51
|
Janowska J, Sypecka J. Therapeutic Strategies for Leukodystrophic Disorders Resulting from Perinatal Asphyxia: Focus on Myelinating Oligodendrocytes. Mol Neurobiol 2018; 55:4388-4402. [PMID: 28660484 PMCID: PMC5884907 DOI: 10.1007/s12035-017-0647-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/07/2017] [Indexed: 12/12/2022]
Abstract
Perinatal asphyxia results from the action of different risk factors like complications during pregnancy, preterm delivery, or long and difficult labor. Nowadays, it is still the leading cause of neonatal brain injury known as hypoxic-ischemic encephalopathy (HIE) and resulting neurological disorders. A temporal limitation of oxygen, glucose, and trophic factors supply results in alteration of neural cell differentiation and functioning and/or leads to their death. Among the affected cells are oligodendrocytes, responsible for myelinating the central nervous system (CNS) and formation of white matter. Therefore, one of the major consequences of the experienced HIE is leukodystrophic diseases resulting from oligodendrocyte deficiency or malfunctioning. The therapeutic strategies applied after perinatal asphyxia are aimed at reducing brain damage and promoting the endogenous neuroreparative mechanisms. In this review, we focus on the biology of oligodendrocytes and discuss present clinical treatments in the context of their efficiency in preserving white matter structure and preventing cognitive and behavioral deficits after perinatal asphyxia.
Collapse
Affiliation(s)
- Justyna Janowska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego str., 02-106, Warsaw, Poland
| | - Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego str., 02-106, Warsaw, Poland.
| |
Collapse
|
52
|
Miguel-Hidalgo JJ. Molecular Neuropathology of Astrocytes and Oligodendrocytes in Alcohol Use Disorders. Front Mol Neurosci 2018; 11:78. [PMID: 29615864 PMCID: PMC5869926 DOI: 10.3389/fnmol.2018.00078] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/28/2018] [Indexed: 12/16/2022] Open
Abstract
Postmortem studies reveal structural and molecular alterations of astrocytes and oligodendrocytes in both the gray and white matter (GM and WM) of the prefrontal cortex (PFC) in human subjects with chronic alcohol abuse or dependence. These glial cellular changes appear to parallel and may largely explain structural and functional alterations detected using neuroimaging techniques in subjects with alcohol use disorders (AUDs). Moreover, due to the crucial roles of astrocytes and oligodendrocytes in neurotransmission and signal conduction, these cells are very likely major players in the molecular mechanisms underpinning alcoholism-related connectivity disturbances between the PFC and relevant interconnecting brain regions. The glia-mediated etiology of alcohol-related brain damage is likely multifactorial since metabolic, hormonal, hepatic and hemodynamic factors as well as direct actions of ethanol or its metabolites have the potential to disrupt distinct aspects of glial neurobiology. Studies in animal models of alcoholism and postmortem human brains have identified astrocyte markers altered in response to significant exposures to ethanol or during alcohol withdrawal, such as gap-junction proteins, glutamate transporters or enzymes related to glutamate and gamma-aminobutyric acid (GABA) metabolism. Changes in these proteins and their regulatory pathways would not only cause GM neuronal dysfunction, but also disturbances in the ability of WM axons to convey impulses. In addition, alcoholism alters the expression of astrocyte and myelin proteins and of oligodendrocyte transcription factors important for the maintenance and plasticity of myelin sheaths in WM and GM. These changes are concomitant with epigenetic DNA and histone modifications as well as alterations in regulatory microRNAs (miRNAs) that likely cause profound disturbances of gene expression and protein translation. Knowledge is also available about interactions between astrocytes and oligodendrocytes not only at the Nodes of Ranvier (NR), but also in gap junction-based astrocyte-oligodendrocyte contacts and other forms of cell-to-cell communication now understood to be critical for the maintenance and formation of myelin. Close interactions between astrocytes and oligodendrocytes also suggest that therapies for alcoholism based on a specific glial cell type pathology will require a better understanding of molecular interactions between different cell types, as well as considering the possibility of using combined molecular approaches for more effective therapies.
Collapse
Affiliation(s)
- José J Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
53
|
Olude MA, Bello ST, Mustapha OA, Olopade FE, Plendl J, Ihunwo AO, Olopade JO. Oligodendrocyte morphology in the developing brain of the African giant rat (Cricetomys gambianus, Waterhouse): Histology, immunohistochemistry and electron microscopy. Anat Histol Embryol 2018; 47:231-238. [PMID: 29492996 DOI: 10.1111/ahe.12348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 02/06/2018] [Indexed: 12/23/2022]
Abstract
Oligodendrocyte and myelin-related studies have been pivotal in understanding disruption of central nervous system (CNS) myelin through injury, toxicological, pathological degeneration or genetic intervention. The African giant rat (AGR) has been postulated as an indigenous wild-type model within the African context. This work thus describes oligodendrocyte morphologies and myelin components of the developing African giant rat brain using histological, immunohistochemical and ultrastructural techniques. Five types, precursor-progenitor oligodendrocytes, pre-oligodendrocytes, immature oligodendrocytes, mature non-myelinating oligodendrocytes and mature myelinating oligodendrocytes, were identified. The first four types were observed in neonates while juvenile and adult AGR had predominantly mature myelinating oligodendrocytes with evidence of myelin sheath deposition. All cell types identified showed positive CNPase-positive immunosignalling across all age groups. This suggests CNPase as a suitable, sensitive and reliable biomarker for studying CNS neurodegenerative/demyelinating disorders in the AGR. This baseline study has given detailed insight into the morphology of oligodendrocytes and myelin in the AGR. It may be useful for anatomical studies and detection of alterations in neurocellular profile of oligodendrocytes and myelin in the AGR in real-life or in experimental models.
Collapse
Affiliation(s)
- M A Olude
- Neuroscience Unit, Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria.,Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.,School of Anatomical Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - S T Bello
- Neuroscience Unit, Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - O A Mustapha
- Neuroscience Unit, Department of Veterinary Anatomy, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria.,Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - F E Olopade
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.,Department of Veterinary Anatomy, Freie University Berlin, Berlin, Germany
| | - J Plendl
- Department of Veterinary Anatomy, Freie University Berlin, Berlin, Germany
| | - A O Ihunwo
- School of Anatomical Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - J O Olopade
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
54
|
Impaired oligodendrogenesis and myelination by elevated S100B levels during neurodevelopment. Neuropharmacology 2018; 129:69-83. [DOI: 10.1016/j.neuropharm.2017.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/22/2017] [Accepted: 11/03/2017] [Indexed: 11/23/2022]
|
55
|
Wang CY, Sun YT, Fang KM, Ho CH, Yang CS, Tzeng SF. Function of B-Cell CLL/Lymphoma 11B in Glial Progenitor Proliferation and Oligodendrocyte Maturation. Front Mol Neurosci 2018; 11:4. [PMID: 29416501 PMCID: PMC5787563 DOI: 10.3389/fnmol.2018.00004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/03/2018] [Indexed: 01/04/2023] Open
Abstract
B-cell CLL/lymphoma 11B (Bcl11b) – a C2H2 zinc finger transcriptional factor – is known to regulate neuronal differentiation and function in the development of the central nervous system (CNS). Although its expression is reduced during oligodendrocyte (OLG) differentiation, its biological role in OLGs remains unknown. In this study, we found that the downregulation of Bcl11b gene expression in glial progenitor cells (GPCs) by lentivirus-mediated gene knockdown (KD) causes a reduction in cell proliferation with inhibited expression of stemness-related genes, while increasing the expression of cell cyclin regulator p21. In contrast, OLG specific transcription factors (Olig1) and OLG cell markers, including myelin proteolipid protein (PLP) and myelin oligodendrocyte glycoprotein (MOG), were upregulated in Bcl11b-KD GPCs. Chromatin immunoprecipitation (ChIP) analysis indicated that Bcl11b bound to the promoters of Olig1 and PLP, suggesting that Bcl11b could act as a repressor for Olig1 and PLP, similar to its action on p21. An increase in the number of GC+- or PLP+- OLGs derived from Bcl11b-KD GPCs or OLG precursor cells was also observed. Moreover, myelin basic protein (MBP) expression in OLGs derived from Bcl11b-KD GPCs was enhanced in hippocampal neuron co-cultures and in cerebellar brain-slice cultures. The in vivo study using a lysolecithin-induced demyelinating animal model also indicated that larger amounts of MBP+-OLGs and PLP+-OLGs derived from implanted Bcl11b-KD GPCs were present at the lesioned site of the white matter than in the scramble group. Taken together, our results provide insight into the functional role of Bcl11b in the negative regulation of GPC differentiation through the repression of OLG differentiation-associated genes.
Collapse
Affiliation(s)
- Chih-Yen Wang
- Institute of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Ting Sun
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Min Fang
- Institute of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Hsin Ho
- Institute of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Shi Yang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan
| | - Shun-Fen Tzeng
- Institute of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
56
|
Llufriu-Dabén G, Carrete A, Chierto E, Mailleux J, Camand E, Simon A, Vanmierlo T, Rose C, Allinquant B, Hendriks JJ, Massaad C, Meffre D, Jafarian-Tehrani M. Targeting demyelination via α-secretases promoting sAPPα release to enhance remyelination in central nervous system. Neurobiol Dis 2018; 109:11-24. [DOI: 10.1016/j.nbd.2017.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 12/01/2022] Open
|
57
|
Pruvost M, Lépine M, Leonetti C, Etard O, Naveau M, Agin V, Docagne F, Maubert E, Ali C, Emery E, Vivien D. ADAMTS-4 in oligodendrocytes contributes to myelination with an impact on motor function. Glia 2017; 65:1961-1975. [PMID: 28850711 DOI: 10.1002/glia.23207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/06/2017] [Accepted: 08/02/2017] [Indexed: 12/30/2022]
Abstract
Myelination is a late developmental process regulated by a set of inhibitory and stimulatory factors, including extracellular matrix components. Accordingly, chondroitin sulfate proteoglycans (CSPGs) act as negative regulators of myelination processes. A disintegrin and metalloproteinase with thrombospondin motifs type 4 (ADAMTS-4) is an extracellular protease capable of degrading CSPGs. Although exogenous ADAMTS-4 has been proven to be beneficial in several models of central nervous system (CNS) injuries, the physiological functions of endogenous ADAMTS-4 remain poorly understood. We first used Adamts4/LacZ reporter mice to reveal that ADAMTS-4 is strongly expressed in the CNS, especially in the white matter, with a cellular profile restricted to mature oligodendrocytes. Interestingly, we evidenced an abnormal myelination in Adamts4-/- mice, characterized by a higher diameter of myelinated axons with a shifting g-ratio. Accordingly, lack of ADAMTS-4 is accompanied by motor deficits and disturbed nervous electrical activity. In conclusion, we demonstrate that ADAMTS-4 is a new marker of mature oligodendrocytes contributing to the myelination processes and thus to the control of motor capacities.
Collapse
Affiliation(s)
- Mathilde Pruvost
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France
| | - Matthieu Lépine
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France
| | - Camille Leonetti
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France
| | - Olivier Etard
- CHU de Caen, Laboratoire des Explorations Fonctionnelles du Système Nerveux, Avenue de la côte de Nacre, Caen F-14000, France.,Normandie Univ, UNICAEN, ISTS, 14000 Caen, France
| | - Mikaël Naveau
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France.,UMS 3408 Support Cyceron, CNR, Universite de Caen Normandie, CHU de Caen, GIP CYCERON, Caen, France
| | - Véronique Agin
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France
| | - Fabian Docagne
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France
| | - Eric Maubert
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France
| | - Carine Ali
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France
| | - Evelyne Emery
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France.,Department of neurosurgery, CHU de Caen, Avenue de la côte de Nacre, Caen F-14000, France
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM, UMR-S 1237 Physiopathology and imaging of Neurological disorders, Cyceron, Caen 14000, France.,Department of clinical research, CHU de Caen, Avenue de la côte de Nacre, Caen F-14000, France
| |
Collapse
|
58
|
Axonal transport deficits in multiple sclerosis: spiraling into the abyss. Acta Neuropathol 2017; 134:1-14. [PMID: 28315956 PMCID: PMC5486629 DOI: 10.1007/s00401-017-1697-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/16/2022]
Abstract
The transport of mitochondria and other cellular components along the axonal microtubule cytoskeleton plays an essential role in neuronal survival. Defects in this system have been linked to a large number of neurological disorders. In multiple sclerosis (MS) and associated models such as experimental autoimmune encephalomyelitis (EAE), alterations in axonal transport have been shown to exist before neurodegeneration occurs. Genome-wide association (GWA) studies have linked several motor proteins to MS susceptibility, while neuropathological studies have shown accumulations of proteins and organelles suggestive for transport deficits. A reduced effectiveness of axonal transport can lead to neurodegeneration through inhibition of mitochondrial motility, disruption of axoglial interaction or prevention of remyelination. In MS, demyelination leads to dysregulation of axonal transport, aggravated by the effects of TNF-alpha, nitric oxide and glutamate on the cytoskeleton. The combined effect of all these pathways is a vicious cycle in which a defective axonal transport system leads to an increase in ATP consumption through loss of membrane organization and a reduction in available ATP through inhibition of mitochondrial transport, resulting in even further inhibition of transport. The persistent activity of this positive feedback loop contributes to neurodegeneration in MS.
Collapse
|
59
|
Shih Y, Ly PTT, Wang J, Pallen CJ. Glial and Neuronal Protein Tyrosine Phosphatase Alpha (PTPα) Regulate Oligodendrocyte Differentiation and Myelination. J Mol Neurosci 2017. [PMID: 28647856 DOI: 10.1007/s12031-017-0941-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CNS myelination defects occur in mice deficient in receptor-like protein tyrosine phosphatase alpha (PTPα). Here, we investigated the role of PTPα in oligodendrocyte differentiation and myelination using cells and tissues from wild-type (WT) and PTPα knockout (KO) mice. PTPα promoted the timely differentiation of neural stem cell-derived oligodendrocyte progenitor cells (OPCs). Compared to WT OPCs, KO OPC cultures had more NG2+ progenitors, fewer myelin basic protein (MBP)+ oligodendrocytes, and reduced morphological complexity. In longer co-cultures with WT neurons, more KO than WT OPCs remained NG2+ and while equivalent MBP+ populations of WT and KO cells formed, the reduced area occupied by the MBP+ KO cells suggested that their morphological maturation was impeded. These defects were associated with reduced myelin formation in KO OPC/WT neuron co-cultures. Myelin formation was also impaired when WT OPCs were co-cultured with KO neurons, revealing a novel role for neuronal PTPα in myelination. Canonical Wnt/β-catenin signaling is an important regulator of OPC differentiation and myelination. Wnt signaling activity was not dysregulated in OPCs lacking PTPα, but suppression of Wnt signaling by the small molecule XAV939 remediated defects in KO oligodendrocyte differentiation and enhanced myelin formation by KO oligodendrocytes. However, the myelin segments that formed were significantly shorter than those produced by WT oligodendrocytes, raising the possibility of a role for glial PTPα in myelin extension distinct from its pro-differentiating actions. Altogether, this study reveals PTPα as a molecular coordinator of oligodendroglial and neuronal signals that controls multiple aspects of oligodendrocyte development and myelination.
Collapse
Affiliation(s)
- Yuda Shih
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, University of British Columbia, 950 West 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Philip T T Ly
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, University of British Columbia, 950 West 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Jing Wang
- BC Children's Hospital Research Institute, University of British Columbia, 950 West 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Catherine J Pallen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada.
- BC Children's Hospital Research Institute, University of British Columbia, 950 West 28th Ave, Vancouver, BC, V5Z 4H4, Canada.
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
60
|
Parikh ZS, Tripathi A, Pillai PP. Differential Regulation of MeCP2 Phosphorylation by Laminin in Oligodendrocytes. J Mol Neurosci 2017; 62:309-317. [PMID: 28616777 DOI: 10.1007/s12031-017-0939-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/06/2017] [Indexed: 10/19/2022]
Abstract
Oligodendrocytes (OLGs) are the myelinating cells of the central nervous system (CNS), and its proper differentiation is crucial for normal functioning of neurons. Methyl-CpG-binding protein 2 (MeCP2) is a multifunctional methylated DNA binding protein; mutation of which causes Rett syndrome, a severe neurodevelopmental disorder. Previously, we reported that MeCP2 is expressed in all the stages of oligodendrocyte development, and also shown the role of MeCP2 as a transcription regulator of myelin genes in OLGs. The expression and function of MeCP2 phosphorylation at S80 (pS80MeCP2) has been well studied in neurons and astrocytes; however, there is no data so far available in OLGs regarding pS80MeCP2. Certain developmental stimuli such as growth factors and extracellular matrix (ECM) protein play important role in OLG development. In the present study, we have examined the effects of external stimuli (growth factors (GFs) and extracellular matrix (ECMs)) on S80 phosphorylation of MeCP2 in N19 oligodendroglial cells (N19 OLGs). This study provides the first evidence that laminin (LN) differentially regulates the expression of pS80MeCP2 in immature and mature N19 OLGs. Thus, MeCP2 is phosphorylated in a stimulus-dependent manner during oligodendrocyte development, and thereby, it may regulate the oligodendrocyte behavior.
Collapse
Affiliation(s)
- Zalak S Parikh
- Division of Neurobiology, Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Ashutosh Tripathi
- Division of Neurobiology, Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Prakash P Pillai
- Division of Neurobiology, Department of Zoology, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
61
|
Golgi trafficking defects in postnatal microcephaly: The evidence for “Golgipathies”. Prog Neurobiol 2017; 153:46-63. [DOI: 10.1016/j.pneurobio.2017.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/22/2017] [Accepted: 03/29/2017] [Indexed: 12/17/2022]
|
62
|
Grigoletto J, Pukaß K, Gamliel A, Davidi D, Katz-Brull R, Richter-Landsberg C, Sharon R. Higher levels of myelin phospholipids in brains of neuronal α-Synuclein transgenic mice precede myelin loss. Acta Neuropathol Commun 2017; 5:37. [PMID: 28482862 PMCID: PMC5421332 DOI: 10.1186/s40478-017-0439-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/26/2017] [Indexed: 01/22/2023] Open
Abstract
α-Synuclein is a protein involved in the pathogenesis of synucleinopathies, including Parkinson’s disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). We investigated the role of neuronal α-Syn in myelin composition and abnormalities. The phospholipid content of purified myelin was determined by 31P NMR in two mouse lines modeling PD, PrP-A53T α-Syn and Thy-1 wt-α-Syn. Significantly higher levels of phospholipids were detected in myelin purified from brains of these α-Syn transgenic mouse models than in control mice. Nevertheless, myelin ultrastructure appeared intact. To further investigate the effect of α-Syn on myelin abnormalities, we systematically analyzed the striatum, a brain region associated with neurodegeneration in PD. An age and disease-dependent loss of myelin basic protein (MBP) signal was detected by immunohistochemistry in striatal striosomes (patches). The age-dependent loss of MBP signal was associated with lower P25α levels in oligodendrocytes. In addition, we found that α-Syn inhibited oligodendrocyte maturation and the formation of membranous sheets in vitro. Based on these results we concluded that neuronal α-Syn is involved in the regulation and/or maintenance of myelin phospholipid. However, axonal hypomyelination in the PD models is evident only in progressive stages of the disease and associated with α-Syn toxicity.
Collapse
|
63
|
The mechanical importance of myelination in the central nervous system. J Mech Behav Biomed Mater 2017; 76:119-124. [PMID: 28462864 DOI: 10.1016/j.jmbbm.2017.04.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 04/12/2017] [Indexed: 02/06/2023]
Abstract
Neurons in the central nervous system are surrounded and cross-linked by myelin, a fatty white substance that wraps around axons to create an electrically insulating layer. The electrical function of myelin is widely recognized; yet, its mechanical importance remains underestimated. Here we combined nanoindentation testing and histological staining to correlate brain stiffness to the degree of myelination in immature, pre-natal brains and mature, post-natal brains. We found that both gray and white matter tissue stiffened significantly (p≪0.001) upon maturation: the gray matter stiffness doubled from 0.31±0.20kPa pre-natally to 0.68±0.20kPa post-natally; the white matter stiffness tripled from 0.45±0.18kPa pre-natally to 1.33±0.64kPa post-natally. At the same time, the white matter myelin content increased significantly (p≪0.001) from 58±2% to 74±9%. White matter stiffness and myelin content were correlated with a Pearson correlation coefficient of ρ=0.92 (p≪0.001). Our study suggests that myelin is not only important to ensure smooth electrical signal propagation in neurons, but also to protect neurons against physical forces and provide a strong microstructural network that stiffens the white matter tissue as a whole. Our results suggest that brain tissue stiffness could serve as a biomarker for multiple sclerosis and other forms of demyelinating disorders. Understanding how tissue maturation translates into changes in mechanical properties and knowing the precise brain stiffness at different stages of life has important medical implications in development, aging, and neurodegeneration.
Collapse
|
64
|
Maglorius Renkilaraj MRL, Baudouin L, Wells CM, Doulazmi M, Wehrlé R, Cannaya V, Bachelin C, Barnier JV, Jia Z, Nait Oumesmar B, Dusart I, Bouslama-Oueghlani L. The intellectual disability protein PAK3 regulates oligodendrocyte precursor cell differentiation. Neurobiol Dis 2016; 98:137-148. [PMID: 27940202 DOI: 10.1016/j.nbd.2016.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 11/04/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022] Open
Abstract
Oligodendrocyte and myelin deficits have been reported in mental/psychiatric diseases. The p21-activated kinase 3 (PAK3), a serine/threonine kinase, whose activity is stimulated by the binding of active Rac and Cdc42 GTPases is affected in these pathologies. Indeed, many mutations of Pak3 gene have been described in non-syndromic intellectual disability diseases. Pak3 is expressed mainly in the brain where its role has been investigated in neurons but not in glial cells. Here, we showed that PAK3 is highly expressed in oligodendrocyte precursors (OPCs) and its expression decreases in mature oligodendrocytes. In the developing white matter of the Pak3 knockout mice, we found defects of oligodendrocyte differentiation in the corpus callosum and to a lesser extent in the anterior commissure, which were compensated at the adult stage. In vitro experiments in OPC cultures, derived from Pak3 knockout and wild type brains, support a developmental and cell-autonomous role for PAK3 in regulating OPC differentiation into mature oligodendrocytes. Moreover, we did not detect any obvious alterations of the proliferation or migration of Pak3 null OPCs compared to wild type. Overall, our data highlight PAK3 as a new regulator of OPC differentiation.
Collapse
Affiliation(s)
| | - Lucas Baudouin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, F-75013 Paris, France
| | | | - Mohamed Doulazmi
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Adaptation Biologique et vieillissement, F-75005 Paris, France
| | - Rosine Wehrlé
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, F-75005 Paris, France
| | - Vidjeacoumary Cannaya
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, F-75005 Paris, France
| | - Corinne Bachelin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, F-75013 Paris, France
| | - Jean-Vianney Barnier
- Institute of Neuroscience Paris-Saclay, CNRS-Université Paris-Sud, UMR9197, F-91405 Orsay, France
| | - Zhengping Jia
- Neurosciences & Mental Health, The Hospital for Sick Children, and Department of Physiology, Faculty of Medicine, University of Toronto, 555 University, Toronto, Ontario M5G 1X8, Canada
| | - Brahim Nait Oumesmar
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, F-75013 Paris, France
| | - Isabelle Dusart
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, F-75005 Paris, France
| | - Lamia Bouslama-Oueghlani
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de Biologie Paris Seine, Neuroscience Paris Seine, F-75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, INSERM U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, F-75013 Paris, France.
| |
Collapse
|
65
|
Won JS, Singh AK, Singh I. Biochemical, cell biological, pathological, and therapeutic aspects of Krabbe's disease. J Neurosci Res 2016; 94:990-1006. [PMID: 27638584 PMCID: PMC5812347 DOI: 10.1002/jnr.23873] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/01/2016] [Accepted: 07/14/2016] [Indexed: 12/14/2022]
Abstract
Krabbe's disease (KD; also called globoid cell leukodystrophy) is a genetic disorder involving demyelination of the central (CNS) and peripheral (PNS) nervous systems. The disease may be subdivided into three types, an infantile form, which is the most common and severe; a juvenile form; and a rare adult form. KD is an autosomal recessive disorder caused by a deficiency of galactocerebrosidase activity in lysosomes, leading to accumulation of galactoceramide and neurotoxic galactosylsphingosine (psychosine [PSY]) in macrophages (globoid cells) as well as neural cells, especially in oligodendrocytes and Schwann cells. This ultimately results in damage to myelin in both CNS and PNS with associated morbidity and mortality. Accumulation of PSY, a lysolipid with detergent-like properties, over a threshold level could trigger membrane destabilization, leading to cell lysis. Moreover, subthreshold concentrations of PSY trigger cell signaling pathways that induce oxidative stress, mitochondrial dysfunction, apoptosis, inflammation, endothelial/vascular dysfunctions, and neuronal and axonal damage. From the time the "psychosine hypothesis" was proposed, considerable efforts have been made in search of an effective therapy for lowering PSY load with pharmacological, gene, and stem cell approaches to attenuate PSY-induced neurotoxicity. This Review focuses on the recent advances and prospective research for understanding disease mechanisms and therapeutic approaches for KD. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Je-Seong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Avtar K. Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
- Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
66
|
Liu C, Li Y, Edwards TJ, Kurniawan ND, Richards LJ, Jiang T. Altered structural connectome in adolescent socially isolated mice. Neuroimage 2016; 139:259-270. [DOI: 10.1016/j.neuroimage.2016.06.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/11/2016] [Accepted: 06/18/2016] [Indexed: 12/18/2022] Open
|
67
|
Podbielska M, Szulc ZM, Kurowska E, Hogan EL, Bielawski J, Bielawska A, Bhat NR. Cytokine-induced release of ceramide-enriched exosomes as a mediator of cell death signaling in an oligodendroglioma cell line. J Lipid Res 2016; 57:2028-2039. [PMID: 27623848 DOI: 10.1194/jlr.m070664] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 12/20/2022] Open
Abstract
Th1 pro-inflammatory cytokines, i.e., TNF-α and IFN-γ, in combination are known to induce cell death in several cell types, including oligodendrocytes, but the mechanism of their synergistic cytotoxicity is unclear. Although ceramide (Cer) has been implicated in cytokine- and stress-induced cell death, its intracellular levels alone cannot explain cytokine synergy. We considered the possibility that Cer released as part of extracellular vesicles may contribute to cytokine-induced synergistic cell death. Using a human oligodendroglioma (HOG) cell line as a model, here we show that exosomes derived from TNF-α-treated "donor" cells, while being mildly toxic to fresh cultures (similar to individual cytokines), induce enhanced cell death when added to IFN-γ-primed target cultures in a fashion resembling the effect of cytokine combination. Further, the sphingolipid profiles of secreted exosomes, as determined by HPLC-MS/MS, revealed that the treatment with the cytokines time-dependently induced the formation and exosomal release, in particular of C16-, C24-, and C24:1-Cer species; C16-, C24-, and C24:1-dihydroCer species; and C16-, C24-, and C24:1-SM species. Finally, exogenous C6-Cer or C16-Cer mimicked and enhanced the cytotoxic effects of the cytokines upon HOG cells, thereby supporting the cell death-signaling role of extracellular Cer.
Collapse
Affiliation(s)
- Maria Podbielska
- Departments of Neuroscience Medical University of South Carolina, Charleston, SC 29425.,Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425.,Laboratory of Signaling Proteins, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Zdzisław M Szulc
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Ewa Kurowska
- Laboratory of Signaling Proteins, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Edward L Hogan
- Departments of Neuroscience Medical University of South Carolina, Charleston, SC 29425
| | - Jacek Bielawski
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Alicja Bielawska
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Narayan R Bhat
- Departments of Neuroscience Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
68
|
Rao SNR, Pearse DD. Regulating Axonal Responses to Injury: The Intersection between Signaling Pathways Involved in Axon Myelination and The Inhibition of Axon Regeneration. Front Mol Neurosci 2016; 9:33. [PMID: 27375427 PMCID: PMC4896923 DOI: 10.3389/fnmol.2016.00033] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/02/2016] [Indexed: 01/06/2023] Open
Abstract
Following spinal cord injury (SCI), a multitude of intrinsic and extrinsic factors adversely affect the gene programs that govern the expression of regeneration-associated genes (RAGs) and the production of a diversity of extracellular matrix molecules (ECM). Insufficient RAG expression in the injured neuron and the presence of inhibitory ECM at the lesion, leads to structural alterations in the axon that perturb the growth machinery, or form an extraneous barrier to axonal regeneration, respectively. Here, the role of myelin, both intact and debris, in antagonizing axon regeneration has been the focus of numerous investigations. These studies have employed antagonizing antibodies and knockout animals to examine how the growth cone of the re-growing axon responds to the presence of myelin and myelin-associated inhibitors (MAIs) within the lesion environment and caudal spinal cord. However, less attention has been placed on how the myelination of the axon after SCI, whether by endogenous glia or exogenously implanted glia, may alter axon regeneration. Here, we examine the intersection between intracellular signaling pathways in neurons and glia that are involved in axon myelination and axon growth, to provide greater insight into how interrogating this complex network of molecular interactions may lead to new therapeutics targeting SCI.
Collapse
Affiliation(s)
- Sudheendra N R Rao
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of MedicineMiami, FL, USA; The Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, USA; The Neuroscience Program, University of Miami Miller School of MedicineMiami, FL, USA; The Interdisciplinary Stem Cell Institute, University of Miami Miller School of MedicineMiami, FL, USA; Bruce W. Carter Department of Veterans Affairs Medical CenterMiami, FL, USA
| |
Collapse
|
69
|
Mironova YA, Lenk GM, Lin JP, Lee SJ, Twiss JL, Vaccari I, Bolino A, Havton LA, Min SH, Abrams CS, Shrager P, Meisler MH, Giger RJ. PI(3,5)P2 biosynthesis regulates oligodendrocyte differentiation by intrinsic and extrinsic mechanisms. eLife 2016; 5. [PMID: 27008179 PMCID: PMC4889328 DOI: 10.7554/elife.13023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/23/2016] [Indexed: 12/18/2022] Open
Abstract
Proper development of the CNS axon-glia unit requires bi-directional communication between axons and oligodendrocytes (OLs). We show that the signaling lipid phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2] is required in neurons and in OLs for normal CNS myelination. In mice, mutations of Fig4, Pikfyve or Vac14, encoding key components of the PI(3,5)P2 biosynthetic complex, each lead to impaired OL maturation, severe CNS hypomyelination and delayed propagation of compound action potentials. Primary OLs deficient in Fig4 accumulate large LAMP1+ and Rab7+ vesicular structures and exhibit reduced membrane sheet expansion. PI(3,5)P2 deficiency leads to accumulation of myelin-associated glycoprotein (MAG) in LAMP1+perinuclear vesicles that fail to migrate to the nascent myelin sheet. Live-cell imaging of OLs after genetic or pharmacological inhibition of PI(3,5)P2 synthesis revealed impaired trafficking of plasma membrane-derived MAG through the endolysosomal system in primary cells and brain tissue. Collectively, our studies identify PI(3,5)P2 as a key regulator of myelin membrane trafficking and myelinogenesis. DOI:http://dx.doi.org/10.7554/eLife.13023.001 Neurons communicate with each other through long cable-like extensions called axons. An insulating sheath called myelin (or white matter) surrounds each axon, and allows electrical impulses to travel more quickly. Cells in the brain called oligodendrocytes produce myelin. If the myelin sheath is not properly formed during development, or is damaged by injury or disease, the consequences can include paralysis, impaired thought, and loss of vision. Oligodendrocytes have complex shapes, and each can generate myelin for as many as 50 axons. Oligodendrocytes produce the building blocks of myelin inside their cell bodies, by following instructions encoded by genes within the nucleus. However, the signals that regulate the trafficking of these components to the myelin sheath are poorly understood. Mironova et al. set out to determine whether signaling molecules called phosphoinositides help oligodendrocytes to mature and move myelin building blocks from the cell bodies to remote contact points with axons. Genetic techniques were used to manipulate an enzyme complex in mice that controls the production and turnover of a phosphoinositide called PI(3,5)P2. Mironova et al. found that reducing the levels of PI(3,5)P2 in oligodendrocytes caused the trafficking of certain myelin building blocks to stall. Key myelin components instead accumulated inside bubble-like structures near the oligodendrocyte’s cell body. This showed that PI(3,5)P2 in oligodendrocytes is essential for generating myelin. Further experiments then revealed that reducing PI(3,5)P2 in the neurons themselves indirectly prevented the oligodendrocytes from maturing. This suggests that PI(3,5)P2 also takes part in communication between axons and oligodendrocytes during development of the myelin sheath. A key next step will be to identify the regulatory mechanisms that control the production of PI(3,5)P2 in oligodendrocytes and neurons. Future studies could also explore what PI(3,5)P2 acts upon inside the axons, and which signaling molecules support the maturation of oligodendrocytes. Finally, it remains unclear whether PI(3,5)P2signaling is also required for stabilizing mature myelin, and for repairing myelin after injury in the adult brain. Further work could therefore address these questions as well. DOI:http://dx.doi.org/10.7554/eLife.13023.002
Collapse
Affiliation(s)
- Yevgeniya A Mironova
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States.,Cellular and Molecular Biology Graduate Program, University of Michigan School of Medicine, Ann Arbor, United States
| | - Guy M Lenk
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, United States
| | - Jing-Ping Lin
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States
| | - Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, United States
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, United States
| | - Ilaria Vaccari
- Human Inherited Neuropathies Unit, INSPE-Institute for Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Bolino
- Human Inherited Neuropathies Unit, INSPE-Institute for Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Leif A Havton
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, United States
| | - Sang H Min
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, United States
| | - Charles S Abrams
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, United States
| | - Peter Shrager
- Department of Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, United States
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, United States.,Department of Neurology, University of Michigan School of Medicine, Ann Arbor, United States
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States.,Department of Neurology, University of Michigan School of Medicine, Ann Arbor, United States
| |
Collapse
|
70
|
Matthys OB, Hookway TA, McDevitt TC. Design Principles for Engineering of Tissues from Human Pluripotent Stem Cells. CURRENT STEM CELL REPORTS 2016; 2:43-51. [PMID: 27330934 DOI: 10.1007/s40778-016-0030-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recent advances in human pluripotent stem cell (hPSC) technologies have enabled the engineering of human tissue constructs for developmental studies, disease modeling, and drug screening platforms. In vitro tissue formation can be generally described at three levels of cellular organization. Multicellular hPSC constructs are initially formed either with polymeric scaffold materials or simply via self-assembly, adhesive mechanisms. Heterotypic interactions within hPSC tissue constructs can be achieved by physically mixing independently differentiated cell populations or coaxed to simultaneously co-emerge from a common population of undifferentiated cells. Higher order tissue architecture can be engineered by imposing external spatial constraints, such as molds and scaffolds, or depend upon cell-driven organization that exploits endogenous innate developmental mechanisms. The multicellular, heterogeneous, and highly organized structure of hPSC constructs ultimately dictates the resulting form and function of in vitro engineered human tissue models.
Collapse
Affiliation(s)
- Oriane B Matthys
- The Gladstone Institute of Cardiovascular Disease, San Francisco, CA; Graduate Program in Bioengineering, University of California Berkeley and University of California San Francisco, Berkeley/San Francisco, CA
| | - Tracy A Hookway
- The Gladstone Institute of Cardiovascular Disease, San Francisco, CA
| | - Todd C McDevitt
- The Gladstone Institute of Cardiovascular Disease, San Francisco, CA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA
| |
Collapse
|
71
|
Huang H, Taraboletti A, Shriver LP. Dimethyl fumarate modulates antioxidant and lipid metabolism in oligodendrocytes. Redox Biol 2015; 5:169-175. [PMID: 25967672 PMCID: PMC4427661 DOI: 10.1016/j.redox.2015.04.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress contributes to pathology associated with inflammatory brain disorders and therapies that upregulate antioxidant pathways may be neuroprotective in diseases such as multiple sclerosis. Dimethyl fumarate, a small molecule therapeutic for multiple sclerosis, activates cellular antioxidant signaling pathways and may promote myelin preservation. However, it is still unclear what mechanisms may underlie this neuroprotection and whether dimethyl fumarate affects oligodendrocyte responses to oxidative stress. Here, we examine metabolic alterations in oligodendrocytes treated with dimethyl fumarate by using a global metabolomic platform that employs both hydrophilic interaction liquid chromatography-mass spectrometry and shotgun lipidomics. Prolonged treatment of oligodendrocytes with dimethyl fumarate induces changes in citric acid cycle intermediates, glutathione, and lipids, indicating that this compound can directly impact oligodendrocyte metabolism. These metabolic alterations are also associated with protection from oxidant challenge. This study provides insight into the mechanisms by which dimethyl fumarate could preserve myelin integrity in patients with multiple sclerosis.
Collapse
Affiliation(s)
- He Huang
- Department of Chemistry, University of Akron, Akron, OH 44325, USA
| | | | - Leah P Shriver
- Department of Chemistry, University of Akron, Akron, OH 44325, USA; Department of Biology, University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
72
|
Abstract
Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view toward surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales-from phenomena on the cellular level toward form and function on the organ level-to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia.
Collapse
Affiliation(s)
- Silvia Budday
- Chair of Applied Mechanics, Department of Mechanical Engineering, University of Erlangen/Nuremberg Erlangen, Germany
| | - Paul Steinmann
- Chair of Applied Mechanics, Department of Mechanical Engineering, University of Erlangen/Nuremberg Erlangen, Germany
| | - Ellen Kuhl
- Department of Mechanical Engineering and Bioengineering, Stanford University Stanford, CA, USA
| |
Collapse
|
73
|
Social Experience-Dependent Myelination: An Implication for Psychiatric Disorders. Neural Plast 2015; 2015:465345. [PMID: 26078885 PMCID: PMC4452491 DOI: 10.1155/2015/465345] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 12/02/2022] Open
Abstract
Myelination is one of the strategies to promote the conduction velocity of axons in order to adjust to evolving environment in vertebrates. It has been shown that myelin formation depends on genetic programing and experience, including multiple factors, intracellular and extracellular molecules, and neuronal activities. Recently, accumulating studies have shown that myelination in the central nervous system changes more dynamically in response to neuronal activities and experience than expected. Among experiences, social experience-dependent myelination draws attention as one of the critical pathobiologies of psychiatric disorders. In this review, we summarize the mechanisms of neuronal activity-dependent and social experience-dependent myelination and discuss the contribution of social experience-dependent myelination to the pathology of psychiatric disorders.
Collapse
|
74
|
Shollenbarger SG, Price J, Wieser J, Lisdahl K. Poorer frontolimbic white matter integrity is associated with chronic cannabis use, FAAH genotype, and increased depressive and apathy symptoms in adolescents and young adults. NEUROIMAGE-CLINICAL 2015; 8:117-25. [PMID: 26106535 PMCID: PMC4473294 DOI: 10.1016/j.nicl.2015.03.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/17/2015] [Accepted: 03/28/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND The heaviest period of cannabis use coincides with ongoing white matter (WM) maturation. Further, cannabis-related changes may be moderated by FAAH genotype (rs324420). We examined the association between cannabis use and FAAH genotype on frontolimbic WM integrity in adolescents and emerging adults. We then tested whether observed WM abnormalities were linked with depressive or apathy symptoms. METHODS Participants included 37 cannabis users and 37 healthy controls (33 female; ages 18-25). Multiple regressions examined the independent and interactive effects of variables on WM integrity. RESULTS Regular cannabis users demonstrated reduced WM integrity in the bilateral uncinate fasciculus (UNC) (MD, right: p = .009 and left: p = .009; FA, right: p = .04 and left: p = .03) and forceps minor (fMinor) (MD, p = .03) compared to healthy controls. Marginally reduced WM integrity in the cannabis users was found in the left anterior thalamic radiation (ATR) (FA, p = .08). Cannabis group ∗ FAAH genotype interaction predicted WM integrity in bilateral ATR (FA, right: p = .05 and left: p = .001) and fMinor (FA, p = .02). In cannabis users, poorer WM integrity was correlated with increased symptoms of depression and apathy in bilateral ATR and UNC. CONCLUSIONS Consistent with prior findings, cannabis use was associated with reduced frontolimbic WM integrity. WM integrity was also moderated by FAAH genotype, in that cannabis-using FAAH C/C carriers and A carrying controls had reduced WM integrity compared to control C/C carriers. Observed frontolimbic white matter abnormalities were linked with increased depressive and apathy symptoms in the cannabis users.
Collapse
Affiliation(s)
- Skyler G Shollenbarger
- Department of Psychology, University of Wisconsin-Milwaukee, Garland Hall Rm 224, 2441 East Hartford Ave, Milwaukee, WI 53211, USA
| | - Jenessa Price
- McLean Hospital, Harvard Medical School, 115 Mill St., Belmont, MA 02478, USA
| | - Jon Wieser
- Department of Psychology, University of Wisconsin-Milwaukee, Garland Hall Rm 224, 2441 East Hartford Ave, Milwaukee, WI 53211, USA
| | - Krista Lisdahl
- Department of Psychology, University of Wisconsin-Milwaukee, Garland Hall Rm 224, 2441 East Hartford Ave, Milwaukee, WI 53211, USA
| |
Collapse
|
75
|
Transcriptional expression of myelin basic protein in oligodendrocytes depends on functional syntaxin 4: a potential correlation with autocrine signaling. Mol Cell Biol 2014; 35:675-87. [PMID: 25512606 DOI: 10.1128/mcb.01389-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myelination of axons by oligodendrocytes is essential for saltatory nerve conduction. To form myelin membranes, a coordinated synthesis and subsequent polarized transport of myelin components are necessary. Here, we show that as part of the mechanism to establish membrane polarity, oligodendrocytes exploit a polarized distribution of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery components syntaxins 3 and 4, localizing to the cell body and the myelin membrane, respectively. Our data further reveal that the expression of myelin basic protein (MBP), a myelin-specific protein that is synthesized "on site" after transport of its mRNA, depends on the correct functioning of the SNARE machinery, which is not required for mRNA granule assembly and transport per se. Thus, downregulation and overexpression of syntaxin 4 but not syntaxin 3 in oligodendrocyte progenitor cells but not immature oligodendrocytes impeded MBP mRNA transcription, thereby preventing MBP protein synthesis. The expression and localization of another myelin-specific protein, proteolipid protein (PLP), was unaltered. Strikingly, conditioned medium obtained from developing oligodendrocytes was able to rescue the block of MBP mRNA transcription in syntaxin 4-downregulated cells. These findings indicate that the initiation of the biosynthesis of MBP mRNA relies on a syntaxin 4-dependent mechanism, which likely involves activation of an autocrine signaling pathway.
Collapse
|
76
|
Olsen JA, Akirav EM. Remyelination in multiple sclerosis: Cellular mechanisms and novel therapeutic approaches. J Neurosci Res 2014; 93:687-96. [DOI: 10.1002/jnr.23493] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/05/2014] [Accepted: 09/11/2014] [Indexed: 12/20/2022]
Affiliation(s)
- John A. Olsen
- Research Institute, Islet Biology; Winthrop-University Hospital; Mineola New York
| | - Eitan M. Akirav
- Research Institute, Islet Biology; Winthrop-University Hospital; Mineola New York
- Stony Brook University School of Medicine; Stony Brook New York
| |
Collapse
|
77
|
Hirrlinger J, Nave KA. Adapting brain metabolism to myelination and long-range signal transduction. Glia 2014; 62:1749-61. [DOI: 10.1002/glia.22737] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 07/23/2014] [Accepted: 07/23/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Johannes Hirrlinger
- Department of Neurogenetics; Max-Planck-Institute for Experimental Medicine; Göttingen Germany
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig; Leipzig Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics; Max-Planck-Institute for Experimental Medicine; Göttingen Germany
| |
Collapse
|
78
|
Miller DJ, Lackey EP, Hackett TA, Kaas JH. Development of myelination and cholinergic innervation in the central auditory system of a prosimian primate (Otolemur garnetti). J Comp Neurol 2014; 521:3804-16. [PMID: 23749337 DOI: 10.1002/cne.23379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/22/2013] [Accepted: 05/23/2013] [Indexed: 11/07/2022]
Abstract
Change in the timeline of neurobiological growth is an important source of biological variation, and thus phenotypic evolution. However, no study has to date investigated sensory system development in any of the prosimian primates that are thought to most closely resemble our earliest primate ancestors. Acetylcholine (ACh) is a neurotransmitter critical to normal brain function by regulating synaptic plasticity associated with attention and learning. Myelination is an important structural component of the brain because it facilitates rapid neuronal communication. In this work we investigated the expression of acetylcholinesterase (AChE) and the density of myelinated axons throughout postnatal development in the inferior colliculus (IC), medial geniculate complex (MGC), and auditory cortex (auditory core, belt, and parabelt) in Garnett's greater galago (Otolemur garnetti). We found that the IC and MGC exhibit relatively high myelinated fiber length density (MFLD) values at birth and attain adult-like values by the species-typical age at weaning. In contrast, neocortical auditory fields are relatively unmyelinated at birth and only attain adult-like MFLD values by the species-typical age at puberty. Analysis of AChE expression indicated that, in contrast to evidence from rodent samples, the adult-like distribution of AChE in the core area of auditory cortex, dense bands in layers I, IIIb/IV, and Vb/VI, is present at birth. These data indicate the differential developmental trajectory of central auditory system structures and demonstrate the early onset of adult-like AChE expression in primary auditory cortex in O. garnetti, suggesting the auditory system is more developed at birth in primates compared to rodents.
Collapse
Affiliation(s)
- Daniel J Miller
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, 37205
| | | | | | | |
Collapse
|
79
|
White R, Krämer-Albers EM. Axon-glia interaction and membrane traffic in myelin formation. Front Cell Neurosci 2014; 7:284. [PMID: 24431989 PMCID: PMC3880936 DOI: 10.3389/fncel.2013.00284] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/18/2013] [Indexed: 12/12/2022] Open
Abstract
In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialized glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarization followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is established. Continuous communication between neurons and glial cells is essential for myelin maintenance and axonal integrity. A diverse group of diseases, from multiple sclerosis to schizophrenia, have been linked to malfunction of myelinating cells reflecting the physiological importance of the axon-glial unit. This review describes the mechanisms of axonal signal integration by oligodendrocytes emphasizing the central role of the Src-family kinase Fyn during central nervous system (CNS) myelination. Furthermore, we discuss myelin membrane trafficking with particular focus on endocytic recycling and the control of proteolipid protein (PLP) transport by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. Finally, PLP mistrafficking is considered in the context of myelin diseases.
Collapse
Affiliation(s)
- Robin White
- Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | | |
Collapse
|
80
|
NG2 regulates directional migration of oligodendrocyte precursor cells via Rho GTPases and polarity complex proteins. J Neurosci 2013; 33:10858-74. [PMID: 23804106 DOI: 10.1523/jneurosci.5010-12.2013] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The transmembrane proteoglycan NG2 is expressed by oligodendrocyte precursor cells (OPC), which migrate to axons during developmental myelination and remyelinate in the adult after migration to injured sites. Highly invasive glial tumors also express NG2. Despite the fact that NG2 has been implicated in control of OPC migration, its mode of action remains unknown. Here, we show in vitro and in vivo that NG2 controls migration of OPC through the regulation of cell polarity. In stab wounds in adult mice we show that NG2 controls orientation of OPC toward the wound. NG2 stimulates RhoA activity at the cell periphery via the MUPP1/Syx1 signaling pathway, which favors the bipolar shape of migrating OPC and thus directional migration. Upon phosphorylation of Thr-2256, downstream signaling of NG2 switches from RhoA to Rac stimulation. This triggers process outgrowth through regulators of front-rear polarity and we show using a phospho-mimetic form of NG2 that indeed NG2 recruits proteins of the CRB and the PAR polarity complexes to stimulate Rac activity via the GEF Tiam1. Our findings demonstrate that NG2 is a core organizer of Rho GTPase activity and localization in the cell, which controls OPC polarity and directional migration. This work also reveals CRB and PAR polarity complexes as new effectors of NG2 signaling in the establishment of front-rear polarity.
Collapse
|
81
|
Myelin recovery in multiple sclerosis: the challenge of remyelination. Brain Sci 2013; 3:1282-324. [PMID: 24961530 PMCID: PMC4061877 DOI: 10.3390/brainsci3031282] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 12/26/2022] Open
Abstract
Multiple sclerosis (MS) is the most common demyelinating and an autoimmune disease of the central nervous system characterized by immune-mediated myelin and axonal damage, and chronic axonal loss attributable to the absence of myelin sheaths. T cell subsets (Th1, Th2, Th17, CD8+, NKT, CD4+CD25+ T regulatory cells) and B cells are involved in this disorder, thus new MS therapies seek damage prevention by resetting multiple components of the immune system. The currently approved therapies are immunoregulatory and reduce the number and rate of lesion formation but are only partially effective. This review summarizes current understanding of the processes at issue: myelination, demyelination and remyelination—with emphasis upon myelin composition/architecture and oligodendrocyte maturation and differentiation. The translational options target oligodendrocyte protection and myelin repair in animal models and assess their relevance in human. Remyelination may be enhanced by signals that promote myelin formation and repair. The crucial question of why remyelination fails is approached is several ways by examining the role in remyelination of available MS medications and avenues being actively pursued to promote remyelination including: (i) cytokine-based immune-intervention (targeting calpain inhibition), (ii) antigen-based immunomodulation (targeting glycolipid-reactive iNKT cells and sphingoid mediated inflammation) and (iii) recombinant monoclonal antibodies-induced remyelination.
Collapse
|
82
|
Neonatal hyperoxia exposure disrupts axon-oligodendrocyte integrity in the subcortical white matter. J Neurosci 2013; 33:8990-9002. [PMID: 23699510 DOI: 10.1523/jneurosci.5528-12.2013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pathological mechanisms underlying neurological deficits observed in individuals born prematurely are not completely understood. A common form of injury in the preterm population is periventricular white matter injury (PWMI), a pathology associated with impaired brain development. To mitigate or eliminate PWMI, there is an urgent need to understand the pathological mechanism(s) involved on a neurobiological, structural, and functional level. Recent clinical data suggest that a percentage of premature infants experience relative hyperoxia. Using a hyperoxic model of premature brain injury, we have previously demonstrated that neonatal hyperoxia exposure in the mouse disrupts development of the white matter (WM) by delaying the maturation of the oligodendroglial lineage. In the present study, we address the question of how hyperoxia-induced alterations in WM development affect overall WM integrity and axonal function. We show that neonatal hyperoxia causes ultrastructural changes, including: myelination abnormalities (i.e., reduced myelin thickness and abnormal extramyelin loops) and axonopathy (i.e., altered neurofilament phosphorylation, paranodal defects, and changes in node of Ranvier number and structure). This disruption of axon-oligodendrocyte integrity results in the lasting impairment of conduction properties in the adult WM. Understanding the pathology of premature PWMI injury will allow for the development of interventional strategies to preserve WM integrity and function.
Collapse
|
83
|
Pacey LKK, Xuan ICY, Guan S, Sussman D, Henkelman RM, Chen Y, Thomsen C, Hampson DR. Delayed myelination in a mouse model of fragile X syndrome. Hum Mol Genet 2013; 22:3920-30. [PMID: 23740941 DOI: 10.1093/hmg/ddt246] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fragile X Syndrome is the most common inherited cause of autism. Fragile X mental retardation protein (FMRP), which is absent in fragile X, is an mRNA binding protein that regulates the translation of hundreds of different mRNA transcripts. In the adult brain, FMRP is expressed primarily in the neurons; however, it is also expressed in developing glial cells, where its function is not well understood. Here, we show that fragile X (Fmr1) knockout mice display abnormalities in the myelination of cerebellar axons as early as the first postnatal week, corresponding roughly to the equivalent time in human brain development when symptoms of the syndrome first become apparent (1-3 years of age). At postnatal day (PND) 7, diffusion tensor magnetic resonance imaging showed reduced volume of the Fmr1 cerebellum compared with wild-type mice, concomitant with an 80-85% reduction in the expression of myelin basic protein, fewer myelinated axons and reduced thickness of myelin sheaths, as measured by electron microscopy. Both the expression of the proteoglycan NG2 and the number of PDGFRα+/NG2+ oligodendrocyte precursor cells were reduced in the Fmr1 cerebellum at PND 7. Although myelin proteins were still depressed at PND 15, they regained wild-type levels by PND 30. These findings suggest that impaired maturation or function of oligodendrocyte precursor cells induces delayed myelination in the Fmr1 mouse brain. Our results bolster an emerging recognition that white matter abnormalities in early postnatal brain development represent an underlying neurological deficit in Fragile X syndrome.
Collapse
|
84
|
Zhu Y, Li H, Li K, Zhao X, An T, Hu X, Park J, Huang H, Bin Y, Qiang B, Yuan J, Peng X, Qiu M. Necl-4/SynCAM-4 is expressed in myelinating oligodendrocytes but not required for axonal myelination. PLoS One 2013; 8:e64264. [PMID: 23700466 PMCID: PMC3659047 DOI: 10.1371/journal.pone.0064264] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/10/2013] [Indexed: 12/04/2022] Open
Abstract
The timing and progression of axonal myelination are precisely controlled by intercellular interactions between neurons and glia in development. Previous in vitro studies demonstrated that Nectin like 4 (Necl-4, also known as cell adhesion molecule Cadm-4 or SynCAM-4) plays an essential role in axonal myelination by Schwann cells in the peripheral nervous system (PNS). However, the role of Necl-4 protein in axonal myelination in the developing central nervous system (CNS) has remained unknown. In this study, we discovered upregulation of Necl-4 expression in mature oligodendrocytes at perinatal stages when axons undergo active myelination. We generated Necl4 gene knockout mice, but found that disruption of Necl-4 gene did not affect oligodendrocyte differentiation and myelin formation in the CNS. Surprisingly, disruption of Necl-4 had no significant effect on axonal myelination in the PNS either. Therefore, our results demonstrated that Necl-4 is dispensable for axonal myelination in the developing nervous system.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Hong Li
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Kehan Li
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaofeng Zhao
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Tai An
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuemei Hu
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Jinsil Park
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Hao Huang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yin Bin
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Boqin Qiang
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangang Yuan
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaozhong Peng
- The National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (XP); (MQ)
| | - Mengsheng Qiu
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- * E-mail: (XP); (MQ)
| |
Collapse
|
85
|
De Angelis F, Bernardo A, Magnaghi V, Minghetti L, Tata AM. Muscarinic receptor subtypes as potential targets to modulate oligodendrocyte progenitor survival, proliferation, and differentiation. Dev Neurobiol 2013; 72:713-28. [PMID: 21913336 DOI: 10.1002/dneu.20976] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acetylcholine (ACh) is a major neurotransmitter but also an important signaling molecule in neuron-glia interactions. Expression of ACh receptors has been reported in several glial cell populations, including oligodendrocytes (OLs). Nonetheless, the characterization of muscarinic receptors in these cells, as well as the description of the cholinergic effects at different stages of OL development, is still incomplete. In this study, we characterized the pattern of expression of muscarinic receptor subtypes in primary cultures of rat oligodendrocyte progenitor cells (OPC) and mature OLs, at both mRNA and protein levels. We found that muscarinic receptor expression is developmentally regulated. M1, M3, and M4 receptors were the main subtypes expressed in OPC, whereas all receptor subtypes were expressed at low levels in mature OLs. Exposure of OPC to muscarine enhanced cell proliferation, an effect mainly due to M1, M3, and M4 receptor subtypes as demonstrated by pharmacological competition with selective antagonists. Conversely, M2 receptor activation impaired OPC survival. In line with the mitogenic activity, muscarinic receptor activation increased the expression of platelet derived growth factor receptor α. Muscarine stimulation increased CX32 and myelin basic protein expression, left unaffected that of myelin proteolipid protein (PLP), and decreased member of the family of epidermal growth factor receptor (EGFR) ErbB3/ErbB4 receptor expression indicating a predominant role of muscarinic receptors in OPC. These findings suggest that ACh may contribute to the maintenance of an immature proliferating progenitor pool and impair the progression toward mature stage. This hypothesis is further supported by increased expression of Notch-1 in OL on muscarinic activation.
Collapse
Affiliation(s)
- Federica De Angelis
- Department of Biology and Biotechnologies Charles Darwin, Center of Neurobiology Research Daniel Bovet, La Sapienza University of Rome, Rome, Italy
| | | | | | | | | |
Collapse
|
86
|
Li C, Xiao L, Liu X, Yang W, Shen W, Hu C, Yang G, He C. A functional role of NMDA receptor in regulating the differentiation of oligodendrocyte precursor cells and remyelination. Glia 2013; 61:732-49. [PMID: 23440860 DOI: 10.1002/glia.22469] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/27/2012] [Indexed: 11/12/2022]
Abstract
Differentiation of oligodendrocyte precursor cells (OPCs) is the most important event for the myelination of central nervous system (CNS) axons during development and remyelination in demyelinating diseases, while the underlying molecular mechanisms remain largely unknown. Here we show that NMDA receptor (NMDAR) is a functional regulator of OPCs differentiation and remyelination. First, GluN1, GluN2A, and GluN2B subunits are expressed in oligodendrocyte lineage cells (OLs) in vitro and in vivo by immunostaining and Western blot analysis. Second, in a purified rat OPC culture system, NMDARs specially mediate OPCs differentiation by enhancing myelin proteins expression and the processes branching at the immature to mature oligodendrocyte transition analyzed by a serial of developmental stage-specific antigens. Moreover, pharmacological NMDAR antagonists or specific knockdown of GluN1 by RNA interference in OPCs prevents the differentiation induced by NMDA. NMDA can activate the mammalian target of rapamycin (mTOR) signal in OPCs and the pro-differentiation effect of NMDA is obstructed by the mTOR inhibitor rapamycin, suggesting NMDAR exerts its effect through mTOR-dependent mechanism. Furthermore, NMDA increases numbers of myelin segments in DRG-OPC cocultures. Finally, NMDAR specific antagonist MK801 delays remyelination in the cuprizone model examined by LFB-PAS, immunofluorescence and electron microscopy. This effect appears to result from inhibiting OPCs differentiation as more NG2(+) OPCs but less GST-π(+) mature oligodendrocytes are observed. Together, these results indicate that NMDAR plays a critical role in the regulation of OPCs differentiation in vitro and remyelination in cuprizone model which may provide potential target for the treatment of demyelination disease.
Collapse
Affiliation(s)
- Cui Li
- Institute of Neuroscience and MOE Key Laboratory of Molecular Neurobiology, Neuroscience Research Center of Changzheng Hospital, Second Military Medical University, Shanghai, 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Rüb U, Schöls L, Paulson H, Auburger G, Kermer P, Jen JC, Seidel K, Korf HW, Deller T. Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7. Prog Neurobiol 2013; 104:38-66. [PMID: 23438480 DOI: 10.1016/j.pneurobio.2013.01.001] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 01/22/2013] [Accepted: 01/31/2013] [Indexed: 12/18/2022]
Abstract
The spinocerebellar ataxias type 1 (SCA1), 2 (SCA2), 3 (SCA3), 6 (SCA6) and 7 (SCA7) are genetically defined autosomal dominantly inherited progressive cerebellar ataxias (ADCAs). They belong to the group of CAG-repeat or polyglutamine diseases and share pathologically expanded and meiotically unstable glutamine-encoding CAG-repeats at distinct gene loci encoding elongated polyglutamine stretches in the disease proteins. In recent years, progress has been made in the understanding of the pathogenesis of these currently incurable diseases: Identification of underlying genetic mechanisms made it possible to classify the different ADCAs and to define their clinical and pathological features. Furthermore, advances in molecular biology yielded new insights into the physiological and pathophysiological role of the gene products of SCA1, SCA2, SCA3, SCA6 and SCA7 (i.e. ataxin-1, ataxin-2, ataxin-3, α-1A subunit of the P/Q type voltage-dependent calcium channel, ataxin-7). In the present review we summarize our current knowledge about the polyglutamine ataxias SCA1, SCA2, SCA3, SCA6 and SCA7 and compare their clinical and electrophysiological features, genetic and molecular biological background, as well as their brain pathologies. Furthermore, we provide an overview of the structure, interactions and functions of the different disease proteins. On the basis of these comprehensive data, similarities, differences and possible disease mechanisms are discussed.
Collapse
Affiliation(s)
- Udo Rüb
- Dr. Senckenberg Chronomedical Institute, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt/Main, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Microtubules and Associated Proteins in Oligodendrocytes, the Myelin Forming Cells of the Central Nervous System. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/978-1-62703-266-7_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
89
|
Abstract
Nerve myelination facilitates saltatory action potential conduction and exhibits spatiotemporal variation during development associated with the acquisition of behavioral and cognitive maturity. Although human cognitive development is unique, it is not known whether the ontogenetic progression of myelination in the human neocortex is evolutionarily exceptional. In this study, we quantified myelinated axon fiber length density and the expression of myelin-related proteins throughout postnatal life in the somatosensory (areas 3b/3a/1/2), motor (area 4), frontopolar (prefrontal area 10), and visual (areas 17/18) neocortex of chimpanzees (N = 20) and humans (N = 33). Our examination revealed that neocortical myelination is developmentally protracted in humans compared with chimpanzees. In chimpanzees, the density of myelinated axons increased steadily until adult-like levels were achieved at approximately the time of sexual maturity. In contrast, humans displayed slower myelination during childhood, characterized by a delayed period of maturation that extended beyond late adolescence. This comparative research contributes evidence crucial to understanding the evolution of human cognition and behavior, which arises from the unfolding of nervous system development within the context of an enriched cultural environment. Perturbations of normal developmental processes and the decreased expression of myelin-related molecules have been related to psychiatric disorders such as schizophrenia. Thus, these species differences suggest that the human-specific shift in the timing of cortical maturation during adolescence may have implications for vulnerability to certain psychiatric disorders.
Collapse
|
90
|
Park J, Koito H, Li J, Han A. Multi-compartment neuron-glia co-culture platform for localized CNS axon-glia interaction study. LAB ON A CHIP 2012; 12:3296-304. [PMID: 22828584 PMCID: PMC3426455 DOI: 10.1039/c2lc40303j] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Formation of myelin sheaths by oligodendrocytes (OLs) in the central nervous system (CNS) is essential for rapid nerve impulse conduction. Reciprocal signaling between axons and OLs orchestrates myelinogenesis but remains largely elusive. In this study, we present a multi-compartment CNS neuron-glia microfluidic co-culture platform. The platform is capable of conducting parallel localized drug and biomolecule treatments while carrying out multiple co-culture conditions in a single device for studying axon-glia interactions at a higher throughput. The "micro-macro hybrid soft-lithography master fabrication" (MMHSM) technique enables a large number of precisely replicated PDMS devices incorporating both millimeter and micrometer scale structures to be rapidly fabricated without any manual reservoir punching processes. Axons grown from the neuronal somata were physically and fluidically isolated inside the six satellite axon/glia compartments for localized treatments. Astrocytes, when seeded and co-cultured after the establishment of the isolated axons in the satellite axon/glia compartments, were found to physically damage the established axonal layer, as they tend to grow underneath the axons. In contrast, oligodendrocyte progenitor cells (OPCs) could be co-cultured successfully with the isolated axons and differentiated into mature myelin basic protein-expressing OLs with processes aligning to neighboring axons. OPCs inside the six axon/glia compartments were treated with a high concentration of ceramide (150 μM) to confirm the fluidic isolation among the satellite compartments. In addition, isolated axons were treated with varying concentrations of chondroitin sulfate proteoglycan (CSPG, 0-25 μg ml(-1)) within a single device to demonstrate the parallel localized biomolecular treatment capability of the device. These results indicate that the proposed platform can be used as a powerful tool to study CNS axonal biology and axon-glia interactions with the capacity for localized biomolecular treatments.
Collapse
Affiliation(s)
- Jaewon Park
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Hisami Koito
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Jianrong Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA. Fax: 979-847-8981; Tel: 979-862-7155;
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Electrical and Computer Engineering & Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA. Fax: 979-845-6259; Tel: 979-845-9686;
| |
Collapse
|
91
|
Bribián A, Fontana X, Llorens F, Gavín R, Reina M, García-Verdugo JM, Torres JM, de Castro F, del Río JA. Role of the cellular prion protein in oligodendrocyte precursor cell proliferation and differentiation in the developing and adult mouse CNS. PLoS One 2012; 7:e33872. [PMID: 22529900 PMCID: PMC3329524 DOI: 10.1371/journal.pone.0033872] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 02/18/2012] [Indexed: 11/18/2022] Open
Abstract
There are numerous studies describing the signaling mechanisms that mediate oligodendrocyte precursor cell (OPC) proliferation and differentiation, although the contribution of the cellular prion protein (PrPc) to this process remains unclear. PrPc is a glycosyl-phosphatidylinositol (GPI)-anchored glycoprotein involved in diverse cellular processes during the development and maturation of the mammalian central nervous system (CNS). Here we describe how PrPc influences oligodendrocyte proliferation in the developing and adult CNS. OPCs that lack PrPc proliferate more vigorously at the expense of a delay in differentiation, which correlates with changes in the expression of oligodendrocyte lineage markers. In addition, numerous NG2-positive cells were observed in cortical regions of adult PrPc knockout mice, although no significant changes in myelination can be seen, probably due to the death of surplus cells.
Collapse
Affiliation(s)
- Ana Bribián
- Molecular and Cellular Neurobiotechnology, Catalonian Institute for Bioengineering (IBEC), Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Xavier Fontana
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
| | - Franc Llorens
- Molecular and Cellular Neurobiotechnology, Catalonian Institute for Bioengineering (IBEC), Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Rosalina Gavín
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Manuel Reina
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
| | - José Manuel García-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cabanillas de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Valencia, Spain
| | - Juan María Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Fernando de Castro
- GNDe-Grupo de Neurobiología del Desarrollo, Unidad de Neurología Experimental, Hospital Nacional de Parapléjicos, Toledo, Spain
- Instituto Cajal-CSIC, Madrid, Spain
| | - José Antonio del Río
- Molecular and Cellular Neurobiotechnology, Catalonian Institute for Bioengineering (IBEC), Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- * E-mail:
| |
Collapse
|
92
|
Neuroinflammation in Parkinson's Disease and Related Disorders: A Lesson from Genetically Manipulated Mouse Models of α-Synucleinopathies. PARKINSONS DISEASE 2012; 2012:271732. [PMID: 22550610 PMCID: PMC3324936 DOI: 10.1155/2012/271732] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/18/2012] [Indexed: 12/13/2022]
Abstract
Neuroinflammation in Parkinson's disease (PD) is a chronic process that is associated with alteration of glial cells, including astrocytes and microglia. However, the precise mechanisms remain obscure. To better understand neuroinflammation in PD, we focused on glial activation in α-synuclein (αS) transgenic and related model mice. In the majority of αS transgenic mice, astrogliosis was observed concomitantly with accumulation of αS during the early stage of neurodegeneration. However, microglia were not extensively activated unless the mice were treated with lipopolysaccharides or through further genetic modification of other molecules, including familial PD risk factors. Thus, the results in αS transgenic mice and related model mice are consistent with the idea that neuroinflammation in PD is a double-edged sword that is protective in the early stage of neurodegeneration but becomes detrimental with disease progression.
Collapse
|
93
|
Sema4D as an inhibitory regulator in oligodendrocyte development. Mol Cell Neurosci 2012; 49:290-9. [DOI: 10.1016/j.mcn.2011.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 11/15/2011] [Accepted: 12/06/2011] [Indexed: 12/28/2022] Open
|
94
|
Blaise S, Kneib M, Rousseau A, Gambino F, Chenard MP, Messadeq N, Muckenstrum M, Alpy F, Tomasetto C, Humeau Y, Rio MC. In vivo evidence that TRAF4 is required for central nervous system myelin homeostasis. PLoS One 2012; 7:e30917. [PMID: 22363515 PMCID: PMC3281907 DOI: 10.1371/journal.pone.0030917] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 12/29/2011] [Indexed: 01/22/2023] Open
Abstract
Tumor Necrosis Factor Receptor-Associated Factors (TRAFs) are major signal transducers for the TNF and interleukin-1/Toll-like receptor superfamilies. However, TRAF4 does not fit the paradigm of TRAF function in immune and inflammatory responses. Its physiological and molecular functions remain poorly understood. Behavorial analyses show that TRAF4-deficient mice (TRAF4-KO) exhibit altered locomotion coordination typical of ataxia. TRAF4-KO central nervous system (CNS) ultrastructure shows strong myelin perturbation including disorganized layers and disturbances in paranode organization. TRAF4 was previously reported to be expressed by CNS neurons. Using primary cell culture, we now show that TRAF4 is also expressed by oligodendrocytes, at all stages of their differentiation. Moreover, histology and electron microscopy show degeneration of a high number of Purkinje cells in TRAF4-KO mice, that was confirmed by increased expression of the Bax pro-apoptotic marker (immunofluorescence), TUNEL analysis, and caspase-3 activation and PARP1 cleavage (western blotting). Consistent with this phenotype, MAG and NogoA, two myelin-induced neurite outgrowth inhibitors, and their neuron partners, NgR and p75NTR were overexpressed (Q-RT-PCR and western blotting). The strong increased phosphorylation of Rock2, a RhoA downstream target, indicated that the NgR/p75NTR/RhoA signaling pathway, known to induce actin cytoskeleton rearrangement that favors axon regeneration inhibition and neuron apoptosis, is activated in the absence of TRAF4 (western blotting). Altogether, these results provide conclusive evidence for the pivotal contribution of TRAF4 to myelination and to cerebellar homeostasis, and link the loss of TRAF4 function to demyelinating or neurodegenerative diseases.
Collapse
Affiliation(s)
- Sébastien Blaise
- Functional Genomics and Cancer Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, Illkirch, France
| | - Marie Kneib
- Centre National de la Recherche Scientifique UPR3212, Strasbourg, France
| | - Adrien Rousseau
- Functional Genomics and Cancer Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, Illkirch, France
| | - Frederic Gambino
- Centre National de la Recherche Scientifique UPR3212, Strasbourg, France
| | - Marie-Pierre Chenard
- Département de Pathologie, Centre Hospitalier Universitaire de Hautepierre, Strasbourg, France
| | - Nadia Messadeq
- Functional Genomics and Cancer Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, Illkirch, France
| | - Martine Muckenstrum
- Département de Pathologie, Centre Hospitalier Universitaire de Hautepierre, Strasbourg, France
| | - Fabien Alpy
- Functional Genomics and Cancer Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, Illkirch, France
| | - Catherine Tomasetto
- Functional Genomics and Cancer Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, Illkirch, France
| | - Yann Humeau
- Centre National de la Recherche Scientifique UPR3212, Strasbourg, France
| | - Marie-Christine Rio
- Functional Genomics and Cancer Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, Illkirch, France
| |
Collapse
|
95
|
Schumacher M, Hussain R, Gago N, Oudinet JP, Mattern C, Ghoumari AM. Progesterone synthesis in the nervous system: implications for myelination and myelin repair. Front Neurosci 2012; 6:10. [PMID: 22347156 PMCID: PMC3274763 DOI: 10.3389/fnins.2012.00010] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 01/16/2012] [Indexed: 11/15/2022] Open
Abstract
Progesterone is well known as a female reproductive hormone and in particular for its role in uterine receptivity, implantation, and the maintenance of pregnancy. However, neuroendocrine research over the past decades has established that progesterone has multiple functions beyond reproduction. Within the nervous system, its neuromodulatory and neuroprotective effects are much studied. Although progesterone has been shown to also promote myelin repair, its influence and that of other steroids on myelination and remyelination is relatively neglected. Reasons for this are that hormonal influences are still not considered as a central problem by most myelin biologists, and that neuroendocrinologists are not sufficiently concerned with the importance of myelin in neuron functions and viability. The effects of progesterone in the nervous system involve a variety of signaling mechanisms. The identification of the classical intracellular progesterone receptors as therapeutic targets for myelin repair suggests new health benefits for synthetic progestins, specifically designed for contraceptive use and hormone replacement therapies. There are also major advantages to use natural progesterone in neuroprotective and myelin repair strategies, because progesterone is converted to biologically active metabolites in nervous tissues and interacts with multiple target proteins. The delivery of progesterone however represents a challenge because of its first-pass metabolism in digestive tract and liver. Recently, the intranasal route of progesterone administration has received attention for easy and efficient targeting of the brain. Progesterone in the brain is derived from the steroidogenic endocrine glands or from local synthesis by neural cells. Stimulating the formation of endogenous progesterone is currently explored as an alternative strategy for neuroprotection, axonal regeneration, and myelin repair.
Collapse
|
96
|
Benesh AE, Fleming JT, Chiang C, Carter BD, Tyska MJ. Expression and localization of myosin-1d in the developing nervous system. Brain Res 2012; 1440:9-22. [PMID: 22284616 DOI: 10.1016/j.brainres.2011.12.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/14/2011] [Accepted: 12/26/2011] [Indexed: 01/15/2023]
Abstract
Myosin-1d is a monomeric actin-based motor found in a wide range of tissues, but highly expressed in the nervous system. Previous microarray studies suggest that myosin-1d is found in oligodendrocytes where transcripts are upregulated during the maturation of these cells. Myosin-1d was also identified as a component of myelin-containing subcellular fractions in proteomic studies and mutations in MYO1D have been linked to autism. Despite the potential implications of these previous studies, there is little information on the expression and localization of myosin-1d in the developing nervous system. Therefore, we analyzed myosin-1d expression patterns in the peripheral and central nervous systems during postnatal development. In mouse sciatic nerve, myosin-1d is expressed along the axon and in the ensheathing myelin compartment. Analysis of mouse cerebellum prior to myelination at day 3 reveals that myosin-1d is present in the Purkinje cell layer, granule cell layer, and region of the cerebellar nuclei. Upon the onset of myelination, myosin-1d enrichment expands along axonal tracts, while still present in the Purkinje and granule cell layers. However, myosin-1d was undetectable in oligodendrocyte progenitor cells at early and late time points. We also show that myosin-1d interacts and is co-expressed with aspartoacylase, an enzyme that plays a key role in fatty acid synthesis throughout the nervous system. Together, these studies provide a foundation for understanding the role of myosin-1d in neurodevelopment and neurological disorders.
Collapse
Affiliation(s)
- Andrew E Benesh
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | |
Collapse
|
97
|
Pang Y, Zheng B, Kimberly SL, Cai Z, Rhodes PG, Lin RCS. Neuron-oligodendrocyte myelination co-culture derived from embryonic rat spinal cord and cerebral cortex. Brain Behav 2012; 2:53-67. [PMID: 22574274 PMCID: PMC3343299 DOI: 10.1002/brb3.33] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/13/2011] [Accepted: 12/18/2011] [Indexed: 02/07/2023] Open
Abstract
An in vitro myelination model derived from rat central nervous system (CNS) remains to be established. Here, we describe a simple and reproducible myelination culture method using dissociated neuron-oligodendrocyte (OL) co-cultures from either the embryonic day 16 (E16) rat spinal cord or cerebral cortex. The dissociated cells are plated directly on poly-L-lysine-coated cover slips and maintained in a modified myelination medium that supports both OL and neuron differentiation. The spinal cord derived OL progenitor cells develop quickly into myelin basic protein (MBP)+ mature OLs and start to myelinate axons around 17 days in vitro (DIV17). Myelination reaches its peak around six weeks (DIV40) and the typical nodes of Ranvier are revealed by paranodal proteins Caspr and juxaparanodal protein Kv1.2 immunoreactivity. Electron microscopy (EM) shows typical myelination cytoarchitecture and synaptic organization. In contrast, the cortical-derived co-culture requires triiodothyronine (T3) in the culture medium for myelination. Finally, either hypomyelination and/or demyelination can be induced by exposing proinflammatory cytokines or demyelinating agents to the co-culture, suggesting the feasibility of this modified in vitro myelination model for myelin-deficit investigation.
Collapse
Affiliation(s)
- Yi Pang
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Baoying Zheng
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Simpson L. Kimberly
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi 39216
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Zhengwei Cai
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Philip G. Rhodes
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Rick C. S. Lin
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi 39216
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi 39216
| |
Collapse
|
98
|
Chen G, Zhang Z, Wei Z, Cheng Q, Li X, Li W, Duan S, Gu X. Lysosomal exocytosis in Schwann cells contributes to axon remyelination. Glia 2011; 60:295-305. [PMID: 22042600 DOI: 10.1002/glia.21263] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 10/06/2011] [Indexed: 12/21/2022]
Abstract
Myelin biogenesis is a complex process involving coordinated exocytosis, endocytosis, mRNA transport, and cytoskeletal dynamics. Although abnormalities of myelin are common in lysosomal storage diseases, our understanding of the role of lysosomes in the formation and maintenance of myelin is still limited. Here, we show that late endosomes/lysosomes in Schwann cells contain abundant myelin protein P0, which accounts for over half the total protein of compact myelin in the peripheral nervous system and exhibit Ca(2+) -dependent exocytosis in response to various stimuli. Downregulation of Rab27a, a small GTPase required for the trafficking of the secretory lysosomes to the plasma membrane, largely blocked lysosomal exocytosis in Schwann cells and reduced the remyelination of regenerated sciatic nerve. These findings highlight a novel role for lysosomes in Schwann cells and suggest that the regulated lysosome exocytosis in Schwann cells may have important physiological and pathological significance in the peripheral nervous system.
Collapse
Affiliation(s)
- Gang Chen
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Wang L, Kamath A, Frye J, Iwamoto GA, Chun JL, Berry SE. Aorta-derived mesoangioblasts differentiate into the oligodendrocytes by inhibition of the Rho kinase signaling pathway. Stem Cells Dev 2011; 21:1069-89. [PMID: 21793703 DOI: 10.1089/scd.2011.0124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mesoangioblasts are vessel-derived stem cells that differentiate into mesodermal derivatives. We have isolated postnatal aorta-derived mesoangioblasts (ADMs) that differentiate into smooth, skeletal, and cardiac muscle, and adipocytes, and regenerate damaged skeletal muscle in a murine model for Duchenne muscular dystrophy. We report that the marker profile of ADM is similar to that of mesoangioblasts isolated from embryonic dorsal aorta, postnatal bone marrow, and heart, but distinct from mesoangioblasts derived from skeletal muscle. We also demonstrate that ADM differentiate into myelinating glial cells. ADM localize to peripheral nerve bundles in regenerating muscles and exhibit morphology and marker expression of mature Schwann cells, and myelinate axons. In vitro, ADM spontaneously express markers of oligodendrocyte progenitors, including the chondroitin sulphate proteoglycan NG2, nestin, platelet-derived growth factor (PDGF) receptor α, the A2B5 antigen, thyroid hormone nuclear receptor α, and O4. Pharmacological inhibition of Rho kinase (ROCK) initiated process extension by ADM, and when combined with insulin-like growth factor 1, PDGF, and thyroid hormone, enhanced ADM expression of oligodendrocyte precursor markers and maturation into the oligodendrocyte lineage. ADM injected into the right lateral ventricle of the brain migrate to the corpus callosum, and cerebellar white matter, where they express components of myelin. Because ADM differentiate or mature into cell types of both mesodermal and ectodermal origin, they may be useful for treatment of a variety of degenerative diseases, or repair and regeneration of multiple cell types in severely damaged tissue.
Collapse
Affiliation(s)
- Lei Wang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | | | | | | | | | | |
Collapse
|
100
|
Hussain R, El-Etr M, Gaci O, Rakotomamonjy J, Macklin WB, Kumar N, Sitruk-Ware R, Schumacher M, Ghoumari AM. Progesterone and Nestorone facilitate axon remyelination: a role for progesterone receptors. Endocrinology 2011; 152:3820-31. [PMID: 21828184 PMCID: PMC6285137 DOI: 10.1210/en.2011-1219] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Enhancing the endogenous capacity of myelin repair is a major therapeutic challenge in demyelinating diseases such as multiple sclerosis. We found that progesterone and the synthetic 19-norprogesterone derivative 16-methylene-17α-acetoxy-19-norpregn-4-ene-3,20-dione (Nestorone) promote the remyelination of axons by oligodendrocytes after lysolecithin-induced demyelination in organotypic cultures of cerebellar slices taken from postnatal rats or mice. The intracellular progesterone receptors (PR) mediate the proremyelinating actions of Nestorone, because they are not observed in slices from PR knockout mice. Notably, Nestorone was less efficient in heterozygous mice, expressing reduced levels of PR, suggesting PR haploinsufficiency in myelin repair. Using mice expressing the enhanced green fluorescent protein (EGFP) under the control of the proteolipid gene promoter, we showed that both progesterone and Nestorone strongly increased the reappearance of cells of the oligodendroglial lineage in the demyelinated slices. In contrast to Nestorone, the pregnane derivative medroxyprogesterone acetate had no effect. The increase in oligodendroglial cells by Nestorone resulted from enhanced NG2(+) and Olig2(+) oligodendrocyte progenitor cell (OPC) recruitment. In cocultures of lysolecithin-demyelinated cerebellar slices from wild-type mice apposed to brain stem slices of proteolipid gene promoter-EGFP mice, Nestorone stimulated the migration of OPC towards demyelinated axons. In this coculture paradigm, Nestorone indeed markedly increased the number of EGFP(+) cells migrating into the demyelinated cerebellar slices. Our results show that Nestorone stimulates the recruitment and maturation of OPC, two steps which are limiting for efficient myelin repair. They may thus open new perspectives for the use of progestins, which selectively target PR, to promote the endogenous regeneration of myelin.
Collapse
Affiliation(s)
- Rashad Hussain
- Unité Mixte de Recherche 788 Institut National de la Santé et de la Recherche Médicale and University Paris-Sud 11, 80 Rue du Général Leclerc, 94276 Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | | | |
Collapse
|