl acetate and dichloromethane extract of Dillenia suffruticosa (EADS and DCMDS, respectively) can be a potential anticancer agent. The effects of EADS and DCMDS on the growth of HeLa cervical cancer cells and the expression of apoptotic-related proteins had been investigated in vitro. Cytotoxicity of the extracts toward the cells was determined by 5-diphenyltetrazolium bromide assay, the effects on cell cycle progression and the mode of cell death were analyzed by flow cytometry technique, while the effects on apoptotic-related genes and proteins were evaluated by quantitative real-time polymerase chain reaction, and Western blot and enzyme-linked immunosorbent assay, respectively. Treatment with DCMDS inhibited (P < 0.05) proliferation and induced apoptosis in HeLa cells. The expression of cyclin B1 was downregulated that led to G2/M arrest in the cells after treatment with DCMDA. In summary, DCMDS induced apoptosis in HeLa cells via endoplasmic reticulum stress-induced apoptotic pathway and dysregulation of mitochondria. The data suggest the potential application of DCMDS in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Wan Abd Ghani Wan Nor Hafiza
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; College of Medical Laboratory Technology, Institute for Medical Research, Jin Pahang, 50588 Kuala Lumpur, Malaysia
| | - Latifah Saiful Yazan
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Molecular Biomedicine, Institute of Bioscience, 43400 UPM Serdang, Selangor, Malaysia
| | - Yin Sim Tor
- Laboratory of Molecular Biomedicine, Institute of Bioscience, 43400 UPM Serdang, Selangor, Malaysia
| | - Jhi Biau Foo
- Laboratory of Molecular Biomedicine, Institute of Bioscience, 43400 UPM Serdang, Selangor, Malaysia
| | - Nurdin Armania
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Laboratory of Molecular Biomedicine, Institute of Bioscience, 43400 UPM Serdang, Selangor, Malaysia
| | - Heshu Sulaiman Rahman
- Department of Microbiology and Pathology, Faculty of Veterinary Medicine, 43400 UPM Serdang, Selangor, Malaysia; UPM-MAKNA Cancer Research Laboratory, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
64
|
Testosterone production by a Leydig tumor cell line is suppressed by hyperthermia-induced endoplasmic reticulum stress in mice. Life Sci 2016; 146:184-91. [DOI: 10.1016/j.lfs.2015.12.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 11/21/2022]
|
65
|
Wan Y, Garner J, Wu N, Phillip L, Han Y, McDaniel K, Annable T, Zhou T, Francis H, Glaser S, Huang Q, Alpini G, Meng F. Role of stem cells during diabetic liver injury. J Cell Mol Med 2016; 20:195-203. [PMID: 26645107 PMCID: PMC4727564 DOI: 10.1111/jcmm.12723] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/24/2015] [Indexed: 12/18/2022] Open
Abstract
Diabetes mellitus is one of the most severe endocrine metabolic disorders in the world that has serious medical consequences with substantial impacts on the quality of life. Type 2 diabetes is one of the main causes of diabetic liver diseases with the most common being non-alcoholic fatty liver disease. Several factors that may explain the mechanisms related to pathological and functional changes of diabetic liver injury include: insulin resistance, oxidative stress and endoplasmic reticulum stress. The realization that these factors are important in hepatocyte damage and lack of donor livers has led to studies concentrating on the role of stem cells (SCs) in the prevention and treatment of liver injury. Possible avenues that the application of SCs may improve liver injury include but are not limited to: the ability to differentiate into pancreatic β-cells (insulin producing cells), the contribution for hepatocyte regeneration, regulation of lipogenesis, glucogenesis and anti-inflammatory actions. Once further studies are performed to explore the underlying protective mechanisms of SCs and the advantages and disadvantages of its application, there will be a greater understand of the mechanism and therapeutic potential. In this review, we summarize the findings regarding the role of SCs in diabetic liver diseases.
Collapse
Affiliation(s)
- Ying Wan
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
- Academic Operations, Baylor Scott & White Healthcare, Temple, TX, USA
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research, Southern Medical University, Guangzhou, China
| | - Jessica Garner
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
- Academic Operations, Baylor Scott & White Healthcare, Temple, TX, USA
| | - Nan Wu
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
| | - Levine Phillip
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
- Academic Operations, Baylor Scott & White Healthcare, Temple, TX, USA
| | - Yuyan Han
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
| | - Kelly McDaniel
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
- Academic Operations, Baylor Scott & White Healthcare, Temple, TX, USA
| | - Tami Annable
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Academic Operations, Baylor Scott & White Healthcare, Temple, TX, USA
| | - Tianhao Zhou
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
- Academic Operations, Baylor Scott & White Healthcare, Temple, TX, USA
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
- Academic Operations, Baylor Scott & White Healthcare, Temple, TX, USA
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
| | - Qiaobing Huang
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research, Southern Medical University, Guangzhou, China
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, TX, USA
- Department of Internal Medicine, Scott & White Digestive Disease Research Center, Texas A&M University Health Science Center and Baylor Scott & White Healthcare, Temple, TX, USA
- Academic Operations, Baylor Scott & White Healthcare, Temple, TX, USA
| |
Collapse
|
66
|
Srinivasan R, Henley BM, Henderson BJ, Indersmitten T, Cohen BN, Kim CH, McKinney S, Deshpande P, Xiao C, Lester HA. Smoking-Relevant Nicotine Concentration Attenuates the Unfolded Protein Response in Dopaminergic Neurons. J Neurosci 2016; 36:65-79. [PMID: 26740650 PMCID: PMC4701966 DOI: 10.1523/jneurosci.2126-15.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 01/01/2023] Open
Abstract
Retrospective epidemiological studies show an inverse correlation between susceptibility to Parkinson's disease and a person's history of tobacco use. Animal model studies suggest nicotine as a neuroprotective agent and nicotinic acetylcholine (ACh) receptors (nAChRs) as targets for neuroprotection, but the underlying neuroprotective mechanism(s) are unknown. We cultured mouse ventral midbrain neurons for 3 weeks. Ten to 20% of neurons were dopaminergic (DA), revealed by tyrosine hydroxylase (TH) immunoreactivity. We evoked mild endoplasmic reticulum (ER) stress with tunicamycin (Tu), producing modest increases in the level of nuclear ATF6, phosphorylated eukaryotic initiation factor 2α, nuclear XBP1, and the downstream proapoptotic effector nuclear C/EBP homologous protein. We incubated cultures for 2 weeks with 200 nm nicotine, the approximate steady-state concentration between cigarette smoking or vaping, or during nicotine patch use. Nicotine incubation suppressed Tu-induced ER stress and the unfolded protein response (UPR). Study of mice with fluorescent nAChR subunits showed that the cultured TH+ neurons displayed α4, α6, and β3 nAChR subunit expression and ACh-evoked currents. Gene expression profile in cultures from TH-eGFP mice showed that the TH+ neurons also express several other genes associated with DA release. Nicotine also upregulated ACh-induced currents in DA neurons by ∼2.5-fold. Thus, nicotine, at a concentration too low to activate an appreciable fraction of plasma membrane nAChRs, induces two sequelae of pharmacological chaperoning in the ER: UPR suppression and nAChR upregulation. Therefore, one mechanism of neuroprotection by nicotine is pharmacological chaperoning, leading to UPR suppression. Measuring this pathway may help in assessing neuroprotection. SIGNIFICANCE STATEMENT Parkinson's disease (PD) cannot yet be cured or prevented. However, many retrospective epidemiological studies reveal that PD is diagnosed less frequently in tobacco users. Existing programs attempting to develop nicotinic drugs that might exert this apparent neuroprotective effect are asking whether agonists, antagonists, partial agonists, or channel blockers show the most promise. The underlying logic resembles the previous development of varenicline for smoking cessation. We studied whether, and how, nicotine produces neuroprotective effects in cultured dopaminergic neurons, an experimentally tractable, mechanistically revealing neuronal system. We show that nicotine, operating via nicotinic receptors, does protect these neurons against endoplasmic reticulum stress. However, the mechanism is probably "inside-out": pharmacological chaperoning in the endoplasmic reticulum. This cellular-level insight could help to guide neuroprotective strategies.
Collapse
Affiliation(s)
- Rahul Srinivasan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Beverley M Henley
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Brandon J Henderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Tim Indersmitten
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Bruce N Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Charlene H Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Sheri McKinney
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Purnima Deshpande
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Cheng Xiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
67
|
Rashid HO, Yadav RK, Kim HR, Chae HJ. ER stress: Autophagy induction, inhibition and selection. Autophagy 2015; 11:1956-1977. [PMID: 26389781 DOI: 10.1080/15548627.2015.1091141] [Citation(s) in RCA: 609] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) leads to stress conditions. To mitigate such circumstances, stressed cells activate a homeostatic intracellular signaling network cumulatively called the unfolded protein response (UPR), which orchestrates the recuperation of ER function. Macroautophagy (hereafter autophagy), an intracellular lysosome-mediated bulk degradation pathway for recycling and eliminating wornout proteins, protein aggregates, and damaged organelles, has also emerged as an essential protective mechanism during ER stress. These 2 systems are dynamically interconnected, and recent investigations have revealed that ER stress can either stimulate or inhibit autophagy. However, the stress-associated molecular cues that control the changeover switch between induction and inhibition of autophagy are largely obscure. This review summarizes the crosstalk between ER stress and autophagy and their signaling networks mainly in mammalian-based systems. Additionally, we highlight current knowledge on selective autophagy and its connection to ER stress.
Collapse
Affiliation(s)
- Harun-Or Rashid
- a Department of Pharmacology ; Medical School; Chonbuk National University
| | - Raj Kumar Yadav
- a Department of Pharmacology ; Medical School; Chonbuk National University
| | - Hyung-Ryong Kim
- b Department of Dental Pharmacology ; College of Dentistry; Wonkwang University
| | - Han-Jung Chae
- a Department of Pharmacology ; Medical School; Chonbuk National University
| |
Collapse
|
68
|
Girola N, Figueiredo CR, Farias CF, Azevedo RA, Ferreira AK, Teixeira SF, Capello TM, Martins EGA, Matsuo AL, Travassos LR, Lago JHG. Camphene isolated from essential oil of Piper cernuum (Piperaceae) induces intrinsic apoptosis in melanoma cells and displays antitumor activity in vivo. Biochem Biophys Res Commun 2015; 467:928-34. [PMID: 26471302 DOI: 10.1016/j.bbrc.2015.10.041] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 10/08/2015] [Indexed: 02/08/2023]
Abstract
Natural monoterpenes were isolated from the essential oil of Piper cernuum Vell. (Piperaceae) leaves. The crude oil and the individual monoterpenes were tested for cytotoxicity in human tumor cell lineages and B16F10-Nex2 murine melanoma cells. In the present work we demonstrate the activity of camphene against different cancer cells, with its mechanism of action being investigated in vitro and in vivo in murine melanoma. Camphene induced apoptosis by the intrinsic pathway in melanoma cells mainly by causing endoplasmic reticulum (ER) stress, with release of Ca(2+) together with HmgB1 and calreticulin, loss of mitochondrial membrane potential and up regulation of caspase-3 activity. Importantly, camphene exerted antitumor activity in vivo by inhibiting subcutaneous tumor growth of highly aggressive melanoma cells in a syngeneic model, suggesting a promising role of this compound in cancer therapy.
Collapse
Affiliation(s)
- Natalia Girola
- Experimental Oncology Unit (UNONEX), Federal University of São Paulo, SP, Brazil.
| | - Carlos R Figueiredo
- Experimental Oncology Unit (UNONEX), Federal University of São Paulo, SP, Brazil
| | - Camyla F Farias
- Experimental Oncology Unit (UNONEX), Federal University of São Paulo, SP, Brazil
| | - Ricardo A Azevedo
- Laboratory of Tumor Immunology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Adilson K Ferreira
- Laboratory of Tumor Immunology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Sarah F Teixeira
- Laboratory of Tumor Immunology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Tabata M Capello
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, SP, Brazil
| | | | - Alisson L Matsuo
- Interdepartmental Group of Health Economics (Grides), Federal University of São Paulo, SP, Brazil
| | - Luiz R Travassos
- Experimental Oncology Unit (UNONEX), Federal University of São Paulo, SP, Brazil
| | - João H G Lago
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, SP, Brazil
| |
Collapse
|
69
|
Wu K, Li N, Sun H, Xu T, Jin F, Nie J. Endoplasmic reticulum stress activation mediates Ginseng Rg3-induced anti-gallbladder cancer cell activity. Biochem Biophys Res Commun 2015; 466:369-75. [PMID: 26361144 DOI: 10.1016/j.bbrc.2015.09.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/05/2015] [Indexed: 11/30/2022]
Abstract
In the current study, we examined the potential effect of Ginsenoside Rg3 against gallbladder cancer cells, the underlying signaling mechanisms were also studied. We demonstrated that Rg3 exerted potent cytotoxic and pro-apoptotic activity against established and primary human gallbladder cancer cells. Yet it was safe to non-cancerous gallbladder epithelial cells. At the molecular level, we showed that Rg3 induced endoplasmic reticulum (ER) stress activation, the latter was evidenced by C/EBP homologous protein (CHOP) upregulation, inositol-requiring enzyme 1 (IRE1)/PKR-like endoplasmic reticulum kinase (PERK) phosphorylations, and caspase-12 activation in gallbladder cancer cells. Reversely, the ER stress inhibitor salubrinal, the caspase-12 inhibitor z-ATAD-fmk as well as CHOP shRNA knockdown significantly attenuated Rg3-induced cytotoxicity against gallbladder cancer cells. In vivo, we showed that Rg3 oral administration significantly inhibited GBC-SD gallbladder cancer xenograft growth in nude mice, its activity was, however, compromised with co-administration of the ER stress inhibitor salubrinal. Thus, we suggest that ER stress activation mediates Ginseng Rg3-induced anti-gallbladder cancer cell activity in vitro and in vivo.
Collapse
Affiliation(s)
- Keren Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ning Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Huaqin Sun
- Department of Anesthesiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Tao Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Fa Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jifeng Nie
- Department of Minimally Invasive, Hospital of Integrated Chinese and Western Medicine in Zhejiang Province, Hangzhou, China.
| |
Collapse
|
70
|
Yang Y, Sun M, Shan Y, Zheng X, Ma H, Ma W, Wang Z, Pei X, Wang Y. Endoplasmic reticulum stress-mediated apoptotic pathway is involved in corpus luteum regression in rats. Reprod Sci 2015; 22:572-84. [PMID: 25332219 PMCID: PMC4519763 DOI: 10.1177/1933719114553445] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Endoplasmic reticulum stress (ERS), which is a novel pathway of regulating cellular apoptosis and the function of ERS during corpus luteum (CL) regression, is explored. Early-luteal stage (day 2), mid-luteal stage (day 7), and late-luteal stage (day 14 and 20) were induced, and the apoptosis of luteal cells was detected by a terminal 2'-deoxyuridine 5'-triphosphate nick-end labeling (TUNEL) assay. The apoptotic cells were increased with the regression of CL, especially during the late-luteal stage. The ERS markers glucose-regulated protein 78 (Grp78), CCAAT/enhancer-binding protein homologous protein (CHOP), X-box binding protein 1 (XBP1), activating transcription factor 6α (ATF6α), eukaryotic initiation factor 2α (eIF2α), inositol-requiring protein 1α (IRE1α), caspase 12, and apoptosis marker caspase 3 were analyzed by real-time polymerase chain reaction (PCR) and immunohistochemistry, in agreement with the results of the TUNEL assay; the expression levels of CHOP, caspase 12, and caspase 3 were increased during the process of CL regression. Luteal cells were isolated and cultured in vitro, and the apoptosis of luteal cells was induced by prostaglandin F2α. The ERS was attenuated by the ERS inhibitor tauroursodeoxycholic acid, and the apoptotic rate was analyzed by flow cytometry. The ERS markers Grp78, CHOP, XBP1s, ATF6α, eIF2α, IRE1α, caspase 12, and apoptotic execute marker caspase 3 were analyzed by real-time PCR and immunofluorescence, and the results suggested that the expression of CHOP, caspase 12, and caspase 3 were increased, and there was increased apoptosis of luteal cells. But the expression of IRE1α/XBP1s and eIF2α was not detected. Taken together, the ERS is involved in the CL regression of rats through the CHOP and caspase 12 pathway.
Collapse
Affiliation(s)
- Yanzhou Yang
- Department of Histology and Embryology, Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Yinchuan, P.R. China
| | - Miao Sun
- Department of Histology and Embryology, Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Yinchuan, P.R. China
| | - Yuanyuan Shan
- Department of Histology and Embryology, Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Yinchuan, P.R. China
| | - Xiaomin Zheng
- Department of Histology and Embryology, Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Yinchuan, P.R. China
| | - Huiming Ma
- Department of Histology and Embryology, Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Yinchuan, P.R. China
| | - Wenzhi Ma
- Department of Histology and Embryology, Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Yinchuan, P.R. China
| | - Zhisheng Wang
- Department of Histology and Embryology, Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Yinchuan, P.R. China
| | - Xiuying Pei
- Department of Histology and Embryology, Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Yinchuan, P.R. China
| | - Yanrong Wang
- Department of Histology and Embryology, Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, Key Laboratory of Reproduction and Genetics in Ningxia, Yinchuan, P.R. China
| |
Collapse
|
71
|
Meng P, Yoshida H, Tanji K, Matsumiya T, Xing F, Hayakari R, Wang L, Tsuruga K, Tanaka H, Mimura J, Kosaka K, Itoh K, Takahashi I, Kawaguchi S, Imaizumi T. Carnosic acid attenuates apoptosis induced by amyloid-β 1-42 or 1-43 in SH-SY5Y human neuroblastoma cells. Neurosci Res 2015; 94:1-9. [PMID: 25510380 DOI: 10.1016/j.neures.2014.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 12/04/2014] [Accepted: 12/04/2014] [Indexed: 01/03/2023]
Abstract
Amyloid-beta (Aβ) peptides, Aβ 1-42 (Aβ42) and Aβ43 in particular, cause neurotoxicity and cell death in the brain of Alzheimer's disease (AD) at higher concentrations. Carnosic acid (CA), a phenolic diterpene compound in the labiate herbs rosemary and sage, serves as an activator for neuroprotective and neurotrophic functions in brain cells. We investigated the effect of CA on apoptosis induced by Aβ42 or Aβ43 in cultured SH-SY5Y human neuroblastoma cells. Treatment of the cells with Aβ42 or Aβ43 (monomer, 10 μM each) induced apoptosis, which was confirmed by the cleavage of poly-(ADP-ribose) polymerase (PARP) and apoptosis-inducing factor (AIF). Concurrently, the Aβ treatment induced the activation of caspase (Casp) cascades including an effector Casp (Casp3) and initiator Casps (Casp4, Casp8 and Casp9). Pretreatment of the cells with CA (10 μM) partially attenuated the apoptosis induced by Aβ42 or Aβ43. CA pretreatment also reduced the cellular oligomers of Aβ42 and Aβ43. These results suggest that CA suppressed the activation of Casp cascades by reducing the intracellular oligomerization of exogenous Aβ42/43 monomer. The ingestion of an adequate amount of CA may have a potential in the prevention of Aβ-mediated diseases, particularly AD.
Collapse
Affiliation(s)
- Pengfei Meng
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Hidemi Yoshida
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | - Kunikazu Tanji
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Tomoh Matsumiya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Fei Xing
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Ryo Hayakari
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Liang Wang
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Kazushi Tsuruga
- Department of Pediatrics, Hirosaki University School of Medicine and Hospital, Hirosaki 036-8563, Japan
| | - Hiroshi Tanaka
- Department of Pediatrics, Hirosaki University School of Medicine and Hospital, Hirosaki 036-8563, Japan; Department of School Health Science, Faculty of Education, Hirosaki University, Hirosaki 036-8560, Japan
| | - Junsei Mimura
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Kunio Kosaka
- Research and Development Center, Nagase & Co. Ltd., 2-2-3, Kobe 651-2241, Japan
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Ippei Takahashi
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Shogo Kawaguchi
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| |
Collapse
|
72
|
Skibba M, Zhang C, Jiang X, Xin Y, Cai L. Preventive effect of non-mitogenic acidic fibroblast growth factor on diabetes-induced testicular cell death. Reprod Toxicol 2014; 49:136-144. [PMID: 25150137 DOI: 10.1016/j.reprotox.2014.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/31/2014] [Accepted: 08/07/2014] [Indexed: 12/25/2022]
Abstract
Fibroblast growth factor (FGF)-1 was found to protect the heart from oxidative damage, but clinically its long-term use was restricted for its undesirable proliferating activity on cells. Thus a cluster of amino acids responsible for the proliferation were deleted in the native FGF-1 to create a non-mitogenic FGF-1 (nmFGF-1). Whether the nmFGF-1 protects male germ cells from diabetes-induced apoptotic death was examined in diabetic mice induced with multiple low-doses of streptozotocin, followed by nmFGF-1 treatment for 6 months. Diabetic mice showed a decrease in testicular weight and an increase in apoptotic cell death. Treatment with nmFGF-1 alleviated the diabetic effects on testicular weight and apoptotic cell death. Mechanistically, nmFGF-1 may alleviate diabetes-induced germ cell death by decreasing the BAX/Bcl-2 ratio and endoplasmic reticulum stress as well as associated cell death, which is associated with Nrf-2 activation.
Collapse
Affiliation(s)
- Melissa Skibba
- Department of Pharmacology and Toxicology, The University of Louisville, Louisville 40202, USA
| | - Chi Zhang
- The Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China; The Chinese-American Research Institute for Diabetic Complications, the RuiAn Center of Wenzhou Medical University, Wenzhou 325035, China
| | - Xin Jiang
- Department of Radiation Oncology of the First Hospital of Jilin University, Changchun 130021, China; KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202, USA
| | - Ying Xin
- KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202, USA; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Lu Cai
- Department of Pharmacology and Toxicology, The University of Louisville, Louisville 40202, USA; The Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences & Key Laboratory of Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou 325035, China; KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202, USA.
| |
Collapse
|
73
|
Liao CL, Hsu SC, Yu CC, Yang JS, Tang NY, Wood WG, Lin JG, Chung JG. The crude extract of Corni Fructus induces apoptotic cell death through reactive oxygen species-modulated pathways in U-2 OS human osteosarcoma cells. ENVIRONMENTAL TOXICOLOGY 2014; 29:1020-1031. [PMID: 23239598 DOI: 10.1002/tox.21832] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 10/24/2012] [Accepted: 11/02/2012] [Indexed: 06/01/2023]
Abstract
Crude extract of Corni Fructus (CECF) has been used in Traditional Chinese medicine for the treatment of different diseases for hundreds of years. The purpose of this study was to investigate the cytotoxic effects of CECF on U-2 OS human osteosarcoma cells. Flow cytometry was used for measuring the percentage of viable cells, cell-cycle distribution, apoptotic cells in sub-G1 phase, reactive oxygen species (ROS), Ca(2+) levels, and mitochondrial membrane potential (ΔΨm ). Comet assay and 4'-6-diamidino-2-phenylindole staining were used for examining DNA damage and condensation. Western blotting was used to examine apoptosis-associated protein levels in U-2 OS cells after exposed to CECF. Immunostaining and confocal laser system microscope were used to examine protein translocation after CECF incubation. CECF decreased the percentage of viability, induced DNA damage and DNA condensation, G₀/G₁ arrest, and apoptosis in U-2 OS cells. CECF-stimulated activities of caspase-8, caspase-9, and caspase-3, ROS, and Ca(2+) production, decreased ΔΨm levels of in U-2 OS cells. CECF increased protein levels of caspase-3, caspase-9, Bax, cytochrome c, GRP78, AIF, ATF-6α, Fas, TRAIL, p21, p27, and p16 which were associated with cell-cycle arrest and apoptosis. These findings suggest that CECF triggers apoptosis in U-2 OS cells via ROS-modulated caspase-dependent and -independent pathways.
Collapse
Affiliation(s)
- Ching-Lung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Zhu YR, Xu Y, Fang JF, Zhou F, Deng XW, Zhang YQ. Bufotalin-induced apoptosis in osteoblastoma cells is associated with endoplasmic reticulum stress activation. Biochem Biophys Res Commun 2014; 451:112-8. [PMID: 25068992 DOI: 10.1016/j.bbrc.2014.07.077] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
Abstract
The search for novel and more efficient chemo-agents against malignant osteoblastoma is important. In this study, we examined the potential anti-osteoblastoma function of bufotalin, and studied the underlying mechanisms. Our results showed that bufotalin induced osteoblastoma cell death and apoptosis in dose- and time-dependent manners. Further, bufotalin induced endoplasmic reticulum (ER) stress activation in osteoblastoma cells, the latter was detected by the induction of C/EBP homologous protein (CHOP), phosphorylation of inositol-requiring enzyme 1 (IRE1) and PKR-like endoplasmic reticulum kinase (PERK), as well as caspase-12 activation. Conversely, the ER stress inhibitor salubrinal, the caspase-12 inhibitor z-ATAD-fmk as well as CHOP depletion by shRNA significantly inhibited bufotalin-induced osteoblastoma cell death and apoptosis. Finally, by using a mice xenograft model, we demonstrated that bufotalin inhibited U2OS osteoblastoma cell growth in vivo. In summary, our results suggest that ER stress contributes to bufotalin-induced apoptosis in osteoblastoma cells. Bufotalin might be investigated as a novel anti-osteoblastoma agent.
Collapse
Affiliation(s)
- Yun-Rong Zhu
- Department of Orthopedics, The Affiliated Jiangyin Hospital of Medical College of Southeast University, Jiangyin City, Jiangsu 214400, China
| | - Yong Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Jian-Feng Fang
- Department of Orthopedics, The Affiliated Jiangyin Hospital of Medical College of Southeast University, Jiangyin City, Jiangsu 214400, China
| | - Feng Zhou
- Department of Orthopedics, The Affiliated Jiangyin Hospital of Medical College of Southeast University, Jiangyin City, Jiangsu 214400, China
| | - Xiong-Wei Deng
- Department of Orthopedics, The Affiliated Jiangyin Hospital of Medical College of Southeast University, Jiangyin City, Jiangsu 214400, China
| | - Yun-Qing Zhang
- Department of Orthopedics, The Affiliated Jiangyin Hospital of Medical College of Southeast University, Jiangyin City, Jiangsu 214400, China.
| |
Collapse
|
75
|
Ghavami S, Sharma P, Yeganeh B, Ojo OO, Jha A, Mutawe MM, Kashani HH, Los MJ, Klonisch T, Unruh H, Halayko AJ. Airway mesenchymal cell death by mevalonate cascade inhibition: integration of autophagy, unfolded protein response and apoptosis focusing on Bcl2 family proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:1259-71. [PMID: 24637330 DOI: 10.1016/j.bbamcr.2014.03.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 03/04/2014] [Accepted: 03/07/2014] [Indexed: 02/07/2023]
Abstract
HMG-CoA reductase, the proximal rate-limiting enzyme in the mevalonate pathway, is inhibited by statins. Beyond their cholesterol lowering impact, statins have pleiotropic effects and their use is linked to improved lung health. We have shown that mevalonate cascade inhibition induces apoptosis and autophagy in cultured human airway mesenchymal cells. Here, we show that simvastatin also induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in these cells. We tested whether coordination of ER stress, autophagy and apoptosis determines survival or demise of human lung mesenchymal cells exposed to statin. We observed that simvastatin exposure activates UPR (activated transcription factor 4, activated transcription factor 6 and IRE1α) and caspase-4 in primary human airway fibroblasts and smooth muscle cells. Exogenous mevalonate inhibited apoptosis, autophagy and UPR, but exogenous cholesterol was without impact, indicating that sterol intermediates are involved with mechanisms mediating statin effects. Caspase-4 inhibition decreased simvastatin-induced apoptosis, whereas inhibition of autophagy by ATG7 or ATG3 knockdown significantly increased cell death. In BAX(-/-)/BAK(-/-) murine embryonic fibroblasts, simvastatin-triggered apoptotic and UPR events were abrogated, but autophagy flux was increased leading to cell death via necrosis. Our data indicate that mevalonate cascade inhibition, likely associated with depletion of sterol intermediates, can lead to cell death via coordinated apoptosis, autophagy, and ER stress. The interplay between these pathways appears to be principally regulated by autophagy and Bcl-2-family pro-apoptotic proteins. These findings uncover multiple mechanisms of action of statins that could contribute to refining the use of such agent in treatment of lung disease.
Collapse
Affiliation(s)
- Saeid Ghavami
- Department of Physiology, University of Manitoba, Canada; Manitoba Institute of Child Health, University of Manitoba, Canada; Department of Human Anatomy and Cell Science, University of Manitoba, Canada
| | - Pawan Sharma
- Department of Physiology, University of Manitoba, Canada; Manitoba Institute of Child Health, University of Manitoba, Canada
| | - Behzad Yeganeh
- Department of Physiology, University of Manitoba, Canada; Manitoba Institute of Child Health, University of Manitoba, Canada
| | - Oluwaseun O Ojo
- Department of Physiology, University of Manitoba, Canada; Manitoba Institute of Child Health, University of Manitoba, Canada
| | - Aruni Jha
- Department of Physiology, University of Manitoba, Canada; Manitoba Institute of Child Health, University of Manitoba, Canada
| | - Mark M Mutawe
- Department of Physiology, University of Manitoba, Canada; Manitoba Institute of Child Health, University of Manitoba, Canada
| | - Hessam H Kashani
- Department of Physiology, University of Manitoba, Canada; Manitoba Institute of Child Health, University of Manitoba, Canada
| | - Marek J Los
- Dept. of Clinical & Experimental Medicine, Integrative Regenerative Med. (IGEN) Center, Linköping University, Sweden
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Canada
| | - Helmut Unruh
- Department of Internal Medicine, University of Manitoba, Canada
| | - Andrew J Halayko
- Department of Physiology, University of Manitoba, Canada; Manitoba Institute of Child Health, University of Manitoba, Canada; Department of Internal Medicine, University of Manitoba, Canada.
| |
Collapse
|
76
|
Shen S, Zhang Y, Wang Z, Zhang R, Gong X. Bufalin induces the interplay between apoptosis and autophagy in glioma cells through endoplasmic reticulum stress. Int J Biol Sci 2014; 10:212-24. [PMID: 24550689 PMCID: PMC3927133 DOI: 10.7150/ijbs.8056] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/16/2014] [Indexed: 01/27/2023] Open
Abstract
Malignant gliomas are common primary tumors of the central nervous system. The prognosis of patients with malignant glioma is poor in spite of current intensive therapy and thus novel therapeutic modalities are necessary. Bufalin is the major component of Chan-Su (a traditional Chinese medicine) extracts from the venom of Bufo gargarizan. In this study, we evaluated the growth inhibitory effect of bufalin on glioma cells and explored the underlying molecular mechanisms. Our results showed that bufalin inhibited the growth of glioma cells significantly. Mechanistic studies demonstrated that bufalin induced apoptosis through mitochondrial apoptotic pathway. In addition, bufalin was also found to induce ER stress-mediated apoptosis, which was supported by the up- regulation of ER stress markers, CHOP and GRP78, and augmented phosphorylation of PERK and eIF2α as well as cleavage of caspase-4. Downregulation of CHOP using siCHOP RNA attenuated bufalin-induced apoptosis, further confirming the role of ER stress response in mediating bufalin-induced apoptosis. Evidence of bufalin-induced autophagy included formation of the acidic vesicular organelles, increase of autophagolysosomes and LC3-II accumulation. Further experiments showed that the mechanism of bufalin-induced autophagy associated with ATP deleption involved an increase in the active form of AMPK, decreased phosphorylation levels of mTOR and its downstream targets 4EBP1 and p70S6K1. Furthermore, TUDC and silencing of eIF2α or CHOP partially blocked bufalin-induced accumulation of LC3-II, which indicated that ER stress preceded bufalin-induced autophagy and PERK/eIF2α/CHOP signaling pathway played a major part in the process. Blockage of autophagy increased expression of ER stress associated proteins and the ratio of apoptosis, indicating that autophagy played a cytoprotective role in bufalin induced ER stress and cell death. In conclusion, bufalin inhibits glioma cell growth and induces interplay between apoptosis and autophagy through endoplasmic reticulum stress. It will provide molecular bases for developing bufalin into a drug candidate for the treatment of maglinant glioma.
Collapse
Affiliation(s)
- Shuying Shen
- 1. Institute of Biochemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Yi Zhang
- 1. Institute of Biochemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Zhen Wang
- 1. Institute of Biochemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Rui Zhang
- 2. Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Xingguo Gong
- 1. Institute of Biochemistry, Zhejiang University, Hangzhou, 310058, PR China
| |
Collapse
|
77
|
JNK interaction with Sab mediates ER stress induced inhibition of mitochondrial respiration and cell death. Cell Death Dis 2014; 5:e989. [PMID: 24407242 PMCID: PMC4040675 DOI: 10.1038/cddis.2013.522] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/23/2013] [Accepted: 11/25/2013] [Indexed: 12/31/2022]
Abstract
Our aim was to better understand the mechanism and importance of sustained c-Jun N-terminal kinase (JNK) activation in endoplasmic reticulum (ER) stress and effects of ER stress on mitochondria by determining the role of mitochondrial JNK binding protein, Sab. Tunicamycin or brefeldin A induced a rapid and marked decline in basal mitochondrial respiration and reserve-capacity followed by delayed mitochondrial-mediated apoptosis. Knockdown of mitochondrial Sab prevented ER stress-induced sustained JNK activation, impaired respiration, and apoptosis, but did not alter the magnitude or time course of activation of ER stress pathways. P-JNK plus adenosine 5′-triphosphate (ATP) added to isolated liver mitochondria promoted superoxide production, which was amplified by addition of calcium and inhibited by a blocking peptide corresponding to the JNK binding site on Sab (KIM1). This peptide also blocked tunicamycin-induced inhibition of cellular respiration. In conclusion, ER stress triggers an interaction of JNK with mitochondrial Sab, which leads to impaired respiration and increased mitochondrial reactive oxygen species, sustaining JNK activation culminating in apoptosis.
Collapse
|
78
|
Giordano E, Davalos A, Nicod N, Visioli F. Hydroxytyrosol attenuates tunicamycin-induced endoplasmic reticulum stress in human hepatocarcinoma cells. Mol Nutr Food Res 2013; 58:954-62. [PMID: 24347345 DOI: 10.1002/mnfr.201300465] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/03/2013] [Accepted: 10/04/2013] [Indexed: 01/09/2023]
Abstract
SCOPE Hydroxytyrosol (HT) is a phenolic compound peculiarly abundant in olives and it is being recognized as a protector of LDL from oxidation. In addition to lipid oxidation, one emerging risk factor for cardiovascular disease is ER stress. We tested the effect of HT on the modulation of ER stress in HepG2 cells. METHODS AND RESULTS HepG2 cells were treated with 1 μM and 5 μM of HT and 100 μM lipoic acid (LA) and glutathione-ethyl ester (GSH), for 24 h. Induction of the unfolded protein response (UPR) was initiated by treatment with 2 μg/mL tunicamycin for 4 h. Real time RT-PCR analyses followed by Western blot and ELISA of different ER stress markers revealed that the protective activities of HT were superior to those of two known thiolic antioxidants, i.e., LA and GSH. CONCLUSION Mounting evidence indicates the ER as an important target of dietary or pharmacological intervention. In this paper, we report the modulatory activities of physiological concentrations of HT toward ER stress and we shed some light on pathways alternative to the well-known antioxidant mechanisms, through which olive oil phenolics modulate cell signaling and could impact cardiovascular health and degenerative diseases.
Collapse
Affiliation(s)
- Elena Giordano
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA)-Food, CEI UAM + CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
79
|
Mycobacterium kansasii-induced death of murine macrophages involves endoplasmic reticulum stress responses mediated by reactive oxygen species generation or calpain activation. Apoptosis 2013; 18:150-9. [PMID: 23264129 DOI: 10.1007/s10495-012-0792-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although pathogenic mechanisms of tuberculosis have been extensively studied, little is known about the pathogenic mechanisms of Mycobacterium kansasii. In this work the influence of virulence and ER-stress mediated apoptosis of macrophages during two different strains of M. kansasii infection was investigated. We show that M. kansasii infection is associated with ER stress-mediated apoptosis in the murine macrophage cell line RAW 264.7. Infection of RAW 264.7 cells in vitro with apoptosis-inducing a clinical isolate of M. kansasii SM-1 (SM-1) resulted in strong induction of ER stress responses compared with M. kansasii type strain (ATCC 12478)-infected RAW 264.7 cells. Interestingly, inhibition of calpain prevented the induction of CHOP and Bip in ATCC 12478-infected RAW 264.7 cells but not in RAW 264.7 cells infected with SM-1. In contrast, reactive oxygen species (ROS) were significantly increased only in RAW 264.7 cells infected with SM-1. We propose that ROS generation is important for triggering ER stress-mediated apoptosis during SM-1 infection, whereas ATCC 12478-induced, ER stress-mediated apoptosis is associated with calpain activation. Our results demonstrate that the ER stress pathway plays important roles in the pathogenesis of M. kansasii infections, and that different strains of M. kansasii induce different patterns of ER stress-mediated apoptosis.
Collapse
|
80
|
Jakubowicz-Gil J, Langner E, Bądziul D, Wertel I, Rzeski W. Apoptosis induction in human glioblastoma multiforme T98G cells upon temozolomide and quercetin treatment. Tumour Biol 2013; 34:2367-78. [PMID: 23580181 PMCID: PMC3713258 DOI: 10.1007/s13277-013-0785-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/27/2013] [Indexed: 01/10/2023] Open
Abstract
Glioblastoma multiforme is the most aggressive primary brain tumour. At the cellular and molecular levels, several mechanisms responsible for apoptosis or autophagy induction are blocked. Identification of molecular targets stimulating cells to initiate programmed cell death should be performed for therapeutic purposes. A promising solution is the combination of temozolomide and quercetin. The aim of our study was to evaluate the effect of both drugs, applied alone and in combinations, on apoptosis and autophagy induction in human glioblastoma multiforme T98G cells. Our results clearly indicate that quercetin and temozolomide induce apoptosis very significantly, having no effect on autophagy induction. At the molecular level, it was correlated with caspase 3 and 9 activation, cytochrome c release from the mitochondrium and a decrease in the mitochondrial membrane potential. Both drugs are also potent Hsp27 and Hsp72 inhibitors. This suggests that the apoptotic signal goes through an internal pathway. Increased expression of caspase 12 and the presence of several granules in the cytoplasm after temozolomide treatment with or without quercetin preceding appearance of apoptosis may suggest that apoptosis is initiated by ER stress. Additionally, it was accompanied by changes in the nuclear morphology from circular to 'croissant like'.
Collapse
Affiliation(s)
- Joanna Jakubowicz-Gil
- Department of Comparative Anatomy and Anthropology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | | | | | | | | |
Collapse
|
81
|
Lee JY, Sarowar S, Kim HS, Kim H, Hwang I, Kim YJ, Pai HS. Silencing of Nicotiana benthamiana Neuroblastoma-Amplified Gene causes ER stress and cell death. BMC PLANT BIOLOGY 2013; 13:69. [PMID: 23621803 PMCID: PMC3654999 DOI: 10.1186/1471-2229-13-69] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/23/2013] [Indexed: 05/15/2023]
Abstract
BACKGROUND Neuroblastoma Amplified Gene (NAG) was identified as a gene co-amplified with the N-myc gene, whose genomic amplification correlates with poor prognosis of neuroblastoma. Later it was found that NAG is localized in endoplasmic reticulum (ER) and is a component of the syntaxin 18 complex that is involved in Golgi-to-ER retrograde transport in human cells. Homologous sequences of NAG are found in plant databases, but its function in plant cells remains unknown. RESULTS Nicotiana benthamania Neuroblastoma-Amplified Gene (NbNAG) encodes a protein of 2,409 amino acids that contains the secretory pathway Sec39 domain and is mainly localized in the ER. Silencing of NbNAG by virus-induced gene silencing resulted in growth arrest and acute plant death with morphological markers of programmed cell death (PCD), which include chromatin fragmentation and modification of mitochondrial membrane potential. NbNAG deficiency caused induction of ER stress genes, disruption of the ER network, and relocation of bZIP28 transcription factor from the ER membrane to the nucleus, similar to the phenotypes of tunicamycin-induced ER stress in a plant cell. NbNAG silencing caused defects in intracellular transport of diverse cargo proteins, suggesting that a blocked secretion pathway by NbNAG deficiency causes ER stress and programmed cell death. CONCLUSIONS These results suggest that NAG, a conserved protein from yeast to mammals, plays an essential role in plant growth and development by modulating protein transport pathway, ER stress response and PCD.
Collapse
Affiliation(s)
- Jae-Yong Lee
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Sujon Sarowar
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hee Seung Kim
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hyeran Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Inhwan Hwang
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Young Jin Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
82
|
Prommaban A, Kodchakorn K, Kongtawelert P, Banjerdpongchai R. Houttuynia cordata Thunb fraction induces human leukemic Molt-4 cell apoptosis through the endoplasmic reticulum stress pathway. Asian Pac J Cancer Prev 2013; 13:1977-81. [PMID: 22901157 DOI: 10.7314/apjcp.2012.13.5.1977] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Houttuynia cordata Thunb (HCT) is a native herb found in Southeast Asia which features various pharmacological activities against allergy, inflammation, viral and bacterial infection, and cancer. The aims of this study were to determine the cytotoxic effect of 6 fractions obtained from silica gel column chromatography of alcoholic HCT extract on human leukemic Molt-4 cells and demonstrate mechanisms of cell death. Six HCT fractions were cytotoxic to human lymphoblastic leukemic Molt-4 cells in a dose-dependent manner by MTT assay, fraction 4 exerting the greatest effects. Treatment with IC50 of HCT fraction 4 significantly induced Molt-4 apoptosis detected by annexinV-FITC/propidium iodide for externalization of phosphatidylserine to the outer layer of cell membrane. The mitochondrial transmembrane potential was reduced in HCT fraction 4-treated Molt-4 cells. Moreover, decreased expression of Bcl-xl and increased levels of Smac/Diablo, Bax and GRP78 proteins were noted on immunoblotting. In conclusion, HCT fraction 4 induces Molt-4 apoptosis cell through an endoplasmic reticulum stress pathway.
Collapse
Affiliation(s)
- Adchara Prommaban
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | |
Collapse
|
83
|
Crespo I, San-Miguel B, Prause C, Marroni N, Cuevas MJ, González-Gallego J, Tuñón MJ. Glutamine treatment attenuates endoplasmic reticulum stress and apoptosis in TNBS-induced colitis. PLoS One 2012; 7:e50407. [PMID: 23209735 PMCID: PMC3508929 DOI: 10.1371/journal.pone.0050407] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/18/2012] [Indexed: 12/23/2022] Open
Abstract
Endoplasmic reticulum (ER) stress and apoptotic cell death play an important role in the pathogenesis and perpetuation of inflammatory bowel disease (IBD). We aimed to explore the potential of glutamine to reduce ER stress and apoptosis in a rat model of experimental IBD. Colitis was induced in male Wistar rats by intracolonic administration of 30 mg of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Glutamine (25 mg/dL) was given by rectal route daily for 2 d or 7 d. Both oxidative stress (TBARS concentration and oxidised/reduced glutathione ratio) and ER stress markers (CHOP, BiP, calpain-1 and caspase-12 expression) increased significantly within 48 h of TNBS instillation, and glutamine attenuated the extent of the changes. Glutamine also inhibited the significant increases of ATF6, ATF4 and spliced XBP-1 mRNA levels induced by TNBS instillation. TNBS-colitis resulted in a significant increase in p53 and cytochrome c expression, and a reduced Bcl-xL expression and Bax/Bcl-2 ratio. These effects were significantly inhibited by glutamine. Treatment with the amino acid also resulted in significant decreases of caspase-9, caspase-8 and caspase-3 activities. Double immunofluorescence staining showed co-localization of CHOP and cleaved caspase-3 in colon sections. Phospho-JNK and PARP-1 expression was also significantly higher in TNBS-treated rats, and treatment with glutamine significantly decreased JNK phosphorylation and PARP-1 proteolysis. To directly address the effect of glutamine on ER stress and apoptosis in epithelial cells, the ER stress inducers brefeldin A and tunicamycin were added to Caco-2 cells that were treated with glutamine (5 mM and 10 mM). The significant enhancement in PERK, ATF6 phosphorylated IRE1, BiP and cleaved caspase-3 expression induced by brefeldin A and tunicamycin was partly prevented by glutamine. Data obtained indicated that modulation of ER stress signalling and anti-apoptotic effects contribute to protection by glutamine against damage in TNBS-induced colitis.
Collapse
Affiliation(s)
- Irene Crespo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | | | - Carolina Prause
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - Norma Marroni
- Porto Alegre Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - María J. Cuevas
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - Javier González-Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - María J. Tuñón
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| |
Collapse
|
84
|
De Minicis S, Candelaresi C, Agostinelli L, Taffetani S, Saccomanno S, Rychlicki C, Trozzi L, Marzioni M, Benedetti A, Svegliati-Baroni G. Endoplasmic Reticulum stress induces hepatic stellate cell apoptosis and contributes to fibrosis resolution. Liver Int 2012; 32:1574-84. [PMID: 22938186 DOI: 10.1111/j.1478-3231.2012.02860.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 07/07/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND Survival of hepatic stellate cells (HSCs) is a hallmark of liver fibrosis, while the induction of HSC apoptosis may induce recovery. Activated HSC are resistant to many pro-apoptotic stimuli. To this issue, the role of Endoplasmic Reticulum (ER) stress in promoting apoptosis of HSCs and consequently fibrosis resolution is still debated. AIM To evaluate the potential ER stress-mediated apoptosis of HSCs and fibrosis resolution METHODS HSCs were incubated with the ER stress agonists, tunicamycin or thapsigargin. In vivo, HSC were isolated from normal, bile duct-ligated (BDL) and bile duct-diverted (BDD) rats. RESULTS In activated HSC, the specific inhibitor of ER stress-induced apoptosis, calpastatin, is significantly increased vs. quiescent HSCs. Calpain is conversely reduced in activated HSCs. This pattern of protein expression provides HSCs resistance to the ER stress signals of apoptosis (apoptosis-resistant phenotype). However, both tunicamycin and thapsigargin are able to induce apoptosis in HSCs in vitro, completely reversing the calpain/calpastatin pattern expression. Furthermore, in vivo, the fibrosis resolution observed in rat livers subjected to bile duct ligation (BDL) and subsequent bile duct diversion (BDD), leads to fibrosis resolution through a mechanism of HSCs apoptosis, potentially associated with ER stress: in fact, BDD rat liver shows an increased number of apoptotic HSCs associated with reduced calapstatin and increased calpain protein expression, leading to an apoptosis-sensible phenotype. CONCLUSIONS ER stress sensitizes HSC to apoptosis both in vitro and in vivo. Thus, ER stress represents a key target to trigger cell death in activated HSC and promotes fibrosis resolution.
Collapse
Affiliation(s)
- Samuele De Minicis
- Department of Gastroenterology, Polytechnic University of Marche, Ancona, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Johnson JR, Kocher B, Barnett EM, Marasa J, Piwnica-Worms D. Caspase-activated cell-penetrating peptides reveal temporal coupling between endosomal release and apoptosis in an RGC-5 cell model. Bioconjug Chem 2012; 23:1783-93. [PMID: 22900707 PMCID: PMC3447108 DOI: 10.1021/bc300036z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Caspase-activatable cell-penetrating peptide (CPP) probes, designed for efficient cell uptake and specificity via cleavable intramolecular quenched-fluorophore strategies, show promise for identifying and imaging retinal ganglion cell apoptosis in vivo. However, initial cell uptake and trafficking events cannot be visualized because the probes are designed to be optically quenched in the intact state. To visualize subcellular activation events in real-time during apoptosis, a new series of matched quenched and nonquenched CPP probes were synthesized. In both native and staurosporine-differentiated RGC-5 cells, probe uptake was time- and concentration-dependent through clathrine-, caveolin-, and pinocytosis-mediated endocytic mechanisms. During apoptosis, KcapTR488, a novel dual fluorophore CPP probe, revealed by multispectral imaging a temporal coupling of endosomal release and effector caspase activation in RGC-5 cells. The novel CPPs described herein provide new tools to study spatial and temporal regulation of endosomal permeability during apoptosis.
Collapse
Affiliation(s)
- James R. Johnson
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, BRIGHT Institute, Departments of Cell Biology & Physiology, Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Brandon Kocher
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, BRIGHT Institute, Departments of Cell Biology & Physiology, Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Edward M. Barnett
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jayne Marasa
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, BRIGHT Institute, Departments of Cell Biology & Physiology, Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - David Piwnica-Worms
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, BRIGHT Institute, Departments of Cell Biology & Physiology, Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
86
|
Zhong JM, Wu SY, Bai J, Guo Q, Tao J, Chen H, Zhao NW, Zhao Z, Fu H. Antidepressant effect of geranylgeranylacetone in a chronic mild stress model of depression and its possible mechanism. Exp Ther Med 2012; 4:627-632. [PMID: 23170116 PMCID: PMC3501402 DOI: 10.3892/etm.2012.669] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/09/2012] [Indexed: 11/28/2022] Open
Abstract
Depression is a highly debilitating and widely distributed illness in the general population. Geranylgeranylacetone (GGA), a non-toxic anti-ulcer drug, has been reported to have protective effects in the central nervous system. The aim of this study was to determine the antidepressant effect of GGA in a chronic mild stress (CMS) model of depression. We confirmed that CMS in rats caused a reduction in locomotor activity and an increase in the levels of monoamine oxidase-A (MAO-A) and caspase-3 in the hippocampus. GGA treatment reversed stress-induced alterations in locomotor activity and target levels of MAO-A and caspase-3. In addition, GGA treatment induced heat shock protein 70 (Hsp70) expression in the hippocampus. These findings suggest that GGA possesses an antidepressant activity in a CMS model of depression. The activity of GGA in the relief of depression may be mediated via the induction of Hsp70 expression to suppress MAO-A expression and the apoptosis cascade.
Collapse
Affiliation(s)
- Jing-Mei Zhong
- Department of Neurology, The First People's Hospital of Yunnan, Kunhua Affiliated Hospital of Kunming Medical University, Kunming 650032
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Kang YW, Jeon Y, Pai HS. Characterization of cell death induced by NbBPS1 silencing in Nicotiana benthamiana. Mol Cells 2012; 34:185-91. [PMID: 22729372 PMCID: PMC3887818 DOI: 10.1007/s10059-012-0096-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/12/2012] [Accepted: 05/14/2012] [Indexed: 01/16/2023] Open
Abstract
We previously showed that silencing of NbBPS1 encoding an endoplasmic reticulum (ER)-localized protein results in pleiotrophic developmental defects and cell death in Nicotiana benthamiana [Kang et al. (2008)]. In this study, we investigated the mechanism of the cell death caused by NbBPS1 silencing. Affected leaf cells exhibited morphological markers of programmed cell death (PCD) and accumulated excessive amounts of reactive oxygen species. NbBPS1 silencing caused dramatic induction of the ER stress marker genes BiP-like protein (BLP) genes, HSP70, and Bax Inhibitor-1. Furthermore, NbBPS1 deficiency led to relocalization of bZIP28 transcription factor from the ER membrane to the nucleus, similar to the bZIP28 relocalization during tunicamycin-induced ER stress. Abnormal accumulation of vesicles and increased autophagy activity were also observed in the affected leaf cells. These results suggest that inactivation of NbBPS1 function in the ER leads to ER stress, autophagy, and PCD activation in N. benthamiana.
Collapse
Affiliation(s)
| | | | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 120-749,
Korea
| |
Collapse
|
88
|
Cai C, Liu J, Wang C, Shen J. KHDC1A, a novel translational repressor, induces endoplasmic reticulum-dependent apoptosis. DNA Cell Biol 2012; 31:1447-57. [PMID: 22731819 DOI: 10.1089/dna.2012.1682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNA binding proteins are characterized as a new family of apoptosis inducers; however, the mechanism by which they induce apoptosis is poorly understood. KHDC1 family members were recently identified as K-homology (KH)-domain containing RNA binding proteins that are unique to eutherian mammals and highly expressed in oocytes. In this study, we report that the expression of KHDC1A induces caspase-3 dependent apoptosis and inhibits mRNA translation, and the translational repression is independent of apoptosis. We demonstrate that both the N-terminus and C-terminus of KHDC1A are required for its pro-apoptotic and translational repression activities. Furthermore, in the C-terminus of KHDC1A, a putative trans-membrane motif (TMM) is critical for these activities. In addition, the ectopically expressed KHDC1A is localized to the endoplasmic reticulum (ER) and changes the morphology of the ER. The inhibition of ER-specific caspase-12 successfully rescues KHDC1A-induced apoptosis, but not Fas-induced apoptosis. Taken together, we conclude that KHDC1A functions as a global translational repressor and induces apoptosis through an ER-dependent signaling pathway.
Collapse
Affiliation(s)
- Congli Cai
- Institute for Medical Biology, College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | | | | | | |
Collapse
|
89
|
Di Carlo M, Giacomazza D, San Biagio PL. Alzheimer's disease: biological aspects, therapeutic perspectives and diagnostic tools. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:244102. [PMID: 22595372 DOI: 10.1088/0953-8984/24/24/244102] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia among older people. Dementia is an irreversible brain disorder that seriously affects a person's ability to carry out daily activities. It is characterized by loss of cognitive functioning and behavioral abilities, to such an extent that it interferes with the daily life and activities of the affected patients. Although it is still unknown how the disease process begins, it seems that brain damage starts a decade or more before problems become evident. Scientific data seem to indicate that changes in the generation or the degradation of the amyloid-b peptide (Aβ) lead to the formation of aggregated structures that are the triggering molecular events in the pathogenic cascade of AD. This review summarizes some characteristic features of Aβ misfolding and aggregation and how cell damage and death mechanisms are induced by these supramolecular and toxic structures. Further, some interventions for the early diagnosis of AD are described and in the last part the potential therapeutic strategies adoptable to slow down, or better block, the progression of the pathology are reported.
Collapse
Affiliation(s)
- M Di Carlo
- Istituto di Biomedicina ed Immunologia Molecolare (IBIM), CNR, Palermo, Italy.
| | | | | |
Collapse
|
90
|
Wang Z, Zhang H, Xu X, Shi H, Yu X, Wang X, Yan Y, Fu X, Hu H, Li X, Xiao J. bFGF inhibits ER stress induced by ischemic oxidative injury via activation of the PI3K/Akt and ERK1/2 pathways. Toxicol Lett 2012; 212:137-46. [PMID: 22609091 DOI: 10.1016/j.toxlet.2012.05.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/04/2012] [Accepted: 05/08/2012] [Indexed: 12/22/2022]
Abstract
Extensive research has focused on finding effective strategies to prevent or improve recovery from brain ischemia and reperfusion (I/R) injury. The basic fibroblast growth factor (bFGF) has been shown to have therapeutic potential in some central nervous system (CNS) disorders, including ischemic injury. In this study, we demonstrate that bFGF administration can improve locomotor activity and inhibit the ER stress induced in the CA1 region of the hippocampus in a mouse model of I/R injury. In vitro, bFGF exerts a protective effect by inhibiting the ER stress response proteins CHOP, XBP-1, ATF-6 and caspase-12 that are induced by H(2)O(2) treatment. Both of these in vivo and in vitro effects are related to the activation of two downstream signaling pathways, PI3K/Akt and ERK1/2. Inhibition of the PI3K/Akt and ERK1/2 pathways by specific inhibitors, LY294002 and U0126, respectively, partially reduce the protective effect of bFGF. Taken together, our results indicate that the neuroprotective role of bFGF involves the suppression of ER stress in the ischemic oxidative damage models and oxidative stress-induced PC12 cell injury, and these effects is underlying the activation of the PI3K/Akt and ERK1/2 signal pathway.
Collapse
Affiliation(s)
- Zhouguang Wang
- School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical College, Wenzhou, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Hseu YC, Lee MS, Wu CR, Cho HJ, Lin KY, Lai GH, Wang SY, Kuo YH, Kumar KJS, Yang HL. The chalcone flavokawain B induces G2/M cell-cycle arrest and apoptosis in human oral carcinoma HSC-3 cells through the intracellular ROS generation and downregulation of the Akt/p38 MAPK signaling pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:2385-2397. [PMID: 22324429 DOI: 10.1021/jf205053r] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chalcones have been described to represent cancer chemopreventive food components that are rich in fruits and vegetables. In this study, we examined the anti-oral cancer effect of flavokawain B (FKB), a naturally occurring chalcone isolated from Alpinia pricei (shell gingers), and revealed its molecular mechanism of action. Treatment of human oral carcinoma (HSC-3) cells with FKB (1.25-10 μg/mL; 4.4-35.2 μM) inhibited cell viability and caused G(2)/M arrest through reductions in cyclin A/B1, Cdc2, and Cdc25C levels. Moreover, FKB treatment resulted in the induction of apoptosis, which was associated with DNA fragmentation, mitochondria dysfunction, cytochrome c and AIF release, caspase-3 and caspase-9 activation, and Bcl-2/Bax dysregulation. Furthermore, increased Fas activity and procaspase-8, procaspase-4, and procaspase-12 cleavages were accompanied by death receptor and ER-stress, indicating the involvement of mitochondria, death-receptor, and ER-stress signaling pathways. FKB induces apoptosis through ROS generation as evidenced by the upregulation of oxidative-stress markers HO-1/Nrf2. This mechanism was further confirmed by the finding that the antioxidant N-acetylcysteine (NAC) significantly blocked ROS generation and consequently inhibited FKB-induced apoptosis. Moreover, FKB downregulated the phosphorylation of Akt and p38 MAPK, while their inhibitors LY294002 and SB203580, respectively, induced G(2)/M arrest and apoptosis. The profound reduction in cell number was observed in combination treatment with FKB and Akt/p38 MAPK inhibitors, indicating that the disruption of Akt and p38 MAPK cascades plays a functional role in FKB-induced G(2)/M arrest and apoptosis in HSC-3 cells.
Collapse
Affiliation(s)
- You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Jäger R, Bertrand MJM, Gorman AM, Vandenabeele P, Samali A. The unfolded protein response at the crossroads of cellular life and death during endoplasmic reticulum stress. Biol Cell 2012; 104:259-70. [PMID: 22268789 DOI: 10.1111/boc.201100055] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/18/2012] [Indexed: 12/14/2022]
Abstract
One of the early cellular responses to endoplasmic reticulum (ER) stress is the activation of the unfolded protein response (UPR). ER stress and the UPR are both implicated in numerous human diseases and pathologies. In spite of this, our knowledge of the molecular mechanisms that regulate cell fate following ER stress is limited. The UPR is initiated by three ER transmembrane receptors: PKR-like ER kinase (PERK), activating transcription factor (ATF) 6 and inositol-requiring enzyme 1 (IRE1). These proteins sense the accumulation of unfolded proteins and their activation triggers specific adaptive responses to resolve the stress. Intriguingly, the very same receptors can initiate signalling pathways that lead to apoptosis when the attempts to resolve the ER stress fail. In this review, we describe the known pro-apoptotic signalling pathways emanating from activated PERK, ATF6 and IRE1 and discuss how their signalling switches from an adaptive to a pro-apoptotic response.
Collapse
Affiliation(s)
- Richard Jäger
- Apoptosis Research Centre, National University of Ireland Galway, Galway, Ireland
| | | | | | | | | |
Collapse
|
93
|
Yan Z, Hoffmann A, Kaiser EK, Grunwald WC, Cool DR. Misfolding of Mutated Vasopressin Causes ER-Retention and Activation of ER-Stress Markers in Neuro-2a Cells. ACTA ACUST UNITED AC 2011; 4:136-146. [PMID: 24567768 PMCID: PMC3932059 DOI: 10.2174/1876528901104010136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arginine-vasopressin (AVP) is a peptide hormone normally secreted from neuroendocrine cells via the regulated secretory pathway. In Familial Neurohypophyseal Diabetes Insipidus (FNDI), an autosomal dominant form of central diabetes insipidus, mutations of pro-vasopressin appear to accumulate in the endoplasmic reticulum (ER) causing a lack of biologically active AVP in the blood. To investigate the effect of pro-vasopressin mutations regarding intracellular functions of protein targeting and secretion, we created two FNDI-associated amino acid substitution mutants, e.g., G14R, and G17V in frame with green fluorescent protein (GFP) and pro-vasopressin (VP) in frame with red fluorescent protein (VP-RFP). Fluorescence microscopy of Neuro-2a cells expressing these constructs revealed co-localization of VP-GFP and VP-RFP to punctate granules along the length and accumulating at the tips of neurites, characteristic of regulated secretory granules. In contrast, the two FNDI-associated amino acid substitution mutants, e.g., G14R-GFP, and G17VGFP, were localized to a perinuclear region of the Neuro-2a cells characteristic of the endoplasmic reticulum. Co-expression of these mutants with VP-RFP showed VP-RFP was retained in the ER, co-localized with the mutants suggesting the formation of heterodimers as found in FNDI. Stimulated secretion experiments indicated that VP-GFP was secreted in an inducible manner whereas, G14R-GFP and G17V-GFP were retained to nearly 100% within the cells. Analysis by western blotting and semi-quantitative RT-PCR indicated an increased protein and mRNA expression for an ER resident molecular chaperone, BiP. Further analysis of ER-storage disease-associated proteins such as caspase 12 and CHOP showed an increase in these as well. The results suggest that G14R-GFP and G17V-GFP are retained in the ER of Neuro-2a cells, resulting in up-regulation of the molecular chaperone BiP, and activation of the ER-storage disease-associated caspase cascade system.
Collapse
Affiliation(s)
- Zhongyu Yan
- Department of Pharmacology & Toxicology, Wright State University, Dayton, OH 45435
| | - Andrea Hoffmann
- Department of Pharmacology & Toxicology, Wright State University, Dayton, OH 45435
| | - Erin Kelly Kaiser
- Department of Pharmacology & Toxicology, Wright State University, Dayton, OH 45435
| | - William C Grunwald
- Department of Pharmacology & Toxicology, Wright State University, Dayton, OH 45435
| | - David R Cool
- Department of Pharmacology & Toxicology, Wright State University, Dayton, OH 45435
| |
Collapse
|
94
|
Kim JS, Song BS, Lee KS, Kim DH, Kim SU, Choo YK, Chang KT, Koo DB. Tauroursodeoxycholic Acid Enhances the Pre-Implantation Embryo Development by Reducing Apoptosis in Pigs. Reprod Domest Anim 2011; 47:791-8. [DOI: 10.1111/j.1439-0531.2011.01969.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
95
|
Maguire JA, Mulugeta S, Beers MF. Multiple ways to die: delineation of the unfolded protein response and apoptosis induced by Surfactant Protein C BRICHOS mutants. Int J Biochem Cell Biol 2011; 44:101-12. [PMID: 22016030 DOI: 10.1016/j.biocel.2011.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/22/2011] [Accepted: 10/06/2011] [Indexed: 02/06/2023]
Abstract
Epithelial cell dysfunction is now recognized as an important mechanism in the pathogenesis of interstitial lung diseases. Surfactant Protein C (SP-C), an alveolar type II cell specific protein, has contributed to this concept with the observation that heterozygous expression of SFTPC gene mutations are associated with chronic interstitial lung disease. We have shown that transient expression of aggregation prone mutant SP-C isoforms (SP-C BRICHOS) destabilize ER quality control mechanisms resulting in the intracellular accumulation of aggregating propeptide, inhibition of the ubiquitin/proteasome system, and activation of apoptosis. The goal of the present study was to define signaling pathways linking the unfolded protein response (UPR) and subsequent ER stress with intrinsic apoptosis events observed following mutant SP-C expression. In vitro expression of the SP-C BRICHOS mutant, SP-C(Δexon4), was used as a model system. Here we show stimulation of a broad ER stress response in both transfected A549 and HEK293 cells with activation of all 3 canonical sensing pathways, IRE1/XBP-1, ATF6, and PERK/eIF2α. SP-C(Δexon4) expression also resulted in activation of caspase 3, but failed to stimulate expression of the apoptosis mediating transcription factors ATF4/CHOP. However, inhibition of either caspase 4 or c-jun kinase (JNK) each blocked caspase 3 mediated cell death. Taken together, these results suggest that expression of SP-C BRICHOS mutants induce apoptosis through multiple UPR signaling pathways, and provide new therapeutic targets for the amelioration of ER stress induced cytotoxicity observed in fibrotic lung remodeling.
Collapse
Affiliation(s)
- Jean Ann Maguire
- Pulmonary and Critical Care Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4539, United States
| | | | | |
Collapse
|
96
|
Słotwiński R, Olszewski W, Słodkowski M, Lech G, Zaleska M, Kędziora S, Włuka A, Domaszewska A, Słotwińska S, Krasnodębski W, Wójcik Z. Apoptosis in Lymphocytes of Pancreatic Cancer Patients: Influence of Preoperative Enteral Immunonutrition and Extensive Surgery. Arch Immunol Ther Exp (Warsz) 2011; 59:385-97. [DOI: 10.1007/s00005-011-0140-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 04/08/2011] [Indexed: 12/15/2022]
|
97
|
Abstract
Rose Bengal acetate photodynamic therapy (RBAc–PDT) induced multiple cell death pathways in HeLa cells through ROS and ER stress. Indeed, apoptosis was the first preferred mechanism of death, and it was triggered by at least four different pathways, whose independent temporal activation ensures cell killing when one or several of the pathways are inactivated. Apoptosis occurred as early as 1 h after PDT through activation of intrinsic pathways, followed by activation of extrinsic, caspase-12-dependent and caspase-independent pathways, and by autophagy. The onset of the different apoptotic pathways and autophagy, that in our system had a pro-death role, was timed by determining the levels of caspases 9, 8, 3 and 12; Bcl-2 family; Hsp70; LC3B; GRP78 and phospho-eIF2α proteins. Interestingly, inhibition of one pathway, that is, caspase-9 (Z-LEHD-FMK), caspase-8 (Z-IETD-FMK), pan-caspases (Z-VAD-FMK), autophagy (3-MA) and necrosis (Nec-1), did not impair the activation of the others, suggesting that the independent onset of the different apoptotic pathways and autophagy did not occur in a subordinated manner. Altogether, our data indicate RBAc as a powerful photosensitiser that induces a prolonged cytotoxicity and time-related cell death onset by signals originating from or converging on almost all intracellular organelles. The fact that cancer cells can die through different mechanisms is a relevant clue in the choice and design of anticancer PDT.
Collapse
|
98
|
Robinson KS, Clements A, Williams AC, Berger CN, Frankel G. Bax inhibitor 1 in apoptosis and disease. Oncogene 2011; 30:2391-400. [PMID: 21297665 DOI: 10.1038/onc.2010.636] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/08/2010] [Accepted: 12/08/2010] [Indexed: 12/27/2022]
Abstract
Bax inhibitor 1 (BI-1) was originally discovered as an inhibitor of Bax-induced apoptosis; this review highlights the fundamental importance of BI-1 in a wider context, including in tissue homeostasis and as a regulator of cellular stress. BI-1 has been shown to interact with a broad range of partners to inhibit many facets of apoptosis, such as reactive oxygen species production, cytosolic acidification and calcium levels as well as endoplasmic reticulum stress signalling pathways. BI-1's anti-apoptotic action initially enables the cell to adapt to stress, although if the stress is prolonged or severe the actions of BI-1 may promote apoptosis. This almost universal anti-apoptotic capacity has been shown to be manipulated during infection with enteropathogenic and enterohaemorrhagic Escherichia coli inhibiting host cell death through direct interaction between their effector NleH and BI-1. In addition, BI-1 activity is important in a large number of cancers, promoting metastasis by modulating actin dynamics, a process dependent upon the BI-1 C-terminus and BI-1:actin interaction. Manipulation of BI-1 therefore has the potential for significant therapeutic benefit in a wide range of human diseases.
Collapse
Affiliation(s)
- K S Robinson
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London, UK
| | | | | | | | | |
Collapse
|
99
|
Abstract
The efficient functioning of the ER is indispensable for most of the cellular activities and survival. Disturbances in the physiological functions of the ER result in the activation of a complex set of signaling pathways from the ER to the cytosol and nucleus, and these are collectively known as unfolded protein response (UPR), which is aimed to compensate damage and can eventually trigger cell death if ER stress is severe or persists for a longer period. The precise molecular mechanisms that facilitate this switch in brain damage have yet to be understood completely with multiple potential participants involved. The ER stress-associated cell death pathways have been recognized in the numerous pathophysiological conditions, such as diabetes, hypoxia, ischemia/reperfusion injury, and neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and bipolar disorder. Hence, there is an emerging need to study the basic molecular mechanisms of ER stress-mediating multiple cell survival/death signaling pathways. These molecules that regulate the ER stress response would be potential drug targets in brain diseases.
Collapse
Affiliation(s)
- Ram Raghubir
- Division of Pharmacology, Central Drug Research Institute, (CSIR), Chatter Manzil Palace, Lucknow, India
| | | | | |
Collapse
|
100
|
Abstract
Cellular cholesterol homeostasis is a fundamental and highly regulated process. Transcription factors known as sterol regulatory element binding proteins (SREBPs) coordinate the expression of many genes involved in the biosynthesis and uptake of cholesterol. Dysregulation of SREBP activation and cellular lipid accumulation has been associated with endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR). This review will provide an overview of ER stress and the UPR as well as cholesterol homeostasis and SREBP regulation, with an emphasis on their interaction and biological relevance.
Collapse
|