51
|
Uehara H, Itoigawa Y, Wada T, Morikawa D, Koga A, Nojiri H, Kawasaki T, Maruyama Y, Ishijima M. Relationship of superoxide dismutase to rotator cuff injury/tear in a rat model. J Orthop Res 2022; 40:1006-1015. [PMID: 34185341 DOI: 10.1002/jor.25141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/04/2021] [Accepted: 06/25/2021] [Indexed: 02/04/2023]
Abstract
Rotator cuff degeneration is one of the several factors that lead to rotator cuff tears. Oxidative stress and superoxide dismutase have been reported to be related to rotator cuff degeneration; however, the precise mechanism still remains unclear. In this study, we investigated the relationship of oxidative stress and superoxide dismutase to the degeneration of the rotator cuff using rat models. Eighty-four rats were used to create a collagenase-induced rotator cuff injury model (injury model) and a rotator cuff tear model (tear model). The controls were administered saline and had only a deltoid incision, respectively. We evaluated degeneration morphology of the rotator cuff using a degeneration score; dihydroethidium fluorescence intensity, which detects oxidative stress; gene expression; and superoxide dismutase activity. The rotator cuffs in the injury and tear models significantly increased degeneration scores and dihydroethidium fluorescence intensity. On the other hand, gene expression of superoxide dismutase isoform, superoxide dismutase 1, and superoxide dismutase activity were significantly decreased in the injury model but showed no significant difference in the tear model. These findings suggested that superoxide dismutase might not be associated with rotator cuff degeneration after tear but may be involved in degenerative rotator cuff without tear. However, we found that rotator cuff degeneration involves oxidative stress both with and without tear. Based on these findings, it is presumed that different treatments may be appropriate, depending on the state of rotator cuff degeneration, because the mechanisms of the degeneration may be different.
Collapse
Affiliation(s)
- Hirohisa Uehara
- Department of Orthopaedic Surgery, Juntendo University Urayasu Hospital, Chiba, Japan.,Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshiaki Itoigawa
- Department of Orthopaedic Surgery, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Tomoki Wada
- Department of Orthopaedic Surgery, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Daichi Morikawa
- Department of Orthopaedic Surgery, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Akihisa Koga
- Department of Orthopaedic Surgery, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Hidetoshi Nojiri
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takayuki Kawasaki
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuichiro Maruyama
- Department of Orthopaedic Surgery, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
52
|
Zhang D, He Y, Wang J, Wu L, Liu B, Cai S, Li Y, Yan W, Yang Z, Qu J. Mitochondrial structural variations in the process of mitophagy. JOURNAL OF BIOPHOTONICS 2022; 15:e202200006. [PMID: 35072357 DOI: 10.1002/jbio.202200006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Mitochondrion is one of significant organelles inside cells because it serves as a hub for energy management and intracellular signaling. Internal/external damages on mitochondria would lead to mitochondrial stresses with the malfunctions, accompanying with the changes of morphological structure and abnormal local environments (pH values). Mitophagy is capable of degradation of damaged mitochondrial segments to restore its normal metabolism, dynamics, and biogenesis. The dynamic structural visualization and pH quantification can be helpful for the understanding of mitochondrial functions as well as the diagnosis of disorders linking with this process. In this work, we use confocal laser scanning microscopy, STED super-resolution nanoscopy and fluorescence lifetime imaging microscopy, in conjunction with a mitochondrial probe to image the dynamic changes in the mitochondrial morphology and microenvironmental pH values during mitophagy in live cells, in particular, the structural changes of mitochondrial cristae beyond optical diffraction can be distinguished by STED nanoscopy with/without treatment by CCCP, which will provide a new view for the diagnosis and personalized treatment of mitochondrial dysfunction-related diseases.
Collapse
Affiliation(s)
- Dan Zhang
- Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| | - Ying He
- Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| | - Jinying Wang
- Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| | - Liuying Wu
- Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| | - Bing Liu
- Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| | - Songtao Cai
- Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| | - Yuan Li
- Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| | - Wei Yan
- Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| | - Zhigang Yang
- Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| | - Junle Qu
- Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, China
| |
Collapse
|
53
|
Pierce GL, Coutinho TA, DuBose LE, Donato AJ. Is It Good to Have a Stiff Aorta with Aging? Causes and Consequences. Physiology (Bethesda) 2022; 37:154-173. [PMID: 34779281 PMCID: PMC8977146 DOI: 10.1152/physiol.00035.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023] Open
Abstract
Aortic stiffness increases with advancing age, more than doubling during the human life span, and is a robust predictor of cardiovascular disease (CVD) clinical events independent of traditional risk factors. The aorta increases in diameter and length to accommodate growing body size and cardiac output in youth, but in middle and older age the aorta continues to remodel to a larger diameter, thinning the pool of permanent elastin fibers, increasing intramural wall stress and resulting in the transfer of load bearing onto stiffer collagen fibers. Whereas aortic stiffening in early middle age may be a compensatory mechanism to normalize intramural wall stress and therefore theoretically "good" early in the life span, the negative clinical consequences of accelerated aortic stiffening beyond middle age far outweigh any earlier physiological benefit. Indeed, aortic stiffness and the loss of the "windkessel effect" with advancing age result in elevated pulsatile pressure and flow in downstream microvasculature that is associated with subclinical damage to high-flow, low-resistance organs such as brain, kidney, retina, and heart. The mechanisms of aortic stiffness include alterations in extracellular matrix proteins (collagen deposition, elastin fragmentation), increased arterial tone (oxidative stress and inflammation-related reduced vasodilators and augmented vasoconstrictors; enhanced sympathetic activity), arterial calcification, vascular smooth muscle cell stiffness, and extracellular matrix glycosaminoglycans. Given the rapidly aging population of the United States, aortic stiffening will likely contribute to substantial CVD burden over the next 2-3 decades unless new therapeutic targets and interventions are identified to prevent the potential avalanche of clinical sequelae related to age-related aortic stiffness.
Collapse
Affiliation(s)
- Gary L Pierce
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa
| | - Thais A Coutinho
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Divisions of Cardiology and Cardiac Prevention and Rehabilitation, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Lyndsey E DuBose
- Division of Geriatrics, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anthony J Donato
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
- Department of Biochemistry, University of Utah, Salt Lake City, Utah
- Geriatric Research Education and Clinical Center, VA Salt Lake City, Salt Lake City, Utah
| |
Collapse
|
54
|
Kim JH, Lee H, Kim JM, Lee BJ, Kim IJ, Pak K, Jeon YK, Kim K. Effect of oligonol, a lychee-derived polyphenol, on skeletal muscle in ovariectomized rats by regulating body composition, protein turnover, and mitochondrial quality signaling. Food Sci Nutr 2022; 10:1184-1194. [PMID: 35432979 PMCID: PMC9007287 DOI: 10.1002/fsn3.2750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/18/2021] [Accepted: 01/07/2022] [Indexed: 12/11/2022] Open
Abstract
Oligonol is a low‐molecular‐weight polyphenol product derived from lychee (Litchi chinensis Sonn.) fruits. This study was focused on the effects of oligonol on the skeletal muscle of ovariectomized rats. We randomly divided female Sprague–Dawley rats into three groups: a sham surgery control group (Sham), an ovariectomy (OVX) group, and an OVX group treated with oligonol (OVX + Oligonol). Oligonol was intraperitoneally administrated at 30 mg/kg daily for 6 weeks. Oligonol treatment after OVX decreased body weight and fat mass, regulated lipid metabolism in skeletal muscle, without loss of lean mass and bone. Bone turnover was not affected by oligonol. In protein synthesis and degradation, oligonol increased the levels of the mammalian target of rapamycin and its downstream targets, eukaryotic initiation factor 4E‐binding protein 1 and 70‐kDa ribosomal protein S6 kinase, and it stimulated the expression of ubiquitin‐proteasome pathway proteins, the forkhead box transcription factors of the class O and the muscle ring‐finger protein‐1. Moreover, oligonol treatment enhanced mitochondrial biogenesis and dynamics. Thus, our results indicated that oligonol treatment had beneficial effects on the skeletal muscle in an estrogen‐deficiency rat model.
Collapse
Affiliation(s)
- Jeong Hun Kim
- Biomedical Research Institute Pusan National University Hospital Busan Korea
| | - Hyangkyu Lee
- Biobehavioral Research Centre Mo-Im Kim Nursing Research Institute College of Nursing Yonsei University Seoul Korea
| | - Ji Min Kim
- Pusan National University Medical Research Institute Pusan National University School of Medicine Pusan National University Yangsan Korea
| | - Byung-Joo Lee
- Department of Otorhinolaryngology-Head and Neck Surgery Pusan National University School of Medicine Pusan National University Busan Korea
| | - In-Joo Kim
- Department of Nuclear Medicine and Biomedical Research Institute Pusan National University Hospital Busan Korea
| | - Kyoungjune Pak
- Department of Nuclear Medicine and Biomedical Research Institute Pusan National University Hospital Busan Korea
| | - Yun Kyung Jeon
- Department of Internal Medicine and Biomedical Research Institute Pusan National University Hospital Busan Korea
| | - Keunyoung Kim
- Department of Nuclear Medicine and Biomedical Research Institute Pusan National University Hospital Busan Korea
| |
Collapse
|
55
|
Cosemans C, Van Larebeke N, Janssen BG, Martens DS, Baeyens W, Bruckers L, Den Hond E, Coertjens D, Nelen V, Schoeters G, Hoppe HW, Wolfs E, Smeets K, Nawrot TS, Plusquin M. Glyphosate and AMPA exposure in relation to markers of biological aging in an adult population-based study. Int J Hyg Environ Health 2022; 240:113895. [PMID: 34883335 DOI: 10.1016/j.ijheh.2021.113895] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND/AIM Glyphosate, a broad-spectrum herbicide, and its main metabolite aminomethylphosphonic acid (AMPA) are persistent in the environment. Studies showed associations between glyphosate or AMPA exposure and several adverse cellular processes, including metabolic alterations and oxidative stress. OBJECTIVE To determine the association between glyphosate and AMPA exposure and biomarkers of biological aging. METHODS We examined glyphosate and AMPA exposure, mtDNA content and leukocyte telomere length in 181 adults, included in the third cycle of the Flemish Environment and Health Study (FLEHSIII). DNA was isolated from leukocytes and the relative mtDNA content and telomere length were determined using qPCR. Urinary glyphosate and AMPA concentrations were measured by Gas Chromatography-Tandem Mass Spectrometry (GC-MS-MS). We used multiple linear regression models to associate mtDNA content and leukocyte telomere length with glyphosate or AMPA exposure while adjusting for confounding variables. RESULTS A doubling in urinary AMPA concentration was associated with 5.19% (95% CI: 0.49 to 10.11; p = 0.03) longer leukocyte telomere length, while no association was observed with urinary glyphosate concentration. No association between mtDNA content and urinary glyphosate nor AMPA levels was observed. CONCLUSIONS This study showed that AMPA exposure may be associated with telomere biology in adults.
Collapse
Affiliation(s)
- Charlotte Cosemans
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nicolas Van Larebeke
- Department of Radiotherapy and Experimental Cancerology, Ghent University, Ghent, Belgium; Department of Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Willy Baeyens
- Department of Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Liesbeth Bruckers
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt, Belgium
| | | | - Dries Coertjens
- Faculty of Social Sciences and IMDO, University of Antwerp, Antwerp, Belgium
| | - Vera Nelen
- Faculty of Social Sciences and IMDO, University of Antwerp, Antwerp, Belgium
| | - Greet Schoeters
- Environmental Risk and Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Esther Wolfs
- Biomedical Research Institute, Faculty of Medicine, Hasselt University, Belgium
| | - Karen Smeets
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium; School of Public Health, Occupational & Environmental Medicine, Leuven University, Leuven, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
56
|
Increased peroxisome proliferation is associated with early yeast replicative ageing. Curr Genet 2022; 68:207-225. [DOI: 10.1007/s00294-022-01233-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/03/2022]
|
57
|
Zhang W, Bai J, Hang K, Xu J, Zhou C, Li L, Wang Z, Wang Y, Wang K, Xue D. Role of Lysosomal Acidification Dysfunction in Mesenchymal Stem Cell Senescence. Front Cell Dev Biol 2022; 10:817877. [PMID: 35198560 PMCID: PMC8858834 DOI: 10.3389/fcell.2022.817877] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation has been widely used as a potential treatment for a variety of diseases. However, the contradiction between the low survival rate of transplanted cells and the beneficial therapeutic effects has affected its clinical use. Lysosomes as organelles at the center of cellular recycling and metabolic signaling, play essential roles in MSC homeostasis. In the first part of this review, we summarize the role of lysosomal acidification dysfunction in MSC senescence. In the second part, we summarize some of the potential strategies targeting lysosomal proteins to enhance the therapeutic effect of MSCs.
Collapse
Affiliation(s)
- Weijun Zhang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinwu Bai
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Hang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianxiang Xu
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chengwei Zhou
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lijun Li
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongxiang Wang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yibo Wang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kanbin Wang
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Deting Xue
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Orthopaedics, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Deting Xue,
| |
Collapse
|
58
|
Increasing Inhibition of the Rat Brain 2-Oxoglutarate Dehydrogenase Decreases Glutathione Redox State, Elevating Anxiety and Perturbing Stress Adaptation. Pharmaceuticals (Basel) 2022; 15:ph15020182. [PMID: 35215295 PMCID: PMC8875720 DOI: 10.3390/ph15020182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/10/2022] Open
Abstract
Specific inhibitors of mitochondrial 2-oxoglutarate dehydrogenase (OGDH) are administered to animals to model the downregulation of the enzyme as observed in neurodegenerative diseases. Comparison of the effects of succinyl phosphonate (SP, 0.02 mmol/kg) and its uncharged precursor, triethyl succinyl phosphonate (TESP, 0.02 and 0.1 mmol/kg) reveals a biphasic response of the rat brain metabolism and physiology to increasing perturbation of OGDH function. At the low (TE)SP dose, glutamate, NAD+, and the activities of dehydrogenases of 2-oxoglutarate and malate increase, followed by their decreases at the high TESP dose. The complementary changes, i.e., an initial decrease followed by growth, are demonstrated by activities of pyruvate dehydrogenase and glutamine synthetase, and levels of oxidized glutathione and citrulline. While most of these indicators return to control levels at the high TESP dose, OGDH activity decreases and oxidized glutathione increases, compared to their control values. The first phase of metabolic perturbations does not cause significant physiological changes, but in the second phase, the ECG parameters and behavior reveal decreased adaptability and increased anxiety. Thus, lower levels of OGDH inhibition are compensated by the rearranged metabolic network, while the increased levels induce a metabolic switch to a lower redox state of the brain, associated with elevated stress of the animals.
Collapse
|
59
|
Effect of Low-Dose Ionizing Radiation on the Expression of Mitochondria-Related Genes in Human Mesenchymal Stem Cells. Int J Mol Sci 2021; 23:ijms23010261. [PMID: 35008689 PMCID: PMC8745621 DOI: 10.3390/ijms23010261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/16/2022] Open
Abstract
The concept of hormesis describes a phenomenon of adaptive response to low-dose ionizing radiation (LDIR). Similarly, the concept of mitohormesis states that the adaptive program in mitochondria is activated in response to minor stress effects. The mechanisms of hormesis effects are not clear, but it is assumed that they can be mediated by reactive oxygen species. Here, we studied effects of LDIR on mitochondria in mesenchymal stem cells. We have found that X-ray radiation at a dose of 10 cGy as well as oxidized fragments of cell-free DNA (cfDNA) at a concentration of 50 ng/mL resulted in an increased expression of a large number of genes regulating the function of the mitochondrial respiratory chain complexes in human mesenchymal stem cells (MSC). Several genes remained upregulated within hours after the exposure. Both X-ray radiation and oxidized cfDNA resulted in upregulation of FIS1 and MFN1 genes, which regulated fusion and fission of mitochondria, within 3-24 h after the exposure. Three hours after the exposure, the number of copies of mitochondrial DNA in cells had increased. These findings support the hypothesis that assumes oxidized cell-free DNA as a mediator of MSC response to low doses of radiation.
Collapse
|
60
|
Vays V, Vangely I, Eldarov C, Holtze S, Hildebrandt T, Bakeeva L, Skulachev V. Progressive reorganization of mitochondrial apparatus in aging skeletal muscle of naked mole rats (Heterocephalus glaber) as revealed by electron microscopy: potential role in continual maintenance of muscle activity. Aging (Albany NY) 2021; 13:24524-24541. [PMID: 34839281 PMCID: PMC8660618 DOI: 10.18632/aging.203720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022]
Abstract
The authors examined the ultrastructure of mitochondrial apparatus of skeletal muscles of naked mole rats (Heterocephalus glaber) from the age of 6 months to 11 years. The obtained results have demonstrated that the mitochondria in skeletal muscles of naked mole rats aged below 5 years is not well-developed and represented by few separate small mitochondria. Mitochondrial reticulum is absent. Starting from the age of 5 years, a powerful mitochondrial structure is developed. By the age of 11 years, it become obvious that the mitochondrial apparatus formed differs from that in the skeletal muscle of adult rats and mice, but resembles that of cardiomyocytes of rats or naked mole rats cardiomyocytes. From the age of 6 months to 11 years, percentage area of mitochondria in the skeletal muscle of naked mole rat is increasing by five times. The growth of mitochondria is mainly driven by increased number of organelles. Such significant growth of mitochondria is not associated with any abnormal changes in mitochondrial ultrastructure. We suppose that specific structure of mitochondrial apparatus developed in the skeletal muscle of naked mole rats by the age of 11 years is necessary for continual skeletal muscle activity of these small mammals burrowing very long holes in stony earth, resembling continual activity of heart muscle. In any case, ontogenesis of naked mole rat skeletal muscles is much slower than of rats and mice (one more example of neoteny).
Collapse
Affiliation(s)
- Valeriya Vays
- Lomonosov Moscow State University, Belozersky Research Institute of Physico-Chemical Biology, Moscow 119991, Russia
| | - Irina Vangely
- Lomonosov Moscow State University, Belozersky Research Institute of Physico-Chemical Biology, Moscow 119991, Russia
| | - Chupalav Eldarov
- Lomonosov Moscow State University, Belozersky Research Institute of Physico-Chemical Biology, Moscow 119991, Russia
| | - Susanne Holtze
- Department of Reproduction Management, Leibniz-Institute for Zoo and Wildlife Research, Berlin 10315, Germany
| | - Thomas Hildebrandt
- Department of Reproduction Management, Leibniz-Institute for Zoo and Wildlife Research, Berlin 10315, Germany
| | - Lora Bakeeva
- Lomonosov Moscow State University, Belozersky Research Institute of Physico-Chemical Biology, Moscow 119991, Russia
| | - Vladimir Skulachev
- Lomonosov Moscow State University, Belozersky Research Institute of Physico-Chemical Biology, Moscow 119991, Russia
| |
Collapse
|
61
|
Relevance of mitochondrial dysfunction in heart disease associated with insulin resistance conditions. Pflugers Arch 2021; 474:21-31. [PMID: 34807312 DOI: 10.1007/s00424-021-02638-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/27/2022]
Abstract
Insulin resistance plays a key role in the development and progression of obesity, diabetes, and their complications. Moreover, insulin resistance is considered the principal link between metabolic diseases and cardiovascular diseases. Heart disease associated with insulin resistance is one of the most important consequences of both obesity and diabetes, and it is characterized by impaired cardiac energetics, diastolic dysfunction, and finally heart failure. Mitochondrion plays a key role in cell energy homeostasis and is the main source of reactive oxygen species. Obesity and diabetes are associated with alterations in mitochondrial function and dynamics. Mitochondrial dysfunction is characterized by changes in mitochondrial respiratory chain with reduced ATP production and elevated reactive oxygen species production. These mitochondrial alterations together with inflammation contribute to the development and progression of heart disease under insulin resistance conditions. Finally, numerous miRNAs participate in the regulation of energy substrate metabolism, reactive oxygen species production, and apoptotic pathways within the mitochondria. This notion supports the relevance of interactions between miRNAs and mitochondrial dysfunction in the pathophysiology of metabolic heart disease.
Collapse
|
62
|
Mitochondria dynamics in the aged mice eye and the role in the RPE phagocytosis. Exp Eye Res 2021; 213:108800. [PMID: 34688622 DOI: 10.1016/j.exer.2021.108800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022]
Abstract
Aging is a predominant risk factor for various eye diseases. Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, and its etiology remains unclear. Fragmented and dysfunctional mitochondria are associated with age-related diseases. The retinal pigment epithelium (RPE), a polarized cell layer that functions in visual pigment recycling and degeneration, is suspected as the primary region site of AMD. In the present study, we investigated the relationship between mitochondrial dysfunction and RPE aging. Compared to young mice, aged pigmented mice (C57BL/6J, 12-month-old) exhibit decreased visual function without retinal thinning. Consistently, the rhodopsin expression level decreased in the outer segment of aged mice. Moreover, the cell volume of the RPE increased in aged animals. Interestingly, the expression of mitochondria dynamics-related proteins, including Drp1, was altered in the RPE-choroid complex but not in the neural retina after aging. Electron microscopy revealed that mitochondrial size decreased and cristae width increased in aged RPE. The photoreceptor outer segment (POS) treatment of ARPE-19 cells causes Drp1 activation. Furthermore, pharmacological suppression of mitochondrial fission improved the phagocytosis of the POS. These findings indicate that mitochondrial dysfunction and fission in RPE impede phagocytosis and cause retardation of the visual cycle, which can be one of the age-related defects in the retina that may contribute to the onset of AMD.
Collapse
|
63
|
Morganti C, Ito K. Mitochondrial Contributions to Hematopoietic Stem Cell Aging. Int J Mol Sci 2021; 22:11117. [PMID: 34681777 PMCID: PMC8537916 DOI: 10.3390/ijms222011117] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction and stem cell exhaustion are two hallmarks of aging. In the hematopoietic system, aging is linked to imbalanced immune response and reduced regenerative capacity in hematopoietic stem cells (HSCs), as well as an increased predisposition to a spectrum of diseases, including myelodysplastic syndrome and acute myeloid leukemia. Myeloid-biased differentiation and loss of polarity are distinct features of aged HSCs, which generally exhibit enhanced mitochondrial oxidative phosphorylation and increased production of reactive oxygen species (ROS), suggesting a direct role for mitochondria in the degenerative process. Here, we provide an overview of current knowledge of the mitochondrial mechanisms that contribute to age-related phenotypes in HSCs. These include mitochondrial ROS production, alteration/activation of mitochondrial metabolism, the quality control pathway of mitochondria, and inflammation. Greater understanding of the key machineries of HSC aging will allow us to identify new therapeutic targets for preventing, delaying, or even reversing aspects of this process.
Collapse
Affiliation(s)
- Claudia Morganti
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
- Departments of Cell Biology and Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
- Departments of Cell Biology and Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
64
|
Abstract
Mitochondrial DNA (mtDNA) is present in multiple copies in human cells. We evaluated cross-sectional associations of whole blood mtDNA copy number (CN) with several cardiometabolic disease traits in 408,361 participants of multiple ancestries in TOPMed and UK Biobank. Age showed a threshold association with mtDNA CN: among younger participants (<65 years of age), each additional 10 years of age was associated with 0.03 standard deviation (s.d.) higher level of mtDNA CN (P = 0.0014) versus a 0.14 s.d. lower level of mtDNA CN (P = 1.82 × 10-13) among older participants (≥65 years). At lower mtDNA CN levels, we found age-independent associations with increased odds of obesity (P = 5.6 × 10-238), hypertension (P = 2.8 × 10-50), diabetes (P = 3.6 × 10-7), and hyperlipidemia (P = 6.3 × 10-5). The observed decline in mtDNA CN after 65 years of age may be a key to understanding age-related diseases.
Collapse
|
65
|
Cellular senescence-an aging hallmark in chronic obstructive pulmonary disease pathogenesis. Respir Investig 2021; 60:33-44. [PMID: 34649812 DOI: 10.1016/j.resinv.2021.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/12/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Chronic obstructive pulmonary disease (COPD),1 a representative aging-related pulmonary disorder, is mainly caused by cigarette smoke (CS) exposure. Age is one of the most important risk factors for COPD development, and increased cellular senescence in tissues and organs is a component of aging. CS exposure can induce cellular senescence, as characterized by irreversible growth arrest and aberrant cytokine secretion of the senescence-associated secretory phenotype; thus, accumulation of senescent cells is widely implicated in COPD pathogenesis. CS-induced oxidative modifications to cellular components may be causally linked to accelerated cellular senescence, especially during accumulation of damaged macromolecules. Autophagy is a conserved mechanism whereby cytoplasmic components are sent for lysosomal degradation to maintain proteostasis. Autophagy diminishes with age, and loss of proteostasis is one of the hallmarks of aging. We have reported the involvement of insufficient autophagy in regulating CS-induced cellular senescence with respect to COPD pathogenesis. However, the role of autophagy in COPD pathogenesis can vary based on levels of cell stress and type of selective autophagy because excessive activation of autophagy can be responsible for inducing regulated cell death. Senotherapies targeting cellular senescence may be effective COPD treatments. Autophagy activation could be a promising sonotherapeutic approach, but the optimal modality of autophagy activation should be examined in future studies.
Collapse
|
66
|
Influence of Age and Breed on Bovine Ovarian Capillary Blood Supply, Ovarian Mitochondria and Telomere Length. Cells 2021; 10:cells10102661. [PMID: 34685641 PMCID: PMC8534105 DOI: 10.3390/cells10102661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/18/2022] Open
Abstract
Worldwide, dairy cows of the type of high-producing cattle (HPC) suffer from health and fertility problems at a young age and therefore lose productivity after an average of only three lactations. It is still contentious whether these problems are primarily due to genetics, management, feeding or other factors. Vascularization plays a fundamental role in the cyclic processes of reproductive organs, as well as in the regeneration of tissues. In a previous study, HPC were shown to have a greater ovarian corpus luteum vascularization compared to dual-purpose breeds. We hypothesize that this activated angiogenesis could likely lead to an early exhaustion of HPC′s regenerative capacity and thus to premature reproductive senescence. The objective of this study was to investigate if a HPC breed (Holstein-Friesian, HF) exhibits higher ovarian angiogenesis than a dual-purpose breed (Polish Red cow, PR) and if this is related to early ovarian aging and finally reproductive failure. For this purpose, we assessed the degree of vascularization by means of ovarian blood vessel characterization using light microscopy. As indicators for aging, we measured ovarian mitochondrial size and telomere length in peripheral leukocytes. We report in this study that in both breeds the distance between capillaries became smaller with increasing age and that the mean telomere length decreased with increasing age. The only difference between the two breeds was that PR developed larger capillaries than HF. Neither a relationship between telomere length, nor the morphology of the mitochondrial apparatus and nor angiogenesis in HF was proven. Although the data trends indicated that the proportion of shortened telomeres in HF was higher than in the PR, no significant difference between the two breeds was detected.
Collapse
|
67
|
Audzeyenka I, Rachubik P, Typiak M, Kulesza T, Topolewska A, Rogacka D, Angielski S, Saleem MA, Piwkowska A. Hyperglycemia alters mitochondrial respiration efficiency and mitophagy in human podocytes. Exp Cell Res 2021; 407:112758. [PMID: 34437881 DOI: 10.1016/j.yexcr.2021.112758] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022]
Abstract
Podocytes constitute the outer layer of the renal glomerular filtration barrier. Their energy requirements strongly depend on efficient oxidative respiration, which is tightly connected with mitochondrial dynamics. We hypothesized that hyperglycemia modulates energy metabolism in glomeruli and podocytes and contributes to the development of diabetic kidney disease. We found that oxygen consumption rates were severely reduced in glomeruli from diabetic rats and in human podocytes that were cultured in high glucose concentration (30 mM; HG). In these models, all of the mitochondrial respiratory parameters, including basal and maximal respiration, ATP production, and spare respiratory capacity, were significantly decreased. Podocytes that were treated with HG showed a fragmented mitochondrial network, together with a decrease in expression of the mitochondrial fusion markers MFN1, MFN2, and OPA1, and an increase in the activity of the fission marker DRP1. We showed that markers of mitochondrial biogenesis, such as PGC-1α and TFAM, decreased in HG-treated podocytes. Moreover, PINK1/parkin-dependent mitophagy was inhibited in these cells. These results provide evidence that hyperglycemia impairs mitochondrial dynamics and turnover, which may underlie the remarkable deterioration of mitochondrial respiration parameters in glomeruli and podocytes.
Collapse
Affiliation(s)
- Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza St. 63, 80-308, Gdansk, Poland.
| | - Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland
| | - Marlena Typiak
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland
| | - Tomasz Kulesza
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland
| | - Anna Topolewska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza St. 63, 80-308, Gdansk, Poland
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza St. 63, 80-308, Gdansk, Poland
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland
| | - Moin A Saleem
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza St. 63, 80-308, Gdansk, Poland; Faculty of Chemistry, University of Gdansk, Wita Stwosza St. 63, 80-308, Gdansk, Poland
| |
Collapse
|
68
|
Iwata H. Resveratrol enhanced mitochondrial recovery from cryopreservation-induced damages in oocytes and embryos. Reprod Med Biol 2021; 20:419-426. [PMID: 34646069 PMCID: PMC8499604 DOI: 10.1002/rmb2.12401] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Mitochondria play a crucial role in nuclear maturation, fertilization, and subsequent embryo development. Cryopreservation is an important assisted reproductive technology that is used worldwide for humans and domestic animals. Although mitochondrial quantity and quality are decisive factors for successful development of oocytes and embryos, cryopreservation induces mitochondrial dysfunction. Upon thawing, the damaged mitochondria are removed, and de novo synthesis occurs to restore the function of mitochondria. Resveratrol, 3,5,4'-trihydroxystilbene, is a polyphenolic antioxidant that has versatile target proteins, among which sirtuin-1 (SIRT1) is a key regulator of in mitochondrial biogenesis and degradation. METHODS The present study is a literature review focusing on experiments involving the hypothesis that the activation of mitochondrial biogenesis and degradation following cryopreservation and warming by resveratrol may help mitochondrial recovery and improve oocyte and embryo development. MAIN FINDINGS AND CONCLUSION Resveratrol improves oocyte maturation and development and upregulates mitochondrial biogenesis and degradation. When vitrified-warmed embryos are treated with resveratrol, it helps in mitochondrial regulation and recovery of embryos from cryopreservation-induced damage. CONCLUSION Resveratrol treatment is a possible countermeasure against cryopreservation-induced mitochondrial damage.
Collapse
|
69
|
Abstract
This review focuses on the human pancreatic islet-including its structure, cell composition, development, function, and dysfunction. After providing a historical timeline of key discoveries about human islets over the past century, we describe new research approaches and technologies that are being used to study human islets and how these are providing insight into human islet physiology and pathophysiology. We also describe changes or adaptations in human islets in response to physiologic challenges such as pregnancy, aging, and insulin resistance and discuss islet changes in human diabetes of many forms. We outline current and future interventions being developed to protect, restore, or replace human islets. The review also highlights unresolved questions about human islets and proposes areas where additional research on human islets is needed.
Collapse
Affiliation(s)
- John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Diane C Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marcela Brissova
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
70
|
Le Pelletier L, Mantecon M, Gorwood J, Auclair M, Foresti R, Motterlini R, Laforge M, Atlan M, Fève B, Capeau J, Lagathu C, Bereziat V. Metformin alleviates stress-induced cellular senescence of aging human adipose stromal cells and the ensuing adipocyte dysfunction. eLife 2021; 10:62635. [PMID: 34544550 PMCID: PMC8526089 DOI: 10.7554/elife.62635] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/03/2021] [Indexed: 01/09/2023] Open
Abstract
Aging is associated with central fat redistribution and insulin resistance. To identify age-related adipose features, we evaluated the senescence and adipogenic potential of adipose-derived stromal cells (ASCs) from abdominal subcutaneous fat obtained from healthy normal-weight young (<25 years) or older women (>60 years). Increased cell passages of young-donor ASCs (in vitro aging) resulted in senescence but not oxidative stress. ASC-derived adipocytes presented impaired adipogenesis but no early mitochondrial dysfunction. Conversely, aged-donor ASCs at early passages displayed oxidative stress and mild senescence. ASC-derived adipocytes exhibited oxidative stress, and early mitochondrial dysfunction but adipogenesis was preserved. In vitro aging of aged-donor ASCs resulted in further increased senescence, mitochondrial dysfunction, oxidative stress, and severe adipocyte dysfunction. When in vitro aged young-donor ASCs were treated with metformin, no alteration was alleviated. Conversely, metformin treatment of aged-donor ASCs decreased oxidative stress and mitochondrial dysfunction resulting in decreased senescence. Metformin's prevention of oxidative stress and of the resulting senescence improved the cells' adipogenic capacity and insulin sensitivity. This effect was mediated by the activation of AMP-activated protein kinase as revealed by its specific inhibition and activation. Overall, aging ASC-derived adipocytes presented impaired adipogenesis and insulin sensitivity. Targeting stress-induced senescence of ASCs with metformin may improve age-related adipose tissue dysfunction.
Collapse
Affiliation(s)
- Laura Le Pelletier
- Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Matthieu Mantecon
- Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Jennifer Gorwood
- Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Martine Auclair
- Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | | | | | - Mireille Laforge
- CNRS, INSERM UMRS_1124, Faculté des sciences fondamentales et biomédicales, Université de Paris, Paris, France
| | - Michael Atlan
- AP-HP, Tenon Hospital, Department of Plastic Surgery, Paris, France
| | - Bruno Fève
- AP-HP, Saint-Antoine Hospital, Department of Endocrinology, PRISIS, Paris, France
| | - Jacqueline Capeau
- Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Claire Lagathu
- Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Veronique Bereziat
- Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| |
Collapse
|
71
|
Ding YQ, Zhang YH, Lu J, Li B, Yu WJ, Yue ZB, Hu YH, Wang PX, Li JY, Cai SD, Ye JT, Liu PQ. MicroRNA-214 contributes to Ang II-induced cardiac hypertrophy by targeting SIRT3 to provoke mitochondrial malfunction. Acta Pharmacol Sin 2021; 42:1422-1436. [PMID: 33247214 PMCID: PMC8379271 DOI: 10.1038/s41401-020-00563-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022]
Abstract
Reduction of expression and activity of sirtuin 3 (SIRT3) contributes to the pathogenesis of cardiomyopathy via inducing mitochondrial injury and energy metabolism disorder. However, development of effective ways and agents to modulate SIRT3 remains a big challenge. In this study we explored the upstream suppressor of SIRT3 in angiotensin II (Ang II)-induced cardiac hypertrophy in mice. We first found that SIRT3 deficiency exacerbated Ang II-induced cardiac hypertrophy, and resulted in the development of spontaneous heart failure. Since miRNAs play crucial roles in the pathogenesis of cardiac hypertrophy, we performed miRNA sequencing on myocardium tissues from Ang II-infused Sirt3-/- and wild type mice, and identified microRNA-214 (miR-214) was significantly up-regulated in Ang II-infused mice. Similar results were also obtained in Ang II-treated neonatal mouse cardiomyocytes (NMCMs). Using dual-luciferase reporter assay we demonstrated that SIRT3 was a direct target of miR-214. Overexpression of miR-214 in vitro and in vivo decreased the expression of SIRT3, which resulted in extensive mitochondrial damages, thereby facilitating the onset of hypertrophy. In contrast, knockdown of miR-214 counteracted Ang II-induced detrimental effects via restoring SIRT3, and ameliorated mitochondrial morphology and respiratory activity. Collectively, these results demonstrate that miR-214 participates in Ang II-induced cardiac hypertrophy by directly suppressing SIRT3, and subsequently leading to mitochondrial malfunction, suggesting the potential of miR-214 as a promising intervention target for antihypertrophic therapy.
Collapse
Affiliation(s)
- Yan-Qing Ding
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yu-Hong Zhang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing Lu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bai Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Wen-Jing Yu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhong-Bao Yue
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yue-Huai Hu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Pan-Xia Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing-Yan Li
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Si-Dong Cai
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jian-Tao Ye
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Pei-Qing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
72
|
Mitochondrial Dysfunction in Diseases, Longevity, and Treatment Resistance: Tuning Mitochondria Function as a Therapeutic Strategy. Genes (Basel) 2021; 12:genes12091348. [PMID: 34573330 PMCID: PMC8467098 DOI: 10.3390/genes12091348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are very important intracellular organelles because they have various functions. They produce ATP, are involved in cell signaling and cell death, and are a major source of reactive oxygen species (ROS). Mitochondria have their own DNA (mtDNA) and mutation of mtDNA or change the mtDNA copy numbers leads to disease, cancer chemo/radioresistance and aging including longevity. In this review, we discuss the mtDNA mutation, mitochondrial disease, longevity, and importance of mitochondrial dysfunction in cancer first. In the later part, we particularly focus on the role in cancer resistance and the mitochondrial condition such as mtDNA copy number, mitochondrial membrane potential, ROS levels, and ATP production. We suggest a therapeutic strategy employing mitochondrial transplantation (mtTP) for treatment-resistant cancer.
Collapse
|
73
|
Bartho LA, O'Callaghan JL, Fisher JJ, Cuffe JSM, Kaitu'u-Lino TJ, Hannan NJ, Clifton VL, Perkins AV. Analysis of mitochondrial regulatory transcripts in publicly available datasets with validation in placentae from pre-term, post-term and fetal growth restriction pregnancies. Placenta 2021; 112:162-171. [PMID: 34364121 DOI: 10.1016/j.placenta.2021.07.303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The human placenta has a defined lifespan and placental aging is a key feature as pregnancy progresses. Placental aging and mitochondrial dysfunction are known to play a key role in pregnancy pathophysiology. Premature aging of the placenta has also been linked with placental dysfunction resulting in poor fetal development and premature birth. METHODS The expression of key mitochondrial-related genes were analysed in a series of publicly available databases then expression changes were validated in placental samples collected from term, pre-term, post-term pregnancies and pregnancies complicated by fetal growth restriction (FGR). Gene and protein expression levels of MFN1, MFN2, TFAM, TOMM20, OPA3 and SIRT4 were measured in placental tissues via qPCR and western blotting. RESULTS Initial analysis found that key mitochondrial transcripts related to biogenesis, bioenergetics and mitophagy clustered by pregnancy trimester. A refined list of 13 mitochondrial-related genes were investigated in additional external datasets of pregnancy complications. In the new cohort, protein expression of MFN1 was decreased in FGR and MFN2 is decreased in post-term placenta. Analysis of placental tissues revealed that TOMM20 gene and protein expression was altered in FGR and post-term placenta. DISCUSSION MFN1 and MFN2 play a major role in mitochondrial dynamics, and alterations in these markers have been highlighted in early unexplained miscarriage. TOMM20 is an importer protein that plays a major role in mitophagy and changes have also been identified in age-related diseases. Significant changes in MFN1, MFN2 and TOMM20 indicate that mitochondrial regulators play a critical role in placental aging and placental pathophysiology.
Collapse
Affiliation(s)
- Lucy A Bartho
- School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Jessica L O'Callaghan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld, Australia
| | - Joshua J Fisher
- Hunter Medical Research Institute and School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - James S M Cuffe
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Translational Obstetrics Group, Dept of Obstetrics and Gynaecology University of Melbourne, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Natalie J Hannan
- Translational Obstetrics Group, Dept of Obstetrics and Gynaecology University of Melbourne, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Vicki L Clifton
- Pregnancy and Development Group, Mater Research, Translational Research Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Anthony V Perkins
- School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Southport, Queensland, Australia.
| |
Collapse
|
74
|
Mitochondrial Modulations, Autophagy Pathways Shifts in Viral Infections: Consequences of COVID-19. Int J Mol Sci 2021; 22:ijms22158180. [PMID: 34360945 PMCID: PMC8347486 DOI: 10.3390/ijms22158180] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 01/05/2023] Open
Abstract
Mitochondria are vital intracellular organelles that play an important role in regulating various intracellular events such as metabolism, bioenergetics, cell death (apoptosis), and innate immune signaling. Mitochondrial fission, fusion, and membrane potential play a central role in maintaining mitochondrial dynamics and the overall shape of mitochondria. Viruses change the dynamics of the mitochondria by altering the mitochondrial processes/functions, such as autophagy, mitophagy, and enzymes involved in metabolism. In addition, viruses decrease the supply of energy to the mitochondria in the form of ATP, causing viruses to create cellular stress by generating ROS in mitochondria to instigate viral proliferation, a process which causes both intra- and extra-mitochondrial damage. SARS-COV2 propagates through altering or changing various pathways, such as autophagy, UPR stress, MPTP and NLRP3 inflammasome. Thus, these pathways act as potential targets for viruses to facilitate their proliferation. Autophagy plays an essential role in SARS-COV2-mediated COVID-19 and modulates autophagy by using various drugs that act on potential targets of the virus to inhibit and treat viral infection. Modulated autophagy inhibits coronavirus replication; thus, it becomes a promising target for anti-coronaviral therapy. This review gives immense knowledge about the infections, mitochondrial modulations, and therapeutic targets of viruses.
Collapse
|
75
|
Chang HH, Lin IC, Wu CW, Hung CY, Liu WC, Wu CY, Cheng CL, Wu KLH. High fructose induced osteogenic differentiation of human valve interstitial cells via activating PI3K/AKT/mitochondria signaling. Biomed J 2021; 45:491-503. [PMID: 34229104 PMCID: PMC9421924 DOI: 10.1016/j.bj.2021.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 06/01/2021] [Accepted: 06/29/2021] [Indexed: 01/01/2023] Open
Abstract
Background Aortic valve stenosis (AS) is a common, lethal cardiovascular disease. There is no cure except the valve replacement at last stage. Therefore, an understanding of the detail mechanism is imperative to prevent and intervene AS. Metabolic syndrome (MetS) is one of the major risk factors of AS whereas fructose overconsuming tops the list of MetS risk factors. However, whether the fructose under physiological level induces AS is currently unknown. Methods The human valve interstitial cells (hVICs), a crucial source to develop calcification, were co-incubated with fructose at 2 or 20 mM to mimic the serum fructose at fasting or post-fructose consumption, respectively, for 24 h. The cell proliferation was evaluated by WST-1 assays. The expressions of osteogenic and fibrotic proteins, PI3K/AKT signaling, insulin receptor substrate 1 and mitochondrial dynamic proteins were detected by Western blot analyses. The mitochondrial oxidative phosphorylation (OXPHOS) was examined by Seahorse analyzer. Results hVICs proliferation was significantly suppressed by 20 mM fructose. The expressions of alkaline phosphatase (ALP) and osteocalcin were enhanced concurrent with the upregulated PI3K p85, AKT, phospho(p)S473-AKT, and pS636-insulin receptor substrate 1 (p-IRS-1) by high fructose. Moreover, ATP production capacity and maximal respiratory capacity were enhanced in the high fructose groups. Synchronically, the expressions of mitochondrial fission 1 and optic atrophy type 1 were increased. Conclusions These results suggested that high fructose stimulated the osteogenic differentiation of hVICs via the activation of PI3K/AKT/mitochondria signaling at the early stage. These results implied that high fructose at physiological level might have a direct, hazard effect on the progression of AS.
Collapse
Affiliation(s)
- Hsiao-Huang Chang
- Department of Surgery, School of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - I-Chun Lin
- Department of Pediatrics, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Wei Wu
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan; Department of Accounting and Information System, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan; Department of Counseling, National Chiayi University, Chiayi, Taiwan
| | - Chun-Ying Hung
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan
| | - Wen-Chung Liu
- Plastic Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Cai-Yi Wu
- Plastic Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ching-Li Cheng
- Department of Nursing, National Tainan Institute of Nursing, Tainan, Taiwan.
| | - Kay L H Wu
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan; Department of Senior Citizen Services, National Tainan Institute of Nursing, Tainan, Taiwan.
| |
Collapse
|
76
|
Ali Pour P, Hosseinian S, Kheradvar A. Mitochondrial transplantation in cardiomyocytes: foundation, methods, and outcomes. Am J Physiol Cell Physiol 2021; 321:C489-C503. [PMID: 34191626 DOI: 10.1152/ajpcell.00152.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial transplantation is emerging as a novel cellular biotherapy to alleviate mitochondrial damage and dysfunction. Mitochondria play a crucial role in establishing cellular homeostasis and providing cell with the energy necessary to accomplish its function. Owing to its endosymbiotic origin, mitochondria share many features with their bacterial ancestors. Unlike the nuclear DNA, which is packaged into nucleosomes and protected from adverse environmental effects, mitochondrial DNA are more prone to harsh environmental effects, in particular that of the reactive oxygen species. Mitochondrial damage and dysfunction are implicated in many diseases ranging from metabolic diseases to cardiovascular and neurodegenerative diseases, among others. While it was once thought that transplantation of mitochondria would not be possible due to their semiautonomous nature and reliance on the nucleus, recent advances have shown that it is possible to transplant viable functional intact mitochondria from autologous, allogenic, and xenogeneic sources into different cell types. Moreover, current research suggests that the transplantation could positively modulate bioenergetics and improve disease outcome. Mitochondrial transplantation techniques and consequences of transplantation in cardiomyocytes are the theme of this review. We outline the different mitochondrial isolation and transfer techniques. Finally, we detail the consequences of mitochondrial transplantation in the cardiovascular system, more specifically in the context of cardiomyopathies and ischemia.
Collapse
Affiliation(s)
- Paria Ali Pour
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, Irvine, California.,Department of Biomedical Engineering, University of California, Irvine, California
| | - Sina Hosseinian
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, Irvine, California.,School of Medicine, University of California, Irvine, California
| | - Arash Kheradvar
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, Irvine, California.,Department of Biomedical Engineering, University of California, Irvine, California.,School of Medicine, University of California, Irvine, California
| |
Collapse
|
77
|
Reproductive Effects of Nicotinamide on Testicular Function and Structure in Old Male Rats: Oxidative, Apoptotic, Hormonal, and Morphological Analyses. Reprod Sci 2021; 28:3352-3360. [PMID: 34101148 DOI: 10.1007/s43032-021-00647-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 05/30/2021] [Indexed: 12/16/2022]
Abstract
Aging is a natural process in which morphological and functional abnormalities in living organisms increase irreversibly. Nicotinamide (NAM) acts both as a precursor of many metabolites and as a cofactor of many enzymes involved in cell energy metabolism, homeostasis of redox balance, and regulation of signaling pathways. In this study, we investigated the effects of NAM treatment on morphological and biochemical changes in testis of old rats. The rats were treated with 200, 400, and 800 mg/kg NAM doses as a gavage for 1 month. As a result, we determined the dose-dependent therapeutic effects of NAM on testicular tissues of aged rats. We found that NAM treatment decreased total oxidant status (TOS), caspase 3 (CASP3) and cytochrome c (CYC) levels and increased total antioxidant status (TAS), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone levels (P<0.05). NAM treatment significantly reduced the age-related histopathological parameters such as cellular loss, necrotic tissue, interstitial edema, tubular damage, and vascular congestion in aged rat testicular tissue compared to the control group. Moreover, based on histomorphological analysis, we detected that NAM treatment resulted in a dose-dependent improvement in testicular tissue damage of old rats. Consequently, the results showed that the reproductive decline caused by aging could be ameliorated with NAM treatment.
Collapse
|
78
|
Di Tomo P, Alessio N, Falone S, Pietrangelo L, Lanuti P, Cordone V, Santini SJ, Di Pietrantonio N, Marchisio M, Protasi F, Di Pietro N, Formoso G, Amicarelli F, Galderisi U, Pandolfi A. Endothelial cells from umbilical cord of women affected by gestational diabetes: A suitable in vitro model to study mechanisms of early vascular senescence in diabetes. FASEB J 2021; 35:e21662. [PMID: 34046935 DOI: 10.1096/fj.202002072rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022]
Abstract
Human umbilical cord endothelial cells (HUVECs) obtained from women affected by gestational diabetes (GD-HUVECs) display durable pro-atherogenic modifications and might be considered a valid in vitro model for studying chronic hyperglycemia effects on early endothelial senescence. Here, we demonstrated that GD- compared to C-HUVECs (controls) exhibited oxidative stress, altered both mitochondrial membrane potential and antioxidant response, significant increase of senescent cells characterized by a reduced NAD-dependent deacetylase sirtuin-1 (SIRT1) activity together with an increase in cyclin-dependent kinase inhibitor-2A (P16), cyclin-dependent kinase inhibitor-1 (P21), and tumor protein p53 (P53) acetylation. This was associated with the p300 activation, and its silencing significantly reduced the GD-HUVECs increased protein levels of P300 and Ac-P53 thus indicating a persistent endothelial senescence via SIRT1/P300/P53/P21 pathway. Overall, our data suggest that GD-HUVECs can represent an "endothelial hyperglycemic memory" model to investigate in vitro the early endothelium senescence in cells chronically exposed to hyperglycemia in vivo.
Collapse
Affiliation(s)
- Pamela Di Tomo
- Department of Medical and Oral Sciences and Biotechnologies, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, University of Campania "L. Vanvitelli", Napoli, Italy
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Laura Pietrangelo
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Paola Lanuti
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Valeria Cordone
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Silvano Junior Santini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Nadia Di Pietrantonio
- Department of Medical and Oral Sciences and Biotechnologies, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Marco Marchisio
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Feliciano Protasi
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Natalia Di Pietro
- Department of Medical and Oral Sciences and Biotechnologies, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Gloria Formoso
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, University of Campania "L. Vanvitelli", Napoli, Italy
| | - Assunta Pandolfi
- Department of Medical and Oral Sciences and Biotechnologies, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology - CAST (ex CeSI-MeT), University "G. d'Annunzio" of Chieti-Pescara, Italy
| |
Collapse
|
79
|
Yako T, Nakamura M, Nakamura S, Hara H, Shimazawa M. Pharmacological inhibition of mitochondrial fission attenuates oxidative stress-induced damage of retinal pigmented epithelial cells. J Pharmacol Sci 2021; 146:149-159. [PMID: 34030797 DOI: 10.1016/j.jphs.2021.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 03/15/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria maintain their function by the process of mitochondrial dynamics, which involves repeated fusion and fission. It is thought that the failure of mitochondrial dynamics, especially excessive fission, is related to the progression of several diseases. A previous study demonstrated that mitochondrial fragmentation occurs in the retinal pigmented epithelial (RPE) cells of patients with non-exudative age-related macular degeneration (AMD). We predicted that the suppression of mitochondrial fragmentation offers a novel therapeutic strategy for non-exudative AMD. We investigated whether the inhibition of mitochondrial fission was effective against the oxidative stress-induced damage of ARPE-19 cells. The treatment of ARPE-19 cells with H2O2 caused mitochondrial fragmentation, but treatment with mitochondrial division inhibitor 1 (Mdivi-1) suppressed fragmentation. Additionally, Mdivi-1 protected ARPE-19 cells against H2O2-induced damage, and suppressed the release of cytochrome c from the mitochondria. Mitochondrial function was evaluated by staining with JC-1 and measuring the production of reactive oxygen species (ROS), which revealed that mitochondrial function improved in the Mdivi-1-treated group. These findings indicated that the inhibition of mitochondrial fission would be a novel therapeutic target for non-exudative AMD.
Collapse
Affiliation(s)
- Tomohiro Yako
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Maho Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
80
|
Abstract
Mitochondria are multifunctional organelles that not only produce energy for the cell, but are also important for cell signalling, apoptosis and many biosynthetic pathways. In most cell types, they form highly dynamic networks that are constantly remodelled through fission and fusion events, repositioned by motor-dependent transport and degraded when they become dysfunctional. Motor proteins and their tracks are key regulators of mitochondrial homeostasis, and in this Review, we discuss the diverse functions of the three classes of motor proteins associated with mitochondria - the actin-based myosins, as well as the microtubule-based kinesins and dynein. In addition, Miro and TRAK proteins act as adaptors that link kinesin-1 and dynein, as well as myosin of class XIX (MYO19), to mitochondria and coordinate microtubule- and actin-based motor activities. Here, we highlight the roles of motor proteins and motor-linked track dynamics in the transporting and docking of mitochondria, and emphasize their adaptations in specialized cells. Finally, we discuss how motor-cargo complexes mediate changes in mitochondrial morphology through fission and fusion, and how they modulate the turnover of damaged organelles via quality control pathways, such as mitophagy. Understanding the importance of motor proteins for mitochondrial homeostasis will help to elucidate the molecular basis of a number of human diseases.
Collapse
Affiliation(s)
- Antonina J Kruppa
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Folma Buss
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
81
|
Rossman MJ, Gioscia-Ryan RA, Santos-Parker JR, Ziemba BP, Lubieniecki KL, Johnson LC, Poliektov NE, Bispham NZ, Woodward KA, Nagy EE, Bryan NS, Reisz JA, D'Alessandro A, Chonchol M, Sindler AL, Seals DR. Inorganic Nitrite Supplementation Improves Endothelial Function With Aging: Translational Evidence for Suppression of Mitochondria-Derived Oxidative Stress. Hypertension 2021; 77:1212-1222. [PMID: 33641356 DOI: 10.1161/hypertensionaha.120.16175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, CO (M.J.R., R.A.G.-R., J.R.S.-P., B.P.Z., K.L.L., L.C.J., N.E.P., N.Z.B., K.A.W., E.E.N., A.L.S., D.R.S.)
| | - Rachel A Gioscia-Ryan
- Department of Integrative Physiology, University of Colorado Boulder, CO (M.J.R., R.A.G.-R., J.R.S.-P., B.P.Z., K.L.L., L.C.J., N.E.P., N.Z.B., K.A.W., E.E.N., A.L.S., D.R.S.)
| | - Jessica R Santos-Parker
- Department of Integrative Physiology, University of Colorado Boulder, CO (M.J.R., R.A.G.-R., J.R.S.-P., B.P.Z., K.L.L., L.C.J., N.E.P., N.Z.B., K.A.W., E.E.N., A.L.S., D.R.S.)
| | - Brian P Ziemba
- Department of Integrative Physiology, University of Colorado Boulder, CO (M.J.R., R.A.G.-R., J.R.S.-P., B.P.Z., K.L.L., L.C.J., N.E.P., N.Z.B., K.A.W., E.E.N., A.L.S., D.R.S.)
| | - Kara L Lubieniecki
- Department of Integrative Physiology, University of Colorado Boulder, CO (M.J.R., R.A.G.-R., J.R.S.-P., B.P.Z., K.L.L., L.C.J., N.E.P., N.Z.B., K.A.W., E.E.N., A.L.S., D.R.S.)
| | - Lawrence C Johnson
- Department of Integrative Physiology, University of Colorado Boulder, CO (M.J.R., R.A.G.-R., J.R.S.-P., B.P.Z., K.L.L., L.C.J., N.E.P., N.Z.B., K.A.W., E.E.N., A.L.S., D.R.S.)
| | - Natalie E Poliektov
- Department of Integrative Physiology, University of Colorado Boulder, CO (M.J.R., R.A.G.-R., J.R.S.-P., B.P.Z., K.L.L., L.C.J., N.E.P., N.Z.B., K.A.W., E.E.N., A.L.S., D.R.S.)
| | - Nina Z Bispham
- Department of Integrative Physiology, University of Colorado Boulder, CO (M.J.R., R.A.G.-R., J.R.S.-P., B.P.Z., K.L.L., L.C.J., N.E.P., N.Z.B., K.A.W., E.E.N., A.L.S., D.R.S.)
| | - Kayla A Woodward
- Department of Integrative Physiology, University of Colorado Boulder, CO (M.J.R., R.A.G.-R., J.R.S.-P., B.P.Z., K.L.L., L.C.J., N.E.P., N.Z.B., K.A.W., E.E.N., A.L.S., D.R.S.)
| | - Erzsebet E Nagy
- Department of Integrative Physiology, University of Colorado Boulder, CO (M.J.R., R.A.G.-R., J.R.S.-P., B.P.Z., K.L.L., L.C.J., N.E.P., N.Z.B., K.A.W., E.E.N., A.L.S., D.R.S.)
| | | | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics (J.A.R., A.D.), University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics (J.A.R., A.D.), University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Michel Chonchol
- Department of Medicine, Division of Renal Diseases and Hypertension (M.C.), University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Amy L Sindler
- Department of Integrative Physiology, University of Colorado Boulder, CO (M.J.R., R.A.G.-R., J.R.S.-P., B.P.Z., K.L.L., L.C.J., N.E.P., N.Z.B., K.A.W., E.E.N., A.L.S., D.R.S.)
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, CO (M.J.R., R.A.G.-R., J.R.S.-P., B.P.Z., K.L.L., L.C.J., N.E.P., N.Z.B., K.A.W., E.E.N., A.L.S., D.R.S.)
| |
Collapse
|
82
|
Qiu YY, Zhang HS, Tang Y, Liu FY, Pang JQ, Zhang XY, Xiong H, Liang YS, Zhao HY, Chen SJ. Mitochondrial dysfunction resulting from the down-regulation of bone morphogenetic protein 5 may cause microtia. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:418. [PMID: 33842639 PMCID: PMC8033356 DOI: 10.21037/atm-21-831] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Bone morphogenetic protein 5 (BMP5) has been identified as one of the important risk factors for microtia; however, the link between them has yet to be clarified. In this study, we aimed to demonstrate the relationship of BMP5 with mitochondrial function and investigate the specific role of mitochondria in regulating microtia development. Methods BMP5 expression was measured in auricular cartilage tissues from patients with and without microtia. The effects of BMP5 knockdown on cellular function and mitochondrial function were also analyzed in vitro. Changes in genome-wide expression profiles were measured in BMP5-knockdown cells. Finally, the specific impact of BMP5 down-regulation on mitochondrial fat oxidation was analyzed in vitro. Results BMP5 expression was down-regulated in the auricular cartilage tissues of microtia patients. BMP5 down-regulation inhibited various cellular functions in vitro, including cell proliferation, mobility, and cytoactivity. The functional integrity of mitochondria was also damaged, accompanied by a decrease in mitochondrial membrane potential, reactive oxygen species (ROS) neutralization, and reduced adenosine triphosphate (ATP) production. Carnitine O-palmitoyltransferase 2 and diacylglycerol acyltransferase 2, two of the key regulators of mitochondrial lipid oxidation, were also found to be decreased by BMP5 down-regulation. Conclusions Down-regulation of BMP5 affects glycerolipid metabolism and fatty acid degradation, leading to mitochondrial dysfunction, reduced ATP production, and changes in cell function, and ultimately resulting in microtia. This research provides supporting evidence for an important role of BMP5 down-regulation in affecting mitochondrial metabolism in cells, and sheds new light on the mechanisms underlying the pathogenesis of microtia.
Collapse
Affiliation(s)
- Yin-Yi Qiu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hua-Song Zhang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Otolaryngology, Longgang E.N.T Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Shenzhen, China
| | - Yuan Tang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fei-Yi Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen, University, Guangzhou, China
| | - Jia-Qi Pang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xue-Yuan Zhang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu-Shuang Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen, University, Guangzhou, China
| | - Hui-Ying Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen, University, Guangzhou, China
| | - Sui-Jun Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
83
|
Song L, Gao C, Xue T, Yang N, Fu Q, Zhu Q, Ge X, Li C. Characterization and expression analysis of mitochondrial localization molecule: NOD-like receptor X1 (Nlrx1) in mucosal tissues of turbot (Scophthalmus maximus) following bacterial challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103944. [PMID: 33248045 DOI: 10.1016/j.dci.2020.103944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/21/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
The NOD-like receptor X1 (NLRX1) is a member of highly conserved nucleotide-binding domain (NBD)- and leucine-rich-repeat (LRR)-containing family (known as NLR), that localizes to the mitochondrial outer membrane and regulate the innate immunity by interacting with mitochondrial antiviral-signaling protein (MAVS). As one of cytoplasmic PRRs, NLRX1 plays key roles for pathogen recognition, autophagy and regulating of subsequent immune signaling pathways. In this study, we identified the nlrx1 in turbot as well as its expression profiles in mucosal surfaces following bacterial infection. In our results, the full-length nlrx1 transcript consists of an open reading frame (ORF) of 4,886 bp encoding the putative peptide of 966 amino acids. The phylogenetic analysis revealed the SmNlrx1 showed the closest relationship to Cynoglossus semilaevis. In addition, the Nlrx1 mRNA expression could be detected in all the examined tissues, with the most abundant expression level in head kidney, and the lowest expression level in liver. Moreover, Nlrx1 showed similar expression patterns following Vibrio anguillarum and Streptococcus iniae infection, that were both significantly up-regulated following challenge, especially post S. iniae challenge. Finally, fluorescence microscopy unveiled that the SmNlrx1 localized to mitochondria in HEK293T by N-terminal mitochondrial targeting sequence. Characterization of Nlrx1 might have an important implication in bioenergetic adaptation during metabolic stress, oncogenic transformation and innate immunity and will probably contribute to the development of novel intervention strategies for farming turbot.
Collapse
Affiliation(s)
- Lin Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; School of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qing Zhu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xuefeng Ge
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
84
|
Csete ME. Basic Science of Frailty-Biological Mechanisms of Age-Related Sarcopenia. Anesth Analg 2021; 132:293-304. [PMID: 32769382 DOI: 10.1213/ane.0000000000005096] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aging is associated with loss of function across organ systems, contributing to systemic frailty. Loss of skeletal muscle mass and function, in particular, is a major source of frailty in older adults, severely impacting quality of life. Some loss of muscle mass and strength with aging is inevitable, and sarcopenia, the severe loss of muscle mass with aging, is common. Sarcopenia is determined in part by genetics but can be modified by lifestyle choices. The pathophysiologic underpinnings of sarcopenia are complex and multifactorial. In this review, the causes of sarcopenia are surveyed at the systems, cell, subcellular, and molecular levels with emphasis on the interplay between these various causes of this degenerative disease process.
Collapse
Affiliation(s)
- Marie E Csete
- From the Department of Anesthesiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
85
|
Distinct roles of UVRAG and EGFR signaling in skeletal muscle homeostasis. Mol Metab 2021; 47:101185. [PMID: 33561544 PMCID: PMC7921879 DOI: 10.1016/j.molmet.2021.101185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 11/20/2022] Open
Abstract
Objective Autophagy is a physiological self-eating process that can promote cell survival or activate cell death in eukaryotic cells. In skeletal muscle, it is important for maintaining muscle mass and function that is critical to sustain mobility and regulate metabolism. The UV radiation resistance-associated gene (UVRAG) regulates the early stages of autophagy and autophagosome maturation and plays a key role in endosomal trafficking. This study investigated the essential in vivo role of UVRAG in skeletal muscle biology. Methods To determine the role of UVRAG in skeletal muscle in vivo, we generated muscle-specific UVRAG knockout mice using the Cre-loxP system driven by Myf6 promoter that is exclusively expressed in skeletal muscle. Myf6-Cre+ UVRAGfl/fl (M-UVRAG−/−) mice were compared to littermate Myf6-Cre+ UVRAG+/+ (M-UVRAG+/+) controls under basal conditions on a normal chow diet. Body composition, muscle function, and mitochondria morphology were assessed in muscles of the WT and KO mice at 24 weeks of age. Results M-UVRAG−/− mice developed accelerated sarcopenia and impaired muscle function compared to M-UVRAG+/+ littermates at 24 weeks of age. Interestingly, these mice displayed improved glucose tolerance and increased energy expenditure likely related to upregulated Fgf21, a marker of muscle dysfunction. Skeletal muscle of the M-UVRAG−/− mice showed altered mitochondrial morphology with increased mitochondrial fission and EGFR accumulation reflecting defects in endosomal trafficking. To determine whether increased EGFR signaling had a causal role in muscle dysfunction, the mice were treated with an EGFR inhibitor, gefitinib, which partially restored markers of muscle and mitochondrial deregulation. Conversely, constitutively active EGFR transgenic expression in UVRAG-deficient muscle led to further detrimental effects with non-overlapping distinct defects in muscle function, with EGFR activation affecting the muscle fiber type whereas UVRAG deficiency impaired mitochondrial homeostasis. Conclusions Our results show that both UVRAG and EGFR signaling are critical for maintaining muscle mass and function with distinct mechanisms in the differentiation pathway. Deletion of UVRAG in skeletal muscle accelerates muscle wasting with aging. UVRAG in skeletal muscle regulates mitochondrial dynamics and function. UVRAG deletion leads to EGFR accumulation in skeletal muscle. Constitutively active EGFR contributes to muscle fiber type determination.
Collapse
|
86
|
Crivellari I, Pecorelli A, Cordone V, Marchi S, Pinton P, Hayek J, Cervellati C, Valacchi G. Impaired mitochondrial quality control in Rett Syndrome. Arch Biochem Biophys 2021; 700:108790. [PMID: 33549528 DOI: 10.1016/j.abb.2021.108790] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 01/22/2023]
Abstract
Rett Syndrome (RTT) is a rare neurodevelopmental disorder caused in the 95% of cases by mutations in the X-linked MECP2 gene, affecting almost exclusively females. While the genetic basis of RTT is known, the exact pathogenic mechanisms that lead to the broad spectrum of symptoms still remain enigmatic. Alterations in the redox homeostasis have been proposed among the contributing factors to the development and progression of the syndrome. Mitochondria appears to play a central role in RTT oxidative damage and a plethora of mitochondrial defects has already been recognized. However, mitochondrial dynamics and mitophagy, which represent critical pathways in regulating mitochondrial quality control (QC), have not yet been investigated in RTT. The present work showed that RTT fibroblasts have networks of hyperfused mitochondria with morphological abnormalities and increased mitochondrial volume. Moreover, analysis of mitophagic flux revealed an impaired PINK1/Parkin-mediated mitochondrial removal associated with an increase of mitochondrial fusion proteins Mitofusins 1 and 2 (MFN1 and 2) and a decrease of fission mediators including Dynamin related protein 1 (DRP1) and Mitochondrial fission 1 protein (FIS1). Finally, challenging RTT fibroblasts with FCCP and 2,4-DNP did not trigger a proper apoptotic cell death due to a defective caspase 3/7 activation. Altogether, our findings shed light on new aspects of mitochondrial dysfunction in RTT that are represented by defective mitochondrial QC pathways, also providing new potential targets for a therapeutic intervention aimed at slowing down clinical course and manifestations in the affected patients.
Collapse
Affiliation(s)
- Ilaria Crivellari
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Plants for Human Health Institute, Animal Science Dept., North Carolina State University, Kannapolis, NC, USA
| | - Valeria Cordone
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Joussef Hayek
- Toscana Life Science Foundation, Via Fiorentina 1, 53100, Siena, Italy
| | - Carlo Cervellati
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.
| | - Giuseppe Valacchi
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy; Plants for Human Health Institute, Animal Science Dept., North Carolina State University, Kannapolis, NC, USA; Kyung Hee University, Department of Food and Nutrition, Seoul, South Korea.
| |
Collapse
|
87
|
Kim YY, Um JH, Shin DJ, Jeong DJ, Hong YB, Yun J. p53-mediated regulation of mitochondrial dynamics plays a pivotal role in the senescence of various normal cells as well as cancer cells. FASEB J 2021; 35:e21319. [PMID: 33433933 DOI: 10.1096/fj.202002007r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/18/2020] [Accepted: 12/14/2020] [Indexed: 01/16/2023]
Abstract
The tumor suppressor p53 is known as a critical mediator of many cellular processes, including cellular senescence, but its role in mitochondrial dynamics is not fully understood. We have previously shown that p53 regulates mitochondrial dynamics via the PKA-Drp1 pathway to induce cellular senescence. In this study, to further understand the role of p53-dependent regulation of mitochondrial dynamics, the effect of p53 expression on mitochondrial morphology was examined in various cancer cell lines and normal human cells. We found that p53 induced remarkable mitochondrial elongation and cellular senescence in various cancer cells regardless of their p53 status. p53 also induced mitochondrial elongation in various human primary normal cells, suggesting that p53-mediated mitochondrial elongation is a general phenomenon. Moreover, we found that p53 plays an essential role in mitochondrial elongation in H-Ras-induced cellular senescence and in the replicative senescence of normal human cells. Treatment with the MDM-2 antagonist Nutlin-3a also induced mitochondrial elongation through the PKA-Drp1 pathway in IMR90 normal human cells. Furthermore, the inhibition of PKA activity in late-passage normal cells significantly reduced both mitochondrial elongation and cellular senescence, suggesting that the p53-PKA pathway is essential for maintaining the senescence phenotype in normal cells. Together, these results further confirm the direct regulation of mitochondrial dynamics by p53 and the important role of p53-mediated mitochondrial elongation in cellular senescence.
Collapse
Affiliation(s)
- Young Yeon Kim
- Peripheral Neuropathy Research Center, College of Medicine, Dong-A University, Busan, Republic of Korea.,Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Jee-Hyun Um
- Peripheral Neuropathy Research Center, College of Medicine, Dong-A University, Busan, Republic of Korea.,Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Dong Jin Shin
- Peripheral Neuropathy Research Center, College of Medicine, Dong-A University, Busan, Republic of Korea.,Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea.,Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Dae Jin Jeong
- Peripheral Neuropathy Research Center, College of Medicine, Dong-A University, Busan, Republic of Korea.,Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea.,Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Young Bin Hong
- Peripheral Neuropathy Research Center, College of Medicine, Dong-A University, Busan, Republic of Korea.,Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea.,Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Jeanho Yun
- Peripheral Neuropathy Research Center, College of Medicine, Dong-A University, Busan, Republic of Korea.,Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea.,Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| |
Collapse
|
88
|
Thangaraj A, Chivero ET, Tripathi A, Singh S, Niu F, Guo ML, Pillai P, Periyasamy P, Buch S. HIV TAT-mediated microglial senescence: Role of SIRT3-dependent mitochondrial oxidative stress. Redox Biol 2020; 40:101843. [PMID: 33385630 PMCID: PMC7779826 DOI: 10.1016/j.redox.2020.101843] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/10/2020] [Accepted: 12/20/2020] [Indexed: 02/07/2023] Open
Abstract
The advent of combined antiretroviral treatment (cART) as a treatment for HIV-1 infection has not only resulted in a dramatic decrease in the peripheral viral load but has also led to increased life expectancy of the infected individuals. Paradoxically, increased lifespan is accompanied with higher prevalence of age-related comorbidities, including HIV-associated neurocognitive disorders (HAND). Present study was aimed at exploring the role of HIV TAT protein in mediating microglial mitochondrial oxidative stress, ultimately resulting in neuroinflammation and microglial senescence. Our findings demonstrated that exposure of mouse primary microglial cells (mPMs) to HIV TAT protein resulted in a senescence-like phenotype, that was characterized by elevated expression of both p16 and p21 proteins, increased numbers of senescence-associated-β-galactosidase positive cells, augmented cell-cycle arrest, increased release of proinflammatory cytokines and decreased telomerase activity. Additionally, exposure of mPMs to HIV TAT also resulted downregulation of SIRT3 with a concomitant increase in mitochondrial oxidative stress. Dual luciferase reporter assay identified miR-505 as a novel target of SIRT3, which was upregulated in mPMs exposed to HIV TAT. Furthermore, transient transfection of mPMs with either the SIRT3 plasmid or miRNA-505 inhibitor upregulated the expression of SIRT3 and mitochondrial antioxidant enzymes, with a concomitant decrease in microglial senescence. These in vitro findings were also validated in the prefrontal cortices and striatum of HIV transgenic rats as well as cART-treated HIV-infected individuals. In summary, this study underscores a yet undiscovered novel mechanism(s) underlying HIV TAT-mediated induction of senescence phenotype in microglia, involving the miR-505-SIRT3 axis-mediated induction of mitochondrial oxidative stress. HIV TAT induces senescence-like phenotype in microglia. HIV TAT decreases SIRT3 with concomitant increase of mitochondrial ROS. Overexpression of SIRT3 attenuated HIV TAT-mediated microglial senescence. miR-505 negatively regulate SIRT3 expression. miR-505 inhibition prevents SIRT3-mediated mitochondria stress and glial senescence.
Collapse
Affiliation(s)
- Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ashutosh Tripathi
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Seema Singh
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ming-Lei Guo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Prakash Pillai
- Division of Neurobiology, Department of Zoology, Faculty of Science, The M.S. University of Baroda, Vadodara, India
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
89
|
Ali A, Wang Y, Wu L, Yang G. Gasotransmitter signaling in energy homeostasis and metabolic disorders. Free Radic Res 2020; 55:83-105. [PMID: 33297784 DOI: 10.1080/10715762.2020.1862827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gasotransmitters are small molecules of gases, including nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO). These three gasotransmitters can be endogenously produced and regulate a wide range of pathophysiological processes by interacting with specific targets upon diffusion in the biological media. By redox and epigenetic regulation of various physiological functions, NO, H2S, and CO are critical for the maintenance of intracellular energy homeostasis. Accumulated evidence has shown that these three gasotransmitters control ATP generation, mitochondrial biogenesis, glucose metabolism, insulin sensitivity, lipid metabolism, and thermogenesis, etc. Abnormal generation and metabolism of NO, H2S, and/or CO are involved in various abnormal metabolic diseases, including obesity, diabetes, and dyslipidemia. In this review, we summarized the roles of NO, H2S, and CO in the regulation of energy homeostasis as well as their involvements in the metabolism of dysfunction-related diseases. Understanding the interaction among these gasotransmitters and their specific molecular targets are very important for therapeutic applications.
Collapse
Affiliation(s)
- Amr Ali
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Yuehong Wang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Lingyun Wu
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.,School of Human Kinetics, Laurentian University, Sudbury, Canada.,Health Science North Research Institute, Sudbury, Canada
| | - Guangdong Yang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada.,Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| |
Collapse
|
90
|
Kim YJ, Choo OS, Lee JS, Jang JH, Woo HG, Choung YH. BCL2 Interacting Protein 3-like/NIX-mediated Mitophagy Plays an Important Role in the Process of Age-related Hearing Loss. Neuroscience 2020; 455:39-51. [PMID: 33346118 DOI: 10.1016/j.neuroscience.2020.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 01/06/2023]
Abstract
Clearance of dysfunctional mitochondria via mitophagy is essential for cell survival and cochlear functions. However, it is not clear which genes are significantly involved in this process. Here, we investigated the changes in mitophagy and mitophagy-associated genes in mouse auditory cells to determine a possible correlation between mitophagy and age-related hearing loss (ARHL). Here, we show that most transcripts associated with mitophagy were downregulated in an age-dependent manner. We identified one significant differentially expressed gene associated with mitophagy, BCL2 interacting protein 3-like (BNIP3L)/NIX. Mitophagy-inhibited cells with BNIP3L/NIX knockdown showed hyperresponsiveness to oxidative stress resulting in cell senescence with increased levels of TOMM20 and LC3B. Overexpression of BNIP3L/NIX promotes the degradation of TOMM20 and LC3B during premature cell senescence. In conclusion, BNIP3L/NIX may play an important role in mitochondria degradation maintaining cochlear cell homeostasis during the aging process of hearing.
Collapse
Affiliation(s)
- Yeon Ju Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Oak-Sung Choo
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Jin-Sol Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Biomedical Sciences, BK21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Jeong Hun Jang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyun Goo Woo
- Department of Biomedical Sciences, BK21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea; Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea; Department of Biomedical Sciences, BK21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
91
|
Duranova H, Valkova V, Knazicka Z, Olexikova L, Vasicek J. Mitochondria: A worthwhile object for ultrastructural qualitative characterization and quantification of cells at physiological and pathophysiological states using conventional transmission electron microscopy. Acta Histochem 2020; 122:151646. [PMID: 33128989 DOI: 10.1016/j.acthis.2020.151646] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022]
Abstract
Mitochondria are highly dynamic intracellular organelles with ultrastructural heterogeneity reflecting the behaviour and functions of the cells. The ultrastructural remodelling, performed by the counteracting active processes of mitochondrial fusion and fission, enables the organelles to respond to diverse cellular requirements and cues. It is also an important part of mechanisms underlying adaptation of mitochondria to pathophysiological conditions that challenge the cell homeostasis. However, if the stressor is constantly acting, the adaptive capacity of the cell can be exceeded and defective changes in mitochondrial morphology (indicating the insufficient functionality of mitochondria or development of mitochondrial disorders) may appear. Beside qualitative description of mitochondrial ultrastructure, stereological principles concerning the estimation of alterations in mitochondrial volume density or surface density are invaluable approaches for unbiased quantification of cells under physiological or pathophysiological conditions. In order to improve our understanding of cellular functions and dysfunctions, transmission electron microscopy (TEM) still remains a gold standard for qualitative and quantitative ultrastructural examination of mitochondria from various cell types, as well as from those experienced to different stimuli or toxicity-inducing factors. In the current study, general morphological and functional features of mitochondria, and their ultrastructural heterogeneity related to physiological and pathophysiological states of the cells are reviewed. Moreover, stereological approaches for accurate quantification of mitochondrial ultrastructure from electron micrographs taken from TEM are described in detail.
Collapse
Affiliation(s)
- Hana Duranova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Veronika Valkova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Zuzana Knazicka
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Lucia Olexikova
- Institute of Farm Animal Genetics and Reproduction, NPPC - Research Institute for Animal Production in Nitra, Hlohovecká 2, 951 41 Lužianky, Slovak Republic
| | - Jaromir Vasicek
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic; Institute of Farm Animal Genetics and Reproduction, NPPC - Research Institute for Animal Production in Nitra, Hlohovecká 2, 951 41 Lužianky, Slovak Republic
| |
Collapse
|
92
|
Defective mitophagy in Alzheimer's disease. Ageing Res Rev 2020; 64:101191. [PMID: 33022416 DOI: 10.1016/j.arr.2020.101191] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/25/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a progressive, mental illness without cure. Several years of intense research on postmortem AD brains, cell and mouse models of AD have revealed that multiple cellular changes are involved in the disease process, including mitochondrial abnormalities, synaptic damage, and glial/astrocytic activation, in addition to age-dependent accumulation of amyloid beta (Aβ) and hyperphosphorylated tau (p-tau). Synaptic damage and mitochondrial dysfunction are early cellular changes in the disease process. Healthy and functionally active mitochondria are essential for cellular functioning. Dysfunctional mitochondria play a central role in aging and AD. Mitophagy is a cellular process whereby damaged mitochondria are selectively removed from cell and mitochondrial quality and biogenesis. Mitophagy impairments cause the progressive accumulation of defective organelle and damaged mitochondria in cells. In AD, increased levels of Aβ and p-tau can induce reactive oxygen species (ROS) production, causing excessive fragmentation of mitochondria and promoting defective mitophagy. The current article discusses the latest developments of mitochondrial research and also highlights multiple types of mitophagy, including Aβ and p-tau-induced mitophagy, stress-induced mitophagy, receptor-mediated mitophagy, ubiquitin mediated mitophagy and basal mitophagy. This article also discusses the physiological states of mitochondria, including fission-fusion balance, Ca2+ transport, and mitochondrial transport in normal and diseased conditions. Our article summarizes current therapeutic interventions, like chemical or natural mitophagy enhancers, that influence mitophagy in AD. Our article discusses whether a partial reduction of Drp1 can be a mitophagy enhancer and a therapeutic target for mitophagy in AD and other neurological diseases.
Collapse
|
93
|
Bartho LA, Fisher JJ, Cuffe JSM, Perkins AV. Mitochondrial transformations in the aging human placenta. Am J Physiol Endocrinol Metab 2020; 319:E981-E994. [PMID: 32954826 DOI: 10.1152/ajpendo.00354.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitochondria play a key role in homeostasis and are central to one of the leading hypotheses of aging, the free radical theory. Mitochondria function as a reticulated network, constantly adapting to the cellular environment through fusion (joining), biogenesis (formation of new mitochondria), and fission (separation). This adaptive response is particularly important in response to oxidative stress, cellular damage, and aging, when mitochondria are selectively removed through mitophagy, a mitochondrial equivalent of autophagy. During this complex process, mitochondria influence surrounding cell biology and organelles through the release of signaling molecules. Given that the human placenta is a unique organ having a transient and somewhat defined life span of ∼280 days, any adaption or dysfunction associated with mitochondrial physiology as a result of aging will have a dramatic impact on the health and function of both the placenta and the fetus. Additionally, a defective placenta during gestation, resulting in reduced fetal growth, has been shown to influence the development of chronic disease in later life. In this review we focus on the mitochondrial adaptions and transformations that accompany gestational length and share similarities with age-related diseases. In addition, we discuss the role of such changes in regulating placental function throughout gestation, the etiology of gestational complications, and the development of chronic diseases later in life.
Collapse
Affiliation(s)
- Lucy A Bartho
- School of Medical Science, Griffith University Gold Coast Campus, Southport, Queensland, Australia
| | - Joshua J Fisher
- Hunter Medical Research Institute and School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - James S M Cuffe
- School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Anthony V Perkins
- School of Medical Science, Griffith University Gold Coast Campus, Southport, Queensland, Australia
| |
Collapse
|
94
|
Goyal S, Chaturvedi RK. Mitochondrial Protein Import Dysfunction in Pathogenesis of Neurodegenerative Diseases. Mol Neurobiol 2020; 58:1418-1437. [PMID: 33180216 DOI: 10.1007/s12035-020-02200-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria play an essential role in maintaining energy homeostasis and cellular survival. In the brain, higher ATP production is required by mature neurons for communication. Most of the mitochondrial proteins transcribe in the nucleus and import in mitochondria through different pathways of the mitochondrial protein import machinery. This machinery plays a crucial role in determining mitochondrial morphology and functions through mitochondrial biogenesis. Failure of this machinery and any alterations during mitochondrial biogenesis underlies neurodegeneration resulting in Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD) etc. Current knowledge has revealed the different pathways of mitochondrial protein import machinery such as translocase of the outer mitochondrial membrane complex, the presequence pathway, carrier pathway, β-barrel pathway, and mitochondrial import and assembly machinery etc. In this review, we have discussed the recent studies regarding protein import machinery, beyond the well-known effects of increased oxidative stress and bioenergetics dysfunctions. We have elucidated in detail how these types of machinery help to import and locate the precursor proteins to their specific location inside the mitochondria and play a major role in mitochondrial biogenesis. We further discuss their involvement in mitochondrial dysfunctioning and the induction of toxic aggregates in neurodegenerative diseases like AD and PD. The review supports the importance of import machinery in neuronal functions and its association with toxic aggregated proteins in mitochondrial impairment, suggesting a critical role in fostering and maintaining neurodegeneration and therapeutic response.
Collapse
Affiliation(s)
- Shweta Goyal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
95
|
Ray A, Jaiswal A, Dutta J, Singh S, Mabalirajan U. A looming role of mitochondrial calcium in dictating the lung epithelial integrity and pathophysiology of lung diseases. Mitochondrion 2020; 55:111-121. [PMID: 32971294 PMCID: PMC7505072 DOI: 10.1016/j.mito.2020.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/20/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022]
Abstract
With the increasing appreciation of mitochondria in modulating cellular homeostasis, various disease biology researchers have started exploring the detailed role of mitochondria in multiple diseases beyond neuronal and muscular diseases. In this context, emerging shreds of evidence in lung biology indicated the meticulous role of lung epithelia in provoking a plethora of lung diseases in contrast to earlier beliefs. As lung epithelia are ceaselessly exposed to the environment, they need to have multiple protective mechanisms to maintain the integrity of lung structure and function. As ciliated airway epithelium and type 2 alveolar epithelia require intense energy for executing their key functions like ciliary beating and surfactant production, it is no surprise that defects in mitochondrial function in these cells could perturb lung homeostasis and engage in the pathophysiology of lung diseases. On one hand, intracellular calcium plays the central role in executing key functions of lung epithelia, and on the other hand maintenance of intracellular calcium needs the buffering role of mitochondria. Thus, the regulation of mitochondrial calcium in lung epithelia seems to be critical in lung homeostasis and could be decisive in the pathogenesis of various lung diseases.
Collapse
Affiliation(s)
- Archita Ray
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashish Jaiswal
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Joytri Dutta
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sabita Singh
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
96
|
Moore TM, Zhou Z, Strumwasser AR, Cohn W, Lin AJ, Cory K, Whitney K, Ho T, Ho T, Lee JL, Rucker DH, Hoang AN, Widjaja K, Abrishami AD, Charugundla S, Stiles L, Whitelegge JP, Turcotte LP, Wanagat J, Hevener AL. Age-induced mitochondrial DNA point mutations are inadequate to alter metabolic homeostasis in response to nutrient challenge. Aging Cell 2020; 19:e13166. [PMID: 33049094 PMCID: PMC7681042 DOI: 10.1111/acel.13166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 04/10/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction is frequently associated with impairment in metabolic homeostasis and insulin action, and is thought to underlie cellular aging. However, it is unclear whether mitochondrial dysfunction is a cause or consequence of insulin resistance in humans. To determine the impact of intrinsic mitochondrial dysfunction on metabolism and insulin action, we performed comprehensive metabolic phenotyping of the polymerase gamma (PolG) D257A "mutator" mouse, a model known to accumulate supraphysiological mitochondrial DNA (mtDNA) point mutations. We utilized the heterozygous PolG mutator mouse (PolG+/mut ) because it accumulates mtDNA point mutations ~ 500-fold > wild-type mice (WT), but fails to develop an overt progeria phenotype, unlike PolGmut/mut animals. To determine whether mtDNA point mutations induce metabolic dysfunction, we examined male PolG+/mut mice at 6 and 12 months of age during normal chow feeding, after 24-hr starvation, and following high-fat diet (HFD) feeding. No marked differences were observed in glucose homeostasis, adiposity, protein/gene markers of metabolism, or oxygen consumption in muscle between WT and PolG+/mut mice during any of the conditions or ages studied. However, proteomic analyses performed on isolated mitochondria from 12-month-old PolG+/mut mouse muscle revealed alterations in the expression of mitochondrial ribosomal proteins, electron transport chain components, and oxidative stress-related factors compared with WT. These findings suggest that mtDNA point mutations at levels observed in mammalian aging are insufficient to disrupt metabolic homeostasis and insulin action in male mice.
Collapse
Affiliation(s)
- Timothy M. Moore
- Department of Biological SciencesDana & David Dornsife College of Letters, Arts, and SciencesUniversity of Southern CaliforniaLos AngelesCAUSA
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Zhenqi Zhou
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Alexander R. Strumwasser
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Whitaker Cohn
- Department of Psychiatry and Biobehavioral Sciences & The Semel Institute for Neuroscience and Human BehaviorUniversity of CaliforniaLos AngelesCAUSA
| | - Amanda J. Lin
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Kevin Cory
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Kate Whitney
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Theodore Ho
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Timothy Ho
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Joseph L. Lee
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Daniel H. Rucker
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Austin N. Hoang
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Kevin Widjaja
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Aaron D. Abrishami
- Division of CardiologyDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Sarada Charugundla
- Division of CardiologyDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Linsey Stiles
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Julian P. Whitelegge
- Department of Psychiatry and Biobehavioral Sciences & The Semel Institute for Neuroscience and Human BehaviorUniversity of CaliforniaLos AngelesCAUSA
| | - Lorraine P. Turcotte
- Department of Biological SciencesDana & David Dornsife College of Letters, Arts, and SciencesUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Jonathan Wanagat
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Andrea L. Hevener
- Division of Endocrinology, Diabetes, and HypertensionDepartment of MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
- Iris Cantor‐UCLA Women's Health CenterUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
97
|
Taneja MK. Prevention and Rehabilitation of Old Age Deafness. Indian J Otolaryngol Head Neck Surg 2020; 72:524-531. [PMID: 33088786 DOI: 10.1007/s12070-020-01856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 10/24/2022] Open
Abstract
Hearing impairment is one of the most common sensory deficit affecting 466 million people globally and in majority of old age people it can not corrected. Since presbycusis is always associated with diminished cognition power resulting in two fold loss in understanding of speech. There is no treatment available till date to regenerate the hair cells but certainly we can augment hearing by preventing and regenerating (apoptosis) atrophy of stria vascularis, spiral neural cells degeneration, atrophy of auditory nerve and cerebral cortex by modified greeva, skandh chalan, dynamic neurobics, tratak (focused concentration), Bhramari, Kumbhak along with mindful relaxation technique.
Collapse
Affiliation(s)
- M K Taneja
- Indian Institute of Ear Diseases, E-982 C. R. Park, New Delhi, India
| |
Collapse
|
98
|
Birder LA, Wolf-Johnston A, Wein AJ, Cheng F, Grove-Sullivan M, Kanai AJ, Watson AM, Stoltz D, Watkins SC, Robertson AM, Newman D, Dmochowski RR, Jackson EK. Purine nucleoside phosphorylase inhibition ameliorates age-associated lower urinary tract dysfunctions. JCI Insight 2020; 5:140109. [PMID: 32910805 PMCID: PMC7605521 DOI: 10.1172/jci.insight.140109] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/04/2020] [Indexed: 12/29/2022] Open
Abstract
In the aging population, lower urinary tract (LUT) dysfunction is common and often leads to storage and voiding difficulties classified into overlapping symptom syndromes. Despite prevalence and consequences of these syndromes, LUT disorders continue to be undertreated simply because there are few therapeutic options. LUT function and structure were assessed in aged (>25 months) male and female Fischer 344 rats randomized to oral treatment with a purine nucleoside phosphorylase (PNPase inhibitor) 8-aminoguanine (8-AG) or vehicle for 6 weeks. The bladders of aged rats exhibited multiple abnormalities: tactile insensitivity, vascular remodeling, reduced collagen-fiber tortuosity, increased bladder stiffness, abnormal smooth muscle morphology, swelling of mitochondria, and increases in urodamaging purine metabolites. Treatment of aged rats with 8-AG restored all evaluated histological, ultrastructural, and physiological abnormalities toward that of a younger state. 8-AG is an effective treatment that ameliorates key age-related structural and physiologic bladder abnormalities. Because PNPase inhibition blocks metabolism of inosine to hypoxanthine and guanosine to guanine, likely uroprotective effects of 8-AG are mediated by increased bladder levels of uroprotective inosine and guanosine and reductions in urodamaging hypoxanthine and xanthine. These findings demonstrate that 8-AG has translational potential for treating age-associated LUT dysfunctions and resultant syndromes in humans.
Collapse
Affiliation(s)
- Lori A Birder
- Department of Medicine, Renal-Electrolyte Division, and.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Alan J Wein
- Division of Urology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fangzhou Cheng
- Department of Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mara Grove-Sullivan
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anthony J Kanai
- Department of Medicine, Renal-Electrolyte Division, and.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alan M Watson
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Donna Stoltz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anne M Robertson
- Department of Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Diane Newman
- Division of Urology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Roger R Dmochowski
- Department of Urology, Vanderbilt Medical Center, Nashville, Tennessee, USA
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
99
|
Recent Advances on the Role of GSK3β in the Pathogenesis of Amyotrophic Lateral Sclerosis. Brain Sci 2020; 10:brainsci10100675. [PMID: 32993098 PMCID: PMC7600609 DOI: 10.3390/brainsci10100675] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/19/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a common neurodegenerative disease characterized by progressive motor neuron degeneration. Although several studies on genes involved in ALS have substantially expanded and improved our understanding of ALS pathogenesis, the exact molecular mechanisms underlying this disease remain poorly understood. Glycogen synthase kinase 3 (GSK3) is a multifunctional serine/threonine-protein kinase that plays a critical role in the regulation of various cellular signaling pathways. Dysregulation of GSK3β activity in neuronal cells has been implicated in the pathogenesis of neurodegenerative diseases. Previous research indicates that GSK3β inactivation plays a neuroprotective role in ALS pathogenesis. GSK3β activity shows an increase in various ALS models and patients. Furthermore, GSK3β inhibition can suppress the defective phenotypes caused by SOD, TDP-43, and FUS expression in various models. This review focuses on the most recent studies related to the therapeutic effect of GSK3β in ALS and provides an overview of how the dysfunction of GSK3β activity contributes to ALS pathogenesis.
Collapse
|
100
|
Chen X, Wu W, Gong B, Hou L, Dong X, Xu C, Zhao R, Yu Q, Zhou Z, Huang S, Chen L. Metformin attenuates cadmium-induced neuronal apoptosis in vitro via blocking ROS-dependent PP5/AMPK-JNK signaling pathway. Neuropharmacology 2020; 175:108065. [PMID: 32209321 PMCID: PMC7492486 DOI: 10.1016/j.neuropharm.2020.108065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/20/2022]
Abstract
Cadmium (Cd), a toxic environment contaminant, induces reactive oxygen species (ROS)-mediated neuronal apoptosis and consequential neurodegenerative disorders. Metformin, an anti-diabetic drug, has recently received a great attention owing to its protection against neurodegenerative diseases. However, little is known regarding the effect of metformin on Cd-induced neurotoxicity. Here we show that metformin effectively prevented Cd-evoked apoptotic cell death in neuronal cells, by suppressing Cd activation of c-Jun N-terminal kinases (JNK), which was attributed to blocking Cd inactivation of protein phosphatase 5 (PP5) and AMP-activated protein kinase (AMPK). Inhibition of JNK with SP600125, knockdown of c-Jun, or overexpression of PP5 potentiated metformin's inhibitory effect on Cd-induced phosphorylation of JNK/c-Jun and apoptosis. Activation of AMPK with AICAR or ectopic expression of constitutively active AMPKα strengthened the inhibitory effects of metformin on Cd-induced phosphorylation of JNK/c-Jun and apoptosis, whereas expression of dominant negative AMPKα weakened these effects of metformin. Metformin repressed Cd-induced ROS, thereby diminishing cell death. N-acetyl-l-cysteine enhanced the inhibitory effects of metformin on Cd-induced ROS and apoptosis. Moreover, using Mito-TEMPO, we further demonstrated that metformin attenuated Cd-induced cell death by suppressing induction of mitochondrial ROS. Taken together, these results indicate that metformin prevents mitochondrial ROS inactivation of PP5 and AMPK, thus attenuating Cd-induced JNK activation and apoptosis in neuronal cells. Our data highlight that metformin may be a promising drug for prevention of Cd-induced oxidative stress and neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoling Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Wen Wu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Baoming Gong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Long Hou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Xiaoqing Dong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Chong Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Rui Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Qianyun Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Zhihan Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, 71130-3932, USA.
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China.
| |
Collapse
|