51
|
Factors regulating capillary remodeling in a reversible model of inflammatory corneal angiogenesis. Sci Rep 2016; 6:32137. [PMID: 27561355 PMCID: PMC4999823 DOI: 10.1038/srep32137] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/03/2016] [Indexed: 02/06/2023] Open
Abstract
Newly formed microcapillary networks arising in adult organisms by angiogenic and inflammatory stimuli contribute to pathologies such as corneal and retinal blindness, tumor growth, and metastasis. Therapeutic inhibition of pathologic angiogenesis has focused on targeting the VEGF pathway, while comparatively little attention has been given to remodeling of the new microcapillaries into a stabilized, functional, and persistent vascular network. Here, we used a novel reversible model of inflammatory angiogenesis in the rat cornea to investigate endogenous factors rapidly invoked to remodel, normalize and regress microcapillaries as part of the natural response to regain corneal avascularity. Rapid reversal of an inflammatory angiogenic stimulus suppressed granulocytic activity, enhanced recruitment of remodelling macrophages, induced capillary intussusception, and enriched pathways and processes involving immune cells, chemokines, morphogenesis, axonal guidance, and cell motility, adhesion, and cytoskeletal functions. Whole transcriptome gene expression analysis revealed suppression of numerous inflammatory and angiogenic factors and enhancement of endogenous inhibitors. Many of the identified genes function independently of VEGF and represent potentially new targets for molecular control of the critical process of microvascular remodeling and regression in the cornea.
Collapse
|
52
|
DiPietro LA. Angiogenesis and wound repair: when enough is enough. J Leukoc Biol 2016; 100:979-984. [PMID: 27406995 DOI: 10.1189/jlb.4mr0316-102r] [Citation(s) in RCA: 395] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/17/2016] [Indexed: 12/14/2022] Open
Abstract
All animals heal, and the ability to heal is requisite for human health. One aspect of repair that has always been considered to be essential for adequate healing is the creation of a new vasculature via angiogenesis. As adult skin wounds heal, a period of rapid and robust capillary growth creates a vascular bed that has many fold more capillaries than does normal tissue. Over time, most of the newly formed capillaries regress, resulting in a final vascular density similar to that of normal skin. Certainly, new capillaries are necessary to bring nutrients, immune cells, and oxygen to healing wounds. Yet, the presumed functional importance of an overabundance of capillaries has recently been challenged, creating questions about whether excess capillary growth is truly necessary for healing. In particular, studies of wounds that heal exceptionally quickly and with less scar formation, such as those in fetal skin and oral mucosa, show that these tissues heal with a reduced angiogenic burst composed of more mature vessels that provide better oxygenation. The level of angiogenesis in wounds often correlates with the inflammatory response, largely because inflammatory cells produce an abundance of proangiogenic mediators. Both the selective reduction of inflammation and the selective reduction of angiogenesis have now been suggested as ways to improve scarring. These concepts link excessive inflammation and the production of a dense but poorly perfused capillary bed to inferior healing outcomes.
Collapse
Affiliation(s)
- Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
53
|
Bodnar RJ, Satish L, Yates CC, Wells A. Pericytes: A newly recognized player in wound healing. Wound Repair Regen 2016; 24:204-14. [PMID: 26969517 DOI: 10.1111/wrr.12415] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/28/2016] [Indexed: 12/26/2022]
Abstract
Pericytes have generally been considered in the context of stabilizing vessels, ensuring the blood barriers, and regulating the flow through capillaries. However, new reports suggest that pericytes may function at critical times to either drive healing with minimal scarring or, perversely, contribute to fibrosis and ongoing scar formation. Beneficially, pericytes probably drive much of the vascular involution that occurs during the transition from the regenerative to the resolution phases of healing. Pathologically, pericytes can assume a fibrotic phenotype and promote scarring. This perspective will discuss pericyte involvement in wound repair and the relationship pericytes form with the parenchymal cells of the skin. We will further evaluate the role pericytes may have in disease progression in relation to chronic wounds and fibrosis.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.,Veterans Affairs Medical Center, Pittsburgh, Pennsylvania
| | - Latha Satish
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.,Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Cecelia C Yates
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.,Veterans Affairs Medical Center, Pittsburgh, Pennsylvania.,Department of Health Promotions and Development, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.,Veterans Affairs Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
54
|
Milanos L, Brox R, Frank T, Poklukar G, Palmisano R, Waibel R, Einsiedel J, Dürr M, Ivanović-Burmazović I, Larsen O, Hjortø GM, Rosenkilde MM, Tschammer N. Discovery and Characterization of Biased Allosteric Agonists of the Chemokine Receptor CXCR3. J Med Chem 2016; 59:2222-43. [DOI: 10.1021/acs.jmedchem.5b01965] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lampros Milanos
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Regine Brox
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Theresa Frank
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Gašper Poklukar
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Ralf Palmisano
- Optical
Imaging Center Erlangen, Friedrich Alexander University, Hartmannstraße
14, 91052 Erlangen, Germany
| | - Reiner Waibel
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Jürgen Einsiedel
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| | - Maximilian Dürr
- Department
of Chemistry and Pharmacy, Bioorganic Chemistry, Friedrich Alexander University, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Ivana Ivanović-Burmazović
- Department
of Chemistry and Pharmacy, Bioorganic Chemistry, Friedrich Alexander University, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Olav Larsen
- Department
of Neuroscience and Pharmacology, Laboratory for Molecular Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Gertrud Malene Hjortø
- Department
of Neuroscience and Pharmacology, Laboratory for Molecular Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Mette Marie Rosenkilde
- Department
of Neuroscience and Pharmacology, Laboratory for Molecular Pharmacology,
Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Nuska Tschammer
- Department
of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, 91052 Erlangen, Germany
| |
Collapse
|
55
|
Affiliation(s)
- Emiel P C van der Vorst
- From the Institute for Cardiovascular Prevention, Department of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany (E.P.C.v.d.V., Y.D., C.W.); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (Y.D., C.W.); and Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, The Netherlands (C.W.)
| | - Yvonne Döring
- From the Institute for Cardiovascular Prevention, Department of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany (E.P.C.v.d.V., Y.D., C.W.); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (Y.D., C.W.); and Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, The Netherlands (C.W.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention, Department of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany (E.P.C.v.d.V., Y.D., C.W.); DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (Y.D., C.W.); and Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, The Netherlands (C.W.).
| |
Collapse
|
56
|
Bodnar RJ. Chemokine Regulation of Angiogenesis During Wound Healing. Adv Wound Care (New Rochelle) 2015; 4:641-650. [PMID: 26543678 DOI: 10.1089/wound.2014.0594] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Significance: Angiogenesis plays a critical role in wound healing. A defect in the formation of a neovasculature induces ulcer formation. One of the challenges faced by the clinician when devising strategies to promote healing of chronic wounds is the initiation of angiogenesis and the formation of a stable vasculature to support tissue regeneration. Understanding the molecular factors regulating angiogenesis during wound healing will lead to better therapies for healing chronic wounds. Recent Advances: Classically, chronic wounds are treated with debridement to remove inhibitory molecules to reestablish angiogenesis and normal wound healing. The addition of platelet-derived growth factor (PDGF, becaplermin) has shown some promise as an adjunctive therapy, but better therapies are still needed. Current treatment strategies include investigating the outcome of augmenting cytokines locally to reduce the inflammatory response and promote angiogenesis. Critical Issues: The failure of wounds to form a new vasculature results in the inability of the wound to fully heal, and thus may develop into a chronic ulcer if left untreated. Inhibition of neovascularization commonly results from an overactive inflammatory response that includes an excessive chemokine response. Therefore, understanding how the chemokine response regulates neoangiogenesis will enhance our ability to develop new treatment strategies to improve neovascularization and wound healing. Future Directions: The ability to regulate the chemokine environment in chronic wounds may enhance the development of the neovasculature to reduce invasive treatments and enhance wound healing. Either inhibiting chemokines that promote a chronic inflammatory response or increasing the levels of proangiogenic chemokines may enhance angiogenesis in chronic wounds.
Collapse
Affiliation(s)
- Richard J. Bodnar
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Veterans Administration Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
57
|
Satish L. Chemokines as Therapeutic Targets to Improve Healing Efficiency of Chronic Wounds. Adv Wound Care (New Rochelle) 2015; 4:651-659. [PMID: 26543679 DOI: 10.1089/wound.2014.0602] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Significance: Impaired wound healing leading to chronic wounds is an important clinical problem that needs immediate attention to develop new effective therapies. Members of the chemokine family seem to be attractive and amenable to stimulate the healing process in chronic wounds. Targeting specific chemokines and/or their receptors has the potential to modify chronic inflammation to acute inflammation, which will hasten the healing process. Recent Advances: Over the years, expression levels of various chemokines and their receptors have been identified as key players in the inflammatory phase of wound healing. In addition, they contribute to regulating other phases of wound healing making them key targets for novel therapies. Understanding the signaling pathways of these chemokines will provide valuable clues for modulating their function to enhance the wound healing process. Critical Issues: Inflammation, an important first-stage process in wound healing, is dysregulated in chronic wounds; emerging studies show that chemokines play a crucial role in regulating inflammation. The knowledge gained so far is still limited in understanding the enormous complexity of the chemokine network during inflammation not just in chronic wounds but also in acute (normal) wounds. A much better understanding of the individual chemokines will pave the way for better targets and therapies to improve the healing efficiency of chronic wounds. Future Directions: Effective understanding of the interaction of chemokines and their receptors during chronic wound healing would facilitate the design of novel therapeutic drugs. Development of chemokine-based drugs targeting specific inflammatory cells will be invaluable in the treatment of chronic wounds, in which inflammation plays a major role.
Collapse
Affiliation(s)
- Latha Satish
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
58
|
Bodnar RJ, Wells A. Differential regulation of pericyte function by the CXC receptor 3. Wound Repair Regen 2015. [PMID: 26207932 DOI: 10.1111/wrr.12346] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pericytes are mural cell that have been found to play important roles in promoting blood vessel development and regulating blood flow. The signals that attract pericytes to maturing vessels during the resolution phase of wound healing are unknown. In this study, we examine the role of the chemokine receptor CXC receptor 3 (CXCR3) ligands, as they are produced by maturing endothelial cells. Pericytes isolated from muscle and retina were found to by and large only express the B-isoform of CXCR3 (CXCR3B), with expression being independent of the mitotic state of the cells. Pericyte stimulation with the CXCR3 ligands Mig (CXCL9), IP-9/I-TAC (CXCL11), or IP-10 (CXCL10) resulted in the activation of ERK but not AKT. Treatment with Mig or IP-9, but not IP-10, enhanced p38(MAPK) phosphorylation. Interestingly, while cyclic adenosine monophosphate is generated downstream of CXCR3B in other cells, protein kinase A activation was not observed in these pericytes when treated with these three CXCR3 ligands. The increase in ERK activity resulted in a slight increase in cell transmigration, with the inhibition of ERK leading to a decrease in CXCR3B mediated migration and inhibition of p38(MAPK) reducing transmigration through small pores. These ligands did not affect proliferation. These data are the first to characterize CXCR3B as the predominant isoform expressed on pericytes, and was found on these diverse cells isolated from both muscle and eye. We also show that CXCR3B signaling stimulates transmigration of barrier pores in pericytes as opposed to its inhibitory affects on endothelial cells and fibroblasts. These findings characterize a novel role for the CXCR3B in regulating cellular function. Taken together these data show a role for CXCR3B in regulating pericyte function.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Veterans Affairs Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
59
|
Mechanisms of Vessel Pruning and Regression. Dev Cell 2015; 34:5-17. [PMID: 26151903 DOI: 10.1016/j.devcel.2015.06.004] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/26/2015] [Accepted: 06/03/2015] [Indexed: 01/27/2023]
Abstract
The field of angiogenesis research has primarily focused on the mechanisms of sprouting angiogenesis. Yet vascular networks formed by vessel sprouting subsequently undergo extensive vascular remodeling to form a functional and mature vasculature. This "trimming" includes distinct processes of vascular pruning, the regression of selected vascular branches. In some situations complete vascular networks may undergo physiological regression. Vessel regression is an understudied yet emerging field of research. This review summarizes the state-of-the-art of vessel pruning and regression with a focus on the cellular processes and the molecular regulators of vessel maintenance and regression.
Collapse
|
60
|
Hasan M, Fermaintt CS, Gao N, Sakai T, Miyazaki T, Jiang S, Li QZ, Atkinson JP, Morse HC, Lehrman MA, Yan N. Cytosolic Nuclease TREX1 Regulates Oligosaccharyltransferase Activity Independent of Nuclease Activity to Suppress Immune Activation. Immunity 2015; 43:463-74. [PMID: 26320659 DOI: 10.1016/j.immuni.2015.07.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/04/2015] [Accepted: 06/19/2015] [Indexed: 01/01/2023]
Abstract
TREX1 is an endoplasmic reticulum (ER)-associated negative regulator of innate immunity. TREX1 mutations are associated with autoimmune and autoinflammatory diseases. Biallelic mutations abrogating DNase activity cause autoimmunity by allowing immunogenic self-DNA to accumulate, but it is unknown how dominant frameshift (fs) mutations that encode DNase-active but mislocalized proteins cause disease. We found that the TREX1 C terminus suppressed immune activation by interacting with the ER oligosaccharyltransferase (OST) complex and stabilizing its catalytic integrity. C-terminal truncation of TREX1 by fs mutations dysregulated the OST complex, leading to free glycan release from dolichol carriers, as well as immune activation and autoantibody production. A connection between OST dysregulation and immune disorders was demonstrated in Trex1(-/-) mice, TREX1-V235fs patient lymphoblasts, and TREX1-V235fs knock-in mice. Inhibiting OST with aclacinomycin corrects the glycan and immune defects associated with Trex1 deficiency or fs mutation. This function of the TREX1 C terminus suggests a potential therapeutic option for TREX1-fs mutant-associated diseases.
Collapse
Affiliation(s)
- Maroof Hasan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Charles S Fermaintt
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ningguo Gao
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tomomi Sakai
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Takuya Miyazaki
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Sixin Jiang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John P Atkinson
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Mark A Lehrman
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Nan Yan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
61
|
Wells A, Nuschke A, Yates CC. Skin tissue repair: Matrix microenvironmental influences. Matrix Biol 2015; 49:25-36. [PMID: 26278492 DOI: 10.1016/j.matbio.2015.08.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 12/31/2022]
Abstract
The process of repair of wounded skin involves intricate orchestration not only between the epidermal and dermal compartments but also between the resident and immigrant cells and the local microenvironment. Only now are we beginning to appreciate the complex roles played by the matrix in directing the outcome of the repair processes, and how this impacts the signals from the various cells. Recent findings speak of dynamic and reciprocal interactions that occurs among the matrix, growth factors, and cells that underlies this integrated process. Further confounding this integration are the physiologic and pathologic situations that directly alter the matrix to impart at least part of the dysrepair that occurs. These topics will be discussed with a call for innovative model systems of direct relevance to the human situation.
Collapse
Affiliation(s)
- Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213 USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213 USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA.
| | - Austin Nuschke
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213 USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Cecelia C Yates
- Department of Health Development and Promotion, University of Pittsburgh, Pittsburgh, PA 15213 USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA
| |
Collapse
|
62
|
Cochain C, Zernecke A. Stimulating arteriogenesis but not atherosclerosis: IFN-α/β receptor subunit 1 as a novel therapeutic target. Cardiovasc Res 2015; 107:200-2. [PMID: 26084309 DOI: 10.1093/cvr/cvv174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Clément Cochain
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Josef-Schneider-Str. 2, Würzburg 97080, Germany
| | - Alma Zernecke
- Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital Würzburg, Josef-Schneider-Str. 2, Würzburg 97080, Germany
| |
Collapse
|
63
|
Wietecha MS, Król MJ, Michalczyk ER, Chen L, Gettins PG, DiPietro LA. Pigment epithelium-derived factor as a multifunctional regulator of wound healing. Am J Physiol Heart Circ Physiol 2015; 309:H812-26. [PMID: 26163443 DOI: 10.1152/ajpheart.00153.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/08/2015] [Indexed: 01/12/2023]
Abstract
During dermal wound repair, hypoxia-driven proliferation results in dense but highly permeable, disorganized microvascular networks, similar to those in solid tumors. Concurrently, activated dermal fibroblasts generate an angiopermissive, provisional extracellular matrix (ECM). Unlike cancers, wounds naturally resolve via blood vessel regression and ECM maturation, which are essential for reestablishing tissue homeostasis. Mechanisms guiding wound resolution are poorly understood; one candidate regulator is pigment epithelium-derived factor (PEDF), a secreted glycoprotein. PEDF is a potent antiangiogenic in models of pathological angiogenesis and a promising cancer and cardiovascular disease therapeutic, but little is known about its physiological function. To examine the roles of PEDF in physiological wound repair, we used a reproducible model of excisional skin wound healing in BALB/c mice. We show that PEDF is abundant in unwounded and healing skin, is produced primarily by dermal fibroblasts, binds to resident microvascular endothelial cells, and accumulates in dermal ECM and epidermis. PEDF transcript and protein levels were low during the inflammatory and proliferative phases of healing but increased in quantity and colocalization with microvasculature during wound resolution. Local antibody inhibition of endogenous PEDF delayed vessel regression and collagen maturation during the remodeling phase. Treatment of wounds with intradermal injections of exogenous, recombinant PEDF inhibited nascent angiogenesis by repressing endothelial proliferation, promoted vascular integrity and function, and increased collagen maturity. These results demonstrate that PEDF contributes to the resolution of healing wounds by causing regression of immature blood vessels and stimulating maturation of the vascular microenvironment, thus promoting a return to tissue homeostasis after injury.
Collapse
Affiliation(s)
- Mateusz S Wietecha
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois; and
| | - Mateusz J Król
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois; and
| | - Elizabeth R Michalczyk
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois; and
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois; and
| | - Peter G Gettins
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois
| | - Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
64
|
Teunissen PF, Boshuizen MC, Hollander MR, Biesbroek PS, van der Hoeven NW, Mol JQ, Gijbels MJ, van der Velden S, van der Pouw Kraan TC, Horrevoets AJ, de Winther MP, van Royen N. MAb therapy against the IFN-α/β receptor subunit 1 stimulates arteriogenesis in a murine hindlimb ischaemia model without enhancing atherosclerotic burden. Cardiovasc Res 2015; 107:255-66. [DOI: 10.1093/cvr/cvv138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 04/22/2015] [Indexed: 12/20/2022] Open
|
65
|
Chen P, Luo S, Wen YJ, Li YH, Li J, Wang YS, Du LC, Zhang P, Tang J, Yang DB, Hu HZ, Zhao X, Wei YQ. Low-dose paclitaxel improves the therapeutic efficacy of recombinant adenovirus encoding CCL21 chemokine against murine cancer. Cancer Sci 2015; 105:1393-401. [PMID: 25230206 PMCID: PMC4462366 DOI: 10.1111/cas.12537] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 02/05/2023] Open
Abstract
Secondary lymphoid tissue chemokine (SLC/CCL21), one of the CC chemokines, exerts potent antitumor immunity by co-localizing T cells and dendritic cells at the tumor site and is currently tested against human solid tumors. Here, we investigated whether the combination of recombinant adenovirus encoding murine CCL21 (Ad-mCCL21) with low-dose paclitaxel would improve therapeutic efficacy against murine cancer. Immunocompetent mice bearing B16-F10 melanoma or 4T1 breast carcinoma were treated with either Ad-mCCL21, paclitaxel, or both agents together. Our results showed that Ad-mCCL21 + low-dose paclitaxel more effectively reduced the growth of tumors as compared with either treatment alone and significantly prolonged survival time of the tumor-bearing animals. These antitumor effects of the combined therapy were linked to altered cytokine network at the tumor site, enhanced apoptosis of tumor cells, and decreased formation of new vessels in tumors. Importantly, the combined therapy elicited a strong therapeutic antitumor immunity, which could be partly abrogated by the depletion of CD4+ or CD8+ T lymphocytes. Collectively, these preclinical evaluations may provide a combined strategy for antitumor immunity and should be considered for testing in clinical trials.
Collapse
Affiliation(s)
- Ping Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China; National Institutes for Food and Drug Control, Beijing, China; Chengdu Institute of Biological Products Co., Ltd, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
CXCR3 is a G-protein coupled receptor which binds to ELR-negative CXC chemokines that have been found to impact immune responses, vascular develop, and wound repair. More recently, CXCR3 has been examined in the context of cancer and increased expression in many human tumors has been correlated with poor prognosis in breast, melanoma, colon and renal cancer patients. Three variants of CXCR3 are identified so far (CXCR3-A, CXCR3-B and CXCR3-alt) with the two primary ones, CXCR3-A and CXCR3-B, considered to induce opposite physiological functions. Generally, CXCR3-A, the predominant form in hematopoietic cells, appears to mediate tumor "go" signaling via promoting cell proliferation, survival, chemotaxis, invasion and metastasis; while CXCR3-B, the main form on formed elements including epithelial cells, appears to mediate tumor "stop" signaling via promoting growth suppression, apoptosis and vascular involution. Thus, aberrant expression of the isoforms CXCR3-A and CXCR3-B could affect tumor progression. In this review, we have discussed the profiles of CXCR3 variants and related signaling, as well as the role of CXCR3 variants in cancer.
Collapse
Affiliation(s)
- Bo Ma
- Department of Pathology, University of Pittsburgh and VA Pittsburgh Health System and University of Pittsburgh Cancer Institute, Pittsburgh, USA
| | - Ahmad Khazali
- Department of Pathology, University of Pittsburgh and VA Pittsburgh Health System and University of Pittsburgh Cancer Institute, Pittsburgh, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh and VA Pittsburgh Health System and University of Pittsburgh Cancer Institute, Pittsburgh, USA.
| |
Collapse
|
67
|
Ko TM, Kuo HC, Chang JS, Chen SP, Liu YM, Chen HW, Tsai FJ, Lee YC, Chen CH, Wu JY, Chen YT. CXCL10/IP-10 is a biomarker and mediator for Kawasaki disease. Circ Res 2015; 116:876-83. [PMID: 25605650 DOI: 10.1161/circresaha.116.305834] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE Kawasaki disease (KD), an acute febrile vasculitis, is the most common cause of acquired heart disease in childhood; however, diagnosing KD can be difficult. OBJECTIVE To identify unique proteomic biomarkers that can be used to facilitate earlier diagnosis of KD. METHODS AND RESULTS We enrolled 214 children with fever and clinical features suggestive of KD. Of those, only 100 were diagnosed with KD. Their plasma samples were globally analyzed for cytokines, chemokines, and cell adhesion molecules using an unbiased, large-scale, quantitative protein array. This study was conducted in 3 stages: discovery, replication, and blinded validation. During the discovery phase (n [KD]=37; n [control]=20), the expression of interleukin-17F, sCD40L, E-selectin, CCL23 (myeloid progenitor inhibitory factor 1), and CXCL10 (IFN-γ-inducible protein 10 [IP-10]) were upregulated during the acute phase in patients with KD when compared with that in the controls. A notable increase was observed in the IP-10 levels (KD, 3037 ± 226.7 pg/mL; control, 672 ± 130.4 pg/mL; P=4.1 × 10(-11)). Receiver-operating characteristic analysis of the combined discovery and replication data (n [KD]=77; n [control]=77) showed that the IP-10 level had high area under the curve values (0.94 [95% confidence interval, 0.9055-0.9778]; sensitivity, 100%; and specificity, 77%). With 1318 pg/mL as the optimal cutoff, the blinded validation study confirmed that the IP-10 levels were a good predictor of KD. With intravenous immunoglobulin treatment, the IP-10 levels returned to normal. The downstream receptor of IP-10, CXCR3, was activated in the T cells of patients with acute KD. CONCLUSIONS IP-10 may be used as a biomarker to facilitate KD diagnosis, and it may provide clues about the pathogenesis of KD.
Collapse
Affiliation(s)
- Tai-Ming Ko
- From the Institute of Biomedical Sciences (T.-M.K., S.-P.C., Y.-M.L., H.-W.C., C.-H.C., J.-Y.W., Y.-T.C.) and Institute of Cellular and Organismic Biology (Y.-C.L.), Academia Sinica, Taipei, Taiwan; Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (H.-C.K.); Chang Gung University College of Medicine, Taoyuan, Taiwan (H.-C.K.); Department of Pediatric Cardiology, Children's Hospital of China Medical University, Taichung, Taiwan (J.-S.C.); School of Medicine (J.-S.C.), School of Chinese Medicine (F.-J.T.), and Department of Medical Genetics (F.-J.T., C.-H.C., J.-Y.W.), China Medical University Hospital, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (F.-J.T.); and Department of Pediatrics, Duke University Medical Center, Durham, NC (Y.-T.C.)
| | - Ho-Chang Kuo
- From the Institute of Biomedical Sciences (T.-M.K., S.-P.C., Y.-M.L., H.-W.C., C.-H.C., J.-Y.W., Y.-T.C.) and Institute of Cellular and Organismic Biology (Y.-C.L.), Academia Sinica, Taipei, Taiwan; Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (H.-C.K.); Chang Gung University College of Medicine, Taoyuan, Taiwan (H.-C.K.); Department of Pediatric Cardiology, Children's Hospital of China Medical University, Taichung, Taiwan (J.-S.C.); School of Medicine (J.-S.C.), School of Chinese Medicine (F.-J.T.), and Department of Medical Genetics (F.-J.T., C.-H.C., J.-Y.W.), China Medical University Hospital, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (F.-J.T.); and Department of Pediatrics, Duke University Medical Center, Durham, NC (Y.-T.C.)
| | - Jeng-Sheng Chang
- From the Institute of Biomedical Sciences (T.-M.K., S.-P.C., Y.-M.L., H.-W.C., C.-H.C., J.-Y.W., Y.-T.C.) and Institute of Cellular and Organismic Biology (Y.-C.L.), Academia Sinica, Taipei, Taiwan; Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (H.-C.K.); Chang Gung University College of Medicine, Taoyuan, Taiwan (H.-C.K.); Department of Pediatric Cardiology, Children's Hospital of China Medical University, Taichung, Taiwan (J.-S.C.); School of Medicine (J.-S.C.), School of Chinese Medicine (F.-J.T.), and Department of Medical Genetics (F.-J.T., C.-H.C., J.-Y.W.), China Medical University Hospital, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (F.-J.T.); and Department of Pediatrics, Duke University Medical Center, Durham, NC (Y.-T.C.)
| | - Shih-Ping Chen
- From the Institute of Biomedical Sciences (T.-M.K., S.-P.C., Y.-M.L., H.-W.C., C.-H.C., J.-Y.W., Y.-T.C.) and Institute of Cellular and Organismic Biology (Y.-C.L.), Academia Sinica, Taipei, Taiwan; Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (H.-C.K.); Chang Gung University College of Medicine, Taoyuan, Taiwan (H.-C.K.); Department of Pediatric Cardiology, Children's Hospital of China Medical University, Taichung, Taiwan (J.-S.C.); School of Medicine (J.-S.C.), School of Chinese Medicine (F.-J.T.), and Department of Medical Genetics (F.-J.T., C.-H.C., J.-Y.W.), China Medical University Hospital, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (F.-J.T.); and Department of Pediatrics, Duke University Medical Center, Durham, NC (Y.-T.C.)
| | - Yi-Min Liu
- From the Institute of Biomedical Sciences (T.-M.K., S.-P.C., Y.-M.L., H.-W.C., C.-H.C., J.-Y.W., Y.-T.C.) and Institute of Cellular and Organismic Biology (Y.-C.L.), Academia Sinica, Taipei, Taiwan; Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (H.-C.K.); Chang Gung University College of Medicine, Taoyuan, Taiwan (H.-C.K.); Department of Pediatric Cardiology, Children's Hospital of China Medical University, Taichung, Taiwan (J.-S.C.); School of Medicine (J.-S.C.), School of Chinese Medicine (F.-J.T.), and Department of Medical Genetics (F.-J.T., C.-H.C., J.-Y.W.), China Medical University Hospital, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (F.-J.T.); and Department of Pediatrics, Duke University Medical Center, Durham, NC (Y.-T.C.)
| | - Hui-Wen Chen
- From the Institute of Biomedical Sciences (T.-M.K., S.-P.C., Y.-M.L., H.-W.C., C.-H.C., J.-Y.W., Y.-T.C.) and Institute of Cellular and Organismic Biology (Y.-C.L.), Academia Sinica, Taipei, Taiwan; Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (H.-C.K.); Chang Gung University College of Medicine, Taoyuan, Taiwan (H.-C.K.); Department of Pediatric Cardiology, Children's Hospital of China Medical University, Taichung, Taiwan (J.-S.C.); School of Medicine (J.-S.C.), School of Chinese Medicine (F.-J.T.), and Department of Medical Genetics (F.-J.T., C.-H.C., J.-Y.W.), China Medical University Hospital, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (F.-J.T.); and Department of Pediatrics, Duke University Medical Center, Durham, NC (Y.-T.C.)
| | - Fuu-Jen Tsai
- From the Institute of Biomedical Sciences (T.-M.K., S.-P.C., Y.-M.L., H.-W.C., C.-H.C., J.-Y.W., Y.-T.C.) and Institute of Cellular and Organismic Biology (Y.-C.L.), Academia Sinica, Taipei, Taiwan; Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (H.-C.K.); Chang Gung University College of Medicine, Taoyuan, Taiwan (H.-C.K.); Department of Pediatric Cardiology, Children's Hospital of China Medical University, Taichung, Taiwan (J.-S.C.); School of Medicine (J.-S.C.), School of Chinese Medicine (F.-J.T.), and Department of Medical Genetics (F.-J.T., C.-H.C., J.-Y.W.), China Medical University Hospital, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (F.-J.T.); and Department of Pediatrics, Duke University Medical Center, Durham, NC (Y.-T.C.)
| | - Yi-Ching Lee
- From the Institute of Biomedical Sciences (T.-M.K., S.-P.C., Y.-M.L., H.-W.C., C.-H.C., J.-Y.W., Y.-T.C.) and Institute of Cellular and Organismic Biology (Y.-C.L.), Academia Sinica, Taipei, Taiwan; Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (H.-C.K.); Chang Gung University College of Medicine, Taoyuan, Taiwan (H.-C.K.); Department of Pediatric Cardiology, Children's Hospital of China Medical University, Taichung, Taiwan (J.-S.C.); School of Medicine (J.-S.C.), School of Chinese Medicine (F.-J.T.), and Department of Medical Genetics (F.-J.T., C.-H.C., J.-Y.W.), China Medical University Hospital, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (F.-J.T.); and Department of Pediatrics, Duke University Medical Center, Durham, NC (Y.-T.C.)
| | - Chien-Hsiun Chen
- From the Institute of Biomedical Sciences (T.-M.K., S.-P.C., Y.-M.L., H.-W.C., C.-H.C., J.-Y.W., Y.-T.C.) and Institute of Cellular and Organismic Biology (Y.-C.L.), Academia Sinica, Taipei, Taiwan; Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (H.-C.K.); Chang Gung University College of Medicine, Taoyuan, Taiwan (H.-C.K.); Department of Pediatric Cardiology, Children's Hospital of China Medical University, Taichung, Taiwan (J.-S.C.); School of Medicine (J.-S.C.), School of Chinese Medicine (F.-J.T.), and Department of Medical Genetics (F.-J.T., C.-H.C., J.-Y.W.), China Medical University Hospital, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (F.-J.T.); and Department of Pediatrics, Duke University Medical Center, Durham, NC (Y.-T.C.)
| | - Jer-Yuarn Wu
- From the Institute of Biomedical Sciences (T.-M.K., S.-P.C., Y.-M.L., H.-W.C., C.-H.C., J.-Y.W., Y.-T.C.) and Institute of Cellular and Organismic Biology (Y.-C.L.), Academia Sinica, Taipei, Taiwan; Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (H.-C.K.); Chang Gung University College of Medicine, Taoyuan, Taiwan (H.-C.K.); Department of Pediatric Cardiology, Children's Hospital of China Medical University, Taichung, Taiwan (J.-S.C.); School of Medicine (J.-S.C.), School of Chinese Medicine (F.-J.T.), and Department of Medical Genetics (F.-J.T., C.-H.C., J.-Y.W.), China Medical University Hospital, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (F.-J.T.); and Department of Pediatrics, Duke University Medical Center, Durham, NC (Y.-T.C.).
| | - Yuan-Tsong Chen
- From the Institute of Biomedical Sciences (T.-M.K., S.-P.C., Y.-M.L., H.-W.C., C.-H.C., J.-Y.W., Y.-T.C.) and Institute of Cellular and Organismic Biology (Y.-C.L.), Academia Sinica, Taipei, Taiwan; Department of Pediatrics and Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan (H.-C.K.); Chang Gung University College of Medicine, Taoyuan, Taiwan (H.-C.K.); Department of Pediatric Cardiology, Children's Hospital of China Medical University, Taichung, Taiwan (J.-S.C.); School of Medicine (J.-S.C.), School of Chinese Medicine (F.-J.T.), and Department of Medical Genetics (F.-J.T., C.-H.C., J.-Y.W.), China Medical University Hospital, Taichung, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (F.-J.T.); and Department of Pediatrics, Duke University Medical Center, Durham, NC (Y.-T.C.).
| |
Collapse
|
68
|
Barash U, Zohar Y, Wildbaum G, Beider K, Nagler A, Karin N, Ilan N, Vlodavsky I. Heparanase enhances myeloma progression via CXCL10 downregulation. Leukemia 2014; 28:2178-87. [PMID: 24699306 PMCID: PMC4185261 DOI: 10.1038/leu.2014.121] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 03/13/2014] [Accepted: 03/17/2014] [Indexed: 12/21/2022]
Abstract
In order to explore the mechanism(s) underlying the pro-tumorigenic capacity of heparanase, we established an inducible Tet-on system. Heparanase expression was markedly increased following addition of doxycycline (Dox) to the culture medium of CAG human myeloma cells infected with the inducible heparanase gene construct, resulting in increased colony number and size in soft agar. Moreover, tumor xenografts produced by CAG-heparanase cells were markedly increased in mice supplemented with Dox in their drinking water compared with control mice maintained without Dox. Consistently, we found that heparanase induction is associated with decreased levels of CXCL10, suggesting that this chemokine exerts tumor-suppressor properties in myeloma. Indeed, recombinant CXCL10 attenuated the proliferation of CAG, U266 and RPMI-8266 myeloma cells. Similarly, CXCL10 attenuated the proliferation of human umbilical vein endothelial cells, implying that CXCL10 exhibits anti-angiogenic capacity. Strikingly, development of tumor xenografts produced by CAG-heparanase cells overexpressing CXCL10 was markedly reduced compared with control cells. Moreover, tumor growth was significantly attenuated in mice inoculated with human or mouse myeloma cells and treated with CXCL10-Ig fusion protein, indicating that CXCL10 functions as a potent anti-myeloma cytokine.
Collapse
Affiliation(s)
- Uri Barash
- Cancer and Vascular Biology Research Center, Technion, Haifa 31096, Israel
| | - Yaniv Zohar
- Department of Immunology, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Gizi Wildbaum
- Department of Immunology, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Katia Beider
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel Hashomer, Israel
| | - Arnon Nagler
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Aviv University, Tel Hashomer, Israel
| | - Nathan Karin
- Department of Immunology, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Neta Ilan
- Cancer and Vascular Biology Research Center, Technion, Haifa 31096, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Technion, Haifa 31096, Israel
| |
Collapse
|
69
|
Liu G, Zhang W, Xiao Y, Lu P. Critical Role of IP-10 on Reducing Experimental Corneal Neovascularization. Curr Eye Res 2014; 40:891-901. [PMID: 25309995 DOI: 10.3109/02713683.2014.968934] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIM AND SCOPE To address the role of interferon-induced protein of 10 kDa (IP-10) in the course of corneal neovascularization (CrNV) in a mouse model of experimental corneal neovascularization. MATERIAL AND METHOD BALB/c mice that were 7- to 8-week-old male were included in the study. Corneal injury was induced by NaOH. Mice were randomly divided into 2 groups of IP-10 and vehicle. The alkali-treated eyes received 5 μl of 5 μg/ml IP-10 dissolved in 0.2% sodium hyaluronate for IP-10-treated group, or 5 μl of 0.2% sodium hyaluronate for vehicle-treated group twice a day for 7 days immediately after the alkali injury. 2 weeks after alkali injury, corneas were removed and used for whole mount CD31 staining. The percentages of neovascularization on corneal photographs were examined with digital image analysis. In other experiments, at indicated time intervals, the corneas were removed. Angiogenic factor expression in the early phase after injury was quantified by real-time PCR and western blot. The VEGF expression in macrophages infiltrating into burned corneas was examined by Flow cytometry (FCM) and immunofluorescence. Tube formation and cell proliferation of human retinal endothelial cells (HRECs) were detected after being stimulated with IP-10 in vitro. RESULTS The mRNA and protein expression of IP-10 and C-X-C motif chemokine receptor 3 (CXCR3) was augmented after the alkali injury (p < 0.05). Compared with vehicle-treated mice, IP-10-treated mice exhibited reduced CrNV 2 weeks after injury, as evidenced by diminished CD31-positive areas (p < 0.05). Concomitantly, the intracorneal mRNA and protein expression enhancement of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) was lower in IP-10-treated mice than in vehicle-treated mice after injury (p < 0.05). Moreover, IP-10 inhibited HREC tube formation and proliferation in vitro. CONCLUSION IP-10-treated mice exhibited reduced alkali-induced CrNV through decreasing intracorneal VEGF and bFGF expression, and inhibiting endothelial cell proliferation and tube formation.
Collapse
Affiliation(s)
- Gaoqin Liu
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University , Suzhou , China and
| | | | | | | |
Collapse
|
70
|
Johnson KE, Wilgus TA. Vascular Endothelial Growth Factor and Angiogenesis in the Regulation of Cutaneous Wound Repair. Adv Wound Care (New Rochelle) 2014; 3:647-661. [PMID: 25302139 DOI: 10.1089/wound.2013.0517] [Citation(s) in RCA: 613] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/21/2014] [Indexed: 12/12/2022] Open
Abstract
Significance: Angiogenesis, the growth of new blood vessels from existing vessels, is an important aspect of the repair process. Restoration of blood flow to damaged tissues provides oxygen and nutrients required to support the growth and function of reparative cells. Vascular endothelial growth factor (VEGF) is one of the most potent proangiogenic growth factors in the skin, and the amount of VEGF present in a wound can significantly impact healing. Recent Advances: The activity of VEGF was once considered to be specific for endothelial cells lining the inside of blood vessels, partly because VEGF receptor (VEGFR) expression was believed to be restricted to endothelial cells. It is now known, however, that VEGFRs can be expressed by a variety of other cell types involved in wound repair. For example, keratinocytes and macrophages, which both carry out important functions during wound healing, express VEGFRs and are capable of responding directly to VEGF. Critical Issues: The mechanisms by which VEGF promotes angiogenesis are well established. Recent studies, however, indicate that VEGF can directly affect the activity of several nonendothelial cell types present in the skin. The implications of these extra-angiogenic effects of VEGF on wound repair are not yet known, but they suggest that this growth factor may play a more complex role during wound healing than previously believed. Future Directions: Despite the large number of studies focusing on VEGF and wound healing, it is clear that the current knowledge of how VEGF contributes to the repair of skin wounds is incomplete. Further research is needed to obtain a more comprehensive understanding of VEGF activities during the wound healing process.
Collapse
Affiliation(s)
- Kelly E. Johnson
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, Ohio
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Traci A. Wilgus
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
71
|
Alizadeh AM, Shiri S, Farsinejad S. Metastasis review: from bench to bedside. Tumour Biol 2014; 35:8483-523. [PMID: 25104089 DOI: 10.1007/s13277-014-2421-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/29/2014] [Indexed: 12/19/2022] Open
Abstract
Cancer is the final result of uninhibited cell growth that involves an enormous group of associated diseases. One major aspect of cancer is when cells attack adjacent components of the body and spread to other organs, named metastasis, which is the major cause of cancer-related mortality. In developing this process, metastatic cells must successfully negotiate a series of complex steps, including dissociation, invasion, intravasation, extravasation, and dormancy regulated by various signaling pathways. In this review, we will focus on the recent studies and collect a comprehensive encyclopedia in molecular basis of metastasis, and then we will discuss some new potential therapeutics which target the metastasis pathways. Understanding the new aspects on molecular mechanisms and signaling pathways controlling tumor cell metastasis is critical for the development of therapeutic strategies for cancer patients that would be valuable for researchers in both fields of molecular and clinical oncology.
Collapse
Affiliation(s)
- Ali Mohammad Alizadeh
- Cancer Research Center, Tehran University of Medical Sciences, Tehran, 1419733141, Iran,
| | | | | |
Collapse
|
72
|
Yates CC, Hebda P, Wells A. Skin wound healing and scarring: fetal wounds and regenerative restitution. ACTA ACUST UNITED AC 2014; 96:325-33. [PMID: 24203921 DOI: 10.1002/bdrc.21024] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/12/2012] [Indexed: 12/31/2022]
Abstract
The adverse physiological and psychological effects of scars formation after healing of wounds are broad and a major medical problem for patients. In utero, fetal wounds heal in a regenerative manner, though the mechanisms are unknown. Differences in fetal scarless regeneration and adult repair can provide key insight into reduction of scarring therapy. Understanding the cellular and extracellular matrix alterations in excessive adult scarring in comparison to fetal scarless healing may have important implications. Herein, we propose that matrix can be controlled via cellular therapy to resemble a fetal-like matrix that will result in reduced scarring.
Collapse
Affiliation(s)
- Cecelia C Yates
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
73
|
The multifaceted functions of CXCL10 in cardiovascular disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:893106. [PMID: 24868552 PMCID: PMC4017714 DOI: 10.1155/2014/893106] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/06/2014] [Indexed: 02/07/2023]
Abstract
C-X-C motif ligand 10 (CXCL10), or interferon-inducible protein-10, is a small chemokine belonging to the CXC chemokine family. Its members are responsible for leukocyte trafficking and act on tissue cells, like endothelial and vascular smooth muscle cells. CXCL10 is secreted by leukocytes and tissue cells and functions as a chemoattractant, mainly for lymphocytes. After binding to its receptor CXCR3, CXCL10 evokes a range of inflammatory responses: key features in cardiovascular disease (CVD). The role of CXCL10 in CVD has been extensively described, for example for atherosclerosis, aneurysm formation, and myocardial infarction. However, there seems to be a discrepancy between experimental and clinical settings. This discrepancy occurs from differences in biological actions between species (e.g. mice and human), which is dependent on CXCL10 signaling via different CXCR3 isoforms or CXCR3-independent signaling. This makes translation from experimental to clinical settings challenging. Furthermore, the overall consensus on the actions of CXCL10 in specific CVD models is not yet reached. The purpose of this review is to describe the functions of CXCL10 in different CVDs in both experimental and clinical settings and to highlight and discuss the possible discrepancies and translational difficulties. Furthermore, CXCL10 as a possible biomarker in CVD will be discussed.
Collapse
|
74
|
Nielsen SR, Hammer T, Gibson J, Pepper MS, Nisato RE, Dissing S, Tritsaris K. IL-27 inhibits lymphatic endothelial cell proliferation by STAT1-regulated gene expression. Microcirculation 2014; 20:555-64. [PMID: 23452095 DOI: 10.1111/micc.12055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 02/26/2013] [Indexed: 12/20/2022]
Abstract
OBJECTIVE IL-27 belongs to the IL-12 family of cytokines and is recognized for its role in Th cell differentiation and as an inhibitor of tumor angiogenesis. The purpose of this study was to investigate the effect of IL-27 on proliferation of lymphatic endothelial cells to gain insight into the interplay between the immune system and development of the lymphatic system. METHODS IL-27-stimulated signal transduction in human dermal lymphatic endothelial cells was measured by western blotting and synthesis of CXCL10 and CXCL11 by use of RT-PCR and ELISA. Proliferation was measured using MTT and BrdU kits and the role of STAT1 and chemokines was determined by use of siRNA and recombinant proteins. RESULTS Stimulation of lymphatic endothelial cell cultures with IL-27 induced JAK dependent phosphorylation of STAT1 and STAT3 and inhibited lymphatic endothelial cell proliferation and migration. Expression of CXCL10 and CXCL11, both STAT1 target genes, was profoundly up-regulated upon IL-27 stimulation, and recombinant CXCL10 and CXCL11 inhibited FGF-2-induced proliferation in vitro. siRNA targeting of STAT1 almost completely abrogated CXCL10 and CXCL11 expression as well as the proliferative effect of IL-27. CONCLUSIONS IL-27 function as an anti-lymphangiogenic regulator in vitro by up-regulating chemokines and interfering with the mitogenic effect of growth factors through STAT1 activation.
Collapse
Affiliation(s)
- Sebastian Rune Nielsen
- Faculty of Health Sciences, Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
75
|
Bodnar RJ, Rodgers ME, Chen WCW, Wells A. Pericyte regulation of vascular remodeling through the CXC receptor 3. Arterioscler Thromb Vasc Biol 2013; 33:2818-29. [PMID: 24135023 DOI: 10.1161/atvbaha.113.302012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To understand the role, if any, played by pericytes in the regulation of newly formed vessels during angiogenesis. In this study, we investigate whether pericytes regulate the number of nascent endothelial tubes. APPROACH AND RESULTS Using an in vitro angiogenesis assay (Matrigel assay), we demonstrate that pericytes can inhibit vessel formation and induce vessel dissociation via CXCR3-induced involution of the endothelial cells. In a coculture Matrigel assay for cord formation, pericytes prevented endothelial cord formation of human dermal microvascular endothelial cells but not umbilical vein endothelial cells. Blockade of endothelial CXCR3 function or expression inhibited the repressing effect of the pericytes. We further show that pericytes are also able to induce regression of newly formed microvascular cords through CXCR3 activation of calpain. When CXCR3 function was inhibited by a neutralizing antibody or downregulated by siRNA, cord regression mediated by pericytes was abolished. CONCLUSIONS We show for the first time that pericytes regulate angiogenic vessel formation, and that this is mediated through CXCR3 expressed on endothelial cells. This suggests a role for pericytes in the pruning of immature vessels overproduced during wound repair.
Collapse
Affiliation(s)
- Richard J Bodnar
- From the Department of Pathology (R.J.B., M.E.B., A.W.) and Department of Bioengineering (W.C.W.C.), University of Pittsburgh, PA; and Pittsburgh Veterans Affairs Medical Center, Pittsburgh, PA (R.J.B., M.E.B., A.W.)
| | | | | | | |
Collapse
|
76
|
Hang TC, Tedford NC, Reddy RJ, Rimchala T, Wells A, White FM, Kamm RD, Lauffenburger DA. Vascular endothelial growth factor (VEGF) and platelet (PF-4) factor 4 inputs modulate human microvascular endothelial signaling in a three-dimensional matrix migration context. Mol Cell Proteomics 2013; 12:3704-18. [PMID: 24023389 PMCID: PMC3861718 DOI: 10.1074/mcp.m113.030528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The process of angiogenesis is under complex regulation in adult organisms, particularly as it often occurs in an inflammatory post-wound environment. As such, there are many impacting factors that will regulate the generation of new blood vessels which include not only pro-angiogenic growth factors such as vascular endothelial growth factor, but also angiostatic factors. During initial postwound hemostasis, a large initial bolus of platelet factor 4 is released into localized areas of damage before progression of wound healing toward tissue homeostasis. Because of its early presence and high concentration, the angiostatic chemokine platelet factor 4, which can induce endothelial anoikis, can strongly affect angiogenesis. In our work, we explored signaling crosstalk interactions between vascular endothelial growth factor and platelet factor 4 using phosphotyrosine-enriched mass spectrometry methods on human dermal microvascular endothelial cells cultured under conditions facilitating migratory sprouting into collagen gel matrices. We developed new methods to enable mass spectrometry-based phosphorylation analysis of primary cells cultured on collagen gels, and quantified signaling pathways over the first 48 h of treatment with vascular endothelial growth factor in the presence or absence of platelet factor 4. By observing early and late signaling dynamics in tandem with correlation network modeling, we found that platelet factor 4 has significant crosstalk with vascular endothelial growth factor by modulating cell migration and polarization pathways, centered around P38α MAPK, Src family kinases Fyn and Lyn, along with FAK. Interestingly, we found EphA2 correlational topology to strongly involve key migration-related signaling nodes after introduction of platelet factor 4, indicating an influence of the angiostatic factor on this ambiguous but generally angiogenic signal in this complex environment.
Collapse
Affiliation(s)
- Ta-Chun Hang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Martins-Green M, Petreaca M, Wang L. Chemokines and Their Receptors Are Key Players in the Orchestra That Regulates Wound Healing. Adv Wound Care (New Rochelle) 2013; 2:327-347. [PMID: 24587971 DOI: 10.1089/wound.2012.0380] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Indexed: 12/13/2022] Open
Abstract
SIGNIFICANCE Normal wound healing progresses through a series of overlapping phases, all of which are coordinated and regulated by a variety of molecules, including chemokines. Because these regulatory molecules play roles during the various stages of healing, alterations in their presence or function can lead to dysregulation of the wound-healing process, potentially leading to the development of chronic, nonhealing wounds. RECENT ADVANCES A discovery that chemokines participate in a variety of disease conditions has propelled the study of these proteins to a level that potentially could lead to new avenues to treat disease. Their small size, exposed termini, and the fact that their only modifications are two disulfide bonds make them excellent targets for manipulation. In addition, because they bind to G-protein-coupled receptors (GPCRs), they are highly amenable to pharmacological modulation. CRITICAL ISSUES Chemokines are multifunctional, and in many situations, their functions are highly dependent on the microenvironment. Moreover, each specific chemokine can bind to several GPCRs to stimulate the function, and both can function as monomers, homodimers, heterodimers, and even oligomers. Activation of one receptor by any single chemokine can lead to desensitization of other chemokine receptors, or even other GPCRs in the same cell, with implications for how these proteins or their receptors could be used to manipulate function. FUTURE DIRECTIONS Investment in better understanding of the functions of chemokines and their receptors in a local context can reveal new ways for therapeutic intervention. Understanding how different chemokines can activate the same receptor and vice versa could identify new possibilities for drug development based on their heterotypic interactions.
Collapse
Affiliation(s)
- Manuela Martins-Green
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| | - Melissa Petreaca
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| | - Lei Wang
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
| |
Collapse
|
78
|
Billottet C, Quemener C, Bikfalvi A. CXCR3, a double-edged sword in tumor progression and angiogenesis. Biochim Biophys Acta Rev Cancer 2013; 1836:287-95. [PMID: 23994549 DOI: 10.1016/j.bbcan.2013.08.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/12/2013] [Accepted: 08/16/2013] [Indexed: 12/19/2022]
Abstract
CXC chemokines are involved in chemotaxis, regulation of cell growth, induction of apoptosis and modulation of angiostatic effects. CXCL9, CXCL10, CXCL11, CXCL4 and its variant CXCL4L1 are members of the CXC chemokine family, which bind to the CXCR3 receptor to exert their biological effects. These chemokines are associated with a variety of human diseases including chronic inflammation, immune dysfunction, cancer and metastasis. In this review, we focus on accumulating evidence demonstrating the pivotal role of CXCR3 in tumor progression. Its effects are mediated directly in tumor cells or indirectly through the regulation of angiogenesis and tumor immunity. Understanding the emerging role of CXCR3 and its signaling mechanisms further validates this receptor as a biomarker and therapeutic target for tumor progression and tumor angiogenesis.
Collapse
|
79
|
Velecela V, Lettice LA, Chau YY, Slight J, Berry RL, Thornburn A, Gunst QD, van den Hoff M, Reina M, Martínez FO, Hastie ND, Martínez-Estrada OM. WT1 regulates the expression of inhibitory chemokines during heart development. Hum Mol Genet 2013; 22:5083-95. [PMID: 23900076 DOI: 10.1093/hmg/ddt358] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The embryonic epicardium is an important source of cardiovascular precursor cells and paracrine factors that are required for adequate heart formation. Signaling pathways regulated by WT1 that promote heart development have started to be described; however, there is little information on signaling pathways regulated by WT1 that could act in a negative manner. Transcriptome analysis of Wt1KO epicardial cells reveals an unexpected role for WT1 in repressing the expression of interferon-regulated genes that could be involved in a negative regulation of heart morphogenesis. Here, we showed that WT1 is required to repress the expression of the chemokines Ccl5 and Cxcl10 in epicardial cells. We observed an inverse correlation of Wt1 and the expression of Cxcl10 and Ccl5 during epicardium development. Chemokine receptor analyses of hearts from Wt1(gfp/+) mice demonstrate the differential expression of their chemokine receptors in GFP(+) epicardial enriched cells and GFP(-) cells. Functional assays demonstrate that CXCL10 and CCL5 inhibit epicardial cells migration and the proliferation of cardiomyocytes respectively. WT1 regulates the expression levels of Cxcl10 and Ccl5 in epicardial cells directly and indirectly through increasing the levels of IRF7. As epicardial cell reactivation after a myocardial damage is linked with WT1 expression, the present work has potential implications in adult heart repair.
Collapse
Affiliation(s)
- Victor Velecela
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Edinburgh EH4 2XU, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Human limbal epithelial progenitor cells express αvβ5-integrin and the interferon-inducible chemokine CXCL10/IP-10. Stem Cell Res 2013; 11:888-901. [PMID: 23838123 DOI: 10.1016/j.scr.2013.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 05/29/2013] [Accepted: 05/29/2013] [Indexed: 02/08/2023] Open
Abstract
Stem cell (SC) therapy is the main treatment modality for patients with limbal stem cell deficiency. If limbal epithelial stem cells (LESC) can be more readily identified, isolated and maintained ex vivo, patients could be treated with better quality grafts. With prior knowledge that vitronectin (VN) is present within the LESC niche and that it supports LESC in vitro, we postulated that VN receptors (integrins αvβ3/5) are expressed by, and can be used to identify and isolate LESC. Immunolocalization studies were conducted on human corneas. Corneas were also used to expand limbal epithelial cells from either biopsies or enzyme-dissociated tissue and αvβ3/5 expression determined by flow cytometry. Integrin expressing cells were isolated by magnetic activated cell sorting then assessed by immunocytology, colony forming efficiency, RT-PCR and microarray analysis. Integrin αvβ5(+) cells co-localized to N-cadherin(+)/CK-15(+) putative LESC. αvβ5 was restricted to less than 4% of the total limbal epithelial cells, which expressed higher levels of CK-15 and formed more colonies compared to αvβ5(-) cells. Transcriptional profiling of αvβ5(+/-) cells by microarray identified several highly expressed interferon-inducible genes, which localize to putative LESC. Integrin αvβ5 is a candidate LESC marker since its expression is restricted to the limbus and αvβ5(+) limbal epithelial cells have phenotypic and functional properties of LESC. Knowledge of the niche's molecular composition and the genes expressed by its SC will facilitate isolation and maintenance of these cells for therapeutic purposes.
Collapse
|
81
|
Abstract
PURPOSE OF REVIEW One well described feature of wound healing is the ingrowth of new capillaries or angiogenesis. At its peak, the capillary content in healing wounds may reach three or more times that of normal uninjured tissue. This new vasculature is required to restore oxygenation and allow the growth of new tissue to fill the wound space. This review examines the assumption that a capillary content in excess of normal density is essential for adequate healing. RECENT FINDINGS The regulation of wound angiogenesis has been demonstrated to involve both proangiogenic and antiangiogenic stimuli, with the level of capillary growth reliant upon both sets of factors. Several studies now show that normal skin wounds heal adequately even when the angiogenic response is artificially reduced. In normal skin, a reduction of capillary growth to a level consistent with normal tissue does not affect wound closure and may even lead to highly favorable long term healing outcomes. SUMMARY The angiogenic response in normal wounds may exceed what is needed for optimal repair.
Collapse
|
82
|
Wells A, Grahovac J, Wheeler S, Ma B, Lauffenburger D. Targeting tumor cell motility as a strategy against invasion and metastasis. Trends Pharmacol Sci 2013; 34:283-9. [PMID: 23571046 PMCID: PMC3640670 DOI: 10.1016/j.tips.2013.03.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/03/2013] [Accepted: 03/06/2013] [Indexed: 12/16/2022]
Abstract
Advances in diagnosis and treatment have rendered most solid tumors largely curable if they are diagnosed and treated before dissemination. However, once they spread beyond the initial primary location, these cancers are usually highly morbid, if not fatal. Thus, current efforts focus on both limiting initial dissemination and preventing secondary spread. There are two modes of tumor dissemination - invasion and metastasis - each leading to unique therapeutic challenges and likely to be driven by distinct mechanisms. However, these two forms of dissemination utilize some common strategies to accomplish movement from the primary tumor, establishment in an ectopic site, and survival therein. The adaptive behaviors of motile cancer cells provide an opening for therapeutic approaches if we understand the molecular, cellular, and tissue biology that underlie them. Herein, we review the signaling cascades and organ reactions that lead to dissemination, as these are non-genetic in nature, focusing on cell migration as the key to tumor progression. In this context, the cellular phenotype will also be discussed because the modes of migration are dictated by quantitative and physical aspects of the cell motility machinery.
Collapse
Affiliation(s)
- Alan Wells
- Department of Pathology, University of Pittsburgh and Pittsburgh VAHS, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
83
|
Kleinstreuer N, Dix D, Rountree M, Baker N, Sipes N, Reif D, Spencer R, Knudsen T. A computational model predicting disruption of blood vessel development. PLoS Comput Biol 2013; 9:e1002996. [PMID: 23592958 PMCID: PMC3616981 DOI: 10.1371/journal.pcbi.1002996] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 01/24/2013] [Indexed: 11/18/2022] Open
Abstract
Vascular development is a complex process regulated by dynamic biological networks that vary in topology and state across different tissues and developmental stages. Signals regulating de novo blood vessel formation (vasculogenesis) and remodeling (angiogenesis) come from a variety of biological pathways linked to endothelial cell (EC) behavior, extracellular matrix (ECM) remodeling and the local generation of chemokines and growth factors. Simulating these interactions at a systems level requires sufficient biological detail about the relevant molecular pathways and associated cellular behaviors, and tractable computational models that offset mathematical and biological complexity. Here, we describe a novel multicellular agent-based model of vasculogenesis using the CompuCell3D (http://www.compucell3d.org/) modeling environment supplemented with semi-automatic knowledgebase creation. The model incorporates vascular endothelial growth factor signals, pro- and anti-angiogenic inflammatory chemokine signals, and the plasminogen activating system of enzymes and proteases linked to ECM interactions, to simulate nascent EC organization, growth and remodeling. The model was shown to recapitulate stereotypical capillary plexus formation and structural emergence of non-coded cellular behaviors, such as a heterologous bridging phenomenon linking endothelial tip cells together during formation of polygonal endothelial cords. Molecular targets in the computational model were mapped to signatures of vascular disruption derived from in vitro chemical profiling using the EPA's ToxCast high-throughput screening (HTS) dataset. Simulating the HTS data with the cell-agent based model of vascular development predicted adverse effects of a reference anti-angiogenic thalidomide analog, 5HPP-33, on in vitro angiogenesis with respect to both concentration-response and morphological consequences. These findings support the utility of cell agent-based models for simulating a morphogenetic series of events and for the first time demonstrate the applicability of these models for predictive toxicology.
Collapse
Affiliation(s)
- Nicole Kleinstreuer
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - David Dix
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Michael Rountree
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Nancy Baker
- Lockheed-Martin, Research Triangle Park, North Carolina, United States of America
| | - Nisha Sipes
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - David Reif
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| | - Richard Spencer
- Lockheed-Martin, Research Triangle Park, North Carolina, United States of America
| | - Thomas Knudsen
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
84
|
Wietecha MS, DiPietro LA. Therapeutic Approaches to the Regulation of Wound Angiogenesis. Adv Wound Care (New Rochelle) 2013; 2:81-86. [PMID: 24527330 DOI: 10.1089/wound.2011.0348] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Indexed: 12/26/2022] Open
Abstract
SIGNIFICANCE Re-establishment of a functional vascular network is a critical component of successful wound repair. One of the most potent pro-angiogenic agents is vascular endothelial growth factor (VEGF), which, from a basic science and pre-clinical perspective, seems ideal for the therapeutic stimulation of blood vessel growth in non-healing wounds. CRITICAL ISSUES Current strategies to improve the dysfunctional angiogenesis that occurs in non-healing wounds are inadequate with regard to the nature and magnitude of the clinical problem. However, VEGF therapy has so far been unsuccessful in promoting healing in the clinic. More effective means of delivery to the wound, which take into account the biochemical and spatio-temporal aspects of angiogenesis, may be necessary to realize VEGF's therapeutic potential. Reviewed approaches for the regulation of wound angiogenesis include: targeting regulators of intracellular VEGF signaling, making use of collagen-binding VEGF fusion proteins for increased retention in the wound, and implantation of heterogeneous scaffold systems for spatial control of angiogenesis with simultaneous use of VEGF and its inhibitor. FUTURE DIRECTIONS To maximize efficacy of therapeutic VEGF, it may be necessary to also target its intracellular inhibitory mechanisms. Immobilizing VEGF to the wound matrix may increase its bioavailability and therapeutic efficacy. Gaining spatial control of angiogenesis opens up possibilities for advanced directed therapy. The reviewed studies present innovative approaches to in vivo directed modulation of angiogenesis utilizing VEGF biology which can, if taken further and validated in human subjects, have significant impact on clinical wound care in the future.
Collapse
Affiliation(s)
- Mateusz S. Wietecha
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
85
|
Autocrine CCL2, CXCL4, CXCL9 and CXCL10 signal in retinal endothelial cells and are enhanced in diabetic retinopathy. Exp Eye Res 2013; 109:67-76. [PMID: 23352833 DOI: 10.1016/j.exer.2013.01.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/09/2013] [Accepted: 01/14/2013] [Indexed: 11/21/2022]
Abstract
This study aimed at examining the presence and role of chemokines (angiogenic CCL2/MCP-1 and angiostatic CXCL4/PF-4, CXCL9/Mig, CXCL10/IP-10) in proliferative diabetic retinopathy (PDR). Regulated chemokine production in human retinal microvascular cells (HRMEC) and chemokine levels in vitreous samples from 40 PDR and 29 non-diabetic patients were analyzed. MCP-1, PF-4, Mig, IP-10 and VEGF levels in vitreous fluid from PDR patients were significantly higher than in controls. Except for IP-10, cytokine levels were significantly higher in PDR with active neovascularization and PDR without traction retinal detachment (TRD) than those in inactive PDR, PDR with TRD and control subjects. Exploratory regression analysis identified associations between higher levels of IP-10 and inactive PDR and PDR with TRD. VEGF levels correlated positively with MCP-1 and IP-10. Significant positive correlations were observed between MCP-1 and IP-10 levels. In line with these clinical findings Western blot analysis revealed increased PF-4 expression in diabetic rat retinas. HRMEC produced MCP-1, Mig and IP-10 after stimulation with IFN-γ, IL-1β or lipopolysaccharide. IFN-γ synergistically enhanced Mig and IP-10 production in response to IL-1β or lipopolysaccharide. MCP-1 was produced by HRMEC in response to VEGF treatment and activated HRMEC via the ERK and Akt/PKB pathway. On the other hand, phosphorylation of ERK induced by VEGF and MCP-1 was inhibited by PF-4, Mig and IP-10. In accordance with inhibition of angiogenic signal transduction pathways, PF-4 inhibited in vitro migration of HRMEC. Thus, regulatory roles for chemokines in PDR were demonstrated. In particular, IP-10 might be associated with the resolution of active PDR and the development of TRD.
Collapse
|
86
|
Wallace AE, Cartwright JE, Begum R, Laing K, Thilaganathan B, Whitley GS. Trophoblast-induced changes in C-x-C motif chemokine 10 expression contribute to vascular smooth muscle cell dedifferentiation during spiral artery remodeling. Arterioscler Thromb Vasc Biol 2013; 33:e93-e101. [PMID: 23288171 DOI: 10.1161/atvbaha.112.300354] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE During pregnancy, fetal trophoblast disrupt endothelial cell and vascular smooth muscle cell (VSMC) interactions in spiral arteries of the maternal decidua to enable increased nutritional and oxygen delivery to the fetus. Little is known regarding this transformation because of difficulties of studying human pregnancy in vivo. This study investigated how trophoblast-secreted factors affect the interactions of vascular cells and the differentiation status of VSMC during spiral arteries remodeling using 3-dimensional vascular spheroid coculture. METHODS AND RESULTS Endothelial cell and VSMC were cocultured in hanging droplets to form spheroids representing an inverted vessel lumen. Control or conditioned media from an extravillous trophoblast (EVT) cell line was incubated with vascular spheroids for 24 hours. Spheroid RNA was then analyzed by Illumina Sentrix BeadChip array. Spheroids incubated with EVT conditioned medium showed significant up/downregulation of 101 genes (>1.5-fold; P<0.05), including an upregulation of C-X-C motif chemokine 10 (IP-10). C-X-C motif chemokine 10 expression was confirmed by qualitative real-time PCR and Western blot analysis of spheroids, and immunohistochemistry of first trimester decidua and ex vivo dissected nonplacental bed spiral arteries. EVT conditioned medium reduced VSMC expression of differentiation markers, and both EVT conditioned medium and C-X-C motif chemokine 10 increased motility of VSMC indicating dedifferentiation of VSMC. CONCLUSIONS EVT-induced C-X-C motif chemokine 10 expression may contribute to spiral arteries remodeling during pregnancy by altering the motility and differentiation status of the VSMC in the vessel.
Collapse
Affiliation(s)
- Alison E Wallace
- Division of Biomedical Sciences, Reproductive and Cardiovascular Disease Research Group, St George's University of London, United Kingdom
| | | | | | | | | | | |
Collapse
|
87
|
Liu RY, Zhu YH, Zhou L, Zhao P, Li HL, Zhu LC, Han HY, Lin HX, Kang L, Wu JX, Huang W. Adenovirus-mediated delivery of interferon-γ gene inhibits the growth of nasopharyngeal carcinoma. J Transl Med 2012; 10:256. [PMID: 23272637 PMCID: PMC3573957 DOI: 10.1186/1479-5876-10-256] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/17/2012] [Indexed: 12/23/2022] Open
Abstract
Background Interferon-γ (IFN-γ) is regarded as a potent antitumor agent, but its clinical application is limited by its short half-life and significant side effects. In this paper, we tried to develop IFN-γ gene therapy by a replication defective adenovirus encoding the human IFN-γ (Ad-IFNγ), and evaluate the antitumoral effects of Ad-IFNγ on nasopharyngeal carcinoma (NPC) cell lines in vitro and in xenografts model. Methods The mRNA levels of human IFN-γ in Ad-IFNγ-infected NPC cells were detected by reverse transcription-polymerase chain reaction (RT-PCR), and IFN-γ protein concentrations were measured by enzyme-linked immunosorbent assay (ELISA) in the culture supernatants of NPC cells and tumor tissues and bloods of nude mice treated with Ad-IFNγ. The effects of Ad-IFNγ on NPC cell proliferation was determined using MTT assay, cell cycle distribution was determined by flow cytometry analysis for DNA content, and cells apoptosis were analyzed by Annexin V-FITC/7-AAD binding assay and hoechst 33342/PI double staining. The anti-tumor effects and toxicity of Ad-IFNγ were evaluated in BALB/c nude mice carrying NPC xenografts. Results The results demonstrated that Ad-IFNγ efficiently expressed human IFN-γ protein in NPC cell lines in vitro and in vivo. Ad-IFNγ infection resulted in antiproliferative effects on NPC cells by inducing G1 phase arrest and cell apoptosis. Intratumoral administration of Ad-IFNγ significantly inhibited the growth of CNE-2 and C666-1 cell xenografts in nude mice, while no significant toxicity was observed. Conclusions These findings indicate IFN-γ gene therapy mediated by replication defective adenoviral vector is likely a promising approach in the treatment of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Ran-yi Liu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dong-feng Road East, Guangzhou, 510060, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Huen AC, Wells A. The Beginning of the End: CXCR3 Signaling in Late-Stage Wound Healing. Adv Wound Care (New Rochelle) 2012; 1:244-248. [PMID: 24527313 DOI: 10.1089/wound.2011.0355] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Prior to 2009, research regarding the role of CXC receptor 3 (CXCR3) in cutaneous biology was primarily in the context of inflammatory reactions. Foundational research performed at that time demonstrated that, in addition to recruited inflammatory cells, cellular components of the skin, keratinocytes, fibroblasts, and endothelial cells, also express CXCR3 and are capable of expressing CXCR3 ligands, specifically CXC ligand 10 (CXCL10) and CXCL11. Surprisingly, in vitro experimentation demonstrated differential effects on the different cell types, suggesting that the CXCR3 signaling pathway may serve as a coordinator of wound remodeling. In support of this, a CXCR3 null mouse line and a mouse line abrogating CXCL11 expression in the epidermis demonstrated delayed wound closure and disordered dermal wound healing. THE PROBLEM These findings demonstrate the role of CXCR3 signaling in the latter stages of wounding healing and opened a new avenue of investigation into the molecular and cellular mechanisms of coordinating the events of cutaneous tissue regeneration. BASIC SCIENCE ADVANCES More recent investigation highlights the role of CXCR3 signaling in the dramatic vascular pruning events after the proliferative stage of wound healing and its importance in guiding remodeling of dermal collagen during cicatrix formation. CONCLUSION CXCR3 signaling plays a strong role in coordinating the actions of several cell types during cutaneous wound healing. The disruption of this signaling pathway results in delayed return to homeostasis and dystrophic scarring.
Collapse
Affiliation(s)
- Arthur C Huen
- Department of Dermatology, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Alan Wells
- Department of Pathology, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania. ; Department of Pathology, Veterans Administration Medical Center , Pittsburgh, Pennsylvania
| |
Collapse
|
89
|
Green LA, Petrusca D, Rajashekhar G, Gianaris T, Schweitzer KS, Wang L, Justice MJ, Petrache I, Clauss M. Cigarette smoke-induced CXCR3 receptor up-regulation mediates endothelial apoptosis. Am J Respir Cell Mol Biol 2012; 47:807-14. [PMID: 22936405 PMCID: PMC3547093 DOI: 10.1165/rcmb.2012-0132oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/30/2012] [Indexed: 11/24/2022] Open
Abstract
Endothelial monocyte-activating polypeptide II (EMAP II) and interferon-inducible protein (IP)-10 are proinflammatory mediators, which in addition to their chemokine activities, selectively induce apoptosis in endothelial cells and are up-regulated in the lungs of cigarette smoke-exposed humans. Previously, we showed that EMAP II is an essential mediator of cigarette smoke-induced lung emphysema in mice linking endothelial cell apoptosis with inflammation. Here we addressed the role of the CXCR3 receptor in EMAP II-induced and IP-10-induced apoptosis in endothelial cells and its regulation by cigarette smoke. We found that both neutralizing antibodies and small inhibitory RNA to CXCR3 abrogated EMAP II-induced and IP-10-induced endothelial caspase-3 activation and DNA fragmentation. CXCR3 receptor surface expression in human lung microvascular endothelial cells and in lung tissue endothelium was up-regulated by exposure to cigarette smoke. In tissue culture conditions, EMAP II-induced and IP-10-induced apoptosis was enhanced by preincubation with cigarette smoke extract. Interestingly, serum starvation also induced CXCR3 up-regulation and enhanced EMAP II-induced endothelial apoptosis. Signal transduction via p38 mitogen-activated protein kinase activation was essential for CXCR3-induced cell death, but not for CXCR3 receptor up-regulation by cigarette smoke. In turn, protein nitration was required for CXCR3 receptor up-regulation by cigarette smoke and consequently for subsequent CXCR3-induced cell death. In conclusion, the concerted up-regulation of proinflammatory EMAP II, IP-10, and CXCR3 by cigarette smoke could sustain a cascade of cell death that may promote the alveolar tissue loss noted in human emphysema.
Collapse
Affiliation(s)
- Linden A. Green
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine
- R.L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Daniela Petrusca
- Department of Pulmonary and Critical Care Medicine, Indiana University School of Medicine, and
| | - Gangaraju Rajashekhar
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine
| | - Tom Gianaris
- Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Kelly S. Schweitzer
- Department of Pulmonary and Critical Care Medicine, Indiana University School of Medicine, and
| | - Liang Wang
- R.L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Matthew J. Justice
- Department of Pulmonary and Critical Care Medicine, Indiana University School of Medicine, and
- Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Irina Petrache
- Department of Pulmonary and Critical Care Medicine, Indiana University School of Medicine, and
- R.L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Matthias Clauss
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine
- R.L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
90
|
Ahmadi Z, Arababadi MK, Hassanshahi G. CXCL10 Activities, Biological Structure, and Source Along with Its Significant Role Played in Pathophysiology of Type I Diabetes Mellitus. Inflammation 2012; 36:364-71. [DOI: 10.1007/s10753-012-9555-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
91
|
Usefulness of the vitreous fluid analysis in the translational research of diabetic retinopathy. Mediators Inflamm 2012; 2012:872978. [PMID: 23028204 PMCID: PMC3457631 DOI: 10.1155/2012/872978] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 08/21/2012] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy (DR) is the major cause of acquired blindness in working-age adults. Current treatments for DR (laser photocoagulation, intravitreal corticosteroids, intravitreal antivascular endothelial growth factor (VEGF) agents, and vitreo-retinal surgery) are applicable only at advanced stages of the disease and are associated with significant adverse effects. Therefore, new pharmacological treatments for the early stages of the disease are needed. Vitreous fluid obtained from diabetic patients undergoing vitreoretinal surgery is currently used to explore the events that are taking place in the retina for clinical research. However, several confounding factors such as vitreous haemorrhage and concentration of vitreous proteins should be considered in the analysis of the results. In this paper we will focus on the vitreous fluid as a tool for exploring the mediators of DR and in particular the molecules related to inflammatory pathways. In addition, their role in the pathogenesis of DR will be discussed. The usefulness of new technologies such as flow cytometry and proteomics in identifying new candidates involved in the inflammatory process that occurs in DR will be overviewed. Finally, a more personalized treatment based on vitreous fluid analysis aiming to reduce the burden associated with DR is suggested.
Collapse
|
92
|
Zabini D, Nagaraj C, Stacher E, Lang IM, Nierlich P, Klepetko W, Heinemann A, Olschewski H, Bálint Z, Olschewski A. Angiostatic factors in the pulmonary endarterectomy material from chronic thromboembolic pulmonary hypertension patients cause endothelial dysfunction. PLoS One 2012; 7:e43793. [PMID: 22916307 PMCID: PMC3423379 DOI: 10.1371/journal.pone.0043793] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare disease with persistent thrombotic occlusion or stenosis of the large pulmonary arteries resulting in pulmonary hypertension. Surgical removal of the neointimal layer of these vessels together with the non-resolved thrombus consisting of organized collagen-rich fibrotic areas with partly recanalized regions is the treatment of choice (pulmonary endarterectomy, PEA). The present study investigates endothelial cells isolated from such material as well as factors present in the surgical PEA material, which may contribute to impairment of recanalization and thrombus non-resolution. We observed muscularized vessels and non-muscularized vessels in the PEA material. The isolated endothelial cells from the PEA material showed significantly different calcium homeostasis as compared to pulmonary artery endothelial cells (hPAECs) from normal controls. In the supernatant (ELISA) as well as on the tissue level (histochemical staining) of the PEA material, platelet factor 4 (PF4), collagen type I and interferon-gamma-inducible 10 kD protein (IP-10) were detected. CXCR3, the receptor for PF4 and IP-10, was particularly elevated in the distal parts of the PEA material as compared to human control lung (RT-PCR). PF4, collagen type I and IP-10 caused significant changes in calcium homeostasis and affected the cell proliferation, migration and vessel formation in hPAECs. The presence of angiostatic factors like PF4, collagen type I and IP-10, as recovered from the surgical PEA material from CTEPH patients, may lead to changes in calcium homeostasis and endothelial dysfunction.
Collapse
Affiliation(s)
- Diana Zabini
- Experimental Anesthesiology, Department of Anesthesia and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Chandran Nagaraj
- Experimental Anesthesiology, Department of Anesthesia and Intensive Care Medicine, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Elvira Stacher
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Irene M. Lang
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Patrick Nierlich
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Zoltán Bálint
- Experimental Anesthesiology, Department of Anesthesia and Intensive Care Medicine, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- * E-mail:
| | - Andrea Olschewski
- Experimental Anesthesiology, Department of Anesthesia and Intensive Care Medicine, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| |
Collapse
|
93
|
Yates-Binder CC, Rodgers M, Jaynes J, Wells A, Bodnar RJ, Turner T. An IP-10 (CXCL10)-derived peptide inhibits angiogenesis. PLoS One 2012; 7:e40812. [PMID: 22815829 PMCID: PMC3397949 DOI: 10.1371/journal.pone.0040812] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/15/2012] [Indexed: 12/30/2022] Open
Abstract
Angiogenesis plays a critical role in processes such as organ development, wound healing, and tumor growth. It requires well-orchestrated integration of soluble and matrix factors and timely recognition of such signals to regulate this process. Previous work has shown that newly forming vessels express the chemokine receptor CXC receptor 3 (CXCR3) and, activation by its ligand IP-10 (CXCL10), both inhibits development of new vasculature and causes regression of newly formed vessels. To identify and develop new therapeutic agents to limit or reverse pathological angiogenesis, we identified a 21 amino acid fragment of IP-10, spanning the α-helical domain residues 77–98, that mimic the actions of the whole IP-10 molecule on endothelial cells. Treatment of the endothelial cells with the 22 amino acid fragment referred to as IP-10p significantly inhibited VEGF-induced endothelial motility and tube formation in vitro, properties critical for angiogenesis. Using a Matrigel plug assay in vivo, we demonstrate that IP-10p both prevented vessel formation and induced involution of nascent vessels. CXCR3 neutralizing antibody was able to block the inhibitory effects of the IP-10p, demonstrating specificity of the peptide. Inhibition of endothelial function by IP-10p was similar to that described for IP-10, secondary to CXCR3-mediated increase in cAMP production, activation of PKA inhibiting cell migration, and inhibition of VEGF-mediated m-calpain activation. IP-10p provides a novel therapeutic agent that inhibits endothelial cell function thus, allowing for the modulation of angiogenesis.
Collapse
Affiliation(s)
- Cecelia C. Yates-Binder
- Tuskegee University, Center for Cancer Research, Tuskegee, Alabama, United States of America
- Departments of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (CCYB); (RJB)
| | - Margaret Rodgers
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America
| | - Jesse Jaynes
- Tuskegee University, Center for Cancer Research, Tuskegee, Alabama, United States of America
| | - Alan Wells
- Tuskegee University, Center for Cancer Research, Tuskegee, Alabama, United States of America
- Departments of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America
| | - Richard J. Bodnar
- Departments of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (CCYB); (RJB)
| | - Timothy Turner
- Tuskegee University, Center for Cancer Research, Tuskegee, Alabama, United States of America
| |
Collapse
|
94
|
Jaerve A, Müller HW. Chemokines in CNS injury and repair. Cell Tissue Res 2012; 349:229-48. [PMID: 22700007 DOI: 10.1007/s00441-012-1427-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 04/05/2012] [Indexed: 12/17/2022]
Abstract
Recruitment of inflammatory cells is known to drive the secondary damage cascades that are common to injuries of the central nervous system (CNS). Cell activation and infiltration to the injury site is orchestrated by changes in the expression of chemokines, the chemoattractive cytokines. Reducing the numbers of recruited inflammatory cells by the blocking of the action of chemokines has turned out be a promising approach to diminish neuroinflammation and to improve tissue preservation and neovascularization. In addition, several chemokines have been shown to be essential for stem/progenitor cell attraction, their survival, differentiation and cytokine production. Thus, chemokines might indirectly participate in remyelination, neovascularization and neuroprotection, which are important prerequisites for CNS repair after trauma. Moreover, CXCL12 promotes neurite outgrowth in the presence of growth inhibitory CNS myelin and enhances axonal sprouting after spinal cord injury (SCI). Here, we review current knowledge about the exciting functions of chemokines in CNS trauma, including SCI, traumatic brain injury and stroke. We identify common principles of chemokine action and discuss the potentials and challenges of therapeutic interventions with chemokines.
Collapse
Affiliation(s)
- Anne Jaerve
- Molecular Neurobiology Laboratory, Department of Neurology, Medical Faculty Heinrich Heine University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | |
Collapse
|
95
|
Fitzpatrick LE, Lisovsky A, Sefton MV. The expression of sonic hedgehog in diabetic wounds following treatment with poly(methacrylic acid-co-methyl methacrylate) beads. Biomaterials 2012; 33:5297-307. [PMID: 22541537 DOI: 10.1016/j.biomaterials.2012.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/01/2012] [Indexed: 12/15/2022]
Abstract
The expression of native sonic hedgehog (Shh) was significantly increased in poly(methacrylic acid-co-methyl methacrylate) bead (MAA) treated wounds at day 4 compared to both poly(methyl methacrylate) bead (PMMA) treated and untreated wounds in diabetic db/db mice. MAA beads also increased the expression of the Shh transcription factor Gli3 at day 4. Previously, topical application of MAA beads (45 mol % methacrylic acid) improved wound closure and blood vessel density in excisional wounds in these mice, while PMMA beads did not. Gene expression within the granulation tissue of healing wounds was studied to provide insight into the mechanism of vessel formation and wound healing in the presence of MAA beads. In addition to the increased expression of Shh, MAA-treated wounds had increased expression of osteopontin (OPN), IL-1β and TNF-α, (at day 7) similar to the previously reported MAA response of macrophage-like and endothelial cells in vitro.
Collapse
Affiliation(s)
- Lindsay E Fitzpatrick
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.
| | | | | |
Collapse
|
96
|
Toriseva M, Ala-aho R, Peltonen S, Peltonen J, Grénman R, Kähäri VM. Keratinocyte growth factor induces gene expression signature associated with suppression of malignant phenotype of cutaneous squamous carcinoma cells. PLoS One 2012; 7:e33041. [PMID: 22427941 PMCID: PMC3299721 DOI: 10.1371/journal.pone.0033041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 02/09/2012] [Indexed: 12/26/2022] Open
Abstract
Keratinocyte growth factor (KGF, fibroblast growth factor-7) is a fibroblast-derived mitogen, which stimulates proliferation of epithelial cells. The expression of KGF by dermal fibroblasts is induced following injury and it promotes wound repair. However, the role of KGF in cutaneous carcinogenesis and cancer progression is not known. We have examined the role of KGF in progression of squamous cell carcinoma (SCC) of the skin. The expression of KGF receptor (KGFR) mRNA was lower in cutaneous SCCs (n = 6) than in normal skin samples (n = 6). Expression of KGFR mRNA was detected in 6 out of 8 cutaneous SCC cell lines and the levels were downregulated by 24-h treatment with KGF. KGF did not stimulate SCC cell proliferation, but it reduced invasion of SCC cells through collagen. Gene expression profiling of three cutaneous SCC cell lines treated with KGF for 24 h revealed a specific gene expression signature characterized by upregulation of a set of genes specifically downregulated in SCC cells compared to normal epidermal keratinocytes, including genes with tumor suppressing properties (SPRY4, DUSP4, DUSP6, LRIG1, PHLDA1). KGF also induced downregulation of a set of genes specifically upregulated in SCC cells compared to normal keratinocytes, including genes associated with tumor progression (MMP13, MATN2, CXCL10, and IGFBP3). Downregulation of MMP-13 and KGFR expression in SCC cells and HaCaT cells was mediated via ERK1/2. Activation of ERK1/2 in HaCaT cells and tumorigenic Ha-ras-transformed HaCaT cells resulted in downregulation of MMP-13 and KGFR expression. These results provide evidence, that KGF does not promote progression of cutaneous SCC, but rather suppresses the malignant phenotype of cutaneous SCC cells by regulating the expression of several genes differentially expressed in SCC cells, as compared to normal keratinocytes.
Collapse
Affiliation(s)
- Mervi Toriseva
- Department of Dermatology, University of Turku, Turku University Hospital, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Turku Graduate School of Biomedical Sciences, Turku, Finland
| | - Risto Ala-aho
- Department of Dermatology, University of Turku, Turku University Hospital, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology, University of Turku, Turku University Hospital, Turku, Finland
| | - Juha Peltonen
- Department of Cell Biology and Anatomy, University of Turku, Turku, Finland
| | - Reidar Grénman
- Department of Otorhinolaryngology-Head and Neck Surgery, Turku University Hospital, Turku, Finland
| | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku, Turku University Hospital, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
- * E-mail:
| |
Collapse
|
97
|
Letavernier B, Zafrani L, Nassar D, Perez J, Levi C, Bellocq A, Mesnard L, Sachon E, Haymann JP, Aractingi S, Faussat AM, Baud L, Letavernier E. Calpains Contribute to Vascular Repair in Rapidly Progressive Form of Glomerulonephritis: Potential Role of Their Externalization. Arterioscler Thromb Vasc Biol 2012; 32:335-42. [DOI: 10.1161/atvbaha.111.240242] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Béatrice Letavernier
- From the INSERM (B.L., L.Z., J.P., C.L., A.B., L.M., J.-P.H., L.B., E.L.), U702, Paris, France; Université Pierre et Marie Curie-Paris 6 (B.L., L.Z., J.P., C.L., A.B., L.M., J.-P.H., L.B., E.L.), UMRS702, Paris, France; AP HP (A.B., J.-P.H., L.B., E.L.), Tenon Hospital, Department of Physiology, Paris, France; Université Pierre et Marie Curie-Paris 6 and INSERM UMR_S938 (D.N., S.A.), Saint-Antoine Research Centre, Paris, France; Université Pierre et Marie Curie-Paris 6 (E.S.), UMR7203 CNRS, Paris,
| | - Lara Zafrani
- From the INSERM (B.L., L.Z., J.P., C.L., A.B., L.M., J.-P.H., L.B., E.L.), U702, Paris, France; Université Pierre et Marie Curie-Paris 6 (B.L., L.Z., J.P., C.L., A.B., L.M., J.-P.H., L.B., E.L.), UMRS702, Paris, France; AP HP (A.B., J.-P.H., L.B., E.L.), Tenon Hospital, Department of Physiology, Paris, France; Université Pierre et Marie Curie-Paris 6 and INSERM UMR_S938 (D.N., S.A.), Saint-Antoine Research Centre, Paris, France; Université Pierre et Marie Curie-Paris 6 (E.S.), UMR7203 CNRS, Paris,
| | - Dany Nassar
- From the INSERM (B.L., L.Z., J.P., C.L., A.B., L.M., J.-P.H., L.B., E.L.), U702, Paris, France; Université Pierre et Marie Curie-Paris 6 (B.L., L.Z., J.P., C.L., A.B., L.M., J.-P.H., L.B., E.L.), UMRS702, Paris, France; AP HP (A.B., J.-P.H., L.B., E.L.), Tenon Hospital, Department of Physiology, Paris, France; Université Pierre et Marie Curie-Paris 6 and INSERM UMR_S938 (D.N., S.A.), Saint-Antoine Research Centre, Paris, France; Université Pierre et Marie Curie-Paris 6 (E.S.), UMR7203 CNRS, Paris,
| | - Joëlle Perez
- From the INSERM (B.L., L.Z., J.P., C.L., A.B., L.M., J.-P.H., L.B., E.L.), U702, Paris, France; Université Pierre et Marie Curie-Paris 6 (B.L., L.Z., J.P., C.L., A.B., L.M., J.-P.H., L.B., E.L.), UMRS702, Paris, France; AP HP (A.B., J.-P.H., L.B., E.L.), Tenon Hospital, Department of Physiology, Paris, France; Université Pierre et Marie Curie-Paris 6 and INSERM UMR_S938 (D.N., S.A.), Saint-Antoine Research Centre, Paris, France; Université Pierre et Marie Curie-Paris 6 (E.S.), UMR7203 CNRS, Paris,
| | - Charlène Levi
- From the INSERM (B.L., L.Z., J.P., C.L., A.B., L.M., J.-P.H., L.B., E.L.), U702, Paris, France; Université Pierre et Marie Curie-Paris 6 (B.L., L.Z., J.P., C.L., A.B., L.M., J.-P.H., L.B., E.L.), UMRS702, Paris, France; AP HP (A.B., J.-P.H., L.B., E.L.), Tenon Hospital, Department of Physiology, Paris, France; Université Pierre et Marie Curie-Paris 6 and INSERM UMR_S938 (D.N., S.A.), Saint-Antoine Research Centre, Paris, France; Université Pierre et Marie Curie-Paris 6 (E.S.), UMR7203 CNRS, Paris,
| | - Agnès Bellocq
- From the INSERM (B.L., L.Z., J.P., C.L., A.B., L.M., J.-P.H., L.B., E.L.), U702, Paris, France; Université Pierre et Marie Curie-Paris 6 (B.L., L.Z., J.P., C.L., A.B., L.M., J.-P.H., L.B., E.L.), UMRS702, Paris, France; AP HP (A.B., J.-P.H., L.B., E.L.), Tenon Hospital, Department of Physiology, Paris, France; Université Pierre et Marie Curie-Paris 6 and INSERM UMR_S938 (D.N., S.A.), Saint-Antoine Research Centre, Paris, France; Université Pierre et Marie Curie-Paris 6 (E.S.), UMR7203 CNRS, Paris,
| | - Laurent Mesnard
- From the INSERM (B.L., L.Z., J.P., C.L., A.B., L.M., J.-P.H., L.B., E.L.), U702, Paris, France; Université Pierre et Marie Curie-Paris 6 (B.L., L.Z., J.P., C.L., A.B., L.M., J.-P.H., L.B., E.L.), UMRS702, Paris, France; AP HP (A.B., J.-P.H., L.B., E.L.), Tenon Hospital, Department of Physiology, Paris, France; Université Pierre et Marie Curie-Paris 6 and INSERM UMR_S938 (D.N., S.A.), Saint-Antoine Research Centre, Paris, France; Université Pierre et Marie Curie-Paris 6 (E.S.), UMR7203 CNRS, Paris,
| | - Emmanuelle Sachon
- From the INSERM (B.L., L.Z., J.P., C.L., A.B., L.M., J.-P.H., L.B., E.L.), U702, Paris, France; Université Pierre et Marie Curie-Paris 6 (B.L., L.Z., J.P., C.L., A.B., L.M., J.-P.H., L.B., E.L.), UMRS702, Paris, France; AP HP (A.B., J.-P.H., L.B., E.L.), Tenon Hospital, Department of Physiology, Paris, France; Université Pierre et Marie Curie-Paris 6 and INSERM UMR_S938 (D.N., S.A.), Saint-Antoine Research Centre, Paris, France; Université Pierre et Marie Curie-Paris 6 (E.S.), UMR7203 CNRS, Paris,
| | - Jean-Philippe Haymann
- From the INSERM (B.L., L.Z., J.P., C.L., A.B., L.M., J.-P.H., L.B., E.L.), U702, Paris, France; Université Pierre et Marie Curie-Paris 6 (B.L., L.Z., J.P., C.L., A.B., L.M., J.-P.H., L.B., E.L.), UMRS702, Paris, France; AP HP (A.B., J.-P.H., L.B., E.L.), Tenon Hospital, Department of Physiology, Paris, France; Université Pierre et Marie Curie-Paris 6 and INSERM UMR_S938 (D.N., S.A.), Saint-Antoine Research Centre, Paris, France; Université Pierre et Marie Curie-Paris 6 (E.S.), UMR7203 CNRS, Paris,
| | - Selim Aractingi
- From the INSERM (B.L., L.Z., J.P., C.L., A.B., L.M., J.-P.H., L.B., E.L.), U702, Paris, France; Université Pierre et Marie Curie-Paris 6 (B.L., L.Z., J.P., C.L., A.B., L.M., J.-P.H., L.B., E.L.), UMRS702, Paris, France; AP HP (A.B., J.-P.H., L.B., E.L.), Tenon Hospital, Department of Physiology, Paris, France; Université Pierre et Marie Curie-Paris 6 and INSERM UMR_S938 (D.N., S.A.), Saint-Antoine Research Centre, Paris, France; Université Pierre et Marie Curie-Paris 6 (E.S.), UMR7203 CNRS, Paris,
| | - Anne-Marie Faussat
- From the INSERM (B.L., L.Z., J.P., C.L., A.B., L.M., J.-P.H., L.B., E.L.), U702, Paris, France; Université Pierre et Marie Curie-Paris 6 (B.L., L.Z., J.P., C.L., A.B., L.M., J.-P.H., L.B., E.L.), UMRS702, Paris, France; AP HP (A.B., J.-P.H., L.B., E.L.), Tenon Hospital, Department of Physiology, Paris, France; Université Pierre et Marie Curie-Paris 6 and INSERM UMR_S938 (D.N., S.A.), Saint-Antoine Research Centre, Paris, France; Université Pierre et Marie Curie-Paris 6 (E.S.), UMR7203 CNRS, Paris,
| | - Laurent Baud
- From the INSERM (B.L., L.Z., J.P., C.L., A.B., L.M., J.-P.H., L.B., E.L.), U702, Paris, France; Université Pierre et Marie Curie-Paris 6 (B.L., L.Z., J.P., C.L., A.B., L.M., J.-P.H., L.B., E.L.), UMRS702, Paris, France; AP HP (A.B., J.-P.H., L.B., E.L.), Tenon Hospital, Department of Physiology, Paris, France; Université Pierre et Marie Curie-Paris 6 and INSERM UMR_S938 (D.N., S.A.), Saint-Antoine Research Centre, Paris, France; Université Pierre et Marie Curie-Paris 6 (E.S.), UMR7203 CNRS, Paris,
| | - Emmanuel Letavernier
- From the INSERM (B.L., L.Z., J.P., C.L., A.B., L.M., J.-P.H., L.B., E.L.), U702, Paris, France; Université Pierre et Marie Curie-Paris 6 (B.L., L.Z., J.P., C.L., A.B., L.M., J.-P.H., L.B., E.L.), UMRS702, Paris, France; AP HP (A.B., J.-P.H., L.B., E.L.), Tenon Hospital, Department of Physiology, Paris, France; Université Pierre et Marie Curie-Paris 6 and INSERM UMR_S938 (D.N., S.A.), Saint-Antoine Research Centre, Paris, France; Université Pierre et Marie Curie-Paris 6 (E.S.), UMR7203 CNRS, Paris,
| |
Collapse
|
98
|
Wu Q, Dhir R, Wells A. Altered CXCR3 isoform expression regulates prostate cancer cell migration and invasion. Mol Cancer 2012; 11:3. [PMID: 22236567 PMCID: PMC3320557 DOI: 10.1186/1476-4598-11-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 01/11/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Carcinoma cells must circumvent the normally suppressive signals to disseminate. While often considered 'stop' signals for adherent cells, CXCR3-binding chemokines have recently been correlated positively with cancer progression though the molecular basis remains unclear. RESULTS Here, we examined the expression and function of two CXCR3 variants in human prostate cancer biopsies and cell lines. Globally, both CXCR3 mRNA and protein were elevated in localized and metastatic human cancer biopsies compared to normal. Additionally, CXCR3A mRNA level was upregulated while CXCR3B mRNA was downregulated in these prostate cancer specimens. In contrast to normal prostate epithelial cells (RWPE-1), CXCR3A was up to half the receptor in the invasive and metastatic DU-145 and PC-3 prostate cancer cells, but not in the localized LNCaP cells. Instead of inhibiting cell migration as in RWPE-1 cells, the CXCR3 ligands CXCL4/PF4 and CXCL10/IP10 promoted cell motility and invasiveness in both DU-145 and PC-3 cells via PLCβ3 and μ-calpain activation. CXCR3-mediated diminution of cell motility in RWPE-1 cells is likely a result of cAMP upregulation and m-calpain inhibition via CXCR3B signal transduction. Interestingly, overexpression of CXCR3B in DU-145 cells decreased cell movement and invasion. CONCLUSION These data suggest that the aberrant expression of CXCR3A and down-regulation of CXCR3B may switch a progression "stop" to a "go" signal to promote prostate tumor metastasis via stimulating cell migration and invasion.
Collapse
Affiliation(s)
- Qian Wu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
99
|
Yates CC, Whaley D, Wells A. Transplanted fibroblasts prevents dysfunctional repair in a murine CXCR3-deficient scarring model. Cell Transplant 2012; 21:919-31. [PMID: 22236446 DOI: 10.3727/096368911x623817] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In skin, the regeneration of the ontogenically distinct mesenchymal and epithelial compartments must proceed in a coordinated manner orchestrated by extracellular signaling networks. We have recently found that the switch from regeneration to remodeling during repair is modulated by chemokines that bind CXCR3 receptor. If this signaling is disrupted wounds continue to be active, resulting in a chronic hypercellular and hypertrophic state characterized by an immature matrix composition. As healing is masterminded in large part by fibroblasts and their synthesis of the extracellular matrix, the question arose as to whether this ongoing scarring can be modulated by transplanted fibroblasts. We examined wounds in the CXCR3-/- mouse scarring model. These wounds exhibited a significant delay in healing in all areas compared to young and aged wild-type mice. Full-thickness wounds were transplanted with fibroblasts derived from newborn CXCR3-/- or wild-type mice. The transplanted fibroblasts were labeled with fluorescent dye (CM-DiI) and suspended in hyaluronic acid gel; by 30 days, these transplanted cells comprised some 30% of the dermal stromal cells regardless of the host or source of transplanted cells. Wild-type fibroblasts transplanted into CXCR3-/- mice wounds reversed the delay and dysfunction previously seen in CXCR3-/- wounds; this correction was not noted with transplanted CXCR3-/- fibroblasts. Additionally, transplant of CXCR3-/- cells into wounds in wild-type animals did not adversely affect those wounds. The transplanted fibroblasts exhibited strong survival and migration patterns and led to an increase in tensile strength. Expression of matrix proteins and collagen in CXCR3-/- wounds transplanted with wild-type fibroblasts resembled normal wild-type healing, and the wound matrix in wild-type mice transplanted with CXCR3-/- cells also presented a mature matrix. These suggest that the major determinant of healing versus scarring lies with the nature of the matrix. These findings have intriguing implications for rational cellular interventions aimed at promoting wound healing via cell therapy.
Collapse
Affiliation(s)
- Cecelia C Yates
- Department of Pathology and McGowan Institute for Regenerative Medicine, University of Pittsburgh and Pittsburgh VAMC, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
100
|
Mechanisms of vessel regression: toward an understanding of the resolution of angiogenesis. Curr Top Microbiol Immunol 2012; 367:3-32. [PMID: 23224648 DOI: 10.1007/82_2012_287] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Physiological angiogenesis refers to a naturally occurring process of blood vessel growth and regression, and it occurs as an integral component of tissue repair and regeneration. During wound healing, sprouting and branching results in an extensive yet immature and leaky neovascular network that ultimately resolves by systematic pruning of extraneous vessels to yield a stable, well-perfused vascular network ideally suited to maintain tissue homeostasis. While the molecular mechanisms of blood vessel growth have been explored in numerous cell and animal models in remarkable detail, the endogenous factors that prevent further angiogenesis and control vessel regression have not received much attention and are largely unknown. In this review, we introduce the relevant literature from various disciplines to fill the gaps in the current limited understanding of the major molecular and biomechanical inducers of vascular regression. The processes are described in the context of endothelial cell biology during wound healing: hypoxia-driven activation and sprouting followed by apoptosis or maturation of cells comprising the vasculature. We discuss and integrate the likely roles of a variety of endogenous factors, including oxygen availability, vessel perfusion and shear stress, intracellular negative feedback mechanisms (Spry2, vasohibin), soluble cytokines (CXCL10), matrix-binding proteins (TSP, PEDF), protein cleavage products (angiostatin, vasostatin), matrix-derived anti-angiogenic peptides (endostatin, arresten, canstatin, tumstatin), and the biomechanical properties of remodeling the extra-cellular matrix itself. These factors aid in the spatio-temporal control of blood vessel pruning by inducing specific anti-angiogenic signaling pathways in activated endothelial cells, pathways which compete with pro-angiogenic and maturation signals in the resolving wound. Gaining more insight into these mechanisms is bound to shed light on unresolved questions regarding scar formation, tissue regeneration, and increase our understanding of the many diseases with angiogenic phenotypes, especially cancer.
Collapse
|