51
|
Paggi CA, Dudakovic A, Fu Y, Garces CG, Hevesi M, Galeano Garces D, Dietz AB, van Wijnen AJ, Karperien M. Autophagy Is Involved in Mesenchymal Stem Cell Death in Coculture with Chondrocytes. Cartilage 2021; 13:969S-979S. [PMID: 32693629 PMCID: PMC8721613 DOI: 10.1177/1947603520941227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Cartilage formation is stimulated in mixtures of chondrocytes and human adipose-derived mesenchymal stromal cells (MSCs) both in vitro and in vivo. During coculture, human MSCs perish. The goal of this study is to elucidate the mechanism by which adipose tissue-derived MSC cell death occurs in the presence of chondrocytes. METHODS Human primary chondrocytes were cocultured with human MSCs derived from 3 donors. The cells were cultured in monoculture or coculture (20% chondrocytes and 80% MSCs) in pellets (200,000 cells/pellet) for 7 days in chondrocyte proliferation media in hypoxia (2% O2). RNA sequencing was performed to assess for differences in gene expression between monocultures or coculture. Immune fluorescence assays were performed to determine the presence of caspase-3, LC3B, and P62. RESULTS RNA sequencing revealed significant upregulation of >90 genes in the 3 cocultures when compared with monocultures. STRING analysis showed interconnections between >50 of these genes. Remarkably, 75% of these genes play a role in cell death pathways such as apoptosis and autophagy. Immunofluorescence shows a clear upregulation of the autophagic machinery with no substantial activation of the apoptotic pathway. CONCLUSION In cocultures of human MSCs with primary chondrocytes, autophagy is involved in the disappearance of MSCs. We propose that this sacrificial cell death may contribute to the trophic effects of MSCs on cartilage formation.
Collapse
Affiliation(s)
- Carlo Alberto Paggi
- Department of Developmental
BioEngineering, University of Twente, Enschede, Netherlands,Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA,Department of Biochemistry and Molecular
Biology, Mayo Clinic, Rochester, MN, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA,Department of Biochemistry and Molecular
Biology, Mayo Clinic, Rochester, MN, USA
| | - Yao Fu
- Department of Developmental
BioEngineering, University of Twente, Enschede, Netherlands
| | | | - Mario Hevesi
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA
| | | | - Allan B. Dietz
- Department of Laboratory Medicine and
Pathology, Mayo Clinic, Rochester, MN, USA
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA,Department of Biochemistry and Molecular
Biology, Mayo Clinic, Rochester, MN, USA,Andre J. van Wijnen, Department of
Orthopedic Surgery, Mayo Clinic, 200 First Street SW, MedSci 3-69, Rochester, MN
5590, USA.
| | - Marcel Karperien
- Department of Developmental
BioEngineering, University of Twente, Enschede, Netherlands,Marcel Karperien, Department of
Developmental BioEngineering, University of Twente, 7522 NB, Enschede,
Netherlands.
| |
Collapse
|
52
|
O’Brien MH, Dutra EH, Mehta S, Chen PJ, Yadav S. BMP2 Is Required for Postnatal Maintenance of Osteochondral Tissues of the Temporomandibular Joint. Cartilage 2021; 13:734S-743S. [PMID: 33307770 PMCID: PMC8804803 DOI: 10.1177/1947603520980158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE Bone morphogenetic protein 2 (BMP2) plays important roles in cartilage growth and development. Paradoxically, elevated levels of BMP2 leads to hypertrophic differentiation and osteoarthritis of cartilage. We examined the in vivo loss of BMP2 in cells expressing aggrecan of the mandibular condyle and knee. DESIGN Three-week-old BMP2 flox/flox-CreER-positive mice and their Cre-negative littermates were treated with tamoxifen and raised until 3 or 6 months. We also investigated the direct effects of BMP2 on chondrocytes in vitro. Cells from the mandibular condyle of mice were treated with recombinant human BMP2 (rhBMP2) or rhNoggin (inhibitor of BMP2 signaling). RESULTS Conditional deletion of BMP2 caused breakage of the cartilage integrity in the mandibular condyle of mice from both age groups, accompanied by a decrease in cartilage thickness, matrix synthesis, mineralization, chondrocyte proliferation, and increased expression of degeneration markers, while the effects at articular cartilage were not significant. In vitro results revealed that rhBMP2 increased chondrocyte proliferation, mineralization, and differentiation, while noggin induced opposite effects. CONCLUSIONS In conclusion, BMP2 is essential for postnatal maintenance of the osteochondral tissues of the mandibular condyle.
Collapse
Affiliation(s)
- Mara H. O’Brien
- Division of Orthodontics,
University of Connecticut Health Center, Farmington, CT, USA
| | - Eliane H. Dutra
- Division of Orthodontics,
University of Connecticut Health Center, Farmington, CT, USA
| | - Shivam Mehta
- Division of Orthodontics,
University of Connecticut Health Center, Farmington, CT, USA
| | - Po-Jung Chen
- Division of Orthodontics,
University of Connecticut Health Center, Farmington, CT, USA
| | - Sumit Yadav
- Division of Orthodontics,
University of Connecticut Health Center, Farmington, CT, USA,Sumit Yadav, Department of
Orthodontics, University of Connecticut Health Center, 263 Farmington
Avenue, MC1725, Farmington, CT 06030, USA.
| |
Collapse
|
53
|
Overexpression Effects of miR-424 and BMP2 on the Osteogenesis of Wharton's Jelly-Derived Stem Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7031492. [PMID: 34790821 PMCID: PMC8592721 DOI: 10.1155/2021/7031492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023]
Abstract
Recently, the translational application of noncoding RNAs is accelerated dramatically. In this regard, discovering therapeutic roles of microRNAs by developing synthetic RNA and vector-based RNA is attracting attention. Here, we studied the effect of BMP2 and miR-424 on the osteogenesis of Wharton's jelly-derived stem cells (WJSCs). For this purpose, human BMP2 and miR-424 DNA codes were cloned in the third generation of lentiviral vectors and then used for HEK-293T cell transfection. Lentiviral plasmids contained miR424, BMP-2, miR424-BMP2, green fluorescent protein (GFP) genes, and helper vectors. The recombinant lentiviral particles transduced the WJSCs, and the osteogenesis was evaluated by real-time PCR, Western blot, Alizarin Red staining, and alkaline phosphatase enzyme activity. According to the results, there was a significant increase in the expression of the BMP2 gene and secretion of Osteocalcin protein in the group of miR424-BMP2. Moreover, the amount of dye deposition in Alizarin Red staining and alkaline phosphatase activity was significantly higher in the mentioned group (p < 0.05). Thus, the current study results clarify the efficacy of gene therapy by miR424-BMP2 vectors for bone tissue engineering. These data could help guide the development of gene therapy-based protocols for bone tissue engineering.
Collapse
|
54
|
Lees-Shepard JB, Flint K, Fisher M, Omi M, Richard K, Antony M, Chen PJ, Yadav S, Threadgill D, Maihle NJ, Dealy CN. Cross-talk between EGFR and BMP signals regulates chondrocyte maturation during endochondral ossification. Dev Dyn 2021; 251:75-94. [PMID: 34773433 DOI: 10.1002/dvdy.438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Progressive maturation of growth plate chondrocytes drives long bone growth during endochondral ossification. Signals from the epidermal growth factor receptor (EGFR), and from bone morphogenetic protein-2 (BMP2), are required for normal chondrocyte maturation. Here, we investigated cross-talk between EGFR and BMP2 signals in developing and adult growth plates. RESULTS Using in vivo mouse models of conditional cartilage-targeted EGFR or BMP2 loss, we show that canonical BMP signal activation is increased in the hypertrophic chondrocytes of EGFR-deficient growth plates; whereas EGFR signal activation is increased in the reserve, prehypertrophic and hypertrophic chondrocytes of BMP2-deficient growth plates. EGFR-deficient chondrocytes displayed increased BMP signal activation in vitro, accompanied by increased expression of IHH, COL10A1, and RUNX2. Hypertrophic differentiation and BMP signal activation were suppressed in normal chondrocyte cultures treated with the EGFR ligand betacellulin, effects that were partially blocked by simultaneous treatment with BMP2 or a chemical EGFR antagonist. CONCLUSIONS Cross-talk between EGFR and BMP2 signals occurs during chondrocyte maturation. In the reserve and prehypertrophic zones, BMP2 signals unilaterally suppress EGFR activity; in the hypertrophic zone, EGFR and BMP2 signals repress each other. This cross-talk may play a role in regulating chondrocyte maturation in developing and adult growth plates.
Collapse
Affiliation(s)
- John B Lees-Shepard
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Kaitlyn Flint
- Department of Orthodontics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Melanie Fisher
- Department of Orthodontics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Minoru Omi
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Kelsey Richard
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Michelle Antony
- Department of Orthodontics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Po Jung Chen
- Department of Orthodontics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Sumit Yadav
- Department of Orthodontics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - David Threadgill
- Department of Veterinary Pathology, Texas A&M University, College Station, Texas, USA.,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Nita J Maihle
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA.,Department of Cell & Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Caroline N Dealy
- Department of Orthodontics, University of Connecticut Health Center, Farmington, Connecticut, USA.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, USA.,Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, USA.,Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
55
|
Liu X, Qian F, Fan Q, Lin L, He M, Li P, Cai H, Ma L, Cheng X, Yang X. NF-κB activation impedes the transdifferentiation of hypertrophic chondrocytes at the growth plate of mouse embryos in diabetic pregnancy. J Orthop Translat 2021; 31:52-61. [PMID: 34934622 PMCID: PMC8648796 DOI: 10.1016/j.jot.2021.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Diabetes mellitus could cause numerous complications and health problems including abnormality of endochondral bone formation during embryogenesis. However, the underlying mechanisms still remain obscure. METHODS Streptozotoci (STZ) was injected to induce pregestational diabetes mellitus (PGDM) mouse model. The femurs of E18.5 mouse embryos from control and PGDM groups were harvested. Morphological staining was implemented to determine the abnormality of the bone development. The expressions of the key genes participating in osteogenesis (e.g., Sox9, Runx2, and Osterix), the NF-κB signaling molecules (e.g., P50, P65, IκBα), and the corresponding regulatory factors (e.g., Bmp2, phospho-p38) were evaluated by immunofluorescence, quantitative PCR and western blot. Finally, in vitro chondrocyte differentiation model was employed to verify the role of NF-κB on the expressions of chondro-osteogenic markers. RESULTS Alcian blue/alizarin red double staining and H&E staining demonstrated the restriction of skeletal development and relatively extended hypertrophic zone at growth plate in E18.5 STZ-induced diabetic mouse embryos compared to the control. Immunofluorescent staining and qPCR showed that Sox9 expression increased, while Runx2 and Osterix expressions decreased in the growth plate of the offspring of PGDM mice. Immunofluorescence of P65 manifested the activation of NF-κB signaling in growth plate in PGDM mouse embryos. Furthermore, the relatively extended hypertrophic zone was also observed in the growth plate of the NF-κB-activated transgenic mice, as well as the activated p65 up-regulated the expression of Bmp2 and p-p38. In ATDC5 cells, we could observe the high glucose up-regulated the P50 and P65 expressions and down-regulated IκBα expression, but the high glucose-activated NF-κB signaling could be reversed by addition of Bay (inhibitor of NF-κB signaling). The expression changes of Bmp2, Sox9 and Runx2 in presence of high glucose were resumed too. CONCLUSION Our data revealed that NF-κB signaling was involved in mediation effects of dysfunctional trans-differentiation of hypertrophic chondrocytes in the embryonic growth plate induced by maternal diabetic mellitus.
Collapse
Affiliation(s)
- Xi Liu
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, 510632, China
| | - Fan Qian
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, 510632, China
| | - Qiwei Fan
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, 510632, China
| | - Li Lin
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, 510632, China
| | - Meiyao He
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, 510632, China
| | - Peizhi Li
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, 510632, China
| | - Hongmei Cai
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, 510632, China
| | - Lisha Ma
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, 510632, China
| | - Xin Cheng
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, 510632, China
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Xuesong Yang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, Medical College, Jinan University, Guangzhou, 510632, China
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
56
|
Zhang H, Zhuang Z, Yang M, Ding R, Quan J, Zhou S, Gu T, Xu Z, Zheng E, Cai G, Yang J, Wu Z. Genome-Wide Detection of Genetic Loci and Candidate Genes for Body Conformation Traits in Duroc × Landrace × Yorkshire Crossbred Pigs. Front Genet 2021; 12:664343. [PMID: 34707635 PMCID: PMC8542986 DOI: 10.3389/fgene.2021.664343] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/16/2021] [Indexed: 11/30/2022] Open
Abstract
The Duroc × (Landrace × Yorkshire) hybrid pigs (DLY) are the most popular commercial pigs, providing consumers with the largest source of pork. In order to gain more insights into the genetic architecture of economically important traits in pigs, we performed a genome-wide association study (GWAS) using the GeneSeek Porcine 50 K SNP Chip to map the genetic markers and genes associated with body conformation traits (BCT) in 311 DLY pigs. The quantitative traits analyzed included body weight (BW), carcass length (CL), body length (BL), body height (BH), and body mass index (BMI). BMI was defined as BMICL, BMIBL, and BMIBH, respectively, based on CL, BL, and BH phenotypic data. We identified 82 SNPs for the seven traits by GEMMA-based and FarmCPU-based GWASs. Both methods detected two quantitative trait loci (QTL) on SSC8 and SSC17 for body conformation traits. Several candidate genes (such as TNFAIP3, KDM4C, HSPG2, BMP2, PLCB4, and GRM5) were found to be associated with body weight and body conformation traits in pigs. Notably, the BMP2 gene had pleiotropic effects on CL, BL, BH, BMICL, and BMIBL and is proposed as a strong candidate gene for body size due to its involvement in growth and bone development. Furthermore, gene set enrichment analysis indicated that most of the pathway terms are associated with regulation of cell growth, negative regulation of cell population proliferation, and chondrocyte differentiation. We anticipate that these results further advance our understanding of the genetic architecture of body conformation traits in the popular commercial DLY pigs and provide new insights into the genetic architecture of BMI in pigs.
Collapse
Affiliation(s)
- Hui Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Ming Yang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangdong, China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Shenping Zhou
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Ting Gu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Zheng Xu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangdong, China
| |
Collapse
|
57
|
Abstract
Hypertrophic chondrocytes are the master regulators of endochondral ossification; however, their ultimate cell fates cells remain largely elusive due to their transient nature. Historically, hypertrophic chondrocytes have been considered as the terminal state of growth plate chondrocytes, which are destined to meet their inevitable demise at the primary spongiosa. Chondrocyte hypertrophy is accompanied by increased organelle synthesis and rapid intracellular water uptake, which serve as the major drivers of longitudinal bone growth. This process is delicately regulated by major signaling pathways and their target genes, including growth hormone (GH), insulin growth factor-1 (IGF-1), indian hedgehog (Ihh), parathyroid hormone-related protein (PTHrP), bone morphogenetic proteins (BMPs), sex determining region Y-box 9 (Sox9), runt-related transcription factors (Runx) and fibroblast growth factor receptors (FGFRs). Hypertrophic chondrocytes orchestrate endochondral ossification by regulating osteogenic-angiogenic and osteogenic-osteoclastic coupling through the production of vascular endothelial growth factor (VEGF), receptor activator of nuclear factor kappa-B ligand (RANKL) and matrix metallopeptidases-9/13 (MMP-9/13). Hypertrophic chondrocytes also indirectly regulate resorption of the cartilaginous extracellular matrix, by controlling formation of a special subtype of osteoclasts termed "chondroclasts". Notably, hypertrophic chondrocytes may possess innate potential for plasticity, reentering the cell cycle and differentiating into osteoblasts and other types of mesenchymal cells in the marrow space. We may be able to harness this unique plasticity for therapeutic purposes, for a variety of skeletal abnormalities and injuries. In this review, we discuss the morphological and molecular properties of hypertrophic chondrocytes, which carry out important functions during skeletal growth and regeneration.
Collapse
Affiliation(s)
- Shawn A Hallett
- University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Wanida Ono
- University of Michigan School of Dentistry, Ann Arbor, MI, USA
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Noriaki Ono
- University of Michigan School of Dentistry, Ann Arbor, MI, USA
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA.
| |
Collapse
|
58
|
The Osteogenic Differentiation of Human Dental Pulp Stem Cells through G0/G1 Arrest and the p-ERK/Runx-2 Pathway by Sonic Vibration. Int J Mol Sci 2021; 22:ijms221810167. [PMID: 34576330 PMCID: PMC8471578 DOI: 10.3390/ijms221810167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Mechanical/physical stimulations modulate tissue metabolism, and this process involves multiple cellular mechanisms, including the secretion of growth factors and the activation of mechano-physically sensitive kinases. Cells and tissue can be modulated through specific vibration-induced changes in cell activity, which depend on the vibration frequency and occur via differential gene expression. However, there are few reports about the effects of medium-magnitude (1.12 g) sonic vibration on the osteogenic differentiation of human dental pulp stem cells (HDPSCs). In this study, we investigated whether medium-magnitude (1.12 g) sonic vibration with a frequency of 30, 45, or 100 Hz could affect the osteogenic differentiation of HDPSCs. Their cell morphology changed to a cuboidal shape at 45 Hz and 100 Hz, but the cells in the other groups were elongated. FACS analysis showed decreased CD 73, CD 90, and CD 105 expression at 45 Hz and 100 Hz. Additionally, the proportions of cells in the G0/G1 phase in the control, 30 Hz, 45 Hz, and 100 Hz groups after vibration were 60.7%, 65.9%, 68.3%, and 66.7%, respectively. The mRNA levels of osteogenic-specific markers, including osteonectin, osteocalcin, BMP-2, ALP, and Runx-2, increased at 45 and 100 Hz, and the ALP and calcium content was elevated in the vibration groups compared with those in the control. Additionally, the western blotting results showed that p-ERK, BSP, osteoprotegerin, and osteonectin proteins were upregulated at 45 Hz compared with the other groups. The vibration groups showed higher ALP and calcium content than the control. Vibration, especially at 100 Hz, increased the number of calcified nodes relative to the control group, as evidenced by von Kossa staining. Immunohistochemical staining demonstrated that type I and III collagen, osteonectin, and osteopontin were upregulated at 45 Hz and 100 Hz. These results suggest that medium magnitude vibration at 45 Hz induces the G0/G1 arrest of HDPSCs through the p-ERK/Runx-2 pathway and can serve as a potent stimulator of differentiation and extracellular matrix production.
Collapse
|
59
|
Prados B, Del Toro R, MacGrogan D, Gómez-Apiñániz P, Papoutsi T, Muñoz-Cánoves P, Méndez-Ferrer S, de la Pompa JL. Heterotopic ossification in mice overexpressing Bmp2 in Tie2+ lineages. Cell Death Dis 2021; 12:729. [PMID: 34294700 PMCID: PMC8298441 DOI: 10.1038/s41419-021-04003-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/29/2022]
Abstract
Bone morphogenetic protein (Bmp) signaling is critical for organismal development and homeostasis. To elucidate Bmp2 function in the vascular/hematopoietic lineages we generated a new transgenic mouse line in which ectopic Bmp2 expression is controlled by the Tie2 promoter. Tie2CRE/+;Bmp2tg/tg mice develop aortic valve dysfunction postnatally, accompanied by pre-calcific lesion formation in valve leaflets. Remarkably, Tie2CRE/+;Bmp2tg/tg mice develop extensive soft tissue bone formation typical of acquired forms of heterotopic ossification (HO) and genetic bone disorders, such as Fibrodysplasia Ossificans Progressiva (FOP). Ectopic ossification in Tie2CRE/+;Bmp2tg/tg transgenic animals is accompanied by increased bone marrow hematopoietic, fibroblast and osteoblast precursors and circulating pro-inflammatory cells. Transplanting wild-type bone marrow hematopoietic stem cells into lethally irradiated Tie2CRE/+;Bmp2tg/tg mice significantly delays HO onset but does not prevent it. Moreover, transplanting Bmp2-transgenic bone marrow into wild-type recipients does not result in HO, but hematopoietic progenitors contribute to inflammation and ectopic bone marrow colonization rather than to endochondral ossification. Conversely, aberrant Bmp2 signaling activity is associated with fibroblast accumulation, skeletal muscle fiber damage, and expansion of a Tie2+ fibro-adipogenic precursor cell population, suggesting that ectopic bone derives from a skeletal muscle resident osteoprogenitor cell origin. Thus, Tie2CRE/+;Bmp2tg/tg mice recapitulate HO pathophysiology, and might represent a useful model to investigate therapies seeking to mitigate disorders associated with aberrant extra-skeletal bone formation.
Collapse
Affiliation(s)
- Belén Prados
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Raquel Del Toro
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Cardiovascular Physiophatology group, Instituto de Biomedicina de Sevilla-IBIS, (Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla). Manuel Siurot, s/n, 41013, Sevilla, Spain
| | - Donal MacGrogan
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Paula Gómez-Apiñániz
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Tania Papoutsi
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Pura Muñoz-Cánoves
- Tissue Regeneration Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Experimental & Health Sciences, Universidad Pompeu Fabra (UPF), ICREA and CIBERNED, Dr. Aiguader 88, Barcelona, Spain
| | - Simón Méndez-Ferrer
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, and National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0PT, UK
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development & Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.
| |
Collapse
|
60
|
Heubel B, Nohe A. The Role of BMP Signaling in Osteoclast Regulation. J Dev Biol 2021; 9:24. [PMID: 34203252 PMCID: PMC8293073 DOI: 10.3390/jdb9030024] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
The osteogenic effects of Bone Morphogenetic Proteins (BMPs) were delineated in 1965 when Urist et al. showed that BMPs could induce ectopic bone formation. In subsequent decades, the effects of BMPs on bone formation and maintenance were established. BMPs induce proliferation in osteoprogenitor cells and increase mineralization activity in osteoblasts. The role of BMPs in bone homeostasis and repair led to the approval of BMP2 by the Federal Drug Administration (FDA) for anterior lumbar interbody fusion (ALIF) to increase the bone formation in the treated area. However, the use of BMP2 for treatment of degenerative bone diseases such as osteoporosis is still uncertain as patients treated with BMP2 results in the stimulation of not only osteoblast mineralization, but also osteoclast absorption, leading to early bone graft subsidence. The increase in absorption activity is the result of direct stimulation of osteoclasts by BMP2 working synergistically with the RANK signaling pathway. The dual effect of BMPs on bone resorption and mineralization highlights the essential role of BMP-signaling in bone homeostasis, making it a putative therapeutic target for diseases like osteoporosis. Before the BMP pathway can be utilized in the treatment of osteoporosis a better understanding of how BMP-signaling regulates osteoclasts must be established.
Collapse
Affiliation(s)
- Brian Heubel
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
61
|
Whole-Genome Sequencing Identifies Two Novel Rare Mutations in BMP5 and BMP2 in Monozygotic Twins With Microtia. J Craniofac Surg 2021; 33:e212-e217. [PMID: 34183628 DOI: 10.1097/scs.0000000000007689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT Microtia is a rare congenital anomaly of the ear; it is regulated by both genetic and environmental factors. However, the mechanisms underlying its pathogenesis are unknown. In this study, the genomes of 2-year-old twin sisters with right microtia were sequenced using human genome-wide sequencing, an approach useful for identifying mutations in genes responsible for congenital microtia. The phenotypes of the twin sisters included congenital microtia on the right side, abnormal auricle shape in the right external ear, a peanut shape for the residual ear, and complete atresia of the right external auditory canal. In the twin sisters, we identified a previously unknown mutation in BMP5(exon4:c.833- 4C>G), as well as a new mutation (exon2:c.G332T:p.S111I) in BMP2, both of which were confirmed using polymerase chain reaction-based amplification of the corresponding genome regions, followed by first-generation sequencing. The exon4:c.833-4C>G mutation in human BMP5 may be the main cause of microtia in the twin sisters. A pathogenic mutation in human BMP2 (exon2:c.G332T:p.S111I) may be responsible for the facial deformity in the twin sisters. Thus, our study demonstrates the potential of genome-wide sequencing for identifying novel mutations associated with microtia on the whole-genome scale and extends the mutation spectrum of BMP5. Additionally, our data suggest that BMP2 is another pathogenic gene associated with microtia.
Collapse
|
62
|
Han O, Pak B, Jin SW. The Role of BMP Signaling in Endothelial Heterogeneity. Front Cell Dev Biol 2021; 9:673396. [PMID: 34235147 PMCID: PMC8255612 DOI: 10.3389/fcell.2021.673396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/21/2021] [Indexed: 01/07/2023] Open
Abstract
Bone morphogenetic proteins (BMPs), which compose the largest group of the transforming growth factor-β (TGF-ß) superfamily, have been implied to play a crucial role in diverse physiological processes. The most intriguing feature of BMP signaling is that it elicits heterogeneous responses from cells with equivalent identity, thus permitting highly context-dependent signaling outcomes. In endothelial cells (ECs), which are increasingly perceived as a highly heterogeneous population of cells with respect to their morphology, function, as well as molecular characteristics, BMP signaling has shown to elicit diverse and often opposite effects, illustrating the innate complexity of signaling responses. In this review, we provide a concise yet comprehensive overview of how outcomes of BMP signaling are modulated in a context-dependent manner with an emphasis on the underlying molecular mechanisms and summarize how these regulations of the BMP signaling promote endothelial heterogeneity.
Collapse
Affiliation(s)
- Orjin Han
- Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Boryeong Pak
- Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Suk-Won Jin
- Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| |
Collapse
|
63
|
Single-Cell RNA-Seq Reveals Transcriptomic Heterogeneity and Post-Traumatic Osteoarthritis-Associated Early Molecular Changes in Mouse Articular Chondrocytes. Cells 2021; 10:cells10061462. [PMID: 34200880 PMCID: PMC8230441 DOI: 10.3390/cells10061462] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Articular cartilage is a connective tissue lining the surfaces of synovial joints. When the cartilage severely wears down, it leads to osteoarthritis (OA), a debilitating disease that affects millions of people globally. The articular cartilage is composed of a dense extracellular matrix (ECM) with a sparse distribution of chondrocytes with varying morphology and potentially different functions. Elucidating the molecular and functional profiles of various chondrocyte subtypes and understanding the interplay between these chondrocyte subtypes and other cell types in the joint will greatly expand our understanding of joint biology and OA pathology. Although recent advances in high-throughput OMICS technologies have enabled molecular-level characterization of tissues and organs at an unprecedented resolution, thorough molecular profiling of articular chondrocytes has not yet been undertaken, which may be in part due to the technical difficulties in isolating chondrocytes from dense cartilage ECM. In this study, we profiled articular cartilage from healthy and injured mouse knee joints at a single-cell resolution and identified nine chondrocyte subtypes with distinct molecular profiles and injury-induced early molecular changes in these chondrocytes. We also compared mouse chondrocyte subpopulations to human chondrocytes and evaluated the extent of molecular similarity between mice and humans. This work expands our view of chondrocyte heterogeneity and rapid molecular changes in chondrocyte populations in response to joint trauma and highlights potential mechanisms that trigger cartilage degeneration.
Collapse
|
64
|
Khodr V, Machillot P, Migliorini E, Reiser JB, Picart C. High-throughput measurements of bone morphogenetic protein/bone morphogenetic protein receptor interactions using biolayer interferometry. Biointerphases 2021; 16:031001. [PMID: 34241280 PMCID: PMC7614001 DOI: 10.1116/6.0000926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/11/2021] [Indexed: 01/03/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are an important family of growth factors playing a role in a large number of physiological and pathological processes, including bone homeostasis, tissue regeneration, and cancers. In vivo, BMPs bind successively to both BMP receptors (BMPRs) of type I and type II, and a promiscuity has been reported. In this study, we used biolayer interferometry to perform parallel real-time biosensing and to deduce the kinetic parameters (ka, kd) and the equilibrium constant (KD) for a large range of BMP/BMPR combinations in similar experimental conditions. We selected four members of the BMP family (BMP-2, 4, 7, 9) known for their physiological relevance and studied their interactions with five type-I BMP receptors (ALK1, 2, 3, 5, 6) and three type-II BMP receptors (BMPR-II, ACTR-IIA, ACTR-IIB). We reveal that BMP-2 and BMP-4 behave differently, especially regarding their kinetic interactions and affinities with the type-II BMPR. We found that BMP-7 has a higher affinity for the type-II BMPR receptor ACTR-IIA and a tenfold lower affinity with the type-I receptors. While BMP-9 has a high and similar affinity for all type-II receptors, it can interact with ALK5 and ALK2, in addition to ALK1. Interestingly, we also found that all BMPs can interact with ALK5. The interaction between BMPs and both type-I and type-II receptors in a ternary complex did not reveal further cooperativity. Our work provides a synthetic view of the interactions of these BMPs with their receptors and paves the way for future studies on their cell-type and receptor specific signaling pathways.
Collapse
Affiliation(s)
- Valia Khodr
- Interdisciplinary Research Institute of Grenoble (IRIG), ERL BRM 5000 (CNRS/UGA/CEA), CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex, France
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble
| | - Paul Machillot
- Interdisciplinary Research Institute of Grenoble (IRIG), ERL BRM 5000 (CNRS/UGA/CEA), CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex, France
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble
| | - Elisa Migliorini
- Interdisciplinary Research Institute of Grenoble (IRIG), ERL BRM 5000 (CNRS/UGA/CEA), CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex, France
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble
| | - Jean-Baptiste Reiser
- Institut de Biologie Structurale, UMR 5075, Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | - Catherine Picart
- Interdisciplinary Research Institute of Grenoble (IRIG), ERL BRM 5000 (CNRS/UGA/CEA), CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex, France
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble
| |
Collapse
|
65
|
Borgiani E, Duda GN, Willie BM, Checa S. Bone morphogenetic protein 2-induced cellular chemotaxis drives tissue patterning during critical-sized bone defect healing: an in silico study. Biomech Model Mechanobiol 2021; 20:1627-1644. [PMID: 34047890 PMCID: PMC8298257 DOI: 10.1007/s10237-021-01466-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/11/2021] [Indexed: 12/26/2022]
Abstract
Critical-sized bone defects are critical healing conditions that, if left untreated, often lead to non-unions. To reduce the risk, critical-sized bone defects are often treated with recombinant human BMP-2. Although enhanced bone tissue formation is observed when BMP-2 is administered locally to the defect, spatial and temporal distribution of callus tissue often differs from that found during regular bone healing or in defects treated differently. How this altered tissue patterning due to BMP-2 treatment is linked to mechano-biological principles at the cellular scale remains largely unknown. In this study, the mechano-biological regulation of BMP-2-treated critical-sized bone defect healing was investigated using a multiphysics multiscale in silico approach. Finite element and agent-based modeling techniques were combined to simulate healing within a critical-sized bone defect (5 mm) in a rat femur. Computer model predictions were compared to in vivo microCT data outcome of bone tissue patterning at 2, 4, and 6 weeks postoperation. In vivo, BMP-2 treatment led to complete healing through periosteal bone bridging already after 2 weeks postoperation. Computer model simulations showed that the BMP-2 specific tissue patterning can be explained by the migration of mesenchymal stromal cells to regions with a specific concentration of BMP-2 (chemotaxis). This study shows how computational modeling can help us to further understand the mechanisms behind treatment effects on compromised healing conditions as well as to optimize future treatment strategies.
Collapse
Affiliation(s)
- Edoardo Borgiani
- Julius Wolff Institute, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Institutsgebäude Süd/ Südstraße 2, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Institutsgebäude Süd/ Südstraße 2, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Bettina M Willie
- Research Centre, Department of Pediatric Surgery, Shriners Hospital for Children-Canada, McGill University, 1003 Decarie Blvd, Montreal, QC, H4A 0A9, Canada
| | - Sara Checa
- Julius Wolff Institute, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Institutsgebäude Süd/ Südstraße 2, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
66
|
Individualized plasticity autograft mimic with efficient bioactivity inducing osteogenesis. Int J Oral Sci 2021; 13:14. [PMID: 33846295 PMCID: PMC8041815 DOI: 10.1038/s41368-021-00120-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/08/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Mineralized tissue regeneration is an important and challenging part of the field of tissue engineering and regeneration. At present, autograft harvest procedures may cause secondary trauma to patients, while bone scaffold materials lack osteogenic activity, resulting in a limited application. Loaded with osteogenic induction growth factor can improve the osteoinductive performance of bone graft, but the explosive release of growth factor may also cause side effects. In this study, we innovatively used platelet-rich fibrin (PRF)-modified bone scaffolds (Bio-Oss®) to replace autograft, and used cytokine (BMP-2) to enhance osteogenesis. Encouragingly, this mixture, which we named “Autograft Mimic (AGM)”, has multiple functions and advantages. (1) The fiber network provided by PRF binds the entire bone scaffold together, thereby shaping the bone grafts and maintaining the space of the defect area. (2) The sustained release of BMP-2 from bone graft promoted bone regeneration continuously. (3) AGM recruited bone marrow mesenchymal stem cells (BMSCs) and promote their proliferation, migration, and osteogenic differentiation. Thus, AGM developed in this study can improve osteogenesis, and provide new guidance for the development of clinical bone grafts.
Collapse
|
67
|
Zhu D, Ansari AR, Xiao K, Wang W, Wang L, Qiu W, Zheng X, Song H, Liu H, Zhong J, Peng K. Boron Supplementation Promotes Osteogenesis of Tibia by Regulating the Bone Morphogenetic Protein-2 Expression in African Ostrich Chicks. Biol Trace Elem Res 2021; 199:1544-1555. [PMID: 32676937 DOI: 10.1007/s12011-020-02258-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022]
Abstract
The present study aimed to explore the effects of supplemental boron on osteogenesis of tibia and to investigate the possible relationship between additional boron and the expression of bone morphogenetic protein-2 (BMP-2) in tibia of ostrich chicks. Therefore, forty-eight African ostrich chicks (15 days old) were supplemented with 0 mg/L, 40 mg/L, 80 mg/L, 160 mg/L, 320 mg/L, and 640 mg/L of boron in drinking water for 75 days. The paraffin sections of tibia used to measure histomorphometric parameters by hematoxylin and eosin (HE) staining, Masson's staining, and immunohistochemistry (IHC). Enzyme-linked immunosorbent assay was performed to assess the level of BMP-2, osteocalcin (BGP), glucocorticoids (GCs), osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-B ligand (RANKL) in serum. TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) technique was performed to detect the cell apoptosis. The results indicated that low dose of supplemental boron (40 mg/L-160 mg/L) in drinking water promotes bone development by increasing the mature ossein. The expression of BMP2 on 45 days was higher than 90 days. Serum level of BMP-2, BGP, and GCs changed significantly in groups with low dosage of boron, and OPG/RANKL ratio was upregulated from 0 to 160 mg/L. Cell apoptosis was least in 40 mg/L and 160 mg/L groups. Taken together, low dose of boron supplemented in drinking water could promote osteogenesis and growth and development of tibia by regulating the expression and secretion of BMP-2 and providing a dynamically balanced environment for tibia growth, development, and reconstruction by regulating the concentrations of BGP, GCs, and OPG/RANKL ratio in serum.
Collapse
Affiliation(s)
- Daiyun Zhu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Abdur Rahman Ansari
- Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS) Jhang, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Ke Xiao
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wei Wang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Weiwei Qiu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xinting Zheng
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hui Song
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Huazhen Liu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Juming Zhong
- College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, USA
| | - Kemei Peng
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
68
|
The effect of maternal HMB supplementation on bone mechanical and geometrical properties, as well as histomorphometry and immunolocalization of VEGF, TIMP2, MMP13, BMP2 in the bone and cartilage tissue of the humerus of their newborn piglets. PLoS One 2021; 16:e0240642. [PMID: 33626093 PMCID: PMC7904207 DOI: 10.1371/journal.pone.0240642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/06/2021] [Indexed: 12/25/2022] Open
Abstract
The presented experiment focuses on assessing the impact of HMB (hydroxy-β-methobutyrate) supplementation of mothers during pregnancy on the development of the skeletal system of their offspring. For this purpose, an experiment was carried out on 12 clinically healthy sows of the Great White Poland breed, which were divided randomly into two groups the control and the HMB group. All animals were kept under standard conditions and received the same feed for pregnant females. In contrast, females from the HMB group between 70 and 90 days were supplemented with 3-hydroxy-3-methylbutyle in the amount of 0.2g/kg b.w/day. Immediately after birth, the piglets were also divided into groups based on: sex, and presence or lack HMB supplementation, and subsequently were euthanized and humerus bones from all piglets were collected. Mother's HMB supplementation during pregnancy affected the multiple index of their offspring. The higher humerus mass and length was observed with the greater effect in males. Maternal supplementation also influenced on the geometrical and mechanical properties of the humerus as in the case of mass, this effect was higher in males. Also, the collagen structure of the compacted and trabecular bone changed under the HMB addition. Maternal supplementation also affected the expression of selected proteins in growth cartilage and trabecular bone. The obtained results show that the administration to the mother during pregnancy by the HMB significantly affects the development of the humerus in many ways. The obtained results also confirm the utility of such experiments in understanding of the importance of the pregnancy diet as an develop and adaptable factor of offspring organisms and are the base for further research in that area as well as in the protein markers expression area.
Collapse
|
69
|
Haseeb A, Kc R, Angelozzi M, de Charleroy C, Rux D, Tower RJ, Yao L, Pellegrino da Silva R, Pacifici M, Qin L, Lefebvre V. SOX9 keeps growth plates and articular cartilage healthy by inhibiting chondrocyte dedifferentiation/osteoblastic redifferentiation. Proc Natl Acad Sci U S A 2021; 118:e2019152118. [PMID: 33597301 PMCID: PMC7923381 DOI: 10.1073/pnas.2019152118] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cartilage is essential throughout vertebrate life. It starts developing in embryos when osteochondroprogenitor cells commit to chondrogenesis, activate a pancartilaginous program to form cartilaginous skeletal primordia, and also embrace a growth-plate program to drive skeletal growth or an articular program to build permanent joint cartilage. Various forms of cartilage malformation and degeneration diseases afflict humans, but underlying mechanisms are still incompletely understood and treatment options suboptimal. The transcription factor SOX9 is required for embryonic chondrogenesis, but its postnatal roles remain unclear, despite evidence that it is down-regulated in osteoarthritis and heterozygously inactivated in campomelic dysplasia, a severe skeletal dysplasia characterized postnatally by small stature and kyphoscoliosis. Using conditional knockout mice and high-throughput sequencing assays, we show here that SOX9 is required postnatally to prevent growth-plate closure and preosteoarthritic deterioration of articular cartilage. Its deficiency prompts growth-plate chondrocytes at all stages to swiftly reach a terminal/dedifferentiated stage marked by expression of chondrocyte-specific (Mgp) and progenitor-specific (Nt5e and Sox4) genes. Up-regulation of osteogenic genes (Runx2, Sp7, and Postn) and overt osteoblastogenesis quickly ensue. SOX9 deficiency does not perturb the articular program, except in load-bearing regions, where it also provokes chondrocyte-to-osteoblast conversion via a progenitor stage. Pathway analyses support roles for SOX9 in controlling TGFβ and BMP signaling activities during this cell lineage transition. Altogether, these findings deepen our current understanding of the cellular and molecular mechanisms that specifically ensure lifelong growth-plate and articular cartilage vigor by identifying osteogenic plasticity of growth-plate and articular chondrocytes and a SOX9-countered chondrocyte dedifferentiation/osteoblast redifferentiation process.
Collapse
Affiliation(s)
- Abdul Haseeb
- Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Ranjan Kc
- Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Marco Angelozzi
- Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Charles de Charleroy
- Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Danielle Rux
- Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Robert J Tower
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Lutian Yao
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Maurizio Pacifici
- Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Ling Qin
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Véronique Lefebvre
- Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104;
| |
Collapse
|
70
|
Gumus E, Temiz E, Sarikaya B, Yuksekdag O, Sipahioglu S, Gonel A. The Association Between BMP- 2, UQCC1 and CX3CR1 Polymorphisms and the Risk of Developmental Dysplasia of the Hip. Indian J Orthop 2021; 55:169-175. [PMID: 33569111 PMCID: PMC7851229 DOI: 10.1007/s43465-020-00235-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Developmental dysplasia of the hip (DDH) is a complicated skeletal disease ranging from subluxation to complete dislocation of the hip as a result of insufficient development of the acetabulum and femur. To date, numerous genes such as C-X3-C motif chemokine receptor 1 (CX3CR1), ubiquinol-cytochrome c reductase complex assembly factor 1 (UQCC1) and growth/differentiation factor 5 (GDF5), have been investigated to elucidate the underlying genetic etiology. Turkish population is one of the communities where DDH patients frequently observed, but almost no study has been conducted to elucidate the genetic etiology. In our study, we aimed to investigate the polymorphism of CX3CR1 rs3732378 and UQCC1 rs6060373, which have been shown to be associated with DDH in different populations. In addition, we aimed to investigate the BMP-2 rs235768 polymorphism which has not been investigated in the etiology of DDH. METHODS Overall, 168 subjects (68 participants in the patient group, 100 participants in the control group) were investigated. The participants with following evidence and symptoms were excluded from the two groups: any systemic syndrome, another congenital anomaly, hereditary diseases, breech presentation, history of oligohydramnios, swaddling and high birth weight (> 4000 g). 3 single-nucleotide polymorphisms (SNP) were examined by qRT-PCR method. RESULTS For CX3CR1 rs3732378 polymorphism, significant differences were observed in genotypes and allele frequencies (p < 0.0001). This condition was associated with a 12-fold increased risk in recessive modeling and 75-fold increased risk in dominant modeling. There was no significant relationship between DDH and the other two polymorphisms. CONCLUSIONS Our work is the first study to investigate DDH and genetic polymorphisms in Turkish population where DDH is observed quite frequently. It is also the first study to investigate the relationship between BMP-2 rs235768 polymorphism and DDH. Our study revealed a clear relationship between CX3CR1 rs3732378 polymorphism and DDH in Turkish population.
Collapse
Affiliation(s)
- Evren Gumus
- Department of Medical Genetics, Faculty of Medicine, University of Harran, Sanliurfa, Turkey
- Department of Medical Genetics, Faculty of Medicine, University of Mugla Sitki Kocman, Mugla, 48000 Turkey
| | - Ebru Temiz
- Department of Medical Biochemistry, Faculty of Medicine, University of Harran, Sanliurfa, Turkey
| | - Baran Sarikaya
- Department of Orthopedics and Traumatology, Faculty of Medicine, University of Harran, Sanliurfa, Turkey
| | - Ozgur Yuksekdag
- Department of Medical Biochemistry, Faculty of Medicine, University of Harran, Sanliurfa, Turkey
| | - Serkan Sipahioglu
- Department of Orthopedics and Traumatology, Faculty of Medicine, University of Harran, Sanliurfa, Turkey
| | - Ataman Gonel
- Department of Medical Biochemistry, Faculty of Medicine, University of Harran, Sanliurfa, Turkey
| |
Collapse
|
71
|
A New Hope in Spinal Degenerative Diseases: Piezo1. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6645193. [PMID: 33575334 PMCID: PMC7857891 DOI: 10.1155/2021/6645193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/09/2021] [Indexed: 12/19/2022]
Abstract
As a newly discovered mechanosensitive ion channel protein, the piezo1 protein participates in the transmission of mechanical signals on the cell membrane and plays a vital role in mammalian biomechanics. Piezo1 has attracted widespread attention since it was discovered in 2010. In recent years, studies on piezo1 have gradually increased and deepened. In addition to the discovery that piezo1 is expressed in the respiratory, cardiovascular, gastrointestinal, and urinary systems, it is also stably expressed in cells such as mesenchymal stem cells (MSCs), osteoblasts, osteoclasts, chondrocytes, and nucleus pulposus cells that constitute vertebral bodies and intervertebral discs. They can all receive external mechanical stimulation through the piezo1 protein channel to affect cell proliferation, differentiation, migration, and apoptosis to promote the occurrence and development of lumbar degenerative diseases. Through reviewing the relevant literature of piezo1 in the abovementioned cells, this paper discusses the effect of piezo1 protein expression under mechanical stress stimuli on spinal degenerative disease, providing the molecular basis for the pathological mechanism of spinal degenerative disease and also a new basis, ideas, and methods for the prevention and treatment of this degenerative disease.
Collapse
|
72
|
Strong AL, Spreadborough PJ, Dey D, Yang P, Li S, Lee A, Haskins RM, Grimm PD, Kumar R, Bradley MJ, Yu PB, Levi B, Davis TA. BMP Ligand Trap ALK3-Fc Attenuates Osteogenesis and Heterotopic Ossification in Blast-Related Lower Extremity Trauma. Stem Cells Dev 2021; 30:91-105. [PMID: 33256557 PMCID: PMC7826435 DOI: 10.1089/scd.2020.0162] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/25/2020] [Indexed: 01/05/2023] Open
Abstract
Traumatic heterotopic ossification (tHO) commonly develops in wounded service members who sustain high-energy and blast-related traumatic amputations. Currently, no safe and effective preventive measures have been identified for this patient population. Bone morphogenetic protein (BMP) signaling blockade has previously been shown to reduce ectopic bone formation in genetic models of HO. In this study, we demonstrate the efficacy of small-molecule inhibition with LDN193189 (ALK2/ALK3 inhibition), LDN212854 (ALK2-biased inhibition), and BMP ligand trap ALK3-Fc at inhibiting early and late osteogenic differentiation of tissue-resident mesenchymal progenitor cells (MPCs) harvested from mice subjected to burn/tenotomy, a well-characterized trauma-induced model of HO. Using an established rat tHO model of blast-related extremity trauma and methicillin-resistant Staphylococcus aureus infection, a significant decrease in ectopic bone volume was observed by micro-computed tomography imaging following treatment with LDN193189, LDN212854, and ALK3-Fc. The efficacy of LDN193189 and LDN212854 in this model was associated with weight loss (17%-19%) within the first two postoperative weeks, and in the case of LDN193189, delayed wound healing and metastatic infection was observed, while ALK3-Fc was well tolerated. At day 14 following injury, RNA-Seq and quantitative reverse transcriptase-polymerase chain reaction analysis revealed that ALK3-Fc enhanced the expression of skeletal muscle structural genes and myogenic transcriptional factors while inhibiting the expression of inflammatory genes. Tissue-resident MPCs harvested from rats treated with ALK3-Fc exhibited reduced osteogenic differentiation, proliferation, and self-renewal capacity and diminished expression of genes associated with endochondral ossification and SMAD-dependent signaling pathways. Together, these results confirm the contribution of BMP signaling in osteogenic differentiation and ectopic bone formation and that a selective ligand-trap approach such as ALK3-Fc may be an effective and tolerable prophylactic strategy for tHO.
Collapse
Affiliation(s)
- Amy L. Strong
- Division of Plastic Surgery, Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan, USA
| | - Philip J. Spreadborough
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Devaveena Dey
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Peiran Yang
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shuli Li
- Division of Plastic Surgery, Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan, USA
| | - Arthur Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Ryan M. Haskins
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Patrick D. Grimm
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Ravi Kumar
- Acceleron Pharma, Inc., Cambridge, Massachusetts, USA
| | - Matthew J. Bradley
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Paul B. Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin Levi
- Division of Plastic Surgery, Department of Surgery, University of Michigan Health Systems, Ann Arbor, Michigan, USA
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas A. Davis
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, USA
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
73
|
O'Connor SK, Katz DB, Oswald SJ, Groneck L, Guilak F. Formation of Osteochondral Organoids from Murine Induced Pluripotent Stem Cells. Tissue Eng Part A 2020; 27:1099-1109. [PMID: 33191853 DOI: 10.1089/ten.tea.2020.0273] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis is a debilitating joint disease that is characterized by pathologic changes in both cartilage and bone, potentially involving cross talk between these tissues that is complicated by extraneous factors that are difficult to study in vivo. To create a model system of these cartilage-bone interactions, we developed an osteochondral organoid from murine induced pluripotent stem cells (iPSCs). Using this approach, we grew organoids from a single cell type through time-dependent sequential exposure of growth factors, namely transforming growth factor β-3 and bone morphogenic protein 2, to mirror bone development through endochondral ossification. The result is a cartilaginous region and a calcified bony region comprising an organoid with the potential for joint disease drug screening and investigation of genetic risk in a patient or disease-specific manner. Furthermore, we also investigated the possibility of the differentiated cells within the organoid to revert to a pluripotent state. It was found that while the cells themselves maintain the capacity for reinduction of pluripotency, encapsulation in the newly formed 3D matrix prevents this process from occurring, which could have implications for future clinical use of iPSCs.
Collapse
Affiliation(s)
- Shannon K O'Connor
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA.,Shriners Hospitals for Children, St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Dakota B Katz
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA.,Shriners Hospitals for Children, St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA.,Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Sara J Oswald
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA.,Shriners Hospitals for Children, St. Louis, St. Louis, Missouri, USA.,Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| | - Logan Groneck
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA.,Shriners Hospitals for Children, St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA.,Shriners Hospitals for Children, St. Louis, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA.,Center of Regenerative Medicine, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
74
|
Lombardi AF, Tang Q, Wong JH, Williams JL, Jerban S, Ma Y, Jang H, Du J, Chang EY. High-Density Mineralized Protrusions and Central Osteophytes: Associated Osteochondral Junction Abnormalities in Osteoarthritis. Diagnostics (Basel) 2020; 10:diagnostics10121051. [PMID: 33291470 PMCID: PMC7762145 DOI: 10.3390/diagnostics10121051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to determine the association between high-density mineralized protrusions (HDMPs) and central osteophytes (COs), and describe the varying appearance of these lesions using advanced clinical imaging and a novel histological protocol. Seventeen consecutive patients with clinically advanced knee osteoarthritis undergoing knee arthroplasty were included. Surgical tissues containing the osteochondral region were investigated using computed tomography (CT); a subset was evaluated using confocal microscopy with fluorescence. Tissues from seven subjects (41.2%) contained HDMPs, and tissues from seven subjects (41.2%) contained COs. A significant association between HDMPs and COs was present (p = 0.003), with 6 subjects (35.2%) demonstrating both lesions. In total, 30 HDMPs were found, most commonly at the posterior medial femoral condyle (13/30, 43%), and 19 COs were found, most commonly at the trochlea (5/19, 26.3%). The HDMPs had high vascularity at their bases in cartilaginous areas (14/20, 70%), while the surrounding areas had elevated levels of long vascular channels penetrating beyond the zone of calcified cartilage (p = 0.012) compared to HDMP-free areas. Both COs and HDMPs had noticeable bone-resorbing osteoclasts amassing at the osteochondral junction and in vascular channels entering cartilage. In conclusion, HDMPs and COs are associated lesions in patients with advanced knee osteoarthritis, sharing similar histologic features, including increased vascularization and metabolic bone activity at the osteochondral junction. Future studies are needed to determine the relationship of these lesions with osteoarthritis progression and symptomatology.
Collapse
Affiliation(s)
- Alecio F. Lombardi
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (J.H.W.); (J.L.W.); (S.J.); (Y.M.); (H.J.); (J.D.); (E.Y.C.)
- Department of Radiology, University of California, San Diego, CA 92122, USA
- Correspondence:
| | - Qingbo Tang
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (J.H.W.); (J.L.W.); (S.J.); (Y.M.); (H.J.); (J.D.); (E.Y.C.)
- Department of Radiology, University of California, San Diego, CA 92122, USA
| | - Jonathan H. Wong
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (J.H.W.); (J.L.W.); (S.J.); (Y.M.); (H.J.); (J.D.); (E.Y.C.)
- Department of Radiology, University of California, San Diego, CA 92122, USA
| | - Judith L. Williams
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (J.H.W.); (J.L.W.); (S.J.); (Y.M.); (H.J.); (J.D.); (E.Y.C.)
| | - Saeed Jerban
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (J.H.W.); (J.L.W.); (S.J.); (Y.M.); (H.J.); (J.D.); (E.Y.C.)
- Department of Radiology, University of California, San Diego, CA 92122, USA
| | - Yajun Ma
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (J.H.W.); (J.L.W.); (S.J.); (Y.M.); (H.J.); (J.D.); (E.Y.C.)
- Department of Radiology, University of California, San Diego, CA 92122, USA
| | - Hyungseok Jang
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (J.H.W.); (J.L.W.); (S.J.); (Y.M.); (H.J.); (J.D.); (E.Y.C.)
- Department of Radiology, University of California, San Diego, CA 92122, USA
| | - Jiang Du
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (J.H.W.); (J.L.W.); (S.J.); (Y.M.); (H.J.); (J.D.); (E.Y.C.)
- Department of Radiology, University of California, San Diego, CA 92122, USA
| | - Eric Y. Chang
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA; (Q.T.); (J.H.W.); (J.L.W.); (S.J.); (Y.M.); (H.J.); (J.D.); (E.Y.C.)
- Department of Radiology, University of California, San Diego, CA 92122, USA
| |
Collapse
|
75
|
Nirmala FS, Lee H, Kim JS, Ha T, Jung CH, Ahn J. Green Tomato Extract Prevents Bone Loss in Ovariectomized Rats, a Model of Osteoporosis. Nutrients 2020; 12:nu12103210. [PMID: 33096661 PMCID: PMC7589907 DOI: 10.3390/nu12103210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 01/04/2023] Open
Abstract
Although drug therapies are available for postmenopausal osteoporosis, these drugs are not free of side effects and long-term adherence to them are low. A safe and effective nutritional approach to counter postmenopausal osteoporosis is an important research goal. We fed ovariectomized (OVX) Sprague–Dawley rats a diet supplemented with 1% or 2% green tomato extract (GTE). After 12 weeks, micro-computed tomography scans revealed that GTE supplementation effectively prevented distal femur bone loss. This prevention was due to improved bone formation and suppressed bone resorption as observed by the regulation of osteoblast and osteoclast activities. GTE supplementation also improved bone formation through Bmp2-Smad 1/5/8-Runx2 signaling, while bone resorption was regulated by the receptor activator of nuclear factor kappa-B (RANKL)/osteoprogeterin (OPG) pathway. These results suggest that GTE supplementation prevents severe postmenopausal bone loss by maintaining the regulation of bone homeostasis in OVX rats. GTE as a diet supplement might be a potential novel alternative for the prevention of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Farida S. Nirmala
- Department of Food Biotechnology, University of Science and Technology, Daejeon 305350, Korea; (F.S.N.); (T.H.); (C.H.J.)
| | - Hyunjung Lee
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju 55365, Korea; (H.L.); (J.-S.K.)
| | - Ji-Sun Kim
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju 55365, Korea; (H.L.); (J.-S.K.)
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea
| | - Taeyoul Ha
- Department of Food Biotechnology, University of Science and Technology, Daejeon 305350, Korea; (F.S.N.); (T.H.); (C.H.J.)
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju 55365, Korea; (H.L.); (J.-S.K.)
| | - Chang Hwa Jung
- Department of Food Biotechnology, University of Science and Technology, Daejeon 305350, Korea; (F.S.N.); (T.H.); (C.H.J.)
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju 55365, Korea; (H.L.); (J.-S.K.)
| | - Jiyun Ahn
- Department of Food Biotechnology, University of Science and Technology, Daejeon 305350, Korea; (F.S.N.); (T.H.); (C.H.J.)
- Research Group of Natural Material and Metabolism, Korea Food Research Institute, Wanju 55365, Korea; (H.L.); (J.-S.K.)
- Correspondence:
| |
Collapse
|
76
|
The Preventive Effects of Xanthohumol on Vascular Calcification Induced by Vitamin D 3 Plus Nicotine. Antioxidants (Basel) 2020; 9:antiox9100956. [PMID: 33036258 PMCID: PMC7599490 DOI: 10.3390/antiox9100956] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Vascular calcification (VC) is highly prevalent in patients with atherosclerosis, chronic kidney disease, diabetes mellitus, and hypertension. In blood vessels, VC is associated with major adverse cardiovascular events. Xanthohumol (XN), a main prenylated chalcone found in hops, has antioxidant effects to inhibit VC. This study aimed to investigate whether XN attenuates VC through in vivo study. A rat VC model was established by four weeks oral administration of vitamin D3 plus nicotine in Sprague Dawley (SD) rats. In brief, 30 male SD rats were randomly divided into three groups: control, 25 mg/kg nicotine in 5 mL corn oil and 3 × 105 IU/kg vitamin D3 administration (VDN), and combination of VDN with 20 mg/L in 0.1% ethanol of XN (treatment group). Physiological variables such as body and heart weight and drinking consumption were weekly observed, and treatment with XN caused no differences among the groups. In comparison with the control group, calcium content and alkaline phosphatase (ALP) activity were increased in calcified arteries, and XN treatment reduced these levels. Dihydroethidium (DHE) and 2′,7′-dichloroflurescin diacetate (DCFH-DA) staining to identify Superoxide and reactive oxygen species generation from aorta tissue showed increased production in VDN group compared with the control and treatment groups. Hematoxylin eosin (HE) and Alizarin Red S staining were determined to show medial vascular thickness and calcification of vessel wall. Administration of VDN resulted in VC, and XN treatment showed improvement in vascular structure. Moreover, overexpression of osteogenic transcription factors bone morphogenetic protein 2 (BMP-2) and runt-related transcription factor 2 (Runx2) were significantly suppressed by XN treatment in VC. Moreover, downregulation of vascular phenotypic markers alpha-smooth muscle actin (α-SMA) and smooth muscle 22 alpha (SM22α) were increased by XN treatment in VC. Furthermore, XN treatment in VC upregulated nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expressions. Otherwise, Kelch-like ECH-associated protein 1 (Keap1) was alleviated by XN treatment in VC. In conclusion, our findings suggested that XN enhances antioxidant capacity to improve VC by regulating the Nrf2/Keap1/HO-1 pathway. Therefore, XN may have potential effects to decrease cardiovascular risk by reducing VC.
Collapse
|
77
|
Lee H, Hwangbo H, Ji SY, Kim MY, Kim SY, Kim DH, Hong SH, Lee SJ, Assefa F, Kim GY, Park EK, Park JH, Lee BJ, Jeon YJ, Choi YH. Gamma Aminobutyric Acid-Enriched Fermented Oyster ( Crassostrea gigas) Increases the Length of the Growth Plate on the Proximal Tibia Bone in Sprague-Dawley Rats. Molecules 2020; 25:molecules25194375. [PMID: 32977643 PMCID: PMC7582314 DOI: 10.3390/molecules25194375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022] Open
Abstract
Bone growth during childhood and puberty determines an adult’s final stature. Although several prior studies have reported that fermented oyster (FO) consisting of a high amount of gamma aminobutyric acid can be attributed to bone health, there is no research on the efficacy of FO on growth regulation and the proximal tibial growth plate. Therefore, in this study, we investigated the effect of FO oral administration on hepatic and serum growth regulator levels and the development of the proximal tibial growth plate in young Sprague-Dawley rats. Both oral administration of FO (FO 100, 100 mg/kg FO and FO 200, 200 mg/kg FO) and subcutaneous injection of recombinant human growth hormone (rhGH, 200 μg/kg of rhGH) for two weeks showed no toxicity. Circulating levels of growth hormone (GH) significantly increased in the FO 200 group. The expression and secretion of insulin-like growth factor-1 (IGF-1) and insulin-like growth factor binding protein-3 (IGFBP-3) were enhanced by FO administration. FO administration promoted the expression of bone morphogenic proteins IGF-1 and IGFBP-3 in the proximal tibial growth plate. This positive effect of FO resulted in incremental growth of the entire plate length by expanding the proliferating and hypertrophic zones in the proximal tibial growth plate. Collectively, our results suggested that oral administration of FO is beneficial for bone health, which may ultimately result in increased height.
Collapse
Affiliation(s)
- Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (H.L.); (H.H.); (S.Y.J.); (M.Y.K.); (S.Y.K.); (D.H.K.); (S.H.H.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (H.L.); (H.H.); (S.Y.J.); (M.Y.K.); (S.Y.K.); (D.H.K.); (S.H.H.)
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (H.L.); (H.H.); (S.Y.J.); (M.Y.K.); (S.Y.K.); (D.H.K.); (S.H.H.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (H.L.); (H.H.); (S.Y.J.); (M.Y.K.); (S.Y.K.); (D.H.K.); (S.H.H.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - So Young Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (H.L.); (H.H.); (S.Y.J.); (M.Y.K.); (S.Y.K.); (D.H.K.); (S.H.H.)
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
| | - Da Hye Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (H.L.); (H.H.); (S.Y.J.); (M.Y.K.); (S.Y.K.); (D.H.K.); (S.H.H.)
- Department of Smart Bio-Health, Dong-eui University, Busan 47340, Korea
| | - Su Hyun Hong
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (H.L.); (H.H.); (S.Y.J.); (M.Y.K.); (S.Y.K.); (D.H.K.); (S.H.H.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - Su Jeong Lee
- Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Korea; (S.J.L.); (F.A.); (E.K.P.)
| | - Freshet Assefa
- Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Korea; (S.J.L.); (F.A.); (E.K.P.)
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (G.-Y.K.); (Y.-J.J.)
| | - Eui Kyun Park
- Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu 41940, Korea; (S.J.L.); (F.A.); (E.K.P.)
| | - Joung-Hyun Park
- Ocean Fisheries & Biology Center, Marine Bioprocess Co., Ltd., Busan 46048, Korea; (J.-H.P.); (B.-J.L.)
| | - Bae-Jin Lee
- Ocean Fisheries & Biology Center, Marine Bioprocess Co., Ltd., Busan 46048, Korea; (J.-H.P.); (B.-J.L.)
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea; (G.-Y.K.); (Y.-J.J.)
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea; (H.L.); (H.H.); (S.Y.J.); (M.Y.K.); (S.Y.K.); (D.H.K.); (S.H.H.)
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
- Correspondence: ; Tel.: +82-51-890-3319
| |
Collapse
|
78
|
Halloran D, Durbano HW, Nohe A. Bone Morphogenetic Protein-2 in Development and Bone Homeostasis. J Dev Biol 2020; 8:E19. [PMID: 32933207 PMCID: PMC7557435 DOI: 10.3390/jdb8030019] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the Transforming Growth Factor-Beta (TGF-β) superfamily. These proteins are essential to many developmental processes, including cardiogenesis, neurogenesis, and osteogenesis. Specifically, within the BMP family, Bone Morphogenetic Protein-2 (BMP-2) was the first BMP to be characterized and has been well-studied. BMP-2 has important roles during embryonic development, as well as bone remodeling and homeostasis in adulthood. Some of its specific functions include digit formation and activating osteogenic genes, such as Runt-Related Transcription Factor 2 (RUNX2). Because of its diverse functions and osteogenic potential, the Food and Drug Administration (FDA) approved usage of recombinant human BMP-2 (rhBMP-2) during spinal fusion surgery, tibial shaft repair, and maxillary sinus reconstructive surgery. However, shortly after initial injections of rhBMP-2, several adverse complications were reported, and alternative therapeutics have been developed to limit these side-effects. As the clinical application of BMP-2 is largely implicated in bone, we focus primarily on its role in bone. However, we also describe briefly the role of BMP-2 in development. We then focus on the structure of BMP-2, its activation and regulation signaling pathways, BMP-2 clinical applications, and limitations of using BMP-2 as a therapeutic. Further, this review explores other potential treatments that may be useful in treating bone disorders.
Collapse
Affiliation(s)
| | | | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (D.H.); (H.W.D.)
| |
Collapse
|
79
|
Hart CG, Karimi-Abdolrezaee S. Bone morphogenetic proteins: New insights into their roles and mechanisms in CNS development, pathology and repair. Exp Neurol 2020; 334:113455. [PMID: 32877654 DOI: 10.1016/j.expneurol.2020.113455] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) are a highly conserved and diverse family of proteins that play essential roles in various stages of development including the formation and patterning of the central nervous system (CNS). Bioavailability and function of BMPs are regulated by input from a plethora of transcription factors and signaling pathways. Intriguingly, recent literature has uncovered novel roles for BMPs in regulating homeostatic and pathological responses in the adult CNS. Basal levels of BMP ligands and receptors are widely expressed in the adult brain and spinal cord with differential expression patterns across CNS regions, cell types and subcellular locations. Recent evidence indicates that several BMP isoforms are transiently or chronically upregulated in the aged or pathological CNS. Genetic knockout and pharmacological studies have elucidated that BMPs regulate several aspects of CNS injury and repair including cell survival and differentiation, reactive astrogliosis and glial scar formation, axon regeneration, and myelin preservation and repair. Several BMP isoforms can be upregulated in the injured or diseased CNS simultaneously yet exert complementary or opposing effects on the endogenous cell responses after injury. Emerging studies also show that dysregulation of BMPs is associated with various CNS pathologies. Interestingly, modulation of BMPs can lead to beneficial or detrimental effects on CNS injury and repair mechanisms in a ligand, temporally or spatially specific manner, which reflect the complexity of BMP signaling. Given the significance of BMPs in neurodevelopment, a better understanding of their role in the context of injury may provide new therapeutic targets for the pathologic CNS. This review will provide a timely overview on the foundation and recent advancements in knowledge regarding the role and mechanisms of BMP signaling in the developing and adult CNS, and their implications in pathological responses and repair processes after injury or diseases.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
80
|
Wang W, Rigueur D, Lyons KM. TGFβ as a gatekeeper of BMP action in the developing growth plate. Bone 2020; 137:115439. [PMID: 32442550 PMCID: PMC7891678 DOI: 10.1016/j.bone.2020.115439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023]
Abstract
The ligands that comprise the Transforming Growth Factor β superfamily highly govern the development of the embryonic growth plate. Members of this superfamily activate canonical TGFβ and/or BMP (Bone Morphogenetic Protein) signaling pathways. How these pathways interact with one another is an area of active investigation. These two signaling pathways have been described to negatively regulate one another through crosstalk involving Smad proteins, the primary intracellular effectors of canonical signaling. More recently, a mechanism for regulation of the BMP pathway through TGFβ and BMP receptor interactions has been described. Here in this review, we demonstrate examples of how TGFβ is a gatekeeper of BMP action in the developing growth plate at both the receptor and transcriptional levels.
Collapse
Affiliation(s)
- Weiguang Wang
- Department of Orthopaedic Surgery and Orthopaedic Institute for Children, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States of America
| | - Diana Rigueur
- Department of Molecular, Cell and Developmental Biology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States of America
| | - Karen M Lyons
- Department of Orthopaedic Surgery and Orthopaedic Institute for Children, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States of America; Department of Molecular, Cell and Developmental Biology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States of America.
| |
Collapse
|
81
|
Li W, Zhao S, He W, Zhang M, Li S, Xu Y. Static magnetic fields accelerate osteogenesis by regulating FLRT/BMP pathway. Biochem Biophys Res Commun 2020; 527:83-89. [PMID: 32446396 DOI: 10.1016/j.bbrc.2020.04.090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Static magnetic fields (SMF) have been proved to enhance osteogenic differentiation in mesenchymal stem cells (MSCs). However, the effect of SMF on mandibular condylar chondrocytes (MCCs) are less investigated, which contributes to the vertical formation of mandible. The purpose of the present study was to identify whether SMF accelerate the osteogenesis on mature condylar cartilage and explore the potential regulatory mechanism. METHODS In this study, we presented a 280 mT SMF stimulation set-up to investigate the genomic effects of SMF exposure on MCCs differentiation and osteoblast-related factor secretion in vitro. Induced by Oricell™ for osteogenesis, MCCs from primary SD Rat were stimulated with or without SMF for cell culture. Cell proliferation was determined by CCK-8. The enhanced osteogenetic capacity of the SMF stimulated MCCs was identified by Alizarin red staining (ARS). Additionally, the effects of SMF on the expression of transmembrane protein marker (FLRT3), terminal differentiation markers (BMP2), and transcription factors (Smad1/5/8) were quantified by Western blot and immunofluorescence analysis. RESULTS Compared with the control group, SMF decreased the proliferation of MCCs (p < 0.05) after 14 days osteogenesis-specific induction. The mineral synthesis of MCCs was upregulated by SMF (p < 0.0001). The expression of BMP2, Smad1/5/8 showed decrease trends while the protein level of FLRT3 acted in contrary manner (p < 0.05). CONCLUSIONS Our findings emphasized the ability of osteogenesis positively respond to SMF stimulation by exhibiting enhanced differentiation via FLRT/BMP signaling.
Collapse
Affiliation(s)
- Weihao Li
- Institute of Oral Research, School of Stomatology, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Shurong Zhao
- Department of Orthodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Wei He
- Department of Orthodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Ming Zhang
- Department of Orthodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Song Li
- Institute of Oral Research, School of Stomatology, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yanhua Xu
- Department of Orthodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China.
| |
Collapse
|
82
|
Jing Y, Wang Z, Li H, Ma C, Feng J. Chondrogenesis Defines Future Skeletal Patterns Via Cell Transdifferentiation from Chondrocytes to Bone Cells. Curr Osteoporos Rep 2020; 18:199-209. [PMID: 32219639 PMCID: PMC7717675 DOI: 10.1007/s11914-020-00586-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to obtain a better understanding of how chondrogenesis defines skeletal development via cell transdifferentiation from chondrocytes to bone cells. RECENT FINDINGS A breakthrough in cell lineage tracing allows bone biologists to trace the cell fate and demonstrate that hypertrophic chondrocytes can directly transdifferentiate into bone cells during endochondral bone formation. However, there is a knowledge gap for the biological significance of this lineage extension and the mechanisms controlling this process. This review first introduces the history of the debate on the cell fate of chondrocytes in endochondral bone formation; then summarizes key findings obtained in recent years, which strongly support a new theory: the direct cell transdifferentiation from chondrocytes to bone cells precisely connects chondrogenesis (for providing a template of the future skeleton, classified as phase I) and osteogenesis (for finishing skeletal construction, or phase II) in a continuous lineage-linked process of endochondral bone formation and limb elongation; and finally outlines nutrition factors and molecules that regulate the cell transdifferentiation process during the relay from chondrogenesis to osteogenesis.
Collapse
Affiliation(s)
- Yan Jing
- Department of Orthodontics, Texas A&M University College of Dentistry, 3302 Gaston ave, Dallas, TX, 75246, USA.
| | - Zheng Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Hui Li
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
- State Key Laboratory of Oral Diseases, Department of Traumatic and Plastic Surgery, , West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chi Ma
- Department of Research, Texas Scottish Rite Hospital for Children, Dallas, TX, USA
| | - Jian Feng
- Department of Orthodontics, Texas A&M University College of Dentistry, 3302 Gaston ave, Dallas, TX, 75246, USA.
| |
Collapse
|
83
|
The role of SIRT1 in BMP2-induced chondrogenic differentiation and cartilage maintenance under oxidative stress. Aging (Albany NY) 2020; 12:9000-9013. [PMID: 32445555 PMCID: PMC7288925 DOI: 10.18632/aging.103161] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
Abstract
Articular cartilage defects are common in the clinic but difficult to treat. Exploring the chondrogenic molecular mechanisms of mesenchymal stem cells (MSCs) is of great theoretical interest and industrial significance. Bone morphogenetic protein 2 (BMP2) is a key factor that induces cartilage differentiation and can induce stem cell chondrogenic differentiation. However, the oxidative stress in the microenvironment during cartilage injury and degeneration inhibits cartilage regeneration and homeostasis. Silent mating type information regulator 2 homolog-1 (SIRT1) is an important histone deacetylase that regulates proliferation, differentiation, aging, and inflammation processes; moreover, it is an essential factor for chondrogenesis. The specific mechanism of SIRT1 in cartilage differentiation and homeostasis is still unclear. First, we investigated whether SIRT1 could coordinate BMP2-induced chondrogenic differentiation. Second, we investigated the protective effect of SIRT1 on BMP2-induced MSCs under oxidative stress. The results showed that SIRT1 could promote BMP2-induced chondrogenic differentiation of MSCs, and reduce the apoptosis and decomposition of extracellular matrix under oxidative stress. In summary, these results suggested that SIRT1 plays an important coordination role in BMP2-induced chondrogenic differentiation of stem cells and cartilage maintenance under oxidative stress, establishing the experimental basis for exploring the use of SIRT1 in cartilage defect repair.
Collapse
|
84
|
Hansdah K, Singh N, Bouzid A, Priyadarshi S, Ray CS, Desai A, Panda KC, Choudhury JC, Biswal NC, Tekari A, Masmoudi S, Ramchander PV. Evaluation of the Genetic Association and mRNA Expression of the COL1A1, BMP2, and BMP4 Genes in the Development of Otosclerosis. Genet Test Mol Biomarkers 2020; 24:343-351. [PMID: 32379989 DOI: 10.1089/gtmb.2019.0235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Otosclerosis (OTSC) is a genetically heterogeneous disorder, characterized by abnormal bone growth in the middle ear, affecting the stapes bone. Previous studies have shown that single nucleotide polymorphisms (SNPs) of the COL1A1, BMP2, and BMP4 genes are linked to susceptibility of OTSC, musculoskeletal degenerative diseases, and bone remodeling. Aims: To evaluate the genetic association and expression levels of COL1A1, BMP2, and BMP4 genes with OTSC in the Indian population. Methods: A total of 320 otosclerotic and 320 control samples were screened for four SNPs (rs1107946, rs11327935, rs2269336, and rs1800012) of the COL1A1 gene; rs3178250 of the BMP2 gene; and rs17563 of the BMP4 gene using single-strand conformation polymorphism analysis, and restriction fragment length polymorphism analyses. Genotypic, haplotypic, and linkage disequilibrium analyses were performed to assess the potential associations of these SNPs with OTSC. COL1A1, BMP2, and BMP4 mRNA expression levels were analyzed by semiquantitative RT-PCR and real-time PCR. Results: Genotypes of two SNPs, rs1800012 and rs17563, were found to be associated with OTSC (the rs1800012 GT genotype, p = 0.0022, OR = 0.481; and the rs17563 TC genotype, p = 0.0225, OR = 1.471). Haplotypic analyses revealed that the COL1A1 haplotype G-T-C-T (p = 0.021) was significantly increased among controls. Functional studies revealed an unexpected decrease in mRNA expression of COL1A1 but an increased expression of the BMP2 and BMP4 genes in otosclerotic stapes tissues. Conclusions: Our findings suggest that OTSC is a heterogeneous disorder, but that the GT genotype of the rs1800012 locus is protective and that the TC genotype at the rs17563 locus is a risk factor. In addition, our studies indicate that changes in the expression of the COL1A1, BMP2, and BMP4 genes may contribute to the genetic susceptibility of OTSC by regulating their mRNA levels.
Collapse
Affiliation(s)
- Kirtal Hansdah
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
| | - Neha Singh
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
| | - Amal Bouzid
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | | | - Chinmay Sundar Ray
- Department of Ear, Nose, and Throat (ENT), Shrirama Chandra Bhanja (SCB) Medical College & Hospital, Cuttack, India
| | - Ashim Desai
- Dr. ABR Desai Ear, Nose and Throat (ENT) Clinic and Research Centre, Mumbai, India
| | | | - Jyotish Chandra Choudhury
- Department of Forensic Medicine & Toxicology (FMT), Shrirama Chandra Bhanja (SCB) Medical College & Hospital, Cuttack, India
| | - Narayan Chandra Biswal
- Department of Ear, Nose, and Throat (ENT), Shrirama Chandra Bhanja (SCB) Medical College & Hospital, Cuttack, India
| | - Adel Tekari
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | | |
Collapse
|
85
|
Wang M, Li Z, Zhang M, Wang H, Zhang Y, Feng Y, Liu Y, Chen J. Decorin knockdown affects the gene expression profile of adhesion, growth and extracellular matrix metabolism in C-28/I2 chondrocytes. PLoS One 2020; 15:e0232321. [PMID: 32353084 PMCID: PMC7192450 DOI: 10.1371/journal.pone.0232321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/12/2020] [Indexed: 11/22/2022] Open
Abstract
Decorin is a member of small leucine-rich proteoglycan family, which is involved in multiple biological functions mainly as a structural and signaling molecule, and disturbances in its own metabolism plays a crucial role in the pathogenesis of osteoarthropathy. In this study, we aim to further explore the biological function of decorin and their role in human chondrocyte cell line, C28/I2. Lentivirus-mediated shRNA was applied to down-regulate decorin expression in C28/I2 chondrocytes. Effect of decorin knockdown on gene expression profiles was determined by RNA sequencing followed by bioinformatics analysis. MTT, adhesion assays and flow cytometry were used to investigate the effect of decorin knockdown on cell proliferation, adhesion, and apoptosis. sGAG content in the culture medium was determined by DMMB assay. Stably transfected C28/I2 cells were seeded onto the cancellous bone matrix gelatin (BMG) to construct tissue-engineered cartilage. The histological patterns were evaluated by H&E and Toluidine blue staining. In this study, 1780 differentially expressed genes (DEGs) including 864 up-regulated and 916 down-regulated genes were identified using RNA-Seq. The reliability of the gene expression was further verified by qRT-PCR. GO and KEGG pathway enrichment analysis revealed diverse cellular processes were affected by decorin silencing such as: cell adhesion, growth, and metabolism of extracellular matrix. In addition, we confirmed that down-regulation of decorin significantly suppressed cell proliferation and adhesion and induced apoptosis. The sGAG content in the media was significantly increased after decorin silencing. Engineered articular tissues in the decorin knockdown group exhibited cartilage destruction and proteoglycan loss as evidenced by H&E and Toluidine blue stains. Overall, this combined data helps to provide a comprehensive understanding of the roles of decorin following its knockdown in C28/I2 cells.
Collapse
Affiliation(s)
- Mengying Wang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Zhengzheng Li
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Meng Zhang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Hui Wang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Ying Zhang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Yiping Feng
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Yinan Liu
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Jinghong Chen
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| |
Collapse
|
86
|
Karaman İ, Günay AE, Yerer MB, Demirpolat E, Doğan S, Hanım Yay A, Kafadar İH. Effect of kirenol on the interaction between the WNT/β-Catenin and RUNX2/TCF/LEF1 pathways in fracture healing in vivo. ACTA ORTHOPAEDICA ET TRAUMATOLOGICA TURCICA 2020; 54:320-329. [PMID: 32544068 DOI: 10.5152/j.aott.2020.03.529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE This study aimed to determine the effects of a natural diterpenoid, kirenol, on fracture healing in vivo in an experimental rat model of femur fracture and investigate its potential mechanism of action via the Wnt/β-catenin pathway. METHODS In this study, 64 male Wistar albino rats aged 5-7 weeks and weighing 261-348 g were randomly divided into 8 groups from A to L, with eight rats in each group. Standardized fractures were created in the right femurs of the rats and then fixed with an intramedullary Kirschner wire. Four experimental groups were administered 2 mg/kg/day kirenol (Groups C and G) and 4 mg/kg/day (Groups D and H) kirenol by oral gavage.Thereafter, the animals were sacrificed at two time points as follows: on the 10th day (Groups B, C and D) and on the 21st day (Groups F, G and H) after the surgery; fracture healing in each group was assessed radiologically and histopathologically. The Radiographic Union scale of tibia fracture scoring system was used in the radiological examination; callus volume and density were measured using computed tomography. In the histopathologic examination, the scoring system described by Huo et al. was used. Additionally, the mechanism of action was evaluated based on the analyses of protein expression of Wnt3a, LRP5, TCF-LEF1, β-catenin, and Runx-2 proteins using western blot analysis. RESULTS Among the animals sacrificed on the 10th day after the surgery, the highest histopathological and radiological scores were observed in Group D (p<0.05). Furthermore, the callus density (p<0.05) was highest in Group D. Among the animals sacrificed on the 21st day, the highest histopathological and radiological scores were found in Group H, although the differences among the groups were not significant (p>0.05). The callus volume and density were the highest in Groups G and H, respectively, although the differences among groups were not significant. CONCLUSION Kirenol may improve fracture healing in a dose-dependent manner with the early activation of the Wnt/β-catenin pathway and the activation of the Runx-2 pathway.
Collapse
Affiliation(s)
- İbrahim Karaman
- Department of Orthopedics and Traumatology, Erciyes University, School of Medicine, Kayseri, Turkey
| | - Ali Eray Günay
- Clinic of Orthopedics and Traumatology, Kayseri City Hospital, Kayseri, Turkey
| | - Mükerrem Betül Yerer
- Department of Pharmacology, Erciyes University, School of Pharmacy, Kayseri, Turkey
| | - Eren Demirpolat
- Department of Pharmacology, Erciyes University, School of Pharmacy, Kayseri, Turkey
| | - Serap Doğan
- Department of Radiology, Erciyes University, School of Medicine, Kayseri, Turkey
| | - Arzu Hanım Yay
- Department of Histology, Erciyes University, School of Medicine, Kayseri, Turkey
| | - İbrahim Halil Kafadar
- Department of Orthopedics and Traumatology, Erciyes University, School of Medicine, Kayseri, Turkey
| |
Collapse
|
87
|
Chien SY, Tsai CH, Liu SC, Huang CC, Lin TH, Yang YZ, Tang CH. Noggin Inhibits IL-1β and BMP-2 Expression, and Attenuates Cartilage Degeneration and Subchondral Bone Destruction in Experimental Osteoarthritis. Cells 2020; 9:cells9040927. [PMID: 32290085 PMCID: PMC7226847 DOI: 10.3390/cells9040927] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is a chronic inflammatory and progressive joint disease that results in cartilage degradation and subchondral bone remodeling. The proinflammatory cytokine interleukin 1 beta (IL-1β) is abundantly expressed in OA and plays a crucial role in cartilage remodeling, although its role in the activity of chondrocytes in cartilage and subchondral remodeling remains unclear. In this study, stimulating chondrogenic ATDC5 cells with IL-1β increased the levels of bone morphogenetic protein 2 (BMP-2), promoted articular cartilage degradation, and enhanced structural remodeling. Immunohistochemistry staining and microcomputed tomography imaging of the subchondral trabecular bone region in the experimental OA rat model revealed that the OA disease promotes levels of IL-1β, BMP-2, and matrix metalloproteinase 13 (MMP-13) expression in the articular cartilage and enhances subchondral bone remodeling. The intra-articular injection of Noggin protein (a BMP-2 inhibitor) attenuated subchondral bone remodeling and disease progression in OA rats. We also found that IL-1β increased BMP-2 expression by activating the mitogen-activated protein kinase (MEK), extracellular signal-regulated kinase (ERK), and specificity protein 1 (Sp1) signaling pathways. We conclude that IL-1β promotes BMP-2 expression in chondrocytes via the MEK/ERK/Sp1 signaling pathways. The administration of Noggin protein reduces the expression of IL-1β and BMP-2, which prevents cartilage degeneration and OA development.
Collapse
Affiliation(s)
- Szu-Yu Chien
- Department of Exercise Health Science, National Taiwan University of Sport, Taichung 404393, Taiwan;
- School of Medicine, China Medical University, Taichung 404022, Taiwan;
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 404022, Taiwan;
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 404022, Taiwan
| | - Shan-Chi Liu
- Department of Medical Education and Research, China Medical University Beigang Hospital, Yunlin 651012, Taiwan;
| | - Chien-Chung Huang
- School of Medicine, China Medical University, Taichung 404022, Taiwan;
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung 404022, Taiwan
| | - Tzu-Hung Lin
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 310401, Taiwan; (T.-H.L.); (Y.-Z.Y.)
| | - Yu-Zhen Yang
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 310401, Taiwan; (T.-H.L.); (Y.-Z.Y.)
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung 404022, Taiwan;
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404022, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 404022, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-4-2205-2121 (ext. 7726)
| |
Collapse
|
88
|
Schivo S, Khurana S, Govindaraj K, Scholma J, Kerkhofs J, Zhong L, Huang X, van de Pol J, Langerak R, van Wijnen AJ, Geris L, Karperien M, Post JN. ECHO, the executable CHOndrocyte: A computational model to study articular chondrocytes in health and disease. Cell Signal 2020; 68:109471. [DOI: 10.1016/j.cellsig.2019.109471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
|
89
|
Wan Hasan WN, Chin KY, Abd Ghafar N, Soelaiman IN. Annatto-Derived Tocotrienol Promotes Mineralization of MC3T3-E1 Cells by Enhancing BMP-2 Protein Expression via Inhibiting RhoA Activation and HMG-CoA Reductase Gene Expression. Drug Des Devel Ther 2020; 14:969-976. [PMID: 32184566 PMCID: PMC7060796 DOI: 10.2147/dddt.s224941] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Annatto-derived tocotrienol (AnTT) has been shown to improve bone formation in animal models of osteoporosis and promote differentiation of pre-osteoblastic cells. However, the mechanism of action of AnTT in achieving these effects is unclear. This study aims to investigate the mechanism of action of AnTT on MC3T3-E1 pre-osteoblasts via the mevalonate pathway. METHODS Murine pre-osteoblastic cells, MC3T3-E1, were cultured with the density of 1 × 104 cells/mL and treated with 4 concentrations of AnTT (0.001-1 µg/mL). Expression of HMG-CoA reductase (HMGR) gene was carried out using qPCR after treatment with AnTT for 21 days. RhoA activation and bone morphogenetic protein-2 (BMP-2) were measured using immunoassay after 9 and 15 days of AnTT treatment. Lovastatin was used as the positive control. Mineralized nodules were detected using Von Kossa staining after 21 days of AnTT treatment. RESULTS The results showed that HMGR was up-regulated in the lovastatin group on day 9 and 21 compared to the control. Lovastatin also inhibited RhoA activation (day 9 and 15) and increased BMP-2 protein (day 15). On the other hand, AnTT at 0.001 μg/mL (day 3) and 0.1 μg/mL (day 21) significantly down-regulated HMGR gene expression compared to the control. On day 21, HMGR gene expression was significantly reduced in all groups compared to day 15. AnTT at 0.1 μg/mL significantly decreased RhoA activation on day 9 compared to the control. AnTT at 1 μg/mL significantly increased BMP-2 protein on day 15 compared to the control (P<0.05). Mineralized calcium nodules were more abundant in AnTT treated groups compared to the control on day 21. CONCLUSION AnTT suppresses the mevalonate pathway by downregulating HMGR gene expression and inhibiting RhoA activation, leading to increased BMP-2 protein in MC3T3-E1 cells. This explains the stimulating effects of AnTT on osteoblast mineralization.
Collapse
Affiliation(s)
- Wan Nuraini Wan Hasan
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, UKM Medical Centre (UKMMC), Kuala Lumpur56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, UKM Medical Centre (UKMMC), Kuala Lumpur56000, Malaysia
| | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, UKM Medical Centre (UKMMC), Kuala Lumpur56000, Malaysia
| | - Ima Nirwana Soelaiman
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, UKM Medical Centre (UKMMC), Kuala Lumpur56000, Malaysia
| |
Collapse
|
90
|
Huang Z, Wei H, Wang X, Xiao J, Li Z, Xie Y, Hu Y, Li X, Wang Z, Zhang S. Icariin promotes osteogenic differentiation of BMSCs by upregulating BMAL1 expression via BMP signaling. Mol Med Rep 2020; 21:1590-1596. [PMID: 32016461 PMCID: PMC7002972 DOI: 10.3892/mmr.2020.10954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
Increasing research has demonstrated that expression of brain and muscle ARNT‑like 1 (BMAL1) and other circadian clock genes can be regulated by drugs and toxicants. We previously demonstrated that icariin, extracted from Herba Epimedii, sromotes osteogenic differentiation. However, the mechanism underlying the association between icariin and BMAL1 in osteogenic differentiation of bone marrow‑derived mesenchymal stem cells (BMSCs) remains unclear. The present study was designed with an aim to clarify the association between icariin and BMAL1 in osteogenic differentiation of BMSCs. The Cell Counting Kit‑8 assay was used to evaluate cell proliferation. The expression of bone morphogenetic protein 2 (BMP2), RUNX family transcription factor 2 (RUNX2), alkaline phosphatase (ALP), osteocalcin (OC) and BMAL1 in BMSCs was evaluated by reverse transcription‑quantitative PCR and western blotting. ALP and Alizarin red S (ARS) staining were also performed. Icariin promoted BMSC proliferation, and upregulated expression of osteogenic genes and BMAL1. In addition, expression of the osteogenic genes BMP2, RUNX2, ALP and OC were upregulated by BMAL1 overexpression. Furthermore, we confirmed that BMAL1 deficiency suppressed osteogenic differentiation in BMSCs. Finally, ARS staining of BMAL1‑/‑ BMSCs revealed that BMAL1 was an essential intermediary in matrix mineralization during osteogenic differentiation. In conclusion, these results demonstrated that icariin promoted osteogenic differentiation through BMAL1‑BMP2 signaling in BMSCs. The present study thus described a novel target of icariin that has potential applications in the treatment of osteogenic disorders.
Collapse
Affiliation(s)
- Zengfa Huang
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Hui Wei
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Xiang Wang
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Jianwei Xiao
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Zuoqin Li
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Yuanliang Xie
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Yun Hu
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Xiang Li
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Zheng Wang
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Shutong Zhang
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| |
Collapse
|
91
|
Chondrogenic Differentiation from Induced Pluripotent Stem Cells Using Non-Viral Minicircle Vectors. Cells 2020; 9:cells9030582. [PMID: 32121522 PMCID: PMC7140457 DOI: 10.3390/cells9030582] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Human degenerative cartilage has low regenerative potential. Chondrocyte transplantation offers a promising strategy for cartilage treatment and regeneration. Currently, chondrogenesis using human pluripotent stem cells (hiPSCs) is accomplished using human recombinant growth factors. Here, we differentiate hiPSCs into chondrogenic pellets using minicircle vectors. Minicircles are a non-viral gene delivery system that can produce growth factors without integration into the host genome. We generated minicircle vectors containing bone morphogenetic protein 2 (BMP2) and transforming growth factor beta 3 (TGFβ3) and delivered them to mesenchymal stem cell-like, hiPSC-derived outgrowth (OG) cells. Cell pellets generated using minicircle-transfected OG cells successfully differentiated into the chondrogenic lineage. The implanted minicircle-based chondrogenic pellets recovered the osteochondral defects in rat models. This work is a proof-of-concept study that describes the potential application of minicircle vectors in cartilage regeneration using hiPSCs.
Collapse
|
92
|
Clark AY, Martin KE, García JR, Johnson CT, Theriault HS, Han WM, Zhou DW, Botchwey EA, García AJ. Integrin-specific hydrogels modulate transplanted human bone marrow-derived mesenchymal stem cell survival, engraftment, and reparative activities. Nat Commun 2020; 11:114. [PMID: 31913286 PMCID: PMC6949269 DOI: 10.1038/s41467-019-14000-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/10/2019] [Indexed: 12/28/2022] Open
Abstract
Stem cell therapies are limited by poor cell survival and engraftment. A hurdle to the use of materials for cell delivery is the lack of understanding of material properties that govern transplanted stem cell functionality. Here, we show that synthetic hydrogels presenting integrin-specific peptides enhance the survival, persistence, and osteo-reparative functions of human bone marrow-derived mesenchymal stem cells (hMSCs) transplanted in murine bone defects. Integrin-specific hydrogels regulate hMSC adhesion, paracrine signaling, and osteoblastic differentiation in vitro. Hydrogels presenting GFOGER, a peptide targeting α2β1 integrin, prolong hMSC survival and engraftment in a segmental bone defect and result in improved bone repair compared to other peptides. Integrin-specific hydrogels have diverse pleiotropic effects on hMSC reparative activities, modulating in vitro cytokine secretion and in vivo gene expression for effectors associated with inflammation, vascularization, and bone formation. These results demonstrate that integrin-specific hydrogels improve tissue healing by directing hMSC survival, engraftment, and reparative activities.
Collapse
Affiliation(s)
- Amy Y Clark
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Karen E Martin
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - José R García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Christopher T Johnson
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA, 30332, USA
| | - Hannah S Theriault
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA, 30332, USA
| | - Woojin M Han
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Dennis W Zhou
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA, 30332, USA
| | - Edward A Botchwey
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Coulter Department of Biomedical Engineering, Georgia Tech and Emory, Atlanta, GA, 30332, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
93
|
Growth Plate Chondrocytes: Skeletal Development, Growth and Beyond. Int J Mol Sci 2019; 20:ijms20236009. [PMID: 31795305 PMCID: PMC6929081 DOI: 10.3390/ijms20236009] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 02/01/2023] Open
Abstract
Growth plate chondrocytes play central roles in the proper development and growth of endochondral bones. Particularly, a population of chondrocytes in the resting zone expressing parathyroid hormone-related protein (PTHrP) is now recognized as skeletal stem cells, defined by their ability to undergo self-renewal and clonally give rise to columnar chondrocytes in the postnatal growth plate. These chondrocytes also possess the ability to differentiate into a multitude of cell types including osteoblasts and bone marrow stromal cells during skeletal development. Using single-cell transcriptomic approaches and in vivo lineage tracing technology, it is now possible to further elucidate their molecular properties and cellular fate changes. By discovering the fundamental molecular characteristics of these cells, it may be possible to harness their functional characteristics for skeletal growth and regeneration. Here, we discuss our current understanding of the molecular signatures defining growth plate chondrocytes.
Collapse
|
94
|
Recent Insights into Long Bone Development: Central Role of Hedgehog Signaling Pathway in Regulating Growth Plate. Int J Mol Sci 2019; 20:ijms20235840. [PMID: 31757091 PMCID: PMC6928971 DOI: 10.3390/ijms20235840] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/30/2022] Open
Abstract
The longitudinal growth of long bone, regulated by an epiphyseal cartilaginous component known as the “growth plate”, is generated by epiphyseal chondrocytes. The growth plate provides a continuous supply of chondrocytes for endochondral ossification, a sequential bone replacement of cartilaginous tissue, and any failure in this process causes a wide range of skeletal disorders. Therefore, the cellular and molecular characteristics of the growth plate are of interest to many researchers. Hedgehog (Hh), well known as a mitogen and morphogen during development, is one of the best known regulatory signals in the developmental regulation of the growth plate. Numerous animal studies have revealed that signaling through the Hh pathway plays multiple roles in regulating the proliferation, differentiation, and maintenance of growth plate chondrocytes throughout the skeletal growth period. Furthermore, over the past few years, a growing body of evidence has emerged demonstrating that a limited number of growth plate chondrocytes transdifferentiate directly into the full osteogenic and multiple mesenchymal lineages during postnatal bone development and reside in the bone marrow until late adulthood. Current studies with the genetic fate mapping approach have shown that the commitment of growth plate chondrocytes into the skeletal lineage occurs under the influence of epiphyseal chondrocyte-derived Hh signals during endochondral bone formation. Here, we discuss the valuable observations on the role of the Hh signaling pathway in the growth plate based on mouse genetic studies, with some emphasis on recent advances.
Collapse
|
95
|
Wang T, Nimkingratana P, Smith CA, Cheng A, Hardingham TE, Kimber SJ. Enhanced chondrogenesis from human embryonic stem cells. Stem Cell Res 2019; 39:101497. [PMID: 31326745 PMCID: PMC6745516 DOI: 10.1016/j.scr.2019.101497] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/17/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
Human embryonic stem cells (hESCs) have great potential for the repair of damaged articular cartilage. We developed a serum-free 14-day protocol for hESC differentiation into chondrocyte progenitors, which surprisingly lacked strong cartilage matrix production in in vitro tests. In order to direct these progenitors to a more mature phenotype, we investigated substituting different members of the TGFβ family in the protocol. Initially, we supplemented, or substituted GDF5 (day 11-14), with combinations of BMP7 and TGFβ-1, or -3, but these modifications yielded no improvement in matrix gene expression. However, replacing BMP4 with BMP2 (days 3-10 of the protocol) resulted in a more rapid increase in SOX9 gene expression and increased expression of chondrogenic genes SOX5, ACAN and COL2A1. The replacement of BMP4 with BMP2 also enhanced the formation of chondrogenic cell aggregates, with greater deposition of type II collagen. This change was not accompanied by hypertrophic chondrocyte marker COL10A1 expression. The results demonstrate that BMP2 has greater specificity for the generation of chondrogenic cells from hESCs than BMP4 and this was consistent in two hESC lines (HUES1 and MAN7). hESC-chondrogenic cells derived with either BMP2 or BMP4 were tested in vivo by implanting them in fibrin into osteochondral defects in the femur of RNU rats. Repaired cartilage tissue, positive for Safranin O and type II collagen was detected at 6 and 12 weeks with both cell sources, but the BMP2 cells scored higher for tissue quality (Pineda score). Therefore, BMP2 is more effective at driving chondrogenic differentiation from human pluripotent stem cells than BMP4 and the effect on the resulting chondroprogenitors is sustained in an in vivo setting.
Collapse
Affiliation(s)
- Tao Wang
- Faculty of Biology, Medicine and Health, University of Manchester, UK
| | | | | | - Aixin Cheng
- Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Timothy E Hardingham
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Susan J Kimber
- Faculty of Biology, Medicine and Health, University of Manchester, UK.
| |
Collapse
|
96
|
Ma X, Fan C, Wang Y, Du Y, Zhu Y, Liu H, Lv L, Liu Y, Zhou Y. MiR-137 knockdown promotes the osteogenic differentiation of human adipose-derived stem cells via the LSD1/BMP2/SMAD4 signaling network. J Cell Physiol 2019; 235:909-919. [PMID: 31241766 DOI: 10.1002/jcp.29006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/06/2019] [Indexed: 12/18/2022]
Abstract
MicroRNAs are a group of endogenous regulators that participate in several cellular physiological processes. However, the role of miR-137 in the osteogenic differentiation of human adipose-derived stem cells (hASCs) has not been reported. This study verified a general downward trend in miR-137 expression during the osteogenic differentiation of hASCs. MiR-137 knockdown promoted the osteogenesis of hASCs in vitro and in vivo. Mechanistically, inhibition of miR-137 activated the bone morphogenetic protein 2 (BMP2)-mothers against the decapentaplegic homolog 4 (SMAD4) pathway, whereas repressed lysine-specific histone demethylase 1 (LSD1), which was confirmed as a negative regulator of osteogenesis in our previous studies. Furthermore, LSD1 knockdown enhanced the expression of BMP2 and SMAD4, suggesting the coordination of LSD1 in the osteogenic regulation of miR-137. This study indicated that miR-137 negatively regulated the osteogenic differentiation of hASCs via the LSD1/BMP2/SMAD4 signaling network, revealing a new potential therapeutic target of hASC-based bone tissue engineering.
Collapse
Affiliation(s)
- Xiaohan Ma
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Cong Fan
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China.,Department of General Dentistry II, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuejun Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yangge Du
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hao Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
97
|
Yue J, Jin S, Gu S, Sun R, Liang Q. High concentration magnesium inhibits extracellular matrix calcification and protects articular cartilage via Erk/autophagy pathway. J Cell Physiol 2019; 234:23190-23201. [PMID: 31161622 DOI: 10.1002/jcp.28885] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/14/2019] [Accepted: 05/01/2019] [Indexed: 01/05/2023]
Abstract
The significant cytopathological changes of osteoarthritis are chondrocyte hypertrophy, proteoglycan loss, extracellular matrix (ECM) calcification, and terminally, the replacement of cartilage by bone. Meanwhile, magnesium ion (Mg2+ ), as the second most abundant divalent cation in the human body, has been proved to inhibit the ECM calcification of hBMSCs (human bone marrow stromal cells), hVSMCs (Human vascular smooth muscle cells), and TDSCs (tendon-derived stem cells) in vitro studies. The ATDC5 cell line, which holds chondrocyte characteristics, was used in this study as an in vitro subject. We found that Mg2+ can efficiently suppress the ECM calcification and downregulate both hypertrophy and matrix metalloproteinase-related genes. Meanwhile, Mg2+ inhibits the formation of autophagy by inhibiting Erk phosphorylation signaling and lowers the expression of LC3, and eventually effectively reduces the formation of ECM calcification in vitro. In this study, we also used destabilization of the medial meniscus (DMM)-induced osteoarthritis (OA) animal model to further confirm the protective effect of Mg2+ on articular cartilage. Compared with the control group (saline-injected), continuous intra-articular magnesium chloride (MgCl2 ) injection can significantly alleviate the severity of cartilage calcification in OA animal model. Immunofluorescence staining also revealed that saline-injected DMM group had a higher positive rate of LC3 expression in cartilage chondrocytes, compared with MgCl2 -injected DMM group. In general, Mg2+ can significantly downregulate the hypertrophic gene Runx2, MMP13, and Col10α1, upregulate the chondrogenic genes Sox9 and Col1α1, inhibit the Erk phosphorylation signaling, reduce the expression of autophagy protein LC3, and effectively inhibit the ECM calcification of ATDC5. In vivo study also proved that intra-articular injection of Mg2+ protected knee cartilage by inhibiting the autophagy formation.
Collapse
Affiliation(s)
- Jiaji Yue
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Shanzi Jin
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Shizhong Gu
- Department of Sports Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Rui Sun
- Department of Sports Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Qingwei Liang
- Department of Sports Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|
98
|
Jahr H, Gunes S, Kuhn AR, Nebelung S, Pufe T. Bioreactor-Controlled Physoxia Regulates TGF-β Signaling to Alter Extracellular Matrix Synthesis by Human Chondrocytes. Int J Mol Sci 2019; 20:ijms20071715. [PMID: 30959909 PMCID: PMC6480267 DOI: 10.3390/ijms20071715] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 02/05/2023] Open
Abstract
Culturing articular chondrocytes under physiological oxygen tension exerts positive effects on their extracellular matrix synthesis. The underlying molecular mechanisms which enhance the chondrocytic phenotype are, however, still insufficiently elucidated. The TGF-β superfamily of growth factors, and the prototypic TGF-β isoforms in particular, are crucial in maintaining matrix homeostasis of these cells. We employed a feedback-controlled table-top bioreactor to investigate the role of TGF-β in microtissues of human chondrocytes over a wider range of physiological oxygen tensions (i.e., physoxia). We compared 1%, 2.5%, and 5% of partial oxygen pressure (pO2) to the ‘normoxic’ 20%. We confirmed physoxic conditions through the induction of marker genes (PHD3, VEGF) and oxygen tension-dependent chondrocytic markers (SOX9, COL2A1). We identified 2.5% pO2 as an oxygen tension optimally improving chondrocytic marker expression (ACAN, COL2A1), while suppressing de-differentiation markers (COL1A1,COL3A1). Expression of TGF-β isoform 2 (TGFB2) was, relatively, most responsive to 2.5% pO2, while all three isoforms were induced by physoxia. We found TGF-β receptors ALK1 and ALK5 to be regulated by oxygen tension on the mRNA and protein level. In addition, expression of type III co-receptors betaglycan and endoglin appeared to be regulated by oxygen tension as well. R-Smad signaling confirmed that physoxia divergently regulated phosphorylation of Smad1/5/8 and Smad2/3. Pharmacological inhibition of canonical ALK5-mediated signaling abrogated physoxia-induced COL2A1 and PAI-1 expression. Physoxia altered expression of hypertrophy markers and that of matrix metalloproteases and their activity, as well as expression ratios of specific proteins (Sp)/Krüppel-like transcription factor family members SP1 and SP3, proving a molecular concept of ECM marker regulation. Keeping oxygen levels tightly balanced within a physiological range is important for optimal chondrocytic marker expression. Our study provides novel insights into transcriptional regulations in chondrocytes under physoxic in vitro conditions and may contribute to improving future cell-based articular cartilage repair strategies.
Collapse
Affiliation(s)
- Holger Jahr
- Institute of Anatomy and Cell Biology, University Hospital Aachen, 52072 Aachen, Germany.
- Department of Orthopaedic Surgery, Maastricht University Medical Centre+, 6229 HXMaastricht, The Netherlands.
| | - Seval Gunes
- Institute of Anatomy and Cell Biology, University Hospital Aachen, 52072 Aachen, Germany.
| | - Annika-Ricarda Kuhn
- Institute of Anatomy and Cell Biology, University Hospital Aachen, 52072 Aachen, Germany.
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52072 Aachen, Germany.
| | - Thomas Pufe
- Institute of Anatomy and Cell Biology, University Hospital Aachen, 52072 Aachen, Germany.
| |
Collapse
|
99
|
Reisbig NA, Pinnell E, Scheuerman L, Hussein H, Bertone AL. Synovium extra cellular matrices seeded with transduced mesenchymal stem cells stimulate chondrocyte maturation in vitro and cartilage healing in clinically-induced rat-knee lesions in vivo. PLoS One 2019; 14:e0212664. [PMID: 30861010 PMCID: PMC6414009 DOI: 10.1371/journal.pone.0212664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 02/07/2019] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA) is a progressive disease associated with cartilage injury and its inherently limited repair capability. Synovium-based cellular constructs (sConstructs) are proposed as possible treatments. Equine sConstructs were produced from decellularized synovium-based extracellular matrix scaffolds (sECM) seeded with synovium-derived mesenchymal stem cells (sMSC), and engineered to express green fluorescent protein (GFP), or bone morphogenetic protein-2 (BMP-2). Survival, distribution, and chondrogenic potential of the sConstructs in vitro and in vivo were assessed. sConstructs in co-culture with chondrocytes increased chondrocyte proliferation, viability, and Col II production, greatest in BMP-2-sConstructs. Chondrocyte presence increased the production of hyaluronic acid (HA), proteoglycan (PG), and BMP-2 by the sConstructs in a positive feedback loop. sECM alone, or GFP- or BMP-2-sConstructs were implanted in synovium adjacent to clinically created full-thickness rat-knee cartilage lesions. At 5 weeks, the lesion area and implants were resected. Gross anatomy, adjacent articulate cartilage growth and subchondral bone repair were scored; and peripheral, central and cartilage lesion measurements taken. For all scores and measurements, sConstruct implants were significantly greater than controls, greatest with the BMP-2-sConstructs. Immunohistochemistry demonstrated migration of endogenous cells into the sECM, with greater cellularity in the constructs with intense positive GFP staining confirming engraftment of implanted sMSC and continued gene expression. In summary, exposing cartilage to sConstructs was chondrogenic in vitro and in vivo, and resulted in substantially increased growth in vivo. This effect was mediated, in part, by soluble ECM and cell factors and upregulation of anabolic growth proteins, such as BMP-2. This work is "proof of concept" that sConstructs surgically implanted adjacent to cartilage damage can significantly improve cartilage and subchondral bone repair, and potentially prevent the progression of OA.
Collapse
Affiliation(s)
- Nathalie A. Reisbig
- Comparative Orthopedics Research Laboratory, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Erin Pinnell
- Comparative Orthopedics Research Laboratory, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Logan Scheuerman
- Comparative Orthopedics Research Laboratory, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Hayam Hussein
- Comparative Orthopedics Research Laboratory, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Alicia L. Bertone
- Comparative Orthopedics Research Laboratory, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
100
|
Abstract
Bone morphogenetic proteins (BMPs) constitute the largest subdivision of the transforming growth factor-β family of ligands. BMPs exhibit widespread utility and pleiotropic, context-dependent effects, and the strength and duration of BMP pathway signaling is tightly regulated at numerous levels via mechanisms operating both inside and outside the cell. Defects in the BMP pathway or its regulation underlie multiple human diseases of different organ systems. Yet much remains to be discovered about the BMP pathway in its original context, i.e., the skeleton. In this review, we provide a comprehensive overview of the intricacies of the BMP pathway and its inhibitors in bone development, homeostasis, and disease. We frame the content of the review around major unanswered questions for which incomplete evidence is available. First, we consider the gene regulatory network downstream of BMP signaling in osteoblastogenesis. Next, we examine why some BMP ligands are more osteogenic than others and what factors limit BMP signaling during osteoblastogenesis. Then we consider whether specific BMP pathway components are required for normal skeletal development, and if the pathway exerts endogenous effects in the aging skeleton. Finally, we propose two major areas of need of future study by the field: greater resolution of the gene regulatory network downstream of BMP signaling in the skeleton, and an expanded repertoire of reagents to reliably and specifically inhibit individual BMP pathway components.
Collapse
Affiliation(s)
- Jonathan W Lowery
- Division of Biomedical Science, Marian University College of Osteopathic Medicine , Indianapolis, Indiana ; and Department of Developmental Biology, Harvard School of Dental Medicine , Boston, Massachusetts
| | - Vicki Rosen
- Division of Biomedical Science, Marian University College of Osteopathic Medicine , Indianapolis, Indiana ; and Department of Developmental Biology, Harvard School of Dental Medicine , Boston, Massachusetts
| |
Collapse
|