51
|
Davey RA, Shtanko O, Anantpadma M, Sakurai Y, Chandran K, Maury W. Mechanisms of Filovirus Entry. Curr Top Microbiol Immunol 2017; 411:323-352. [PMID: 28601947 DOI: 10.1007/82_2017_14] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Filovirus entry into cells is complex, perhaps as complex as any viral entry mechanism identified to date. However, over the past 10 years, the important events required for filoviruses to enter into the endosomal compartment and fuse with vesicular membranes have been elucidated (Fig. 1). Here, we highlight the important steps that are required for productive entry of filoviruses into mammalian cells.
Collapse
Affiliation(s)
- R A Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - O Shtanko
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - M Anantpadma
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Y Sakurai
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - K Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - W Maury
- Department of Microbiology, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
52
|
Recouvreux MV, Commisso C. Macropinocytosis: A Metabolic Adaptation to Nutrient Stress in Cancer. Front Endocrinol (Lausanne) 2017; 8:261. [PMID: 29085336 PMCID: PMC5649207 DOI: 10.3389/fendo.2017.00261] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 09/20/2017] [Indexed: 12/28/2022] Open
Abstract
Oncogenic mutations, such as Ras mutations, drive not only enhanced proliferation but also the metabolic adaptations that confer to cancer cells the ability to sustain cell growth in a harsh tumor microenvironment. These adaptations might represent metabolic vulnerabilities that can be exploited to develop novel and more efficient cancer therapies. Macropinocytosis is an evolutionarily conserved endocytic pathway that permits the internalization of extracellular fluid via large endocytic vesicles known as macropinosomes. Recently, macropinocytosis has been determined to function as a nutrient-scavenging pathway in Ras-driven cancer cells. Macropinocytic uptake of extracellular proteins, and their further degradation within endolysosomes, provides the much-needed amino acids that fuel cancer cell metabolism and tumor growth. Here, we review the molecular mechanisms that govern the process of macropinocytosis, as well as discuss recent work that provides evidence of the important role of macropinocytosis as a nutrient supply pathway in cancer cells.
Collapse
Affiliation(s)
- Maria Victoria Recouvreux
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Cosimo Commisso
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
- *Correspondence: Cosimo Commisso,
| |
Collapse
|
53
|
Nanbo A, Kachi K, Yoshiyama H, Ohba Y. Epstein–Barr virus exploits host endocytic machinery for cell-to-cell viral transmission rather than a virological synapse. J Gen Virol 2016; 97:2989-3006. [DOI: 10.1099/jgv.0.000605] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Asuka Nanbo
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan
| | - Kunihiro Kachi
- Graduate School of Pharmaceutical Sciences, Hokkaido University, N12 W6, Kita-ku, Sapporo, Japan
| | - Hironori Yoshiyama
- Department of Microbiology, Shimane University Faculty of Medicine, 89-1, Enya-cho, Izumo, Shimane, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, Japan
| |
Collapse
|
54
|
Dolat L, Spiliotis ET. Septins promote macropinosome maturation and traffic to the lysosome by facilitating membrane fusion. J Cell Biol 2016; 214:517-27. [PMID: 27551056 PMCID: PMC5004444 DOI: 10.1083/jcb.201603030] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/21/2016] [Indexed: 11/22/2022] Open
Abstract
How macropinosomes traffic to lysosomes is poorly understood. Dolat and Spiliotis show that septins associate preferentially with mature macropinosomes in a PI(3,5)P2-dependent manner and regulate fluid-phase cargo traffic to lysosomes by promoting macropinosome/endosome fusion. Macropinocytosis, the internalization of extracellular fluid and material by plasma membrane ruffles, is critical for antigen presentation, cell metabolism, and signaling. Macropinosomes mature through homotypic and heterotypic fusion with endosomes and ultimately merge with lysosomes. The molecular underpinnings of this clathrin-independent endocytic pathway are largely unknown. Here, we show that the filamentous septin GTPases associate preferentially with maturing macropinosomes in a phosphatidylinositol 3,5-bisphosphate–dependent manner and localize to their contact/fusion sites with macropinosomes/endosomes. Septin knockdown results in large clusters of docked macropinosomes, which persist longer and exhibit fewer fusion events. Septin depletion and overexpression down-regulates and enhances, respectively, the delivery of fluid-phase cargo to lysosomes, without affecting Rab5 and Rab7 recruitment to macropinosomes/endosomes. In vitro reconstitution assays show that fusion of macropinosomes/endosomes is abrogated by septin immunodepletion and function-blocking antibodies and is induced by recombinant septins in the absence of cytosol and polymerized actin. Thus, septins regulate fluid-phase cargo traffic to lysosomes by promoting macropinosome maturation and fusion with endosomes/lysosomes.
Collapse
Affiliation(s)
- Lee Dolat
- Department of Biology, Drexel University, Philadelphia, PA 19104
| | | |
Collapse
|
55
|
Evaluation of drug penetration with cationic micelles and their penetration mechanism using an in vitro tumor model. Biomaterials 2016; 98:120-30. [DOI: 10.1016/j.biomaterials.2016.04.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/29/2016] [Accepted: 04/28/2016] [Indexed: 01/16/2023]
|
56
|
Zheng W, Zheng H, Zhao X, Zhang Y, Xie Q, Lin X, Chen A, Yu W, Lu G, Shim WB, Zhou J, Wang Z. Retrograde trafficking from the endosome to the trans-Golgi network mediated by the retromer is required for fungal development and pathogenicity in Fusarium graminearum. THE NEW PHYTOLOGIST 2016; 210:1327-1343. [PMID: 26875543 DOI: 10.1111/nph.13867] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
In eukaryotes, the retromer is an endosome-localized complex involved in protein retrograde transport. However, the role of such intracellular trafficking events in pathogenic fungal development and pathogenicity remains unclear. The role of the retromer complex in Fusarium graminearum was investigated using cell biological and genetic methods. We observed the retromer core component FgVps35 (Vacuolar Protein Sorting 35) in the cytoplasm as fast-moving puncta. FgVps35-GFP co-localized with both early and late endosomes, and associated with the trans-Golgi network (TGN), suggesting that FgVps35 functions at the donor endosome membrane to mediate TGN trafficking. Disruption of microtubules with nocodazole significantly restricted the transportation of FgVps35-GFP and resulted in severe germination and growth defects. Mutation of FgVPS35 not only mimicked growth defects induced by pharmacological treatment, but also affected conidiation, ascospore formation and pathogenicity. Using yeast two-hybrid assays, we determined the interactions among FgVps35, FgVps26, FgVps29, FgVps17 and FgVps5 which are analogous to the yeast retromer complex components. Deletion of any one of these genes resulted in similar phenotypic defects to those of the ΔFgvps35 mutant and disrupted the stability of the complex. Overall, our results provide the first clear evidence of linkage between the retrograde transport mediated by the retromer complex and virulence in F. graminearum.
Collapse
Affiliation(s)
- Wenhui Zheng
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huawei Zheng
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xu Zhao
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ying Zhang
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiurong Xie
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaolian Lin
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ahai Chen
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenying Yu
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guodong Lu
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843-2132, USA
| | - Jie Zhou
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zonghua Wang
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
57
|
Wen MH, Wang JY, Chiu YT, Wang MP, Lee SP, Tai CY. N-Cadherin Regulates Cell Migration Through a Rab5-Dependent Temporal Control of Macropinocytosis. Traffic 2016; 17:769-85. [DOI: 10.1111/tra.12402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Meng-Hsuan Wen
- Graduate Institute of Life Sciences; National Defense Medical Center; Taipei 114 Taiwan
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
| | - Jen-Yeu Wang
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
| | - Yu-Ting Chiu
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
- Institute of Genomics Sciences; National Yang-Ming University; Taipei 112 Taiwan
| | - Mei-Pin Wang
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
- Institute of Pharmaceutics; Development Center for Biotechnology; New Taipei City 221 Taiwan
| | - Sue-Ping Lee
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
| | - Chin-Yin Tai
- Graduate Institute of Life Sciences; National Defense Medical Center; Taipei 114 Taiwan
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
- Institute of Genomics Sciences; National Yang-Ming University; Taipei 112 Taiwan
- Institute of Pharmaceutics; Development Center for Biotechnology; New Taipei City 221 Taiwan
| |
Collapse
|
58
|
Di Sante G, Casimiro MC, Pestell TG, Pestell RG. Time-Lapse Video Microscopy for Assessment of EYFP-Parkin Aggregation as a Marker for Cellular Mitophagy. J Vis Exp 2016. [PMID: 27168174 DOI: 10.3791/53657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Time-lapse video microscopy can be defined as the real time imaging of living cells. This technique relies on the collection of images at different time points. Time intervals can be set through a computer interface that controls the microscope-integrated camera. This kind of microscopy requires both the ability to acquire very rapid events and the signal generated by the observed cellular structure during these events. After the images have been collected, a movie of the entire experiment is assembled to show the dynamic of the molecular events of interest. Time-lapse video microscopy has a broad range of applications in the biomedical research field and is a powerful and unique tool for following the dynamics of the cellular events in real time. Through this technique, we can assess cellular events such as migration, division, signal transduction, growth, and death. Moreover, using fluorescent molecular probes we are able to mark specific molecules, such as DNA, RNA or proteins and follow them through their molecular pathways and functions. Time-lapse video microscopy has multiple advantages, the major one being the ability to collect data at the single-cell level, that make it a unique technology for investigation in the field of cell biology. However, time-lapse video microscopy has limitations that can interfere with the acquisition of high quality images. Images can be compromised by both external factors; temperature fluctuations, vibrations, humidity and internal factors; pH, cell motility. Herein, we describe a protocol for the dynamic acquisition of a specific protein, Parkin, fused with the enhanced yellow fluorescent protein (EYFP) in order to track the selective removal of damaged mitochondria, using a time-lapse video microscopy approach.
Collapse
Affiliation(s)
| | | | | | - Richard G Pestell
- Department of Cancer Biology, Thomas Jefferson University, SKCC; Department of Medical Oncology, Thomas Jefferson University, SKCC; Kazan Federal University;
| |
Collapse
|
59
|
Molecular imaging analysis of Rab GTPases in the regulation of phagocytosis and macropinocytosis. Anat Sci Int 2015; 91:35-42. [DOI: 10.1007/s12565-015-0313-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/26/2015] [Indexed: 12/22/2022]
|
60
|
Lim JP, Gosavi P, Mintern JD, Ross EM, Gleeson PA. Sorting nexin 5 selectively regulates dorsal-ruffle-mediated macropinocytosis in primary macrophages. J Cell Sci 2015; 128:4407-19. [PMID: 26459636 DOI: 10.1242/jcs.174359] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/05/2015] [Indexed: 02/01/2023] Open
Abstract
The regulation of macropinocytosis, a specialised endocytosis pathway, is important for immune cell function. However, it is not known whether the biogenesis of macropinosomes involves one or more distinct pathways. We previously identified sorting nexin 5 (SNX5) as a regulator of macropinocytosis in macrophages. Here, we show that bone-marrow-derived macrophages from SNX5-knockout mice had a 60-70% reduction in macropinocytic uptake of dextran or ovalbumin, whereas phagocytosis and retrograde transport from the plasma membrane to the Golgi was unaffected. In contrast, deficiency of SNX5 had no effect on macropinocytosis or antigen presentation by dendritic cells. Activation of macrophages with CSF-1 resulted in a localisation of SNX5 to actin-rich ruffles in a manner dependent on receptor tyrosine kinases. SNX5-deficient macrophages showed a dramatic reduction in ruffling on the dorsal surface following CSF-1 receptor activation, whereas peripheral ruffling and cell migration were unaffected. We demonstrate that SNX5 is acting upstream of actin polymerisation following CSF-1 receptor activation. Overall, our findings reveal the important contribution of dorsal ruffing to receptor-activated macropinocytosis in primary macrophages and show that SNX5 selectively regulates macropinosomes derived from the dorsal ruffles.
Collapse
Affiliation(s)
- Jet Phey Lim
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Prajakta Gosavi
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Justine D Mintern
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Ellen M Ross
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
61
|
Tang W, Tam JHK, Seah C, Chiu J, Tyrer A, Cregan SP, Meakin SO, Pasternak SH. Arf6 controls beta-amyloid production by regulating macropinocytosis of the Amyloid Precursor Protein to lysosomes. Mol Brain 2015; 8:41. [PMID: 26170135 PMCID: PMC4501290 DOI: 10.1186/s13041-015-0129-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/11/2015] [Indexed: 11/15/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by the deposition of Beta-Amyloid (Aβ) peptides in the brain. Aβ peptides are generated by cleavage of the Amyloid Precursor Protein (APP) by the β − and γ − secretase enzymes. Although this process is tightly linked to the internalization of cell surface APP, the compartments responsible are not well defined. We have found that APP can be rapidly internalized from the cell surface to lysosomes, bypassing early and late endosomes. Here we show by confocal microscopy and electron microscopy that this pathway is mediated by macropinocytosis. APP internalization is enhanced by antibody binding/crosslinking of APP suggesting that APP may function as a receptor. Furthermore, a dominant negative mutant of Arf6 blocks direct transport of APP to lysosomes, but does not affect classical endocytosis to endosomes. Arf6 expression increases through the hippocampus with the development of Alzheimer’s disease, being expressed mostly in the CA1 and CA2 regions in normal individuals but spreading through the CA3 and CA4 regions in individuals with pathologically diagnosed AD. Disruption of lysosomal transport of APP reduces both Aβ40 and Aβ42 production by more than 30 %. Our findings suggest that the lysosome is an important site for Aβ production and that altering APP trafficking represents a viable strategy to reduce Aβ production.
Collapse
Affiliation(s)
- Weihao Tang
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, 1151 Richmond St, London, ON, N6A 5B8, Canada. .,Department of Physiology and Pharmacology, Schulich School of Medicine, the University of Western Ontario, London, ON, N6A 5B7, Canada.
| | - Joshua H K Tam
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, 1151 Richmond St, London, ON, N6A 5B8, Canada. .,Department of Physiology and Pharmacology, Schulich School of Medicine, the University of Western Ontario, London, ON, N6A 5B7, Canada.
| | - Claudia Seah
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, 1151 Richmond St, London, ON, N6A 5B8, Canada.
| | - Justin Chiu
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, 1151 Richmond St, London, ON, N6A 5B8, Canada. .,Department of Physiology and Pharmacology, Schulich School of Medicine, the University of Western Ontario, London, ON, N6A 5B7, Canada.
| | - Andrea Tyrer
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, 1151 Richmond St, London, ON, N6A 5B8, Canada. .,Department of Physiology and Pharmacology, Schulich School of Medicine, the University of Western Ontario, London, ON, N6A 5B7, Canada.
| | - Sean P Cregan
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, 1151 Richmond St, London, ON, N6A 5B8, Canada. .,Department of Physiology and Pharmacology, Schulich School of Medicine, the University of Western Ontario, London, ON, N6A 5B7, Canada.
| | - Susan O Meakin
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, 1151 Richmond St, London, ON, N6A 5B8, Canada. .,Department of Biochemistry, Schulich School of Medicine, the University of Western Ontario, London, ON, N6A 5B7, Canada.
| | - Stephen H Pasternak
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, 1151 Richmond St, London, ON, N6A 5B8, Canada. .,Department of Clinical Neurological Sciences, Schulich School of Medicine, the University of Western Ontario, London, ON, N6A 5B7, Canada. .,Department of Physiology and Pharmacology, Schulich School of Medicine, the University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
62
|
Rizopoulos Z, Balistreri G, Kilcher S, Martin CK, Syedbasha M, Helenius A, Mercer J. Vaccinia Virus Infection Requires Maturation of Macropinosomes. Traffic 2015; 16:814-31. [PMID: 25869659 PMCID: PMC4973667 DOI: 10.1111/tra.12290] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 01/11/2023]
Abstract
The prototypic poxvirus, vaccinia virus (VACV), occurs in two infectious forms, mature virions (MVs) and extracellular virions (EVs). Both enter HeLa cells by inducing macropinocytic uptake. Using confocal microscopy, live-cell imaging, targeted RNAi screening and perturbants of endosome maturation, we analyzed the properties and maturation pathway of the macropinocytic vacuoles containing VACV MVs in HeLa cells. The vacuoles first acquired markers of early endosomes [Rab5, early endosome antigen 1 and phosphatidylinositol(3)P]. Prior to release of virus cores into the cytoplasm, they contained markers of late endosomes and lysosomes (Rab7a, lysosome-associated membrane protein 1 and sorting nexin 3). RNAi screening of endocytic cell factors emphasized the importance of late compartments for VACV infection. Follow-up perturbation analysis showed that infection required Rab7a and PIKfyve, confirming that VACV is a late-penetrating virus dependent on macropinosome maturation. VACV EV infection was inhibited by depletion of many of the same factors, indicating that both infectious particle forms share the need for late vacuolar conditions for penetration.
Collapse
Affiliation(s)
- Zaira Rizopoulos
- ETH Zürich Institute of Biochemistry, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Giuseppe Balistreri
- ETH Zürich Institute of Biochemistry, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Samuel Kilcher
- MRC-Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Caroline K Martin
- MRC-Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Ari Helenius
- ETH Zürich Institute of Biochemistry, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Jason Mercer
- MRC-Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
63
|
Abstract
Microglia are the resident immune cells in the CNS and play diverse roles in the maintenance of CNS homeostasis. Recent studies have shown that microglia continually survey the CNS microenvironment and scavenge cell debris and aberrant proteins by phagocytosis and pinocytosis, and that reactive microglia are capable to present antigens to T cells and initiate immune responses. However, how microglia process the endocytosed contents and evoke an immune response remain unclear. Here we report that a size-dependent selective transport of small soluble contents from the pinosomal lumen into lysosomes is critical for the antigen processing in microglia. Using fluorescent probes and water-soluble magnetic nanobeads of defined sizes, we showed in cultured rodent microglia, and in a cell-free reconstructed system that pinocytosed proteins become degraded immediately following pinocytosis and the resulting peptides are selectively delivered to major histocompatibility complex class II (MHC-II) containing lysosomes, whereas undegraded proteins are retained in the pinosomal lumen. This early size-based sorting of pinosomal contents relied on the formation of transient tunnel between pinosomes and lysosomes in a Rab7- and dynamin II-dependent manner, which allowed the small contents to pass through but restricted large ones. Inhibition of the size-based sorting markedly reduced proliferation and cytokine release of cocultured CD4(+) T cells, indicating that the size-based sorting is required for efficient antigen presentation by microglial cells. Together, these findings reveal a novel early sorting mechanism for pinosomal luminal contents in microglial cells, which may explain how microglia efficiently process protein antigens and evoke an immune response.
Collapse
|
64
|
Mundra V, Mahato RI. Design of nanocarriers for efficient cellular uptake and endosomal release of small molecule and nucleic acid drugs: learning from virus. Front Chem Sci Eng 2014. [DOI: 10.1007/s11705-014-1457-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
65
|
Wandinger-Ness A, Zerial M. Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb Perspect Biol 2014; 6:a022616. [PMID: 25341920 DOI: 10.1101/cshperspect.a022616] [Citation(s) in RCA: 429] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Of the approximately 70 human Rab GTPases, nearly three-quarters are involved in endocytic trafficking. Significant plasticity in endosomal membrane transport pathways is closely coupled to receptor signaling and Rab GTPase-regulated scaffolds. Here we review current literature pertaining to endocytic Rab GTPase localizations, functions, and coordination with regulatory proteins and effectors. The roles of Rab GTPases in (1) compartmentalization of the endocytic pathway into early, recycling, late, and lysosomal routes; (2) coordination of individual transport steps from vesicle budding to fusion; (3) effector interactomes; and (4) integration of GTPase and signaling cascades are discussed.
Collapse
Affiliation(s)
- Angela Wandinger-Ness
- Department of Pathology MSC08 4640, University of New Mexico HSC, Albuquerque, New Mexico 87131
| | - Marino Zerial
- Max Planck Institute of Molecular and Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
66
|
Egami Y, Taguchi T, Maekawa M, Arai H, Araki N. Small GTPases and phosphoinositides in the regulatory mechanisms of macropinosome formation and maturation. Front Physiol 2014; 5:374. [PMID: 25324782 PMCID: PMC4179697 DOI: 10.3389/fphys.2014.00374] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/10/2014] [Indexed: 12/26/2022] Open
Abstract
Macropinosome formation requires the sequential activation of numerous signaling pathways that coordinate the actin-driven formation of plasma membrane protrusions (ruffles) and circular ruffles (macropinocytic cups), followed by the closure of these macropinocytic cups into macropinosomes. In the process of macropinosome formation, localized productions of phosphoinositides such as PI(4,5)P2 and PI(3,4,5)P3 spatiotemporally orchestrate actin polymerization and rearrangement through recruiting and activating a variety of actin-associated proteins. In addition, the sequential activation of small GTPases, which are known to be master regulators of the actin cytoskeleton, plays a pivotal role in parallel with phosphoinositides. To complete macropinosome formation, phosphoinositide breakdown and Rho GTPase deactivation must occur in appropriate timings. After the nascent macropinosomes are formed, phosphoinositides and several Rab GTPases control macropinosome maturation by regulating vesicle trafficking and membrane fusion. In this review, we summarize recent advances in our understanding of the critical functions of phosphoinositide metabolism and small GTPases in association with their downstream effectors in macropinocytosis.
Collapse
Affiliation(s)
- Youhei Egami
- Department of Histology and Cell Biology, School of Medicine, Kagawa University Miki, Japan
| | - Tomohiko Taguchi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo Tokyo, Japan ; Pathological Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, University of Tokyo Tokyo, Japan
| | - Masashi Maekawa
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo Tokyo, Japan ; Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital Toronto, ON, Canada
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo Tokyo, Japan ; Pathological Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, University of Tokyo Tokyo, Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, School of Medicine, Kagawa University Miki, Japan
| |
Collapse
|
67
|
Wang JTH, Teasdale RD, Liebl D. Macropinosome quantitation assay. MethodsX 2014; 1:36-41. [PMID: 26150932 PMCID: PMC4472846 DOI: 10.1016/j.mex.2014.05.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 05/19/2014] [Indexed: 02/02/2023] Open
Abstract
In contrast to phagocytosis, macropinocytosis is not directly initiated by interactions between cell surface receptors and cargo ligands, but is a result of constitutive membrane ruffling driven by dynamic remodelling of cortical actin cytoskeleton in response to stimulation of growth factor receptors. Wang et al. (2010) [13] developed a reliable assay that allows quantitative assessment of the efficiency and kinetics of macropinosome biogenesis and/or maturation in cells where the function of a targeted protein has been perturbed by pharmacological inhibitors or by knock-down or knock-out approaches. In this manuscript we describe a modified quantitative protocol to measure the rate and volume of fluid phase uptake in adherent cells. This assay:uses fluorescent dextran, microscopy and semi-automated image analysis; allows quantitation of macropinosomes within large numbers of individual cells; can be applied also to non-homogenous cell populations including transiently transfected cell monolayers. We present the background necessary to consider when customising this protocol for application to new cell types or experimental variations.
Collapse
Affiliation(s)
- Jack T H Wang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Queensland, Australia ; School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Rohan D Teasdale
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Queensland, Australia
| | - David Liebl
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Queensland, Australia ; Dept. Bacterial Pathogenesis and Cellular Responses, Institute of Sciences Research and Technologies/CEA-Grenoble, Grenoble, France
| |
Collapse
|
68
|
Adil MM, Erdman ZS, Kokkoli E. Transfection mechanisms of polyplexes, lipoplexes, and stealth liposomes in α₅β₁ integrin bearing DLD-1 colorectal cancer cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:3802-3810. [PMID: 24635537 DOI: 10.1021/la5001396] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Receptor targeted, PEGylated transfection agents can improve stability and delivery specificity of current cationic lipid and polymer based nonviral gene delivery vehicles, but their mode of transfection is poorly understood. We therefore investigated the transfection mechanisms of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) lipoplexes, branched polyethylenimine (bPEI) polyplexes, and bPEI encapsulated in either PEGylated (stealth) nontargeted liposomes or PR_b peptide (targeted to α5β1 integrin) functionalized stealth liposomes in DLD-1 colorectal cancer cells in vitro with gene expression assays, flow cytometry and confocal microscopy. DOTAP/DOPE and PR_b functionalized stealth liposomes mediated higher gene expression compared to nontargeted stealth liposomes and bPEI. However DOTAP/DOPE was internalized slowly leading to lower levels of DNA uptake. In contrast, despite high internalization of bPEI polyplexes, gene expression levels were low as DNA was unable to escape from the endosomes. Nontargeted stealth liposomes also mediated low gene expression due to low amounts of DNA internalized and slow internalization kinetics. PR_b functionalized stealth liposomes struck an optimal balance among these transfection agents with efficient transfection arising from fast integrin mediated internalization kinetics, high amounts of DNA uptake, and endosomal escape. We found α5β1 integrin to be a valuable target for gene delivery and that the caveolar endocytic pathway may offer an advantage to receptor targeted PEGylated transfection agents in DLD-1 cells.
Collapse
Affiliation(s)
- Maroof M Adil
- Department of Chemical Engineering and Materials Science, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | | | | |
Collapse
|
69
|
Kerr M, Teasdale RD. Live imaging of endosome dynamics. Semin Cell Dev Biol 2014; 31:11-9. [PMID: 24704360 DOI: 10.1016/j.semcdb.2014.03.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 11/26/2022]
Abstract
When studying the living endosome one must first recognise that we are not studying a single discrete organelle but rather a highly dynamic interconnected network of membrane-bound compartments. Endocytosed molecules are sorted and transported through various polymorphic intracellular organelles that mature and interact with one another via fusion and fission events in a highly spatially and temporally co-ordinated manner. As such, we recognise that being a dynamic system, it must be studied in a dynamic fashion. Videomicroscopy has provided profound insights into the cell, and its use in the study of the living endosome has exemplified this supplying a unique perspective on this elusive organelle. In this review we will examine some of the seminal observations that this technology has contributed as well as survey the various assays, tools and technologies that can be applied to understanding the living endosome.
Collapse
Affiliation(s)
- Markus Kerr
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| | - Rohan D Teasdale
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
70
|
van Weering JRT, Cullen PJ. Membrane-associated cargo recycling by tubule-based endosomal sorting. Semin Cell Dev Biol 2014; 31:40-7. [PMID: 24641888 DOI: 10.1016/j.semcdb.2014.03.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/09/2014] [Accepted: 03/11/2014] [Indexed: 01/27/2023]
Abstract
The endosome system is a collection of organelles that sort membrane-associated proteins and lipids for lysosomal degradation or recycling back to their target organelle. Recycling cargo is captured in a network of membrane tubules emanating from endosomes where tubular carriers pinch off. These tubules are formed and stabilized through the scaffolding properties of cytosolic Bin/Amphiphysin/Rvs (BAR) proteins that comprise phosphoinositide-detecting moieties, recruiting these proteins to specific endosomal membrane areas. These include the protein family of sorting nexins that remodel endosome membrane into tubules by an evolutionary conserved mechanism of dimerization, local membrane curvature detection/induction and oligomerization. How the formation of such a tubular membrane carrier is coordinated with cargo capture is largely unknown. The tubular structure of the membrane carriers could sequester membrane-bound cargo through an iterative mechanism of geometric sorting. Furthermore, the recent identification of cargo adaptors for the endosome protein sorting complex retromer has expanded the sorting signals that retrieve specific sets of cargo away from lysosomal degradation through distinct membrane trafficking pathways.
Collapse
Affiliation(s)
- Jan R T van Weering
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University and VU Medical Center, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Peter J Cullen
- Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, Medical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
71
|
Inflammatory stimuli reprogram macrophage phagocytosis to macropinocytosis for the rapid elimination of pathogens. PLoS Pathog 2014; 10:e1003879. [PMID: 24497827 PMCID: PMC3907376 DOI: 10.1371/journal.ppat.1003879] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/18/2013] [Indexed: 12/17/2022] Open
Abstract
Following an infectious challenge, macrophages have to be activated in order to allow efficient clearance of infectious pathogens, but how macrophage activation is coupled to increased clearance remains largely unknown. We here describe that inflammatory stimuli induced the reprogramming of the macrophage endocytic machinery from receptor-mediated phagocytosis to macropinocytosis, allowing the rapid transfer of internalized cargo to lysosomes in a receptor-independent manner. Reprogramming occurred through protein kinase C-mediated phosphorylation of the macrophage protein coronin 1, thereby activating phosphoinositol (PI)-3-kinase activity necessary for macropinocytic uptake. Expression of a phosphomimetic form of coronin 1 was sufficient to induce PI3-kinase activation and macropinocytosis even in the absence of inflammatory stimuli. Together these results suggest a hitherto unknown mechanism to regulate the internalization and degradation of infectious material during inflammation. The main cells that are involved in cleaning up microbial pathogens are macrophages. Upon an infection, macrophages are being recruited to the site of infection by a number of different stimuli. In addition, during an infection, macrophages are also activated by cytokines such as interferon-γ and tumor necrosis factor-α that is released from other immune cells. Such macrophage activation is important to achieve a rapid and efficient clearance of microbial pathogens. In this study, we found that macrophage activation induces uptake through macropinocytosis rather than receptor-mediate phagocytosis. As a consequence, microbial material as well as particles can be internalized far more efficiently; In addition, the internalized cargo is rapidly destroyed within lysosomes. We also provide the mechanisms for the switch from phagocytosis to macropinocytosis, which turned out to be the cytokine-induced phosphorylation of the host protein coronin 1. Phosphorylated coronin 1 activated the lipid kinase phosphoinositide 3-kinase, which is known to be responsible for the entry of cargo through macropinocytosis. Together these results provide evidence for a hitherto unrecognized mechanisms to regulate the internalization and degradation of infectious material during an infection.
Collapse
|
72
|
Abstract
Endocytosis is an essential process of eukaryotic cells that facilitates numerous cellular and organismal functions. The formation of vesicles from the plasma membrane serves the internalization of ligands and receptors and leads to their degradation or recycling. A number of distinct mechanisms have been described over the years, several of which are only partially characterized in terms of mechanism and function. These are often referred to as novel endocytic pathways. The pathways differ in their mode of uptake and in their intracellular destination. Here, an overview of the set of cellular proteins that facilitate the different pathways is provided. Further, the approaches to distinguish between the pathways by different modes of perturbation are critically discussed, emphasizing the use of genetic tools such as dominant negative mutant proteins.
Collapse
Affiliation(s)
- Lena Kühling
- Emmy Noether Group: Virus Endocytosis, Institutes of Molecular Virology and Medical Biochemistry, ZMBE, Westphalian Wilhelms University of Münster, Von-Esmarch-Str. 56, Münster, 48149, Germany
| | | |
Collapse
|
73
|
Li W, Tang Y, Fan Z, Meng Y, Yang G, Luo J, Ke ZJ. Autophagy is involved in oligodendroglial precursor-mediated clearance of amyloid peptide. Mol Neurodegener 2013; 8:27. [PMID: 23938027 PMCID: PMC3751621 DOI: 10.1186/1750-1326-8-27] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 08/06/2013] [Indexed: 01/09/2023] Open
Abstract
Background Accumulation of β-amyloid peptides is an important hallmark of Alzheimer’s disease (AD). Tremendous efforts have been directed to elucidate the mechanisms of β-amyloid peptides degradation and develop strategies to remove β-amyloid accumulation. In this study, we demonstrated that a subpopulation of oligodendroglial precursor cells, also called NG2 cells, were a new cell type that can clear β-amyloid peptides in the AD transgene mice and in NG2 cell line. Results NG2 cells were recruited and clustered around the amyloid plaque in the APPswe/PS1dE9 mice, which is Alzheimer’s disease mouse model. In vitro, NG2 cell line and primary NG2 cells engulfed β-amyloid peptides through the mechanisms of endocytosis in a time dependent manner. Endocytosis is divided into pinocytosis and phagocytosis. Aβ42 internalization by NG2 cells was mediated by actin-dependent macropinocytosis. The presence of β-amyloid peptides stimulated the autophagic pathway in NG2 cells. Once inside the cells, the β-amyloid peptides in NG2 cells were transported to lysosomes and degraded by autophagy. Conclusions Our findings suggest that NG2 cells are a new cell type that can clear β-amyloid peptides through endocytosis and autophagy.
Collapse
Affiliation(s)
- Wenxia Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
74
|
Exosomes derived from Epstein-Barr virus-infected cells are internalized via caveola-dependent endocytosis and promote phenotypic modulation in target cells. J Virol 2013; 87:10334-47. [PMID: 23864627 DOI: 10.1128/jvi.01310-13] [Citation(s) in RCA: 280] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV), a human gammaherpesvirus, establishes a lifelong latent infection in B lymphocytes and epithelial cells following primary infection. Several lines of evidence suggest that exosomes derived from EBV-infected cells are internalized and transfer viral factors, including EBV-encoded latent membrane protein and microRNAs, to the recipient cells. However, the detailed mechanism by which exosomes are internalized and their physiological impact on the recipient cells are still poorly understood. In this study, we visualized the internalization of fluorescently labeled exosomes derived from EBV-uninfected and EBV-infected B cells of type I and type III latency into EBV-negative epithelial cells. In this way, we demonstrated that exosomes derived from all three cell types were internalized into the target cells in a similar fashion. Internalization of exosomes was significantly suppressed by treatment with an inhibitor of dynamin and also by the knockdown of caveolin-1. Labeled exosomes were colocalized with caveolae and subsequently trafficked through endocytic pathways. Moreover, we observed that exosomes derived from type III latency cells upregulated proliferation and expression of intercellular adhesion molecule 1 (ICAM-1) in the recipient cells more significantly than did those derived from EBV-negative and type I latency cells. We also identified the EBV latent membrane protein 1 (LMP1) gene as responsible for induction of ICAM-1 expression. Taken together, our data indicate that exosomes released from EBV-infected B cells are internalized via caveola-dependent endocytosis, which, in turn, contributes to phenotypic changes in the recipient cells through transferring one or more viral factors.
Collapse
|
75
|
Tugizov SM, Herrera R, Palefsky JM. Epstein-Barr virus transcytosis through polarized oral epithelial cells. J Virol 2013; 87:8179-8194. [PMID: 23698302 PMCID: PMC3700193 DOI: 10.1128/jvi.00443-13] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/29/2013] [Indexed: 01/28/2023] Open
Abstract
Although Epstein-Barr virus (EBV) is an orally transmitted virus, viral transmission through the oropharyngeal mucosal epithelium is not well understood. In this study, we investigated how EBV traverses polarized human oral epithelial cells without causing productive infection. We found that EBV may be transcytosed through oral epithelial cells bidirectionally, from both the apical to the basolateral membranes and the basolateral to the apical membranes. Apical to basolateral EBV transcytosis was substantially reduced by amiloride, an inhibitor of macropinocytosis. Electron microscopy showed that virions were surrounded by apical surface protrusions and that virus was present in subapical vesicles. Inactivation of signaling molecules critical for macropinocytosis, including phosphatidylinositol 3-kinases, myosin light-chain kinase, Ras-related C3 botulinum toxin substrate 1, p21-activated kinase 1, ADP-ribosylation factor 6, and cell division control protein 42 homolog, led to significant reduction in EBV apical to basolateral transcytosis. In contrast, basolateral to apical EBV transcytosis was substantially reduced by nystatin, an inhibitor of caveolin-mediated virus entry. Caveolae were detected in the basolateral membranes of polarized human oral epithelial cells, and virions were detected in caveosome-like endosomes. Methyl β-cyclodextrin, an inhibitor of caveola formation, reduced EBV basolateral entry. EBV virions transcytosed in either direction were able to infect B lymphocytes. Together, these data show that EBV transmigrates across oral epithelial cells by (i) apical to basolateral transcytosis, potentially contributing to initial EBV penetration that leads to systemic infection, and (ii) basolateral to apical transcytosis, which may enable EBV secretion into saliva in EBV-infected individuals.
Collapse
Affiliation(s)
- Sharof M Tugizov
- Department of Medicine, University of California San Francisco, San Francisco, California, USA.
| | | | | |
Collapse
|
76
|
Macropinocytosis is the Major Mechanism for Endocytosis of Calcium Oxalate Crystals into Renal Tubular Cells. Cell Biochem Biophys 2013; 67:1171-9. [DOI: 10.1007/s12013-013-9630-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
77
|
Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis. Mol Ther 2013; 21:1118-30. [PMID: 23587924 DOI: 10.1038/mt.2013.54] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The ideal nonviral vector delivers its nucleic acid cargo to a specific intracellular target. Vectors enter cells mainly through endocytosis and are distributed to various intracellular organelles. Recent advances in microscopy, lipidomics, and proteomics confirm that the cell membrane is composed of clusters of lipids, organized in the form of lipid raft domains, together with non-raft domains that comprise a generally disordered lipid milieu. The binding of a nonviral vector to either region can determine the pathway for its endocytic uptake and subsequent intracellular itinerary. Given this model of the cell membrane structure, endocytic pathways should be reclassified in relation to lipid rafts. In this review, we attempt to assess the currently recognized endocytic pathways in mammalian cells. The endocytic pathways are classified in relation to the membrane regions that make up the primary endocytic vesicles. This review covers the well-recognized clathrin-mediated endocytosis (CME), phagocytosis, and macropinocytosis in addition to the less addressed pathways that take place in lipid rafts. These include caveolae-mediated, flotillin-dependent, GTPase regulator associated with focal adhesion kinase-1 (GRAF1)-dependent, adenosine diphosphate-ribosylation factor 6 (Arf6)-dependent, and RhoA-dependent endocytic pathways. We summarize the regulators associated with each uptake pathway and methods for interfering with these regulators are discussed. The fate of endocytic vesicles resulting from each endocytic uptake pathway is highlighted.
Collapse
|
78
|
Krzyzaniak MA, Zumstein MT, Gerez JA, Picotti P, Helenius A. Host cell entry of respiratory syncytial virus involves macropinocytosis followed by proteolytic activation of the F protein. PLoS Pathog 2013; 9:e1003309. [PMID: 23593008 PMCID: PMC3623752 DOI: 10.1371/journal.ppat.1003309] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/03/2013] [Indexed: 12/21/2022] Open
Abstract
Respiratory Syncytial Virus (RSV) is a highly pathogenic member of the Paramyxoviridae that causes severe respiratory tract infections. Reports in the literature have indicated that to infect cells the incoming viruses either fuse their envelope directly with the plasma membrane or exploit clathrin-mediated endocytosis. To study the entry process in human tissue culture cells (HeLa, A549), we used fluorescence microscopy and developed quantitative, FACS-based assays to follow virus binding to cells, endocytosis, intracellular trafficking, membrane fusion, and infection. A variety of perturbants were employed to characterize the cellular processes involved. We found that immediately after binding to cells RSV activated a signaling cascade involving the EGF receptor, Cdc42, PAK1, and downstream effectors. This led to a series of dramatic actin rearrangements; the cells rounded up, plasma membrane blebs were formed, and there was a significant increase in fluid uptake. If these effects were inhibited using compounds targeting Na+/H+ exchangers, myosin II, PAK1, and other factors, no infection was observed. The RSV was rapidly and efficiently internalized by an actin-dependent process that had all hallmarks of macropinocytosis. Rather than fusing with the plasma membrane, the viruses thus entered Rab5-positive, fluid-filled macropinosomes, and fused with the membranes of these on the average 50 min after internalization. Rab5 was required for infection. To find an explanation for the endocytosis requirement, which is unusual among paramyxoviruses, we analyzed the fusion protein, F, and could show that, although already cleaved by a furin family protease once, it underwent a second, critical proteolytic cleavage after internalization. This cleavage by a furin-like protease removed a small peptide from the F1 subunits, and made the virus infectious. Respiratory Syncytial Virus (RSV) is a highly pathogenic paramyxovirus. We developed assays for RSV endocytosis, intracellular trafficking, membrane fusion, and infection. The results showed that RSV was rapidly and efficiently internalized, and that acid-independent membrane fusion occurred intracellularly after endocytosis. Cell biological studies demonstrated that endocytosis was macropinocytic, and that it was required for infection. The process involved activation of the EGF receptor and its downstream effectors including Cdc42, Pak1, and myosin II. RSV induced transient actin rearrangements accompanied by plasma membrane blebbing, elevated fluid uptake, and internalization of intact RSV particles into large macropinosomes. Expression of a dominant negative Rab5 mutant but not Rab7 decreased infection indicating that RSV penetration is intracellular, and takes place in Rab5 positive macropinosomes before fusion with endolysosomal compartments. The reason why RSV, unlike most paramyxoviruses, depended on endocytic entry was found to be the need for activation of the F protein by a second proteolytic cleavage. It occurred after endocytosis, and involved most likely a furin-like, vacuolar enzyme.
Collapse
Affiliation(s)
| | | | | | - Paola Picotti
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Ari Helenius
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
79
|
Hunt SD, Townley AK, Danson CM, Cullen PJ, Stephens DJ. Microtubule motors mediate endosomal sorting by maintaining functional domain organization. J Cell Sci 2013; 126:2493-501. [PMID: 23549789 PMCID: PMC3679488 DOI: 10.1242/jcs.122317] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Many microtubule motors have been shown to couple to endosomal membranes. These motors include dynein in addition to many different kinesin family members. Sorting nexins (SNXs) are central to the organization and function of endosomes. These proteins can actively shape endosomal membranes and couple directly or indirectly to the minus-end microtubule motor dynein. Motor proteins acting on endosomes drive their motility, dictate their morphology and affect cargo segregation. We have used well-characterized members of the SNX family to elucidate motor coupling using high-resolution light microscopy coupled with depletion of specific microtubule motors. Endosomal domains labelled with SNX1, SNX4 and SNX8 couple to discrete combinations of dynein and kinesin motors. These specific combinations govern the structure and motility of each SNX-coated membrane in addition to the segregation of distinct functional endosomal subdomains. Taken together, our data show that these key features of endosome dynamics are governed by the same set of opposing microtubule motors. Thus, microtubule motors help to define the mosaic layout of endosomes that underpins cargo sorting.
Collapse
Affiliation(s)
- Sylvie D Hunt
- Cell Biology Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | | | |
Collapse
|
80
|
Pritz CO, Bitsche M, Salvenmoser W, Dudás J, Schrott-Fischer A, Glueckert R. Endocytic trafficking of silica nanoparticles in a cell line derived from the organ of Corti. Nanomedicine (Lond) 2013; 8:239-52. [DOI: 10.2217/nnm.12.91] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Due to their biochemical versatility, nanoparticles (NPs) have become one of the most important future carriers for drugs and genes. NP-mediated delivery could enable an effective pharmacotherapy to the inner ear and combat hearing loss. Aims: This study investigates the endocytic trafficking of silica NPs within HEI-OC1 cells, a cell line derived from the inner ear. Materials & methods: To investigate the interaction between 50-, 70- and 100-nm silica NPs and the cells, the authors employed a set of commonly available methods involving light and electron microscopy, and sample processing methods, which preserve the native cell shape and the fragile endocytic structures. Results: The authors observed that 50-nm NPs were the most efficiently internalized. They also identified macropinocytosis as the dominant mechanism of uptake, showed localization of NPs in the early endosome and observed that silica NPs were delayed during trafficking to the lysosomes, where these NPs stayed confined, showing no endosomal escape. Conclusion: These silica NPs mostly rely on macropinocytosis for internalization. A successful use of silica NPs as vectors would involve smaller NPs and an endosomal escape strategy. Original submitted 21 December 2011; Revised submitted 23 May 2012; Published online 14 August 2012
Collapse
Affiliation(s)
- Christian Oliver Pritz
- Department of Otolaryngology, Medical University of Innsbruck, 6020 Innsbruck, Anichstraße 35, Austria
| | - Mario Bitsche
- Division of Clinical & Functional Anatomy, Department of Anatomy, Histology & Embryology, Medical University of Innsbruck, Müllerstraße 59, Innsbruck, Austria
| | - Willi Salvenmoser
- Institute of Zoology & Center for Molecular Bioscience, University of Innsbruck, 6020 Innsbruck Technikerstraße 25, Austria
| | - József Dudás
- Department of Otolaryngology, Medical University of Innsbruck, 6020 Innsbruck, Anichstraße 35, Austria
| | - Anneliese Schrott-Fischer
- Department of Otolaryngology, Medical University of Innsbruck, 6020 Innsbruck, Anichstraße 35, Austria
| | - Rudolf Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, 6020 Innsbruck, Anichstraße 35, Austria
- University Clinics of Innsbruck, Tiroler Landeskrankenanstalten GmbH-TILAK, A-6020 Innsbruck, Austria
| |
Collapse
|
81
|
Chitosan rate of uptake in HEK293 cells is influenced by soluble versus microparticle state and enhanced by serum-induced cell metabolism and lactate-based media acidification. Molecules 2013; 18:1015-35. [PMID: 23322067 PMCID: PMC6269786 DOI: 10.3390/molecules18011015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/30/2012] [Accepted: 01/07/2013] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED Chitosan is a biocompatible polysaccharide composed of glucosamine and N-acetylglucosamine. The polymer has a unique behavior of fluctuating between soluble chains at pH 6 and insoluble microparticles at pH 7. The purpose of this study was to test the hypothesis that chitosan structure, solubility state, and serum influence the rate of cell uptake. Chitosans with 80% and 95% degree of deacetylation (medium and low viscosity) were tagged with rhodamine and analyzed for particle size, media solubility, and uptake by HEK293 epithelial cells using live confocal microscopy and flow cytometry. In media pH 7.4 with or without 10% serum, chitosans fully precipitated into 0.5 to 1.4 µm diameter microparticles with a slight negative charge. During 24 h of culture in serum-free medium, chitosan particles remained extracellular. In cultures with serum, particles were taken up into intracellular vesicles in a serum dose-dependent manner. Opsonization of chitosan with serum, or replacement of serum by epidermal growth factor (EGF) failed to mediate serum-free chitosan particle uptake. Serum stimulated cells to acidify the media, partly by lactate generation. Media acidified to pH 6.5 by 7 mM lactate maintained 50% of chitosan in the soluble fraction, and led to minor uniform serum-free uptake in small vesicles. CONCLUSION Media acidification mediates minor in vitro uptake of non-biofouled soluble chitosan chains, while serum-biofouled insoluble chitosan microparticles require sustained serum exposure to generate energy required for macropinocytosis.
Collapse
|
82
|
Egami Y, Araki N. Spatiotemporal Localization of Rab20 in Live RAW264 Macrophages during Macropinocytosis. Acta Histochem Cytochem 2012; 45:317-23. [PMID: 23378675 PMCID: PMC3554782 DOI: 10.1267/ahc.12014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/22/2012] [Indexed: 11/30/2022] Open
Abstract
Rab20 is a member of the Rab GTPase family, but its implication in macropinocytosis is unclear. We examined the spatiotemporal localization of Rab20 in RAW264 macrophages by the live-cell imaging of fluorescent protein-fused Rab20. It was shown that Rab20 was transiently associated with macropinosomal membranes. During the early stage of macropinosome formation, Rab20 was slightly localized on the circular ruffles (macropinocytic cups), the precursor forms of macropinosomes, and was increasingly recruited to the newly formed macropinosomes. Although Rab20 was colocalized with Rab5 and Rab21 on macropinosomal membranes, the association of Rab20 with macropinosomes persisted even after the dissociations of Rab5 and Rab21 from macropinosomal membranes. Rab20 was then colocalized with Rab7 and Lamp1, late endosomal/lysosomal markers, on macropinosomes for a while. Our data indicate that Rab20 is a novel component of macropinocytic pathway and functions at long-standing stages from early to late macropinosome maturation.
Collapse
Affiliation(s)
- Youhei Egami
- Department of Histology and Cell Biology, School of Medicine, Kagawa University
| | - Nobukazu Araki
- Department of Histology and Cell Biology, School of Medicine, Kagawa University
| |
Collapse
|
83
|
Nakayama Y, Nakamura N, Oki S, Wakabayashi M, Ishihama Y, Miyake A, Itoh N, Kurosaka A. A putative polypeptide N-acetylgalactosaminyltransferase/Williams-Beuren syndrome chromosome region 17 (WBSCR17) regulates lamellipodium formation and macropinocytosis. J Biol Chem 2012; 287:32222-35. [PMID: 22787146 PMCID: PMC3442553 DOI: 10.1074/jbc.m112.370932] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 07/03/2012] [Indexed: 12/15/2022] Open
Abstract
We previously identified a novel polypeptide N-acetylgalactosaminyltransferase (GalNAc-T) gene, which is designated Williams-Beuren syndrome chromosome region 17 (WBSCR17) because it is located in the chromosomal flanking region of the Williams-Beuren syndrome deletion. Recent genome-scale analysis of HEK293T cells treated with a high concentration of N-acetylglucosamine (GlcNAc) demonstrated that WBSCR17 was one of the up-regulated genes possibly involved in endocytosis (Lau, K. S., Khan, S., and Dennis, J. W. (2008) Genome-scale identification of UDP-GlcNAc-dependent pathways. Proteomics 8, 3294-3302). To assess its roles, we first expressed recombinant WBSCR17 in COS7 cells and demonstrated that it was N-glycosylated and localized mainly in the Golgi apparatus, as is the case for the other GalNAc-Ts. Assay of recombinant WBSCR17 expressed in insect cells showed very low activity toward typical mucin peptide substrates. We then suppressed the expression of endogenous WBSCR17 in HEK293T cells using siRNAs and observed phenotypic changes of the knockdown cells with reduced lamellipodium formation, altered O-glycan profiles, and unusual accumulation of glycoconjugates in the late endosomes/lysosomes. Analyses of endocytic pathways revealed that macropinocytosis, but neither clathrin- nor caveolin-dependent endocytosis, was elevated in the knockdown cells. This was further supported by the findings that the overexpression of recombinant WBSCR17 stimulated lamellipodium formation, altered O-glycosylation, and inhibited macropinocytosis. WBSCR17 therefore plays important roles in lamellipodium formation and the regulation of macropinocytosis as well as lysosomes. Our study suggests that a subset of O-glycosylation produced by WBSCR17 controls dynamic membrane trafficking, probably between the cell surface and the late endosomes through macropinocytosis, in response to the nutrient concentration as exemplified by environmental GlcNAc.
Collapse
Affiliation(s)
- Yoshiaki Nakayama
- From the Laboratory of Neuroglycobiology, Department of Molecular Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan and
| | - Naosuke Nakamura
- From the Laboratory of Neuroglycobiology, Department of Molecular Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan and
| | - Sayoko Oki
- From the Laboratory of Neuroglycobiology, Department of Molecular Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan and
| | | | | | - Ayumi Miyake
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo-ku, Kyoto 606-8501, Japan
| | - Nobuyuki Itoh
- Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akira Kurosaka
- From the Laboratory of Neuroglycobiology, Department of Molecular Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan and
| |
Collapse
|
84
|
Cetuximab in combination with anti-human IgG antibodies efficiently down-regulates the EGF receptor by macropinocytosis. Exp Cell Res 2012; 318:2578-91. [PMID: 22975728 DOI: 10.1016/j.yexcr.2012.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 02/05/2023]
Abstract
The monoclonal antibody C225 (Cetuximab) blocks binding of ligand to the epidermal growth factor receptor (EGFR). In addition, it is known that incubation with C225 induces endocytosis of the EGFR. This endocytosis has previously been shown to be increased when C225 is combined with an additional monoclonal anti-EGFR antibody. However, the effects of antibody combinations on EGFR activation, endocytosis, trafficking and degradation have been unclear. By binding a secondary antibody to the C225-EGFR complex, we here demonstrate that a combination of antibodies can efficiently internalize and degrade the EGFR. Although the combination of antibodies activated the EGFR kinase and induced ubiquitination of the EGFR, the kinase activity was not required for internalization of the EGFR. In contrast to EGF-induced EGFR down-regulation, the antibody combination efficiently degraded the EGFR without initiating downstream proliferative signaling. The antibody-induced internalization of EGFR was found not to depend on clathrin and/or dynamin, but depended on actin polymerization, suggesting induction of macropinocytosis. Macropinocytosis may cause internalization of large membrane areas, and this could explain the highly efficient internalization of the EGFR induced by combination of antibodies.
Collapse
|
85
|
Lim JP, Teasdale RD, Gleeson PA. SNX5 is essential for efficient macropinocytosis and antigen processing in primary macrophages. Biol Open 2012; 1:904-14. [PMID: 23213485 PMCID: PMC3507233 DOI: 10.1242/bio.20122204] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 06/19/2012] [Indexed: 12/14/2022] Open
Abstract
Macropinocytosis mediates the bulk endocytosis of solute molecules, nutrients and antigens. As this endocytic pathway is considered important in functions associated with immune responses, the molecular mechanisms regulating this pathway in immune cells is of particular significance. However, the regulators of macropinocytosis in primary cells remain poorly defined. Members of the sorting nexin (SNX) family have been implicated in macropinosome biogenesis in cultured cells and here we have analyzed the role of two SNX family members, SNX1 and its binding partner SNX5, in macropinocytosis of mouse primary macrophages. We show that endogenous SNX1 and SNX5 are localised to newly-formed macropinosomes in primary mouse macrophages and, moreover, demonstrate that SNX5 plays an essential role in macropinosome biogenesis. Depletion of SNX5 in bone marrow-derived macrophages dramatically decreased both the number and size of macropinosomes. Depletion of SNX5 also resulted in dramatic reduction in uptake and processing of soluble ovalbumin in macrophages, indicating that the majority of antigen uptake and delivery to late endosomes is via macropinocytosis. By contrast, the absence of SNX1 had no effect on endogenous SNX5 localisation and macropinosome biogenesis using macrophages from SNX1 knockout mice. Therefore, SNX5 can function independently of SNX1 and is a modulator of macropinocytosis that influences the uptake and processing of soluble antigen in primary mouse macrophages.
Collapse
Affiliation(s)
- Jet Phey Lim
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Victoria 3010 , Australia
| | | | | |
Collapse
|
86
|
Mercer J, Helenius A. Gulping rather than sipping: macropinocytosis as a way of virus entry. Curr Opin Microbiol 2012; 15:490-9. [PMID: 22749376 DOI: 10.1016/j.mib.2012.05.016] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/25/2012] [Accepted: 05/31/2012] [Indexed: 12/18/2022]
Abstract
Macropinocytosis has emerged as a major endocytic mechanism in the cell entry of animal viruses. The process differs fundamentally from other endocytic mechanisms involved in virus internalization. By activating growth factor receptors or other signaling molecules, plasma membrane-bound viruses trigger the activation of a signaling pathway. When amplified, this causes a transient, global change in cell behavior. The consequences of this change include the actin-dependent formation of membrane protrusions, the elevation of non-specific uptake of fluid, and the internalization of membrane together with surface-bound ligands and particles including viruses. Recent studies show that this strategy is used by a variety of enveloped and non-enveloped viruses.
Collapse
Affiliation(s)
- Jason Mercer
- ETH Zürich, Institute of Biochemistry, Zürich, Switzerland.
| | | |
Collapse
|
87
|
Wu Z, Chen K, Yildiz I, Dirksen A, Fischer R, Dawson PE, Steinmetz NF. Development of viral nanoparticles for efficient intracellular delivery. NANOSCALE 2012; 4:3567-76. [PMID: 22508503 PMCID: PMC3563001 DOI: 10.1039/c2nr30366c] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Viral nanoparticles (VNPs) based on plant viruses such as Cowpea mosaic virus (CPMV) can be used for a broad range of biomedical applications because they present a robust scaffold that allows functionalization by chemical conjugation and genetic modification, thereby offering an efficient drug delivery platform that can target specific cells and tissues. VNPs such as CPMV show natural affinity to cells; however, cellular uptake is inefficient. Here we show that chemical modification of the CPMV surface with a highly reactive, specific and UV-traceable hydrazone linker allows bioconjugation of polyarginine (R5) cell penetrating peptides (CPPs), which can overcome these limitations. The resulting CPMV-R5 particles were taken up into a human cervical cancer cell line (HeLa) more efficiently than native particles. Uptake efficiency was dependent on the density of R5 peptides on the surface of the VNP; particles displaying 40 R5 peptides per CPMV (denoted as CPMV-R5H) interact strongly with the plasma membrane and are taken up into the cells via an energy-dependent mechanism whereas particles displaying 10 R5 peptides per CPMV (CPMV-R5L) are only slowly taken up. The fate of CPMV-R5 versus native CPMV particles within cells was evaluated in a co-localization time course study. It was indicated that the intracellular localization of CPMV-R5 and CPMV differs; CPMV remains trapped in Lamp-1 positive endolysosomes over long time frames; in contrast, 30-50% of the CPMV-R5 particles transitioned from the endosome into other cellular vesicles or compartments. Our data provide the groundwork for the development of efficient drug delivery formulations based on CPMV-R5.
Collapse
Affiliation(s)
- Zhuojun Wu
- Department of Cell Biology and Chemistry, Center for Integrative Molecular Biosciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- Institute of Biology VII, Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Kevin Chen
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-5056, USA
| | - Ibrahim Yildiz
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-5056, USA
| | - Anouk Dirksen
- Department of Cell Biology and Chemistry, Center for Integrative Molecular Biosciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Rainer Fischer
- Institute of Biology VII, Molecular Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| | - Philip E. Dawson
- Department of Cell Biology and Chemistry, Center for Integrative Molecular Biosciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-5056, USA
- Department of Radiology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-5056, USA
- Department of Materials Science and Engineering, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-5056, USA
| |
Collapse
|
88
|
Schmees C, Villaseñor R, Zheng W, Ma H, Zerial M, Heldin CH, Hellberg C. Macropinocytosis of the PDGF β-receptor promotes fibroblast transformation by H-RasG12V. Mol Biol Cell 2012; 23:2571-82. [PMID: 22573884 PMCID: PMC3386220 DOI: 10.1091/mbc.e11-04-0317] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Fibroblast transformation by H-RasG12V induces internalization of PDGFRβ by macropinocytosis, enhancing its signaling activity and increasing anchorage-independent proliferation. It is proposed that H-Ras transformation promotes tumor progression by enhancing growth factor receptor signaling through increased receptor macropinocytosis. Receptor tyrosine kinase (RTK) signaling is frequently increased in tumor cells, sometimes as a result of decreased receptor down-regulation. The extent to which the endocytic trafficking routes can contribute to such RTK hyperactivation is unclear. Here, we show for the first time that fibroblast transformation by H-RasG12V induces the internalization of platelet-derived growth factor β-receptor (PDGFRβ) by macropinocytosis, enhancing its signaling activity and increasing anchorage-independent proliferation. H-RasG12V transformation and PDGFRβ activation were synergistic in stimulating phosphatidylinositol (PI) 3-kinase activity, leading to receptor macropinocytosis. PDGFRβ macropinocytosis was both necessary and sufficient for enhanced receptor activation. Blocking macropinocytosis by inhibition of PI 3-kinase prevented the increase in receptor activity in transformed cells. Conversely, increasing macropinocytosis by Rabankyrin-5 overexpression was sufficient to enhance PDGFRβ activation in nontransformed cells. Simultaneous stimulation with PDGF-BB and epidermal growth factor promoted macropinocytosis of both receptors and increased their activation in nontransformed cells. We propose that H-Ras transformation promotes tumor progression by enhancing growth factor receptor signaling as a result of increased receptor macropinocytosis.
Collapse
Affiliation(s)
- C Schmees
- Ludwig Institute for Cancer Research, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
89
|
Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: structures, functions and roles in disease. Biochem J 2011; 441:39-59. [DOI: 10.1042/bj20111226] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mammalian genome encodes 49 proteins that possess a PX (phox-homology) domain, responsible for membrane attachment to organelles of the secretory and endocytic system via binding of phosphoinositide lipids. The PX domain proteins, most of which are classified as SNXs (sorting nexins), constitute an extremely diverse family of molecules that play varied roles in membrane trafficking, cell signalling, membrane remodelling and organelle motility. In the present review, we present an overview of the family, incorporating recent functional and structural insights, and propose an updated classification of the proteins into distinct subfamilies on the basis of these insights. Almost all PX domain proteins bind PtdIns3P and are recruited to early endosomal membranes. Although other specificities and localizations have been reported for a select few family members, the molecular basis for binding to other lipids is still not clear. The PX domain is also emerging as an important protein–protein interaction domain, binding endocytic and exocytic machinery, transmembrane proteins and many other molecules. A comprehensive survey of the molecular interactions governed by PX proteins highlights the functional diversity of the family as trafficking cargo adaptors and membrane-associated scaffolds regulating cell signalling. Finally, we examine the mounting evidence linking PX proteins to different disorders, in particular focusing on their emerging importance in both pathogen invasion and amyloid production in Alzheimer's disease.
Collapse
|
90
|
Feliciano WD, Yoshida S, Straight SW, Swanson JA. Coordination of the Rab5 cycle on macropinosomes. Traffic 2011; 12:1911-22. [PMID: 21910808 DOI: 10.1111/j.1600-0854.2011.01280.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The GTPase Rab5a regulates the homotypic and heterotypic fusion of membranous organelles during the early stages of endocytosis. Many of the molecules which regulate the Rab5a cycle of association with membranes, activation, deactivation and dissociation are known. However, the extent to which these molecular scale activities are coordinated on membranes to affect the behavior of individual organelles has not been determined. This study used novel Förster resonance energy transfer (FRET) microscopic methods to analyze the Rab5a cycle on macropinosomes, which are large endocytic vesicles that form in ruffled regions of cell membranes. In Cos-7 cells and mouse macrophages stimulated with growth factors, Rab5a activation followed immediately after its recruitment to newly formed macropinosomes. Rab5a activity increased continuously and uniformly over macropinosome membranes then decreased continuously, with Rab5a deactivation preceding dissociation by 1-12 min. Although the maximal levels of Rab5a activity were independent of organelle size, Rab5a cycles were longer on larger macropinosomes, consistent with an integrative activity governing Rab5a dynamics on individual organelles. The Rab5a cycle was destabilized by microtubule depolymerization and by bafilomycin A1. Overexpression of activating and inhibitory proteins indicated that active Rab5a stabilized macropinosomes. Thus, overall Rab5a activity on macropinosomes is coordinated by macropinosome structure and physiology.
Collapse
Affiliation(s)
- William D Feliciano
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
| | | | | | | |
Collapse
|
91
|
Overmeyer JH, Young AM, Bhanot H, Maltese WA. A chalcone-related small molecule that induces methuosis, a novel form of non-apoptotic cell death, in glioblastoma cells. Mol Cancer 2011; 10:69. [PMID: 21639944 PMCID: PMC3118192 DOI: 10.1186/1476-4598-10-69] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 06/06/2011] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Methuosis is a unique form of non-apoptotic cell death triggered by alterations in the trafficking of clathrin-independent endosomes, ultimately leading to extreme vacuolization and rupture of the cell. RESULTS Here we describe a novel chalcone-like molecule, 3-(2-methyl-1H- indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (MIPP) that induces cell death with the hallmarks of methuosis. MIPP causes rapid accumulation of vacuoles derived from macropinosomes, based on time-lapse microscopy and labeling with extracellular fluid phase tracers. Vacuolization can be blocked by the cholesterol-interacting compound, filipin, consistent with the origin of the vacuoles from non-clathrin endocytic compartments. Although the vacuoles rapidly acquire some characteristics of late endosomes (Rab7, LAMP1), they remain distinct from lysosomal and autophagosomal compartments, suggestive of a block at the late endosome/lysosome boundary. MIPP appears to target steps in the endosomal trafficking pathway involving Rab5 and Rab7, as evidenced by changes in the activation states of these GTPases. These effects are specific, as other GTPases (Rac1, Arf6) are unaffected by the compound. Cells treated with MIPP lose viability within 2-3 days, but their nuclei show no evidence of apoptotic changes. Inhibition of caspase activity does not protect the cells, consistent with a non-apoptotic death mechanism. U251 glioblastoma cells selected for temozolomide resistance showed sensitivity to MIPP-induced methuosis that was comparable to the parental cell line. CONCLUSIONS MIPP might serve as a prototype for new drugs that could be used to induce non-apoptotic death in cancers that have become refractory to agents that work through DNA damage and apoptotic mechanisms.
Collapse
Affiliation(s)
- Jean H Overmeyer
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Ashley M Young
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Haymanti Bhanot
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - William A Maltese
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, Ohio, USA
| |
Collapse
|
92
|
Abstract
Macropinocytosis is a regulated form of endocytosis that mediates the non-selective uptake of solute molecules, nutrients and antigens. It is an actin-dependent process initiated from surface membrane ruffles that give rise to large endocytic vacuoles called macropinosomes. Macropinocytosis is important in a range of physiological processes; it is highly active in macrophages and dendritic cells where it is a major pathway for the capture of antigens, it is relevant to cell migration and tumour metastasis and it represents a portal of cell entry exploited by a range of pathogens. The molecular basis for the formation and maturation of macropinosomes has only recently begun to be defined. Here, we review the general characteristics of macropinocytosis, describe some of the regulators of this pathway, which have been identified to date and highlight strategies to explore the relevance of this endocytosis pathway in vivo.
Collapse
|
93
|
Wang JTH, Kerr MC, Karunaratne S, Jeanes A, Yap AS, Teasdale RD. The SNX-PX-BAR family in macropinocytosis: the regulation of macropinosome formation by SNX-PX-BAR proteins. PLoS One 2010; 5:e13763. [PMID: 21048941 PMCID: PMC2966440 DOI: 10.1371/journal.pone.0013763] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 10/08/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Macropinocytosis is an actin-driven endocytic process, whereby membrane ruffles fold back onto the plasma membrane to form large (>0.2 µm in diameter) endocytic organelles called macropinosomes. Relative to other endocytic pathways, little is known about the molecular mechanisms involved in macropinocytosis. Recently, members of the Sorting Nexin (SNX) family have been localized to the cell surface and early macropinosomes, and implicated in macropinosome formation. SNX-PX-BAR proteins form a subset of the SNX family and their lipid-binding (PX) and membrane-curvature sensing (BAR) domain architecture further implicates their functional involvement in macropinosome formation. METHODOLOGY/PRINCIPAL FINDINGS We exploited the tractability of macropinosomes through image-based screening and systematic overexpression of SNX-PX-BAR proteins to quantitate their effect on macropinosome formation. SNX1 (40.9+/-3.19 macropinosomes), SNX5 (36.99+/-4.48 macropinosomes), SNX9 (37.55+/-2.4 macropinosomes), SNX18 (88.2+/-8 macropinosomes), SNX33 (65.25+/-6.95 macropinosomes) all exhibited statistically significant (p<0.05) increases in average macropinosome numbers per 100 transfected cells as compared to control cells (24.44+/-1.81 macropinosomes). SNX1, SNX5, SNX9, and SNX18 were also found to associate with early-stage macropinosomes within 5 minutes following organelle formation. The modulation of intracellular PI(3,4,5)P(3) levels through overexpression of PTEN or a lipid phosphatase-deficient mutant PTEN(G129E) was also observed to significantly reduce or elevate macropinosome formation respectively; coexpression of PTEN(G129E) with SNX9 or SNX18 synergistically elevated macropinosome formation to 119.4+/-7.13 and 91.4+/-6.37 macropinosomes respectively (p<0.05). CONCLUSIONS/SIGNIFICANCE SNX1, SNX5, SNX9, SNX18, and SNX33 were all found to elevate macropinosome formation and (with the exception of SNX33) associate with early-stage macropinosomes. Moreover the effects of SNX9 and SNX18 overexpression in elevating macropinocytosis is likely to be synergistic with the increase in PI(3,4,5)P(3) levels, which is known to accumulate on the cell surface and early-stage macropinocytic cups. Together these findings represent the first systematic functional study into the impact of the SNX-PX-BAR family on macropinocytosis.
Collapse
Affiliation(s)
- Jack T. H. Wang
- Institute for Molecular Bioscience and Australia Research Council (ARC) Centre of Excellence in Bioinformatics, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Markus C. Kerr
- Institute for Molecular Bioscience and Australia Research Council (ARC) Centre of Excellence in Bioinformatics, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Seetha Karunaratne
- Institute for Molecular Bioscience and Australia Research Council (ARC) Centre of Excellence in Bioinformatics, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Angela Jeanes
- Institute for Molecular Bioscience and Australia Research Council (ARC) Centre of Excellence in Bioinformatics, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Alpha S. Yap
- Institute for Molecular Bioscience and Australia Research Council (ARC) Centre of Excellence in Bioinformatics, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Rohan D. Teasdale
- Institute for Molecular Bioscience and Australia Research Council (ARC) Centre of Excellence in Bioinformatics, The University of Queensland, St. Lucia, Brisbane, Australia
- * E-mail:
| |
Collapse
|
94
|
Nanbo A, Imai M, Watanabe S, Noda T, Takahashi K, Neumann G, Halfmann P, Kawaoka Y. Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner. PLoS Pathog 2010; 6:e1001121. [PMID: 20886108 PMCID: PMC2944813 DOI: 10.1371/journal.ppat.1001121] [Citation(s) in RCA: 346] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 08/25/2010] [Indexed: 12/12/2022] Open
Abstract
Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the plasma membrane invaginations that characterize clathrin- or caveolae-mediated endocytosis. The mechanism of EBOV entry remains, therefore, poorly understood. To better understand Ebolavirus entry, we carried out internalization studies with fluorescently labeled, biologically contained Ebolavirus and Ebolavirus-like particles (Ebola VLPs), both of which resemble authentic Ebolavirus in their morphology. We examined the mechanism of Ebolavirus internalization by real-time analysis of these fluorescently labeled Ebolavirus particles and found that their internalization was independent of clathrin- or caveolae-mediated endocytosis, but that they co-localized with sorting nexin (SNX) 5, a marker of macropinocytosis-specific endosomes (macropinosomes). Moreover, the internalization of Ebolavirus virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. A pseudotyped vesicular stomatitis virus possessing the Ebolavirus glycoprotein (GP) also co-localized with SNX5 and its internalization and infectivity were affected by macropinocytosis inhibitors. Taken together, our data suggest that Ebolavirus is internalized into cells by stimulating macropinocytosis in a GP-dependent manner. These findings provide new insights into the lifecycle of Ebolavirus and may aid in the development of therapeutics for Ebolavirus infection. Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with high mortality rates in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, questions remain regarding the mechanism of EBOV entry. Here, we demonstrate that internalization of EBOV particles is independent of clathrin- or caveolae-mediated endocytosis. Specifically, we show that internalized EBOV particles co-localize with macropinocytosis-specific endosomes (macropinosomes) and that their entry is negatively affected by treatment with macropinocytosis inhibitors. Moreover, the internalization of Ebola virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. We further demonstrate that a pseudotyped vesicular stomatitis virus possessing the EBOV glycoprotein (GP) also co-localizes with macropinosomes and its internalization is similarly affected by macropinocytosis inhibitors. Our results indicate that EBOV uptake into cells involves the macropinocytic pathway and is GP-dependent. These findings provide new insights into the lifecycle of EBOV and may aid in the development of therapeutics for EBOV infection.
Collapse
Affiliation(s)
- Asuka Nanbo
- Influenza Research Institute, Department of Pathological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Inhibition of the PtdIns(5) kinase PIKfyve disrupts intracellular replication of Salmonella. EMBO J 2010; 29:1331-47. [PMID: 20300065 DOI: 10.1038/emboj.2010.28] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 02/10/2010] [Indexed: 01/15/2023] Open
Abstract
3-phosphorylated phosphoinositides (3-PtdIns) orchestrate endocytic trafficking pathways exploited by intracellular pathogens such as Salmonella to gain entry into the cell. To infect the host, Salmonellae subvert its normal macropinocytic activity, manipulating the process to generate an intracellular replicative niche. Disruption of the PtdIns(5) kinase, PIKfyve, be it by interfering mutant, siRNA-mediated knockdown or pharmacological means, inhibits the intracellular replication of Salmonella enterica serovar typhimurium in epithelial cells. Monitoring the dynamics of macropinocytosis by time-lapse 3D (4D) videomicroscopy revealed a new and essential role for PI(3,5)P(2) in macropinosome-late endosome/lysosome fusion, which is distinct from that of the small GTPase Rab7. This PI(3,5)P(2)-dependent step is required for the proper maturation of the Salmonella-containing vacuole (SCV) through the formation of Salmonella-induced filaments (SIFs) and for the engagement of the Salmonella pathogenicity island 2-encoded type 3 secretion system (SPI2-T3SS). Finally, although inhibition of PIKfyve in macrophages did inhibit Salmonella replication, it also appears to disrupt the macrophage's bactericidal response.
Collapse
|
96
|
Lieu ZZ, Gleeson PA. Identification of different itineraries and retromer components for endosome-to-Golgi transport of TGN38 and Shiga toxin. Eur J Cell Biol 2010; 89:379-93. [PMID: 20138391 DOI: 10.1016/j.ejcb.2009.10.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/22/2009] [Accepted: 10/29/2009] [Indexed: 11/19/2022] Open
Abstract
The retrograde transport pathways from early/recycling endosomes are critical for recycling a range of endogenous cargo, as well as internalisation of bacterial and plant toxins. We have previously shown that the retrograde transport of the two model cargos, TGN38 and Shiga toxin, differs in the requirement for TGN golgins; transport of TGN38 requires the TGN golgin GCC88 whereas that of Shiga toxin requires GCC185. Here we have further defined the retrograde transport requirements of these two cargos. Tracking the transport of these cargos demonstrated that the bulk of Shiga toxin is transported from early endosomes to recycling endosomes en route to the TGN whereas the bulk of TGN38 is transported from early endosomes to the TGN with only low levels detected in recycling endosomes. In cells depleted of the TGN t-SNARE syntaxin 16, TGN38 accumulated predominantly in early endosomes whereas Shiga toxin accumulated in Rab11-positive recycling endosomes, suggesting distinct routes for each cargo. Retrograde transport of Shiga toxin and TGN38 requires retromer, however, whereas sorting nexin 1 (SNX1) is specifically required for transport of Shiga toxin, sorting nexin 2 (SNX2) is required for the transport of TGN38. Overall, our data have identified different itineraries for the retrograde transport of Shiga toxin and TGN38 and distinct retromer components that regulate the transport of these cargos.
Collapse
Affiliation(s)
- Zi Zhao Lieu
- The Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
97
|
Esk C, Chen CY, Johannes L, Brodsky FM. The clathrin heavy chain isoform CHC22 functions in a novel endosomal sorting step. ACTA ACUST UNITED AC 2010; 188:131-44. [PMID: 20065094 PMCID: PMC2812854 DOI: 10.1083/jcb.200908057] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Clathrin heavy chain 22 (CHC22) is an isoform of the well-characterized CHC17 clathrin heavy chain, a coat component of vesicles that mediate endocytosis and organelle biogenesis. CHC22 has a distinct role from CHC17 in trafficking glucose transporter 4 (GLUT4) in skeletal muscle and fat, though its transfection into HEK293 cells suggests functional redundancy. Here, we show that CHC22 is eightfold less abundant than CHC17 in muscle, other cell types have variably lower amounts of CHC22, and endogenous CHC22 and CHC17 function independently in nonmuscle and muscle cells. CHC22 was required for retrograde trafficking of certain cargo molecules from endosomes to the trans-Golgi network (TGN), defining a novel endosomal-sorting step distinguishable from that mediated by CHC17 and retromer. In muscle cells, depletion of syntaxin 10 as well as CHC22 affected GLUT4 targeting, establishing retrograde endosome-TGN transport as critical for GLUT4 trafficking. Like CHC22, syntaxin 10 is not expressed in mice but is present in humans and other vertebrates, implicating two species-restricted endosomal traffic proteins in GLUT4 transport.
Collapse
Affiliation(s)
- Christopher Esk
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
98
|
Koharudin LMI, Furey W, Liu H, Liu YJ, Gronenborn AM. The phox domain of sorting nexin 5 lacks phosphatidylinositol 3-phosphate (PtdIns(3)P) specificity and preferentially binds to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). J Biol Chem 2009; 284:23697-707. [PMID: 19553671 PMCID: PMC2749144 DOI: 10.1074/jbc.m109.008995] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/08/2009] [Indexed: 11/06/2022] Open
Abstract
Subcellular retrograde transport of cargo receptors from endosomes to the trans-Golgi network is critically involved in a broad range of physiological and pathological processes and highly regulated by a genetically conserved heteropentameric complex, termed retromer. Among the retromer components identified in mammals, sorting nexin 5 and 1 (SNX5; SNX1) have recently been found to interact, possibly controlling the membrane binding specificity of the complex. To elucidate how the unique sequence features of the SNX5 phox domain (SNX5-PX) influence retrograde transport, we have determined the SNX5-PX structure by NMR and x-ray crystallography at 1.5 A resolution. Although the core fold of SNX5-PX resembles that of other known PX domains, we found novel structural features exclusive to SNX5-PX. It is most noteworthy that in SNX5-PX, a long helical hairpin is added to the core formed by a new alpha2'-helix and a much longer alpha3-helix. This results in a significantly altered overall shape of the protein. In addition, the unique double PXXP motif is tightly packed against the rest of the protein, rendering this part of the structure compact, occluding parts of the putative phosphatidylinositol (PtdIns) binding pocket. The PtdIns binding and specificity of SNX5-PX was evaluated by NMR titrations with eight different PtdIns and revealed that SNX5-PX preferentially and specifically binds to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)). The distinct structural and PtdIns binding characteristics of SNX5-PX impart specific properties on SNX5, influencing retromer-mediated regulation of retrograde trafficking of transmembrane cargo receptors.
Collapse
Affiliation(s)
| | - William Furey
- Pharmacology and Chemical Biology
- the Biocrystallography Laboratory, Veterans Affairs Medical Center, Pittsburgh, Pennsylvania 15240
| | | | - Yong-Jian Liu
- Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260 and
| | | |
Collapse
|
99
|
Egami Y, Araki N. Dynamic changes in the spatiotemporal localization of Rab21 in live RAW264 cells during macropinocytosis. PLoS One 2009; 4:e6689. [PMID: 19693279 PMCID: PMC2726762 DOI: 10.1371/journal.pone.0006689] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 07/28/2009] [Indexed: 11/18/2022] Open
Abstract
Rab21, a member of the Rab GTPase family, is known to be involved in membrane trafficking, but its implication in macropinocytosis is unclear. We analyzed the spatiotemporal localization of Rab21 in M-CSF-stimulated RAW264 macrophages by the live-cell imaging of fluorescent protein-fused Rab21. It was demonstrated that wild-type Rab21 was transiently associated with macropinosomes. Rab21 was recruited to the macropinosomes after a decrease in PI(4,5)P2 and PI(3,4,5)P3 levels. Although Rab21 was largely colocalized with Rab5, the recruitment of Rab21 to the macropinosomes lagged a minute behind that of Rab5, and preceded that of Rab7. Then, Rab21 was dissociated from the macropinosomes prior to the accumulation of Lamp1, a late endosomal/lysosomal marker. Our analysis of Rab21 mutants revealed that the GTP-bound mutant, Rab21-Q78L, was recruited to the macropinosomes, similarly to wild-type Rab21. However, the GDP-bound mutant, Rab21-T33N, did not localize on the formed macropinosomes, suggesting that the binding of GTP to Rab21 is required for the proper recruitment of Rab21 onto the macropinosomes. However, neither mutation of Rab21 significantly affected the rate of macropinosome formation. These data indicate that Rab21 is a transient component of early and intermediate stages of macropinocytosis, and probably functions in macropinosome maturation before fusing with lysosomal compartments.
Collapse
Affiliation(s)
- Youhei Egami
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa, Japan
- * E-mail:
| |
Collapse
|
100
|
|