51
|
Li J. Quiescence regulators for hematopoietic stem cell. Exp Hematol 2011; 39:511-20. [PMID: 21288477 DOI: 10.1016/j.exphem.2011.01.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 01/18/2011] [Accepted: 01/24/2011] [Indexed: 02/08/2023]
Abstract
Hematopoietic stem cell (HSC) either stays in quiescence or proliferates toward differentiation for the production of mature blood cells, or toward self-renewal for giving rise to itself. In order to both maintain a supply of mature blood cells and not exhaust HSCs throughout the lifetime of an individual, under steady state, most HSCs remain quiescent and only a small number enter the cell cycle. Quiescence of HSCs is not only critical for protecting the stem cell compartment and sustaining stem cell pools over long periods, but it is also critical for protecting stem cells by minimizing their accumulation of replication-associated mutations. The balance between quiescence and proliferation is tightly controlled by both HSC-intrinsic and -extrinsic mechanisms. In recent years, through reductionistic strategies, a wide variety of molecules or pathways critical for HSC quiescence regulation have been identified. This regulation network involves both positive and negative regulators. Understanding quiescence regulation in HSC is of great importance not only for understanding the physiological foundation of HSCs, but also for understanding the pathophysiological origins of many related disorders. In this article, I will briefly review the current advance in the quiescence regulators for the HSCs.
Collapse
Affiliation(s)
- June Li
- Department of Genetics, The University of Texas, M D Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
52
|
Seita J, Weissman IL. Hematopoietic stem cell: self-renewal versus differentiation. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:640-53. [PMID: 20890962 DOI: 10.1002/wsbm.86] [Citation(s) in RCA: 583] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mammalian blood system, containing more than 10 distinct mature cell types, stands on one specific cell type, hematopoietic stem cell (HSC). Within the system, only HSCs possess the ability of both multipotency and self-renewal. Multipotency is the ability to differentiate into all functional blood cells. Self-renewal is the ability to give rise to HSC itself without differentiation. Since mature blood cells (MBCs) are predominantly short-lived, HSCs continuously provide more differentiated progenitors while properly maintaining the HSC pool size throughout life by precisely balancing self-renewal and differentiation. Thus, understanding the mechanisms of self-renewal and differentiation of HSC has been a central issue. In this review, we focus on the hierarchical structure of the hematopoietic system, the current understanding of microenvironment and molecular cues regulating self-renewal and differentiation of adult HSCs, and the currently emerging systems approaches to understand HSC biology.
Collapse
Affiliation(s)
- Jun Seita
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
53
|
Buono M, Visigalli I, Bergamasco R, Biffi A, Cosma MP. Sulfatase modifying factor 1-mediated fibroblast growth factor signaling primes hematopoietic multilineage development. J Exp Med 2010; 207:1647-60. [PMID: 20643830 PMCID: PMC2916128 DOI: 10.1084/jem.20091022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 06/04/2010] [Indexed: 01/03/2023] Open
Abstract
Self-renewal and differentiation of hematopoietic stem cells (HSCs) are balanced by the concerted activities of the fibroblast growth factor (FGF), Wnt, and Notch pathways, which are tuned by enzyme-mediated remodeling of heparan sulfate proteoglycans (HSPGs). Sulfatase modifying factor 1 (SUMF1) activates the Sulf1 and Sulf2 sulfatases that remodel the HSPGs, and is mutated in patients with multiple sulfatase deficiency. Here, we show that the FGF signaling pathway is constitutively activated in Sumf1(-/-) HSCs and hematopoietic stem progenitor cells (HSPCs). These cells show increased p-extracellular signal-regulated kinase levels, which in turn promote beta-catenin accumulation. Constitutive activation of FGF signaling results in a block in erythroid differentiation at the chromatophilic erythroblast stage, and of B lymphocyte differentiation at the pro-B cell stage. A reduction in mature myeloid cells and an aberrant development of T lymphocytes are also seen. These defects are rescued in vivo by blocking the FGF pathway in Sumf1(-/-) mice. Transplantation of Sumf1(-/-) HSPCs into wild-type mice reconstituted the phenotype of the donors, suggesting a cell autonomous defect. These data indicate that Sumf1 controls HSPC differentiation and hematopoietic lineage development through FGF and Wnt signaling.
Collapse
Affiliation(s)
- Mario Buono
- Telethon Institute of Genetics and Medicine, 80134 Naples, Italy
| | - Ilaria Visigalli
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Alessandra Biffi
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Pia Cosma
- Telethon Institute of Genetics and Medicine, 80134 Naples, Italy
- Institute of Genetics and Biophysics, National Research Council of Italy, 80131 Naples, Italy
| |
Collapse
|
54
|
Abstract
CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) possess the capacity to modulate both adaptive and innate immune responses. We hypothesized that Tregs could regulate hematopoiesis based on cytokine effector molecules they can produce. The studies here demonstrate that Tregs can affect the differentiation of myeloid progenitor cells. In vitro findings demonstrated the ability of Tregs to inhibit the differentiation of interleukin-3 (IL-3)/stem cell factor (colony-forming unit [CFU]-IL3)-driven progenitor cells. Inhibitory effects were mediated by a pathway requiring cell-cell contact, major histocompatibility complex class II expression on marrow cells, and transforming growth factor-beta. Importantly, depletion of Tregs in situ resulted in enhanced CFU-IL3 levels after bone marrow transplantation. Cotransplantation of CD4(+)FoxP3(+)(gfp) Tregs together with bone marrow was found to diminish CFU-IL3 responses after transplantation. To address the consequence of transplanted Tregs on differentiated progeny from these CFU 2 weeks after hematopoietic stem cell transplantation, peripheral blood complete blood counts were performed and examined for polymorphonuclear leukocyte content. Recipients of cotransplanted Tregs exhibited diminished neutrophil counts. Together, these findings illustrate that both recipient and donor Tregs can influence hematopoietic progenitor cell activity after transplantation and that these cells can alter responses outside the adaptive and innate immune systems.
Collapse
|
55
|
Nishimura EK, Suzuki M, Igras V, Du J, Lonning S, Miyachi Y, Roes J, Beermann F, Fisher DE. Key roles for transforming growth factor beta in melanocyte stem cell maintenance. Cell Stem Cell 2010; 6:130-40. [PMID: 20144786 PMCID: PMC3437996 DOI: 10.1016/j.stem.2009.12.010] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2008] [Revised: 10/23/2009] [Accepted: 12/14/2009] [Indexed: 11/24/2022]
Abstract
Melanocyte stem cells in the bulge area of hair follicles are responsible for hair pigmentation, and defects in them cause hair graying. Here we describe the process of melanocyte stem cell entry into the quiescent state and show that niche-derived transforming growth factor beta (TGF-beta) signaling plays important roles in this process. In vitro, TGF-beta not only induces reversible cell cycle arrest, but also promotes melanocyte immaturity by downregulating MITF, the master transcriptional regulator of melanocyte differentiation, and its downstream melanogenic genes. In vivo, TGF-beta signaling is activated in melanocyte stem cells when they reenter the quiescent noncycling state during the hair cycle and this process requires Bcl2 for cell survival. Furthermore, targeted TGF-beta type II receptor (TGFbRII) deficiency in the melanocyte lineage causes incomplete maintenance of melanocyte stem cell immaturity and results in mild hair graying. These data demonstrate that the TGF-beta signaling pathway is one of the key niche factors that regulate melanocyte stem cell immaturity and quiescence.
Collapse
Affiliation(s)
- Emi K Nishimura
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Liang H, Liang P, Xu Y, Wu J, Liang T, Xu X. DHAM-BMSC matrix promotes axonal regeneration and functional recovery after spinal cord injury in adult rats. J Neurotrauma 2010; 26:1745-57. [PMID: 19413502 DOI: 10.1089/neu.2008.0850] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Axonal regeneration and functional recovery after complete spinal cord injury (SCI) are limited in adult mammals. The purpose of this study was to investigate whether an innovative composite matrix made from a denuded human amniotic membrane (DHAM) seeded with bone marrow stromal cells (BMSCs) could promote axonal regeneration after SCI. We transplanted the composite matrix between the stumps of severed spinal cords immediately following SCI. Twelve weeks after surgery, the functional recovery of the hindlimbs of operated rats was evaluated by the Basso-Beattie-Bresnahan (BBB) locomotor rating score and the cold spray test. Axonal regeneration was examined with anterograde and retrograde tracing techniques. Electrophysiological analysis was used to evaluate the improvement in neuronal circuits. Immunohistochemistry was employed to identify local injuries and their recovery. Our results showed that functional recovery was significantly improved in the DHAM-BMSC-transplanted group. Histological studies revealed that host axons grew back into the spinal cord under the composite matrix, and many BMSCs were found in the lesion sites, with some being neurofilament-H (NF-H)-positive, suggesting the possible differentiation of BMSCs into neural-like cells. Furthermore, the restoration of anatomical connections across the injury sites was positively correlated with the recovery of spinal cord conductivity and function in the DHAM-BMSC group. These findings indicate that the DHAM-BMSC composite matrix is a promising therapeutic approach for promoting axonal regeneration and repair SCI.
Collapse
Affiliation(s)
- Hongsheng Liang
- Department of Neurosurgery, Key Laboratory in Cell Transplantation in Ministry of Health of China, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | |
Collapse
|
57
|
Ichim TE, Harman RJ, Min WP, Minev B, Solano F, Rodriguez JP, Alexandrescu DT, De Necochea-Campion R, Hu X, Marleau AM, Riordan NH. Autologous stromal vascular fraction cells: A tool for facilitating tolerance in rheumatic disease. Cell Immunol 2010; 264:7-17. [DOI: 10.1016/j.cellimm.2010.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 04/05/2010] [Accepted: 04/06/2010] [Indexed: 12/29/2022]
|
58
|
Hamid R, Brandt SJ. Transforming growth-interacting factor (TGIF) regulates proliferation and differentiation of human myeloid leukemia cells. Mol Oncol 2009; 3:451-63. [PMID: 19699159 PMCID: PMC5527533 DOI: 10.1016/j.molonc.2009.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 06/29/2009] [Accepted: 07/13/2009] [Indexed: 11/26/2022] Open
Abstract
Transforming growth-interacting factor (TGIF) is a homeobox transcriptional repressor that has been implicated in holoprosencephaly and various types of cancer. TGIF is expressed in hematopoietic stem cells and modulates TGF-beta and retinoic acid (RA) signaling, both of which play an important role in hematopoiesis. We recently reported that TGIF's levels correlate inversely with survival in patients with acute myelogenous leukemia. Here we present the first direct evidence of a role for TGIF in myelopoiesis. We used short hairpin RNA interference to define the effects of TGIF knockdown on proliferation and differentiation of myeloid leukemia-derived cell lines. Decreased TGIF expression resulted in reduced proliferation and differentiation and lower expression of CEBPbeta, CEBPepsilon, PU.1 and RUNX1, key myeloid transcription factors. Furthermore, TGF-beta signaling was increased and RA signaling was decreased. Further insights into the molecular basis of TGIF's effects were provided by a genome-wide chromatin immunoprecipitation-based elucidation of TGIF target genes. Together, these data suggest that TGIF has an important role myelopoiesis and may regulate the balance between proliferation and differentiation. Reduced TGIF expression could tip the balance toward quiescence thus providing progenitor as well as hematopoietic stem cells protection from anti-cycle agents.
Collapse
Affiliation(s)
- Rizwan Hamid
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| | | |
Collapse
|
59
|
Söderberg SS, Karlsson G, Karlsson S. Complex and context dependent regulation of hematopoiesis by TGF-beta superfamily signaling. Ann N Y Acad Sci 2009; 1176:55-69. [PMID: 19796233 DOI: 10.1111/j.1749-6632.2009.04569.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The transforming growth factor (TGF)-beta superfamily of growth factors, including the TGF-betas, activins, and bone morphogenetic proteins (BMPs), provide cells with a broad spectrum of regulatory signals through the intracellular Smad pathway. Since loss-of-function studies of a majority of the TGF-beta superfamily members result in embryonic lethality, much of our current knowledge of the TGF-beta superfamily's role in hematopoiesis is generated from studies performed in vitro, or in very early stages of embryonic development. TGF-beta is well documented as a potent inhibitor of hematopoietic stem cell (HSC) proliferation in vitro, while its role in vivo is largely unknown. BMP signaling is crucial for the initiation of hematopoiesis in the developing embryo, although its role in adult hematopoiesis remains elusive. More recently we and others have used conditional knockout models to unravel the role of several components of TGF-beta family signaling in adult hematopoiesis. Here we review the currently known functions for the major factors of this signaling family in embryonic and adult hematopoietic regulation and discuss the context dependency and complexity that permeate this regulation.
Collapse
Affiliation(s)
- Sofie Singbrant Söderberg
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University Hospital, Lund, Sweden
| | | | | |
Collapse
|
60
|
Sigvardsson M. New light on the biology and developmental potential of haematopoietic stem cells and progenitor cells. J Intern Med 2009; 266:311-24. [PMID: 19765177 DOI: 10.1111/j.1365-2796.2009.02154.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Even though stem cells have been identified in several tissues, one of the best understood somatic stem cells is the bone marrow residing haematopoietic stem cell (HSC). These cells are able to generate all types of blood cells found in the periphery over the lifetime of an animal, making them one of the most profound examples of tissue-restricted stem cells. HSC therapy also represents one of the absolutely most successful cell-based therapies applied both in the treatment of haematological disorders and cancer. However, to fully explore the clinical potential of HSCs we need to understand the molecular regulation of cell maturation and lineage commitment. The extensive research effort invested in this area has resulted in a rapid development of the understanding of the relationship between different blood cell lineages and increased understanding for how a balanced composition of blood cells can be generated. In this review, several of the basic features of HSCs, as well as their multipotent and lineage-restricted offspring, are addressed, providing a current view of the haematopoietic development tree. Some of the basic mechanisms believed to be involved in lineage restriction events including activities of permissive and instructive external signals are also discussed, besides transcription factor networks and epigenetic alterations to provide an up-to-date view of early haematopoiesis.
Collapse
Affiliation(s)
- M Sigvardsson
- The Institution for Clinical and Experimental Research, Linköping University, Sweden.
| |
Collapse
|
61
|
Askenasy N, Stein J, Farkas DL. Imaging Approaches to Hematopoietic Stem and Progenitor Cell Function and Engraftment. Immunol Invest 2009; 36:713-38. [DOI: 10.1080/08820130701715803] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
62
|
Tario JD, Gray BD, Wallace SS, Muirhead KA, Ohlsson-Wilhelm BM, Wallace PK. Novel Lipophilic Tracking Dyes for Monitoring Cell Proliferation. Immunol Invest 2009; 36:861-85. [DOI: 10.1080/08820130701712933] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
63
|
Dembinski JL, Krauss S. Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma. Clin Exp Metastasis 2009; 26:611-23. [PMID: 19421880 PMCID: PMC2776152 DOI: 10.1007/s10585-009-9260-0] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 03/31/2009] [Indexed: 12/23/2022]
Abstract
Evidence suggests that multiple tumors, including pancreatic adenocarcinoma, display heterogeneity in parameters that are critical for tumor formation, progression and metastasis. Understanding heterogeneity in solid tumors is increasingly providing a plethora of new diagnostic and therapeutic approaches. In this study, a particular focus was put on identifying a subpopulation of stem cell-like, slow cycling tumor cells in a pancreas adenocarcinoma cell lines. Using a label retention technique a subpopulation of slow cycling cells (DiI+/SCC) was identified and further evaluated in the BxPC-3 and Panc03.27 cell lines. These slowly cycling cells managed to retain the lipophilic labeling dye DiI, while the bulk of the cells (>94%) did not. The DiI+/SCC population, showed only a partial overlap with the CSC markers CD24+/CD44+, CD133+ and ALDH but they survived chemotherapeutic treatment, and were able to recreate the initial heterogeneous tumor cell population. DiI+/SCCs exhibited an increased invasive potential as compared with their non-label retaining, faster cycling cells (DiI−/FCC). They also had increased tumorigenic potential and morphological changes resembling cells that have undergone an epithelial to mesenchymal transition (EMT). Analysis of DiI+/SCC cells by real time PCR revealed a selective up-regulation of tell tale components of the Hedgehog/TGFβ pathways, as well as a down-regulation of EGFR, combined with a shift in crucial components implied in EMT. The presented findings offer an expanded mechanistic understanding that associates tumor initiating potential with cycling speed and EMT in pancreatic cancer cell lines.
Collapse
Affiliation(s)
- Jennifer L Dembinski
- Section for Cellular and Genetic Therapy, Institute of Microbiology, Cancer Stem Cell Innovation Center (CAST), Rikshospitalet, Forskiningsparken, Gaustadalléen 21, 0349, Oslo, Norway.
| | | |
Collapse
|
64
|
Døsen-Dahl G, Munthe E, Nygren MK, Stubberud H, Hystad ME, Rian E. Bone marrow stroma cells regulate TIEG1 expression in acute lymphoblastic leukemia cells: Role of TGFβ/BMP-6 and TIEG1 in chemotherapy escape. Int J Cancer 2008; 123:2759-66. [DOI: 10.1002/ijc.23833] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
65
|
Wallace PK, Tario JD, Fisher JL, Wallace SS, Ernstoff MS, Muirhead KA. Tracking antigen-driven responses by flow cytometry: monitoring proliferation by dye dilution. Cytometry A 2008; 73:1019-34. [PMID: 18785636 DOI: 10.1002/cyto.a.20619] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell-tracking reagents such as the green-fluorescent protein labeling dye CFSE and the red-fluorescent lipophilic membrane dye PKH26 are commonly used to monitor cell proliferation by flow cytometry in heterogeneous cell populations responding to immune stimuli. Both reagents stain cells with a bright homogeneous fluorescence, which is partitioned between daughter cells during each cell division. Because daughter cell fluorescence intensities are approximately halved after each division, the intensity of a cell relative to its intensity at the time of staining provides information about how many divisions it has undergone. Knowing how many rounds of division have occurred and the relative number of cells in each daughter generation, one can back-calculate the number of cells in the original population (i.e., cells present at the time of stimulus) that went on to respond by proliferating. Using this information, the precursor cell frequencies and extent of expansion to a specific antigen or mitogen of interest can be calculated. Concurrently, the phenotype of the cells can be determined, as well as their ability to bind antigen or synthesize cytokines, providing more detailed characterization of all cells responding to the antigen, not just effector cells. In multiparameter flow cytometric experiments to simultaneously analyze antigen-specific tetramer binding, cytokine production and T-cell proliferation, we found that only approximately half of the cells that exhibited specific binding to influenza tetramer also proliferated, as measured by dye dilution, and synthesized IFNgamma in response to antigen. We expect the advent of new cell tracking dyes emitting from the violet to the near infrared combined with the increasing number of lasers and detectors on contemporary flow cytometers to further expand the usefulness of this approach to characterization of complex antigen-driven immunological responses.
Collapse
Affiliation(s)
- Paul K Wallace
- Department of Flow and Image Cytometry, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| | | | | | | | | | | |
Collapse
|
66
|
Peiffer I, Barbet R, Zhou YP, Li ML, Monier MN, Hatzfeld A, Hatzfeld JA. Use of Xenofree Matrices and Molecularly-Defined Media to Control Human Embryonic Stem Cell Pluripotency: Effect of Low Physiological TGF-βConcentrations. Stem Cells Dev 2008; 17:519-33. [DOI: 10.1089/scd.2007.0279] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Isabelle Peiffer
- Centre National de la Recherche Scientifique, Institut André Lwoff, Villejuif, France
- Currently, CNRS, Institut de Génétique Humaine, Montpellier, France
| | - Romain Barbet
- Centre National de la Recherche Scientifique, Institut André Lwoff, Villejuif, France
| | - Yi-Ping Zhou
- Centre National de la Recherche Scientifique, Institut André Lwoff, Villejuif, France
- Currently, Key Laboratory of Yunnan of Pharmacology for Nature Products, Kunming Medical University, Kunming, China
| | - Ma-Lin Li
- Centre National de la Recherche Scientifique, Institut André Lwoff, Villejuif, France
- Currently, Key Laboratory of Yunnan of Pharmacology for Nature Products, Kunming Medical University, Kunming, China
| | - Marie-Noëlle Monier
- Centre National de la Recherche Scientifique, Institut André Lwoff, Villejuif, France
| | - Antoinette Hatzfeld
- Centre National de la Recherche Scientifique, Institut André Lwoff, Villejuif, France
| | - Jacques A. Hatzfeld
- Centre National de la Recherche Scientifique, Institut André Lwoff, Villejuif, France
| |
Collapse
|
67
|
Fortunel NO, Martin MT. [Stem cells from human interfollicular epidermis: phenotypes and potentialities]. ACTA ACUST UNITED AC 2008; 202:55-65. [PMID: 18460309 DOI: 10.1051/jbio:2008007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Stem cells from different tissue origins share common characteristics, including selfrenewal capacity and tissue regeneration potential. Finding criteria to identify particular stem cell types, and understanding signaling pathways responsible for stemness, represent major research areas that will lead to a better characterization of the normal state of stem cells, thus improving our capability to use them for regenerative therapies. We will review here different approaches and experimental models liable to increase our knowledge of stem cells from human interfollicular epidermis. One of them, based on transcriptional profiling performed at the level of the global genome, consisted in searching universal molecular markers of stem cells. In other approaches, stem cells were studied at the level of specific characteristics. Understanding somatic stem cell properties such as quiescence or slow cycling state, and detoxification potential, led to the identification of phenotypes suitable for the selection of epidermal keratinocyte sub-populations with stem cell properties. The specific interests of these different research strategies will be discussed.
Collapse
Affiliation(s)
- Nicolas O Fortunel
- Commissariat à l'Energie Atomique, Institut de Radiobiologie Cellulaire et Moléculaire Service Cellules Souches et Radiation, 2, rue Gaston Crémieux CP 5722, 91057 Evry Cedex, France.
| | | |
Collapse
|
68
|
Miñana MD, Carbonell-Uberos F, Mirabet V, Marín S, Encabo A. IFATS collection: Identification of hemangioblasts in the adult human adipose tissue. Stem Cells 2008; 26:2696-704. [PMID: 18450825 DOI: 10.1634/stemcells.2007-0988] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The stromal-vascular fraction (SVF) of human adipose tissue contains, among other cell types, mesenchymal stem cells and precursors of adipocyte and endothelial cells. Here we show that, in addition, the nonhematopoietic fraction of the SVF has hematopoietic activity, since all types of hematopoietic colony-forming units (CFUs) developed when cultured in methylcellulose-based medium. This hematopoietic activity was restricted to the CD45(-)CD105(+) cell subset, well correlated with KDR(+) cell content, and increased after culture with a combination of early-acting hematopoietic cytokines. Most of the CD45(-)KDR(+)CD105(+) cells were nonadherent and did not express CD31, and this subset included both CD34(-) and CD34(+) cells. Moreover, these nonadherent cells migrated in response to KDR gradient, and when they were cultured in the presence of both hematopoietic and endothelial growth factors, a wave of CFUs was followed by a wave of mixed colonies comprising adherent elongated and nonadherent round hematopoietic cells. These mixed hematopoietic-endothelial (Hem-End) colonies were able to generate secondary Hem-End colonies and exhibited both hematopoietic and endothelial activity, as demonstrated by in vitro functional assays. These findings demonstrate for the first time the existence of primitive mesodermal progenitors within the SVF of human adipose tissue that exhibit in vitro hematopoietic and hemangioblastic activities, susceptible to being used in cell therapy and basic cell research. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
|
69
|
Brunsing R, Omori SA, Weber F, Bicknell A, Friend L, Rickert R, Niwa M. B- and T-cell development both involve activity of the unfolded protein response pathway. J Biol Chem 2008; 283:17954-61. [PMID: 18375386 DOI: 10.1074/jbc.m801395200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The unfolded protein response (UPR) signaling pathway regulates the functional capacity of the endoplasmic reticulum for protein folding. Beyond a role for UPR signaling during terminal differentiation of mature B cells to antibody-secreting plasma cells, the status or importance of UPR signaling during hematopoiesis has not been explored, due in part to difficulties in isolating sufficient quantities of cells at developmentally intermediate stages required for biochemical analysis. Following reconstitution of irradiated mice with hematopoietic cells carrying a fluorescent UPR reporter construct, we found that IRE1 nuclease activity for XBP1 splicing is active at early stages of T- and B-lymphocyte differentiation: in bone marrow pro-B cells and in CD4(+)CD8(+) double positive thymic T cells. IRE1 was not active in B cells at later stages. In T cells, IRE activity was not detected in the more mature CD4(+) T-cell population but was active in the CD8(+) cytotoxic T-cell population. Multiple signals are likely to be involved in activating IRE1 during lymphocyte differentiation, including rearrangement of antigen receptor genes. Our results show that reporter-transduced hematopoietic stem cells provide a quick and easy means to identify UPR signaling component activation in physiological settings.
Collapse
Affiliation(s)
- Ryan Brunsing
- Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, La Jolla, CA 92093-0377, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Bantly AD, Gray BD, Breslin E, Weinstein EG, Muirhead KA, Ohlsson-Wilhelm BM, Moore JS. CellVue Claret, a new far-red dye, facilitates polychromatic assessment of immune cell proliferation. Immunol Invest 2008; 36:581-605. [PMID: 18161520 DOI: 10.1080/08820130701712461] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Flow cytometric analyses of immune cell proliferation, differentiation, and function are limited by the number of different fluorochromes that can be resolved simultaneously. Additional colors to expand functional analytic capability will facilitate higher dimensional analyses of heterogeneous cell populations by basic and clinical scientists. Our aim in these studies was to evaluate CellVue Claret, a fluorescent, far-red emitting, membrane intercalating dye (excitation maximum: 655 nm, emission maximum 677 nm), as an alternative and/or complementary probe to PKH26 and CFSE(1) for polychromatic studies of immune cell proliferation and function. Using a BD FACSCalibur and human peripheral blood mononuclear cells (PBMCs) from 8 different donors (2 donors studied twice), we compared CellVue Claret with the two most commonly used visible-emitting proliferation dyes, PKH26 and CFSE, in terms of: (1) compatibility with 7-Amino-actinomycin D (7-AAD) as a viability marker; (2) effect of dye labeling on lymphocyte viability; and (3) the proliferative response of CD3+ T lymphocytes from 0-96 hours as assessed by dilution of each of the 3 cell tracking dyes in cultures stimulated with anti-CD3 plus IL-2. Post-labeling recoveries and viabilities were similar for all 3 dyes, with modestly higher initial staining intensities and coefficients of variation for CellVue Claret than for CFSE or PKH26. Lymphocyte viabilities in stimulated or unstimulated cultures were also unaffected by choice of dye. Proliferative responses of viable CD3+ lymphocytes were comparable for all three dyes, whether results were reported as Proliferative Fraction (percent of cells that had divided one or more times) or as Precursor Frequency (percent of parent population that had gone on to proliferate in response to anti-CD3 plus IL-2). In summary, T cell proliferation analysis using CellVue Claret gives results equivalent to those obtained with PKH26 or CFSE, expanding the choice of proliferation dyes suitable for use in high dimensional polychromatic studies on flow cytometers with far red (633 nm-658 nm) excitation capabilities.
Collapse
Affiliation(s)
- Andrew D Bantly
- University of Pennsylvania, Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Wallace PK, Muirhead KA. Cell tracking 2007: a proliferation of probes and applications. Immunol Invest 2008; 36:527-61. [PMID: 18161518 DOI: 10.1080/08820130701812584] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The articles in this thematic issue, entitled "Tracking Cell Proliferation and Function," illustrate some of the choices made by authors pushing the envelope for cell tracking applications in their areas of interest. Over the past decade there has been a proliferation in the range of commercially available probes for these studies, the capabilities of the instrumentation used to detect them, and in the biological systems being studied. This introductory to the thematic issue presents the advantages and limitations of the more commonly used probes such as CFSE and PKH26, as well as emerging probes that expand the range of fluorescence available, including quantum dots and the new CellVue dyes. Appropriate method and instrument setup controls and possible data analysis strategies are discussed with the goal of urging experienced investigators to include all critical information and controls when publishing their data and of aiding researchers new to cell tracking to make informed decisions on which cell tracking reagent(s) are best suited for their particular application. All cell tracking assays have the common goal of determining the fate of a particular cell population within a heterogeneous environment, whether in vivo or in vitro. Some of the common themes among the contributions found in this issue include how various probes are used to track (i) cell proliferation, (ii) regulatory and effector immune cell function and (iii) membrane transfer and antigen presentation. Although these represent only a small fraction of the large and growing list of applications for cell tracking, clearly illustrate the growing trend toward the use of multiple tracking reagents and multiple detection modalities to address complex biological questions.
Collapse
Affiliation(s)
- Paul K Wallace
- Department of Flow and Image Cytometry, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | |
Collapse
|
72
|
Heuzé ML, Lamsoul I, Moog-Lutz C, Lutz PG. Ubiquitin-mediated proteasomal degradation in normal and malignant hematopoiesis. Blood Cells Mol Dis 2008; 40:200-10. [DOI: 10.1016/j.bcmd.2007.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 07/11/2007] [Indexed: 01/10/2023]
|
73
|
Skitzki JJ, Muhitch JB, Evans SS. Tracking the elusive lymphocyte: methods of detection during adoptive immunotherapy. Immunol Invest 2007; 36:807-27. [PMID: 18161530 DOI: 10.1080/08820130701712867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Adoptive immunotherapy is an attractive cancer treatment modality due to its capacity to target primary and metastatic lesions with large numbers of tumor-reactive, cytotoxic lymphocytes. The inability of fully armed lymphocytes to traffic into sites of tumor has been proposed as a causal factor for the minimal success observed clinically with this type of immunotherapy. The study of lymphocyte trafficking during adoptive immunotherapy has been limited, despite the existence of a variety of tracking methods. In murine models that simulate adoptive immunotherapy, the use of congenic mice and cell tracking dyes can be used to elucidate lymphocyte trafficking behavior. The continued development of novel technologies will further contribute to this expanding area of research.
Collapse
Affiliation(s)
- Joseph J Skitzki
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | | | |
Collapse
|
74
|
Abstract
Hematopoietic stem cells (HSCs) are historically the most thoroughly characterized type of adult stem cell, and the hematopoietic system has served as a principal model structure of stem-cell biology for several decades. However, paradoxically, although HSCs can be defined by function and even purified to near-homogeneity, the intricate molecular machinery and the signaling mechanisms regulating fate events, such as self-renewal and differentiation, have remained elusive. Recently, several developmentally conserved signaling pathways have emerged as important control devices of HSC fate, including Notch, Wingless-type (Wnt), Sonic hedgehog (Shh), and Smad pathways. HSCs reside in a complex environment in the bone marrow, providing a niche that optimally balances signals that control self-renewal and differentiation. These signaling circuits provide a valuable structure for our understanding of how HSC regulation occurs, concomitantly with providing information of how the bone marrow microenvironment couples and integrates extrinsic with intrinsic HSC fate determinants. It is the focus of this review to highlight some of the most recent developments concerning signaling pathways governing HSC fate.
Collapse
Affiliation(s)
- Ulrika Blank
- Molecular Medicine and Gene Therapy, Institute of Laboratory Medicine and Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University Hospital, Sweden
| | | | | |
Collapse
|
75
|
Goldberg GL, Alpdogan O, Muriglan SJ, Hammett MV, Milton MK, Eng JM, Hubbard VM, Kochman A, Willis LM, Greenberg AS, Tjoe KH, Sutherland JS, Chidgey A, van den Brink MRM, Boyd RL. Enhanced immune reconstitution by sex steroid ablation following allogeneic hemopoietic stem cell transplantation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:7473-84. [PMID: 17513799 DOI: 10.4049/jimmunol.178.11.7473] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Delayed immune reconstitution in adult recipients of allogeneic hemopoietic stem cell transplantations (HSCT) is related to age-induced thymic atrophy. Overcoming this paucity of T cell function is a major goal of clinical research but in the context of allogeneic transplants, any strategy must not exacerbate graft-vs-host disease (GVHD) yet ideally retain graft-vs-tumor (GVT) effects. We have shown sex steroid ablation reverses thymic atrophy and enhances T cell recovery in aged animals and in congenic bone marrow (BM) transplant but the latter does not have the complications of allogeneic T cell reactivity. We have examined whether sex steroid ablation promoted hemopoietic and T cell recovery following allogeneic HSCT and whether this benefit was negated by enhanced GVHD. BM and thymic cell numbers were significantly increased at 14 and 28 days after HSCT in castrated mice compared with sham-castrated controls. In the thymus, the numbers of donor-derived thymocytes and dendritic cells were significantly increased after HSCT and castration; donor-derived BM precursors and developing B cells were also significantly increased. Importantly, despite restoring T cell function, sex steroid inhibition did not exacerbate the development of GVHD or ameliorate GVT activity. Finally, IL-7 treatment in combination with castration had an additive effect on thymic cellularity following HSCT. These results indicate that sex steroid ablation can profoundly enhance thymic and hemopoietic recovery following allogeneic HSCT without increasing GVHD and maintaining GVT.
Collapse
Affiliation(s)
- Gabrielle L Goldberg
- Department of Pathology and Immunology, Central and Eastern Clinical School, Monash University, Melbourne, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Wachs FP, Winner B, Couillard-Despres S, Schiller T, Aigner R, Winkler J, Bogdahn U, Aigner L. Transforming growth factor-beta1 is a negative modulator of adult neurogenesis. J Neuropathol Exp Neurol 2006; 65:358-70. [PMID: 16691117 DOI: 10.1097/01.jnen.0000218444.53405.f0] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Transforming growth factor (TGF)-beta1 has multiple functions in the adult central nervous system (CNS). It modulates inflammatory responses in the CNS and controls proliferation of microglia and astrocytes. In the diseased brain, TGF-beta1 expression is upregulated and, depending on the cellular context, its activity can be beneficial or detrimental regarding regeneration. We focus on the role of TGF-beta1 in adult neural stem cell biology and neurogenesis. In adult neural stem and progenitor cell cultures and after intracerebroventricular infusion, TGF-beta1 induced a long-lasting inhibition of neural stem and progenitor cell proliferation and a reduction in neurogenesis. In vitro, although TGF-beta1 specifically arrested neural stem and progenitor cells in the G0/1 phase of the cell cycle, it did not affect the self-renewal capacity and the differentiation fate of these cells. Also, in vivo, TGF-beta1 did not influence the differentiation fate of newly generated cells as shown by bromo-deoxyuridine incorporation experiments. Based on these data, we suggest that TGF-beta1 is an important signaling molecule involved in the control of neural stem and progenitor cell proliferation in the CNS. This might have potential implications for neurogenesis in a variety of TGF-beta1-associated CNS diseases and pathologic conditions.
Collapse
Affiliation(s)
- Frank-Peter Wachs
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Campard D, Vasse M, Rose-John S, Poyer F, Lamacz M, Vannier JP. Multilevel Regulation of IL-6R by IL-6-sIL-6R Fusion Protein According to the Primitiveness of Peripheral Blood-Derived CD133+Cells. Stem Cells 2006; 24:1302-14. [PMID: 16357344 DOI: 10.1634/stemcells.2005-0173] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Interleukin-6 (IL-6) and its soluble receptor (sIL-6R) are major factors for maintenance and expansion of hematopoietic stem cells (HSCs). Sensitivity of HSCs to IL-6 has been previously studied, in part by measuring the expression of IL-6R on the membrane (mIL-6R). Several studies have described the regulation of cell surface expression of IL-6R by several cytokines, but the role of glycoprotein 130 activation has not yet been investigated. In this study, CD133(+) cells were purified from adult peripheral blood and were precultured in the absence or presence of 5-fluorouracil (5-FU) for selection of quiescent HSCs. Cells were cultured with continuous or pulsed stimulations of an IL-6-sIL-6R fusion protein (hyperinterleukin-6 [HIL-6]) to 1) detect mIL-6R by flow cytometry, 2) assess mIL-6R and sIL-6R RNAs by reverse transcription-polymerase chain reaction, 3) measure sIL-6R in supernatants by enzyme-linked immunosorbent assay, 4) analyze cell-cycle status, and 5) perform long-term culture-initiating cell assays. The level of mIL-6R(-) cells was preserved by 5-FU incubation. HIL-6 increased steady-state mIL-6R RNA and expression rate on HSCs, independently of treatment with 5-FU. Enhanced production of sIL-6R was observed with short pulses of HIL-6 on CD133(+) 5-FU-pretreated cells. This overproduction of sIL-6R was abrogated by tumor necrosis factor-alpha protease inhibitor-1, an inhibitor of a disintegrin and metalloprotease proteases, suggesting the shedding of mIL-6R. This phenomenon was mediated through the phosphatidylinositol-3'-kinase pathway and was involved in the maintenance of primitive HSCs. In conclusion, expression and production of IL-6R are tightly regulated and stage specific. We assume that sIL-6R produced by shedding should be involved in autocrine and paracrine loops in the HSC microenvironment.
Collapse
Affiliation(s)
- David Campard
- Laboratoire Micro-Environnement et le Renouvellement Cellulaire Intégré, Faculté de Médecine, Pharmacie de Rouen, France.
| | | | | | | | | | | |
Collapse
|
78
|
Brunet De La Grange P, Barthe C, Lippert E, Hermitte F, Belloc F, Lacombe F, Ivanovic Z, Praloran V. Oxygen concentration influences mRNA processing and expression of the cd34 gene. J Cell Biochem 2006; 97:135-44. [PMID: 16173076 DOI: 10.1002/jcb.20597] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
CD34 is a cell surface glycoprotein expressed on hematopoietic stem and progenitor cells that disappears with their maturation. This gene is transcribed in two alternatively spliced mRNAs that encode full length and truncated form of CD34 cell surface antigen. Some publications suggested that CD34 full length plays a role in the maintenance of their self renewal capacity. An examination of CD34 regulation by a low O2 concentration that ensures a better maintenance of stem cells may provide important insights into the molecular control of hematopoiesis. Using human cord blood CD34+ cells, we first compared the effect of short term (24 h) culture in hypoxia (1% O2) and normoxia (20% O2) on the expression of full length and truncated form of cd34 transcripts and on the expression of the CD34 antigen. Hypoxia maintained a larger quantity of cd34 full length transcripts and a higher cd34 full length/cd34 truncated form ratio than normoxia. After 72 h of culture at 1% and 20% O2, sorted CD34low sub-population from 1% O2 primary culture still contained more cd34 full length mRNAs than those from 20% O2, maintained better CD34 antigen expression during secondary culture at 20% O2 and contained more undifferentiated cells. This work provides the first evidence of the regulation of the cd34 gene by hypoxia resulting in a delayed higher and longer antigen expression by cord blood cells. We suggest that this phenomenon is related to the better maintenance of primitive stem cells in hypoxia.
Collapse
|
79
|
Goldberg GL, Sutherland JS, Hammet MV, Milton MK, Heng TSP, Chidgey AP, Boyd RL. Sex steroid ablation enhances lymphoid recovery following autologous hematopoietic stem cell transplantation. Transplantation 2005; 80:1604-13. [PMID: 16371932 DOI: 10.1097/01.tp.0000183962.64777.da] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Autologous hematopoietic stem cell transplantation (auto-HSCT) patients experience long-term immunosuppression, which increases susceptibility to infection and relapse rates due to minimal residual disease (MRD). Sex steroid (SS) ablation is known to reverse age-related thymic atrophy and decline in B-cell production METHODS This study used a congenic HSCT mouse model to analyze the effects of SS ablation (through surgical castration) on immune reconstitution and growth factor production following auto-HSCT. Bone marrow (BM) and thymic stromal cell (TSCs) populations were analyzed using RT-PCR and were tested for the production of growth factors previously implicated in immune reconstitution or age-relate immune degeneration RESULTS Castration increased bone marrow (BM), thymic, and splenic cellularity following auto-HSCT. HSC number and common lymphoid precursor (CLP) frequency and number were increased in castrated mice. B cell precursor numbers were also significantly increased in the BM of these mice. Triple negative, double positive and single positive thymocytes were increased following HSCT and castration, as were thymic dendritic cells and natural killer T (NKT) cells. This enhanced lymphoid reconstitution of the primary immune organs leads to a significant increase in splenic T and B cells 42 days after HSCT. The molecular mechanisms behind the enhanced reconstitution were also studied. TGF-beta1 was decreased in castrated mice compared to sham-castrated controls in TSCs and BM cells. TSC production of IL-6 was also decreased in castrated mice CONCLUSIONS These data suggest that sex steroid ablation significantly enhances lymphopoiesis following auto-HSCT providing a new strategy for posttransplant immune reconstitution.
Collapse
Affiliation(s)
- Gabrielle L Goldberg
- Department of Immunology, Central and Eastern Clinical School, Monash University, Melbourne, Australia
| | | | | | | | | | | | | |
Collapse
|
80
|
Madlambayan GJ, Rogers I, Kirouac DC, Yamanaka N, Mazurier F, Doedens M, Casper RF, Dick JE, Zandstra PW. Dynamic changes in cellular and microenvironmental composition can be controlled to elicit in vitro human hematopoietic stem cell expansion. Exp Hematol 2005; 33:1229-39. [PMID: 16219546 DOI: 10.1016/j.exphem.2005.05.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 05/09/2005] [Accepted: 05/20/2005] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The absence of effective strategies for the ex vivo expansion of human hematopoietic stem cells (HSCs) limits the development of many cell-based therapies. Prior attempts to stimulate HSC expansion have focused on media supplementation using cytokines and growth factors. In these cultures, cellular and microenvironmental compositions change with time. In this study, the impact of controlling these dynamic changes on HSC output is determined. MATERIALS AND METHODS Cord blood-derived lin(-) cells were cultured for 8 days in serum-free medium supplemented with stem cell factor, Flt3 ligand, and thrombopoietin. Functional, phenotypic, and molecular (gene and protein) analyses were used to characterize dynamic changes in cellular and microenvironmental composition. The effects of these changes and the mechanism behind their effects on HSC expansion were assessed using a selection/media exchange-based global culture manipulation (GCM) technique. RESULTS We show that the direct secretion of negative regulators by culture-generated lin(+) cells, and the indirect stimulation of cells to secrete negative regulators by culture-conditioned media, limits in vitro HSC generation. The GCM strategy was able to abrogate these effects to produce elevated numbers of LTC-ICs (14.6-fold relative to input), migrating rapid NOD/SCID repopulating cells (12.1-fold), and long-term NOD/SCID repopulating cells (5.2-fold). CONCLUSIONS Cellular and microenvironmental changes that occur during all in vitro HSC cultures can significantly affect HSC output through the direct or indirect secretion of negative regulators. This study provides insight into the mechanisms regulating HSC fate in vitro and describes a novel methodology to regulate overall in vitro microenvironmental dynamics to enable the generation of clinically relevant numbers of HSCs.
Collapse
Affiliation(s)
- Gerard J Madlambayan
- Institute of Biomaterials and Biomedical Engineering, Toronto, Ontario, Canada M5S-3G9
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Ruscetti FW, Akel S, Bartelmez SH. Autocrine transforming growth factor-beta regulation of hematopoiesis: many outcomes that depend on the context. Oncogene 2005; 24:5751-63. [PMID: 16123808 DOI: 10.1038/sj.onc.1208921] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Transforming growth factor-beta (TGF-beta) is a pleiotropic regulator of all stages of hematopoieis. The three mammalian isoforms (TGF-beta1, 2 and 3) have distinct but overlapping effects on hematopoiesis. Depending on the differentiation stage of the target cell, the local environment and the concentration and isoform of TGF-beta, in vivo or in vitro, TGF-beta can be pro- or antiproliferative, pro- or antiapoptotic, pro- or antidifferentiative and can inhibit or increase terminally differentiated cell function. TGF-beta is a major regulator of stem cell quiescence, at least in vitro. TGF-beta can act directly or indirectly through effects on the bone marrow microenvironment. In addition, paracrine and autocrine actions of TGF-beta have overlapping but distinct regulatory effects on hematopoietic stem/progenitor cells. Since TGF-beta can act in numerous steps in the hematopoietic cascade, loss of function mutations in hematopoeitic stem cells (HSC) have different effects on hematopoiesis than transient blockade of autocrine TGF-beta1. Transient neutralization of autocrine TGF-beta in HSC has therapeutic potential. In myeloid and erythroid leukemic cells, autocrine TGF-beta1 and/or its Smad signals controls the ability of these cells to respond to various differentiation inducers, suggesting that this pathway plays a role in determining the cell fate of leukemic cells.
Collapse
Affiliation(s)
- Francis W Ruscetti
- Laboratory of Experimental Immunology, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA.
| | | | | |
Collapse
|
82
|
Abstract
The TGF-beta family of ligands, including TGF-beta, bone morphogenetic protein (BMP) and activin, signal through Smad pathways to regulate the fate of hematopoietic progenitor and stem cells during development and postnatally. BMP regulates hematopoietic stem cell (HSC) specification during development, while TGF-beta1, 2 and 3 are not essential for the generation of HSCs. BMP4 can increase proliferation of human hematopoietic progenitors, while TGF-beta acts as a negative regulator of hematopoietic progenitor and stem cells in vitro. In contrast, TGF-beta signaling deficiency in vivo does not affect proliferation of HSCs and does not affect lineage choice either. Therefore, the outcome of Smad signaling is very context dependent in hematopoiesis and regulation of hematopoietic stem and progenitor cells is more complicated in the bone marrow microenvironment in vivo than is seen in liquid cultures ex vivo. Smad signaling regulates hematopoiesis by crosstalk with other regulatory signals and future research will define in more detail how the various pathways interact and how the knowledge obtained can be used to develop advanced cell therapies.
Collapse
Affiliation(s)
- Jonas Larsson
- Molecular Medicine and Gene Therapy, Institute of Laboratory Medicine, The Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, BMC A12, Lund 221 84, Sweden
| | | |
Collapse
|
83
|
Affiliation(s)
- Virginia Kaklamani
- Division of Hematology/Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | |
Collapse
|
84
|
Gussin HAE, Sharma AK, Elias S. Culture of Cells from Maternal Circulation, in Conditions Favoring Fetal Endothelial Cell Expansion, Does Not Facilitate the Preferential Expansion of Circulating Fetal Cells. Fetal Diagn Ther 2004; 20:64-9. [PMID: 15608463 DOI: 10.1159/000081372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 02/18/2004] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To establish optimal culture conditions for fetal endothelial cells, and determine whether these can be used for preferential expansion of fetal cells from maternal blood. METHODS Human adult microvascular and umbilical vein endothelial cells were cultured in the presence of colony-stimulating factor-1 (CSF-1), placental growth factor (PlGF), and transforming growth factor-beta1 (TGF-beta1). The effect of each cytokine was assessed. We expanded peripheral blood mononuclear cells (PBMCs) from 18 pregnant women using the conditions most favorable to fetal cells; in specimens from women carrying male fetuses (n = 9), cell origin was determined by PCR (SRY locus). RESULTS The optimal concentrations of CSF-1, PlGF and TGF-beta1 were 10, 100, and 5 ng/ml, respectively. PBMCs from maternal blood expanded in the presence or absence of the cytokines; PCR analysis showed no Y sequences in cultured maternal samples. CONCLUSION Optimal concentrations of CSF-1, PlGF and TGF-beta1 for preferential expansion of fetal endothelial cells were determined in model cultures. However, when these conditions were applied to maternal blood samples, no fetal cells could be detected based on PCR for SRY in women carrying male fetuses.
Collapse
Affiliation(s)
- Hélène A Elicha Gussin
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, IL 60611, USA
| | | | | |
Collapse
|
85
|
Kale VP, Vaidya AA. Molecular Mechanisms Behind the Dose-Dependent Differential Activation of MAPK Pathways Induced by Transforming Growth Factor-β1 in Hematopoietic Cells. Stem Cells Dev 2004; 13:536-47. [PMID: 15588511 DOI: 10.1089/scd.2004.13.536] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) controls a wide range of cellular responses, including cell proliferation, lineage determination, differentiation, and apoptosis, and figures prominently in animal development. It is considered as a pleiotropic factor because it can exert a positive or negative effect on various cellular processes depending on developmental stage of the target cell, its microenvironment, and also its biochemical make up. It has been shown to have a strong inhibitory effect on hematopoietic stem cell proliferation and differentiation. We have earlier shown that TGF-beta1 exerts a bidirectional effect on hematopoietic cell proliferation as a function of its concentration. Although it acted as an inhibitor at high concentrations, at low concentrations it stimulated the stem/progenitor cells. We also provided evidence that the differential activation of mitogen-activated protein kinase pathways was responsible for the observed bidirectional effect. In the present study, we examined the molecular mechanism behind this phenomenon. We observed that the high inhibitory concentrations of TGF-beta1 induced a strong phosphorylation of SMAD 3 and also activated stress kinase-related transcription factors, namely c-Jun and ATF-2. On the other hand, low stimulatory concentrations acted in a SMAD 3-independent pathway and activated STAT proteins. Our results clearly show that differential activation of signal transduction pathways by TGF-beta1 as a function of its concentration underlies its bidirectional effect on hematopoietic cells.
Collapse
Affiliation(s)
- V P Kale
- National Center for Cell Science, Ganeshkhind, Pune 411 007, India
| | | |
Collapse
|
86
|
Kale VP. Differential activation of MAPK signaling pathways by TGF-beta1 forms the molecular mechanism behind its dose-dependent bidirectional effects on hematopoiesis. Stem Cells Dev 2004; 13:27-38. [PMID: 15068691 DOI: 10.1089/154732804773099236] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have earlier reported that transforming growth factor-beta1 (TGF-beta1), a well-known inhibitor of hematopoiesis, stimulated colony formation from adult human bone marrow mononuclear cells (BM MNC) when used at low concentrations. We examined the possible molecular mechanism behind this bidirectional effect using CD34+ cells isolated from human BM for clonal assays and the KG1a cell line as a model system for analysis of proteins for signaling pathways by immunoblotting. We found that TGF-beta1 at low doses (picogram levels) stimulated the colony formation from CD34+ cells, indicating that these progenitors form the direct target of stimulatory action of TGF-beta1. CD34+ cells were found to be more sensitive to the TGF-beta1 concentration than the total MNC. We used the KG1a cell line as a model system for identification of mitogen-activated protein kinase (MAPK) and AKT signaling pathways involved in the process. Low doses strongly induced p44/42 MAPK phosphorylation, whereas high doses induced p38 activation. Use of specific p44/42 MAPK inhibitor PD 98059 in the colony assay abrogated the stimulatory effect of low TGF-beta1. On the other hand, use of p38 MAPK inhibitor SB 203580 along with low TGF-beta1 concentrations had a synergistic effect on stimulation of colony formation. Treatment of BM MNC with Anisomycin, which activates stress kinases, resulted in a dose-dependent inhibition of colony formation. This inhibition could not be rescued by stimulatory doses of TGF-beta1. Phosphorylation of AKT was found to occur in a dose-dependent way but declined slightly at the highest concentration used (10 ng/ml). Inhibition of the AKT pathway by LY 294002 strongly suppressed colony formation. These data indicate clearly that sustained activation of p44/42 MAPK perhaps forms the stimulatory signal induced by low TGF-beta1, whereas activation of p38 forms the inhibitory pathway.
Collapse
Affiliation(s)
- V P Kale
- National Center for Cell Science (NCCS), Ganeshkhind, Pune 411007, Maharashtra, India.
| |
Collapse
|
87
|
Akel S, Petrow-Sadowski C, Laughlin MJ, Ruscetti FW. Neutralization of autocrine transforming growth factor-beta in human cord blood CD34(+)CD38(-)Lin(-) cells promotes stem-cell-factor-mediated erythropoietin-independent early erythroid progenitor development and reduces terminal differentiation. Stem Cells 2004; 21:557-67. [PMID: 12968110 DOI: 10.1634/stemcells.21-5-557] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transforming growth factor (TGF)-beta1 exerts autocrine and paracrine effects on hematopoiesis. Here, we have attempted to evaluate the effect of endogenous TGF-beta1 on early erythroid development from primitive human hematopoietic stem cells (HSCs) and to assess the effects of TGF-beta1 on different phases of erythropoiesis. Cord blood CD34(+)CD38(-) lineage-marker-negative (Lin(-)) cells were cultured in serum-free conditions using various combinations of stem cell factor (SCF), erythropoietin (Epo), and TGF-beta-neutralizing antibody. Generation of erythroid progenitors was assessed using colony assay and flow cytometry. Terminal erythroid differentiation was examined when SCF/Epo-stimulated cells were recultured in the presence of Epo with and without TGF-beta1. Anti-TGF-beta augmented the proliferation of CD34(+)CD38(-)Lin(-) cells (day 21) in SCF-stimulated (6.4-fold +/- 1.5-fold) and SCF/Epo-stimulated (2.9-fold +/- 1.2-fold) cultures. Cells stimulated by SCF/Epo underwent similar levels of erythroid differentiation with and without anti-TGF-beta. While SCF alone stimulated the production of tryptase-positive mast cells, cells stimulated by SCF/anti-TGF-beta were predominantly erythroid (CD36(+)CD14(-) and glycophorin A positive). A distinct expansion of erythroid progenitors (CD34(+)CD36(+)CD14(-)) with the potential to form erythroid colonies was seen, revealing early Epo-independent erythroid development. In contrast, the kinetics of erythroid progenitor generation from primitive HSCs indicate that TGF-beta1 is not inhibitory in late erythropoiesis, but it accelerated the conversion of large BFU-E into colony-forming units-erythroid. Finally, TGF-beta1 accelerated Epo-induced terminal erythroid differentiation and resulted in a greater level of enucleation (22% +/- 6% versus 7% +/- 3%) in serum-free conditions. Serum addition stimulated enucleation (54% +/- 18%), which was lower (26% +/- 14%) with anti-TGF-beta, suggesting that optimal erythroid enucleation is Epo dependent, requiring serum factors including TGF-beta1.
Collapse
Affiliation(s)
- Salem Akel
- Leukocyte Biology Section, Basic Research Laboratory, Center for Cancer Research, NCI-Frederick, Frederick, Maryland 21702-1201, USA
| | | | | | | |
Collapse
|
88
|
Hmama Z, Sendide K, Talal A, Garcia R, Dobos K, Reiner NE. Quantitative analysis of phagolysosome fusion in intact cells: inhibition by mycobacterial lipoarabinomannan and rescue by an 1alpha,25-dihydroxyvitamin D3-phosphoinositide 3-kinase pathway. J Cell Sci 2004; 117:2131-40. [PMID: 15090599 DOI: 10.1242/jcs.01072] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrophage cell membranes were labeled with PKH26 and subsequently incubated with latex beads to generate phagosomes surrounded by a red-fluorescent membrane suitable for flow cytometry. Following cell disruption and partial purification of phagosomes, these vesicles were readily distinguished from both cell debris and free beads released from disrupted vacuoles. Flow cytometry analysis of phagosomes stained with specific mAbs and FITC-labeled secondary antibodies showed progressive acquisition of both Rab7 and LAMP-1 consistent with movement along the endocytic pathway. Alternatively, macrophages were preloaded with the lysosomal tracer FITC-dextran before membrane labeling with PKH and incubation with latex beads. Phagosome-lysosome fusion was then quantified on the basis of the colocalization of red and green signals. Using these flow cytometry-based systems, we showed that co-internalization of beads with lysates of Mycobacterium tuberculosis, but not lysates from the nonpathogenic organism Mycobacterium smegmatis, markedly decreased phagosome acquisition of Rab7 and LAMP-1 and vesicle fusion with FITC-dextran-loaded lysosomes. Inhibition of phagolysosome fusion could be attributed, at least in part, to the mycobacterial cell wall glycolipid lipoarabinomannan, and further analysis showed complete rescue of phagosome maturation when cells were pretreated with vitamin D3 before exposure to lipoarabinomannan. Moreover, the ability of vitamin D3 to reverse the phenotype of phagosomes in the presence of the glycolipid was completely abrogated by LY-294002, suggesting that vitamin D3 promotes phagolysosome fusion via a phosphoinositide 3-kinase signaling pathway. These findings establish a robust platform technology based on labeling of phagocyte cell membranes and flow cytometry capable of supporting broad-based screens to identify microbial and other bioactive compounds that influence phagosome biology.
Collapse
Affiliation(s)
- Zakaria Hmama
- Division of Infectious Diseases, Department of Medicine, The University of British Columbia and Vancouver Hospital Health Sciences Center, D452-HP, 2733 Heather Street, Vancouver, BC, V5Z 3J5 Canada.
| | | | | | | | | | | |
Collapse
|
89
|
Böhmer RM. IL-3-Dependent Early Erythropoiesis Is Stimulated by Autocrine Transforming Growth Factor Beta. Stem Cells 2004; 22:216-24. [PMID: 14990860 DOI: 10.1634/stemcells.22-2-216] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Autocrine/paracrine transforming growth factor beta (TGF-beta) is an important regulator of stem cell quiescence and generally suppresses stem cell proliferation. However, we show here that during the first few days of an erythroid cell culture from adult blood stem cells, the presence of neutralizing antibodies against TGF-beta had a suppressive effect on subsequent erythropoiesis, indicating a stimulatory action of autocrine TGF-beta. The suppression occured in the form of a delay in erythroblast proliferation rather than a reduction in final erythroid colony numbers. The inhibitory effect of anti-TGF-beta occured in the presence of interleukin-3 (IL-3) but not in cultures with only stem cell factor and erythropoietin. Erythroblasts expressing gamma-globin (gamma+) were more strongly suppressed than erythroblasts expressing only beta-globin (gamma-beta+), so that stem cell treatment with anti-TGF-beta caused a decrease in the proportion of gamma+ cells. Anti-TGF-beta had an inhibitory effect on erythropoiesis only when administered during the first 4 days of culture, that is, before the onset of globin expression and dependence on erythropoietin. The decreasing effect of anti-TGF-beta with delayed addition coincided with a decreasing dependence on IL-3. CD133+ stem cells were more strongly suppressed by anti-TGF-beta than the complementary CD133-CD34+ stem cells, and the latter were also much less dependent on IL-3. The treatment of very early stem cell cultures with a pulse of added TGF-beta1 in the presence of IL-3 increased the subsequent proliferation of erythroblasts. Taken together, the data suggest that IL-3-driven early erythropoiesis from immature peripheral blood stem cells is stimulated by autocrine TGF-beta.
Collapse
|
90
|
Boiret N, Rapatel C, Boisgard S, Charrier S, Tchirkov A, Bresson C, Camilleri L, Berger J, Guillouard L, Guérin JJ, Pigeon P, Chassagne J, Berger MG. CD34+CDw90(Thy-1)+ subset colocated with mesenchymal progenitors in human normal bone marrow hematon units is enriched in colony-forming unit megakaryocytes and long-term culture-initiating cells. Exp Hematol 2004; 31:1275-83. [PMID: 14662335 DOI: 10.1016/j.exphem.2003.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The progress made in the supportive care of allografts and the identification of mesenchymal stem cells in adult human bone marrow (BM) has prompted renewed interest in the use of BM as a form of cell therapy. With the aim of optimizing the collection of BM cells, we evaluated the hematopoietic and mesenchymal immature cell contents of BM hematon units (HUs), which usually are eliminated during graft processing. MATERIALS AND METHODS Hematopoietic CD34+ progenitors from HU and buffy coat (BC) compartments were characterized in short-term culture. The sorted CD34+CDw90(Thy-1)+ primitive subset was assessed in colony-forming cell (CFC) and long-term culture-initiating cell (LTC-IC) assays, then further characterized by the expression of additional antigens. In parallel, we evaluated the colony-forming unit fibroblast (CFU-F) number and phenotyped the fresh adherent (D1-3) cells. RESULTS The plating efficiencies of CD34+ cells derived from HU and BC were identical. However, the HU CD34+CDw90(Thy-1)+ subset was enriched in colony-forming unit megakaryocyte (2.3x), LTC-IC (4.6x), and cells coexpressing CD105 (5x). We found a higher frequency of CFU-F (4.7x), considered to be the mesenchymal stem cell-containing population, correlated with an enrichment in fresh adherent (CD45/GPA)-CD14- cells. CONCLUSIONS We show for the first time that functional properties of the CD34+CDw90+ subset are related to its in vivo location in HU, which may represent the BM mesenchymal reserve compartment. The location in HU of 35.6%, 59.1%, and 58.7% of CD34+ cells, CD34+CDw90+ LTC-IC, and CFU-F, respectively, justifies the development of a procedure to collect them in order to reduce the therapeutic BM volume.
Collapse
Affiliation(s)
- Nathalie Boiret
- Hématologie Biologique, U.F. de Biologie et Caractérisation Cellulaires, Hématologie, Faculté de Médecine et de Pharmacie, 28 place Henri Dunant-BP 38, 63001 Clermont-Ferrand Cedex 1, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Larsson J, Blank U, Helgadottir H, Björnsson JM, Ehinger M, Goumans MJ, Fan X, Levéen P, Karlsson S. TGF-beta signaling-deficient hematopoietic stem cells have normal self-renewal and regenerative ability in vivo despite increased proliferative capacity in vitro. Blood 2003; 102:3129-35. [PMID: 12842983 DOI: 10.1182/blood-2003-04-1300] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Studies in vitro implicate transforming growth factor beta (TGF-beta) as a key regulator of hematopoiesis with potent inhibitory effects on progenitor and stem cell proliferation. In vivo studies have been hampered by early lethality of knock-out mice for TGF-beta isoforms and the receptors. To directly assess the role of TGF-beta signaling for hematopoiesis and hematopoietic stem cell (HSC) function in vivo, we generated a conditional knock-out model in which a disruption of the TGF-beta type I receptor (T beta RI) gene was induced in adult mice. HSCs from induced mice showed increased proliferation recruitment when cultured as single cells under low stimulatory conditions in vitro, consistent with an inhibitory role of TGF-beta in HSC proliferation. However, induced T beta RI null mice show normal in vivo hematopoiesis with normal numbers and differentiation ability of hematopoietic progenitor cells. Furthermore HSCs from T beta RI null mice exhibit a normal cell cycle distribution and do not differ in their ability long term to repopulate primary and secondary recipient mice following bone marrow transplantation. These findings challenge the classical view that TGF-beta is an essential negative regulator of hematopoietic stem cells under physiologic conditions in vivo.
Collapse
Affiliation(s)
- Jonas Larsson
- Department of Molecular Medicine and Gene Therapy, Institute of Laboratory Medicine, Lund University Hospital, BMC A12, 221 84 Lund, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Fortunel NO, Hatzfeld JA, Rosemary PA, Ferraris C, Monier MN, Haydont V, Longuet J, Brethon B, Lim B, Castiel I, Schmidt R, Hatzfeld A. Long-term expansion of human functional epidermal precursor cells: promotion of extensive amplification by low TGF-beta1 concentrations. J Cell Sci 2003; 116:4043-52. [PMID: 12953061 DOI: 10.1242/jcs.00702] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have previously introduced the concept of high proliferative potential-quiescent (HPP-Q) cells to refer to primitive human hematopoietic progenitors, on which transforming growth factor-beta1 (TGF-beta1) exerts a pleiotropic effect. TGF-beta1 confers to these slow-dividing cells a mitogenic receptor(low) phenotype and maintains immature properties by preventing differentiation and apoptosis. However, the effect of TGF-beta1 on long-term expansion has not yet been clearly demonstrated. Here, we describe the characterization of a human skin keratinocyte subpopulation, highly enriched for primitive epidermal precursors, on the basis of high adhesion capacity (Adh+++) and low expression of the epidermal growth factor receptor (Adh+++EGF-Rlow). In our standard culture condition without feeder cells, the mean estimated output for cells from an unfractionated population of primary foreskin keratinocytes was 10(7)-10(8), increasing to 10(12)-10(13) in cultures initiated with selected Adh+++EGF-Rlow precursors. Characterization of these cells revealed a hitherto unknown property of TGF-beta1: its addition at a very low concentration (10 pg/ml) in long-term cultures induces a very significant additional increase of expansion. In this optimized system, outputs obtained in cultures initiated with Adh+++EGF-Rlow cells repeatedly reached 10(16)-10(17) ( approximately 60 population doublings, approximately 4 x 10(18) keratinocytes produced per clonogenic cell present in the initial population). At the molecular level, this effect is associated with an increase in Smad1, Smad2 and Smad3 phosphorylation and an increase in alpha6 and beta1 integrin expression. No such effect could be observed on mature keratinocytes with low adhesion capacity (Adh-/+). We finally demonstrated that the progeny of Adh+++EGF-Rlow precursors after long-term expansion is still capable of generating a pluristratified epidermis in a model for skin reconstruction. In conclusion, after further characterizing the phenotype of primitive epidermal precursors, we demonstrated a new function of TGF-beta1, which is to promote undifferentiated keratinocyte amplification.
Collapse
Affiliation(s)
- Nicolas O Fortunel
- Laboratoire de Biologie des Cellules Souches Humaines, CNRS-UPR 9045, Institut André Lwoff, 94800 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Kim SJ, Letterio J. Transforming growth factor-beta signaling in normal and malignant hematopoiesis. Leukemia 2003; 17:1731-7. [PMID: 12970772 DOI: 10.1038/sj.leu.2403069] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Transforming growth factor-beta (TGF-beta) is perhaps the most potent endogenous negative regulator of hematopoiesis. The intracellular signaling events mediating the effects of TGF-beta are multiple, involving extensive crosstalk between Smad-dependent and MAP-kinase-dependent pathways. We are only beginning to understand the importance of the balance between these cascades as a determinant of the response to TGF-beta, and have yet to determine the roles that disruption in TGF-beta signaling pathways might play in leukemogenesis. This review summarizes current knowledge regarding the function of TGF-beta in normal and malignant hematopoiesis. The principal observations made by gene targeting studies in mice are reviewed, with an emphasis on how a disruption of this pathway in vivo can affect blood cell development and immune homeostasis. We overview genetic alterations that lead to impaired TGF-beta signaling in hematopoietic neoplasms, including the suppression of Smad-dependent transcriptional responses by oncoproteins such as Tax and Evi-1, and fusion proteins such as AML1/ETO. We also consider mutations in genes encoding components of the core cell cycle machinery, such as p27(Kip1) and p15(INK4A), and emphasize their impact on the ability of TGF-beta to induce G1 arrest. The implications of these observations are discussed, and opinions regarding important directions for future research on TGF-beta in hematopoiesis are provided.
Collapse
Affiliation(s)
- S-J Kim
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
94
|
Steidl U, Kronenwett R, Martin S, Haas R. Molecular biology of hematopoietic stem cells. VITAMINS AND HORMONES 2003; 66:1-28. [PMID: 12852251 DOI: 10.1016/s0083-6729(03)01001-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human CD34+ hematopoietic stem and progenitor cells are capable of maintaining a life-long supply of the entire spectrum of blood cells dependent on systemic needs. Recent studies suggest that hematopoietic stem cells are, beyond their hematopoietic potential, able to differentiate into nonhematopoietic cell types, which could open novel avenues in the field of cellular therapy. Here, we concentrate on the molecular biology underlying basic features of hematopoietic stem cells. Immunofluorescence analyses, culture assays, and transplantation models permit an extensive immunological as well as functional characterization of human hematopoietic stem and progenitor cells. New methods such as cDNA array technology have demonstrated that distinct gene expression patterns of transcription factors and cell cycle genes molecularly control self-renewal, differentiation, and proliferation. Furthermore, several adhesion molecules have been shown to play an important role in the regulation of hematopoiesis and stem cell trafficking. Progress has also been made in elucidating molecular mechanisms of stem cell aging that limit replicative potential. Finally, more recent data provide the first molecular basis for a better understanding of transdifferentiation and developmental plasticity of hematopoietic stem cells. These findings could be helpful for non-hematopoietic cell therapeutic approaches.
Collapse
Affiliation(s)
- Ulrich Steidl
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich Heine University of Düsseldorf, D-40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
95
|
Wierenga ATJ, Eggen BJL, Kruijer W, Vellenga E. Proteolytic degradation of Smad4 in extracts of AML blasts. Leuk Res 2002; 26:1105-11. [PMID: 12443883 DOI: 10.1016/s0145-2126(02)00054-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Loss of transforming growth factor (TGF) beta signaling has been implicated in malignant transformation of various tissues. To investigate a potential role of Smad4 in acute myeloid leukemia (AML), the expression of Smad4 was determined in blast cells from AML patients. Western analysis of nuclear extracts of nine AML samples indicated the absence of Smad4 protein in two cases. Smad4 RT-PCR analysis of these cases indicated normal Smad4 mRNA expression, and sequencing of one of these cases revealed no mutations as compared to wild type Smad4. Next, it was investigated whether Smad4 protein from these AML cases was subject to proteolytic degradation by incubating cell extracts of these Smad4-negative AML cells with extracts from COS-7 cells in which a tagged Smad4 was overexpressed. Inhibitor studies indicated that the extracts of AML blasts lacking Smad4 possessed a serine-dependent proteolytic activity, capable of degrading Smad4. Transfection studies using an SBE containing reporter construct as well as RT-PCR analysis of endogenous TGFbeta1 responsive genes indicated that the AML blasts were still able to respond to TGFbeta1, despite the observed degradation of Smad4. It was, therefore, concluded that the degradation of Smad4 was possibly AML subtype-dependent, in vitro phenomenon, occurring during the preparation of nuclear and cellular extracts despite the addition of a protease inhibitor cocktail. The results indicate that care should be taken when interpreting data obtained from protein expression studies using AML blast cells.
Collapse
Affiliation(s)
- Albertus T J Wierenga
- Department of Hematology, University Hospital Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | | | | | |
Collapse
|
96
|
Suzuki M, Harashima A, Okochi A, Yamamoto M, Matsuo Y, Motoda R, Yoshioka T, Orita K. Transforming growth factor-beta(1) augments granulocyte-macrophage colony-stimulating factor-induced proliferation of umbilical cord blood CD34(+) cells with an associated tyrosine phosphorylation of STAT5. Exp Hematol 2002; 30:1132-8. [PMID: 12384143 DOI: 10.1016/s0301-472x(02)00902-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Several investigators have reported that transforming growth factor (TGF)-beta(1) and granulocyte-macrophage colony-stimulating factor (GM-CSF) synergistically support cell proliferation. However, the mechanisms involved have not been elucidated. To clarify the mechanisms of the synergistic action of TGF-beta(1) and GM-CSF, we compared the activation states of STAT5 and mitogen-activated protein kinase in CD34(+) cells and in GM-CSF-dependent hematopoietic cell lines. MATERIALS AND METHODS Human CD34(+) cells and GM-CSF-dependent cell lines (FKH-1, YNH-1, and M-07e) were stimulated with 1.25 ng/mL GM-CSF and/or 0.25 ng/mL TGF-beta(1), and 1.25 ng/mL GM-CSF and/or 0.25 ng/mL, 0.025 ng/mL TGF-beta(1), respectively, and cell proliferation was analyzed by [3H]thymidine uptake. Expression of signal transduction proteins and their phosphorylation states were determined by Western blotting. RESULTS TGF-beta(1) synergistically enhanced the GM-CSF-augmented growth of CD34(+) cells and FKH-1 cells, but inhibited the growth of YNH-1 and M-07e cells. Tyrosine phosphorylation of STAT5 induced by GM-CSF was enhanced by stimulation with the combination of TGF-beta(1) and GM-CSF (TGF-beta(1)/GM-CSF) compared with that induced by GM-CSF alone in CD34(+) cells and FKH-1 cells. However, combinations of TGF-beta(1)/GM-CSF caused inhibition of GM-CSF-induced tyrosine phosphorylation in M-07e cells. No significant difference was observed in mitogen-activated protein kinase activation between CD34(+) cells and FKH-1 cells stimulated with GM-CSF/TGF-beta(1) or GM-CSF alone. CONCLUSIONS Results suggest that TGF-beta(1) may augment GM-CSF-induced proliferation of CD34(+) cells in association with enhanced tyrosine phosphorylation of STAT5. Our data suggest a novel mechanism for the synergistic enhancement of cellular growth induced by the combination of TGF-beta(1) and GM-CSF.
Collapse
Affiliation(s)
- Motoyuki Suzuki
- Fujisaki Cell Center, Hayashibara Biochemical Laboratories, Inc., Okayama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Chen AJ, Zhou G, Juan T, Colicos SM, Cannon JP, Cabriera-Hansen M, Meyer CF, Jurecic R, Copeland NG, Gilbert DJ, Jenkins NA, Fletcher F, Tan TH, Belmont JW. The dual specificity JKAP specifically activates the c-Jun N-terminal kinase pathway. J Biol Chem 2002; 277:36592-601. [PMID: 12138158 DOI: 10.1074/jbc.m200453200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The involvement of dual specificity phosphatases (DSPs) in the mitogen-activated protein kinase (MAPK) signaling has been mostly limited to the inactivation of MAPKs by the direct dephosphorylation of the TXY motif within their activation loop. We report the cloning and characterization of a murine DSP, called JNK pathway-associated phosphatase (JKAP), which lacks the regulatory region present in most other MAP kinase phosphatases (MKPs) and is preferentially expressed in murine Lin(-)Sca-1(+) stem cells. Overexpression of JKAP in human embryonic kidney 293T cells specifically activated c-Jun N-terminal kinase (JNK) but not p38 and extracellular signal-regulated kinase 2. Overexpression of a mutant JKAP, JKAP-C88S, blocked tumor necrosis factor-alpha-induced JNK activation. Targeted gene disruption in murine embryonic stem cells abolished JNK activation by tumor necrosis factor-alpha and transforming growth factor-beta, but not by ultraviolet-C irradiation, indicating that JKAP is necessary for optimal JNK activation. JKAP associated with JNK and MKK7, but not SEK1, in vivo. However, JKAP did not interact with JNK in vitro, suggesting that JKAP exerts its effect on JNK in an indirect manner. Taken together, these studies identify a positive regulator for the JNK pathway and suggest a novel role for DSP in mitogen-activated protein kinase regulation.
Collapse
Affiliation(s)
- Alice J Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Pierelli L, Marone M, Bonanno G, Rutella S, de Ritis D, Mancuso S, Leone G, Scambia G. Transforming growth factor-beta1 causes transcriptional activation of CD34 and preserves haematopoietic stem/progenitor cell activity. Br J Haematol 2002; 118:627-37. [PMID: 12139758 DOI: 10.1046/j.1365-2141.2002.03604.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stem/progenitor cells endowed with in vitro and in vivo haematopoietic activity express the surface protein CD34. Transforming growth factor beta1 (TGF-beta1) is one of the soluble molecules that regulate cell cycle and differentiation of haematopoietic cells, but has pleiotropic activities depending on the state of responsiveness of the target cells. It has previously been shown that TGF-beta1 maintains human CD34+ haematopoietic progenitors in an undifferentiated state, independently of any cell cycle effect. Here, we have shown that TGF-beta1 upregulates the human CD34, an effect that was evident in primary stem/progenitor cells (CD34+lin-) both at the transcriptional and protein levels, and was not associated with any relevant effect on cell growth. The presence of TGF-beta1 influenced differentiation, maintaining primary CD34+/Lin- in an undifferentiated state. This effect was associated with Smad activation and with a dramatic decrease in p38 phosphorylation. Moreover, blocking p38 phosphorylation by the SB202190 inhibitor increased CD34 RNA levels but did not enhance CD34 protein expression in CD34+/Lin- cells, suggesting that modulation of multiple signalling pathways is necessary to reproduce TGF-beta1 effects. These data establish the role that TGF-beta1 has in the modulation of the CD34 stem/progenitor protein and stem/progenitor functions, providing important clues for understanding haematopoietic development and a potential tool for the modulation of human haematopoiesis.
Collapse
Affiliation(s)
- Luca Pierelli
- Istituto di Ematologia, Dipartimento per la Salute della Donna e della Vita Nascente, Universitá Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Norol F, Drouet M, Pflumio F, Léonardi M, Mourcin F, Debili N, Job A, Vainchenker W, Kuentz M, Hérodin F. Ex vivo expansion marginally amplifies repopulating cells from baboon peripheral blood mobilized CD34+ cells. Br J Haematol 2002; 117:924-34. [PMID: 12060132 DOI: 10.1046/j.1365-2141.2002.03531.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ability of ex vivo expansion to increase the long-term repopulating capacity of a graft is still unknown. One problem is the most reliable way to quantify transplantable cells. We addressed this point in a baboon model based on autologous transplantation of serial limiting doses of non-manipulated or ex vivo-expanded mobilized CD34+ cells and determined the threshold doses of non-manipulated and expanded cells which supported long-term multilineage engraftment. In the expansion group, CD34+ cells were cultured for 6 d with a combination of early acting cytokines (Flt3-ligand, stem cell factor, thrombopoietin and interleukin 3). Grafted cells were characterized by their surface antigens and biological properties [semisolid assays, long-term culture-initiating cells (LTC-IC) and non-obese diabetic severe combined immunodeficient reconstituting cells (SRC)]. Animals were followed for at least 12 months post transplantation. The expansion protocol yielded 12.3-fold, 16.9-fold, 3.7-fold, 3.5-fold and 2.2-fold increases in CD34+ cells, granulocyte-macrophage colony-forming units (CFU-GM), megakaryocyte CFU (CFU-MK), LTC-IC and SRC respectively. It induced a modest increase in the long term reconstitutive ability of the graft; the threshold value for long-term engraftment was 0.5 x 10(6)/kg CD34+ cells in the control group and 0.3 x 10(6)/kg CD34+ cells in the expansion group, although one animal in this latter group remained hypoplastic. Frequencies of SRC had a high predictive value of long-term engraftment (r > 0.80). The main advantage of the protocol was the acceleration of granulocyte recovery, achieved at the different doses tested. In conclusion, these experiments suggest that this ex vivo expansion protocol marginally amplifies long-term reconstituting cells.
Collapse
Affiliation(s)
- Françoise Norol
- INSERM U 362, Institut Gustave Roussy, PR1, 39 rue Camille Desmoulins, 94805-Villejuif, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Scandura JM, Boccuni P, Cammenga J, Nimer SD. Transcription factor fusions in acute leukemia: variations on a theme. Oncogene 2002; 21:3422-44. [PMID: 12032780 DOI: 10.1038/sj.onc.1205315] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The leukemia-associated fusion proteins share several structural or functional similarities, suggesting that they may impart a leukemic phenotype through common modes of transcriptional dysregulation. The fusion proteins generated by these translocations usually contain a DNA-binding domain, domains responsible for homo- or hetero-dimerization, and domains that interact with proteins involved in chromatin remodeling (e.g., co-repressor molecules or co-activator molecules). It is these shared features that constitute the 'variations on the theme' that underling the aberrant growth and differentiation that is the hallmark of acute leukemia cells.
Collapse
Affiliation(s)
- Joseph M Scandura
- Laboratory of Molecular Aspects of Hematopoiesis, Sloan-Kettering Institute Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|