51
|
Kadoya T, Khurana A, Tcherpakov M, Bromberg KD, Didier C, Broday L, Asahara T, Bhoumik A, Ronai Z. JAMP, a Jun N-terminal kinase 1 (JNK1)-associated membrane protein, regulates duration of JNK activity. Mol Cell Biol 2005; 25:8619-30. [PMID: 16166642 PMCID: PMC1265750 DOI: 10.1128/mcb.25.19.8619-8630.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the identification and characterization of JAMP (JNK1 [Jun N-terminal kinase 1]-associated membrane protein), a predicted seven-transmembrane protein that is localized primarily within the plasma membrane and associates with JNK1 through its C-terminal domain. JAMP association with JNK1 outcompetes JNK1 association with mitogen-activated protein kinase phosphatase 5, resulting in increased and prolonged JNK1 activity following stress. Elevated expression of JAMP following UV or tunicamycin treatment results in sustained JNK activity and a higher level of JNK-dependent apoptosis. Inhibition of JAMP expression by RNA interference reduces the degree and duration of JNK activation and concomitantly the level of stress-induced apoptosis. Through its regulation of JNK1 activity, JAMP emerges as a membrane-anchored regulator of the duration of JNK1 activity in response to diverse stress stimuli.
Collapse
Affiliation(s)
- Takayuki Kadoya
- Signal Transduction Program, The Burnham Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Kawasaki T, Nam J, Boyes DC, Holt BF, Hubert DA, Wiig A, Dangl JL. A duplicated pair of Arabidopsis RING-finger E3 ligases contribute to the RPM1- and RPS2-mediated hypersensitive response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:258-70. [PMID: 16212605 DOI: 10.1111/j.1365-313x.2005.02525.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Arabidopsis RPM1 protein confers resistance to disease caused by Pseudomonas syringae strains delivering either the AvrRpm1 or AvrB type III effector proteins into host cells. We characterized two closely related RPM1-interacting proteins, RIN2 and RIN3. RIN2 and RIN3 encode RING-finger type ubiquitin ligases with six apparent transmembrane domains and an ubiquitin-binding CUE domain. RIN2 and RIN3 are orthologs of the mammalian autocrine motility factor receptor, a cytokine receptor localized in both plasma membrane caveolae and the endoplasmic reticulum. RIN2 is predominantly localized to the plasma membrane, as are RPM1 and RPS2. The C-terminal regions of RIN2 and RIN3, including the CUE domain, interact strongly with an RPM1 N-terminal fragment and weakly with a similar domain from the Arabidopsis RPS2 protein. RIN2 and RIN3 can dimerize through their C-terminal regions. The RING-finger domains of RIN2 and RIN3 encode ubiquitin ligases. Inoculation with P. syringae DC3000(avrRpm1) or P. syringae DC3000(avrRpt2) induces differential decreases of RIN2 mobility in SDS-PAGE and disappearance of the majority of RIN2. A rin2 rin3 double mutant expresses diminished RPM1- and RPS2-dependent hypersensitive response (HR), but no alteration of pathogen growth. Thus, the RIN2/RIN3 RING E3 ligases apparently act on a substrate that regulates RPM1- and RPS2-dependent HR.
Collapse
Affiliation(s)
- Tsutomu Kawasaki
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Katoh S, Tsunoda Y, Murata K, Minami E, Katoh E. Active site residues and amino acid specificity of the ubiquitin carrier protein-binding RING-H2 finger domain. J Biol Chem 2005; 280:41015-24. [PMID: 16186120 DOI: 10.1074/jbc.m411127200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
EL5 is a rice ubiquitin-protein isopeptide ligase (E3) containing a RING-H2 finger domain that interacts with Oryza sativa (Os) UBC5b, a rice ubiquitin carrier protein. We introduced point mutations into the EL5 RING-H2 finger so that residues that functionally interact with OsUBC5b could be identified when assayed for ubiquitination activity in vitro. The residue positions were selected based on the results of an EL5 RING-H2 finger/OsUBC5b NMR titration experiment. These RING-H2 finger residues form or are adjacent to a shallow groove that is recognized by OsUBC5b. The E3 activity of EL5 is shown to be dependent on a Trp located at the center of the groove. We classified rice RING fingers according to the type of metal-chelating motif, i.e. RING-H2 or RING-HC, and according to the presence or absence of a conserved EL5-like Trp. We discuss the probable relationship between E3 activity and the conserved Trp.
Collapse
Affiliation(s)
- Shizue Katoh
- Biochemistry Department, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | |
Collapse
|
54
|
Zhang Y, Higashide W, Dai S, Sherman DM, Zhou D. Recognition and ubiquitination of Salmonella type III effector SopA by a ubiquitin E3 ligase, HsRMA1. J Biol Chem 2005; 280:38682-8. [PMID: 16176924 DOI: 10.1074/jbc.m506309200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Salmonella translocate bacterial effectors into host cells to confer bacterial entry and survival. It is not known how the host cells cope with the influx of these effectors. We report here that the Salmonella effector, SopA, interacts with host HsRMA1, a ubiquitin E3 ligase with a previously unknown function. SopA is ubiquitinated and degraded by the HsRMA1-mediated ubiquitination pathway. A sopA mutant escapes out of the Salmonella-containing vacuoles less frequently to the cytosol than wild type Salmonella in HeLa cells in a HsRMA1-dependent manner. Our data suggest that efficient bacterial escape into the cytosol of epithelial cells requires HsRMA1-mediated SopA ubiquitination and contributes to Salmonella-induced enteropathogenicity.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
55
|
Matsuda N, Azuma K, Saijo M, Iemura SI, Hioki Y, Natsume T, Chiba T, Tanaka K, Tanaka K. DDB2, the xeroderma pigmentosum group E gene product, is directly ubiquitylated by Cullin 4A-based ubiquitin ligase complex. DNA Repair (Amst) 2005; 4:537-45. [PMID: 15811626 DOI: 10.1016/j.dnarep.2004.12.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2004] [Indexed: 11/27/2022]
Abstract
Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to UV irradiation and high incidence of skin cancer caused by inherited defects in DNA repair. Mutational malfunction of damaged-DNA binding protein 2 (DDB2) causes the XP complementation group E (XP-E). DDB2 together with DDB1 comprises a heterodimer called DDB complex, which is involved in damaged-DNA binding and nucleotide excision repair. Interestingly, by screening for a cellular protein(s) that interacts with Cullin 4A (Cul4A), a key component of the ubiquitin ligase complex, we identified DDB1. Immunoprecipitation confirmed that Cul4A interacts with DDB1 and also associates with DDB2. To date, it has been reported that DDB2 is rapidly degraded after UV irradiation and that overproduction of Cul4A stimulates the ubiquitylation of DDB2 in the cells. However, as biochemical analysis using pure Cul4A-containing E3 is missing, it is still unknown whether the Cul4A complex directly ubiquitylates DDB2 or not. We thus purified the Cul4A-containing E3 complex to near homogeneity and attempted to ubiquitylate DDB2 in vitro. The ubiquitylation of DDB2 was reconstituted using this pure E3 complex, indicating that DDB-Cul4A E3 complex in itself can ubiquitylate DDB2 directly. We also showed that an amino acid substitution, K244E, in DDB2 derived from a XP-E patient did not affect its ubiquitylation.
Collapse
Affiliation(s)
- Noriyuki Matsuda
- Department of Molecular Oncology, Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Mastrangelo AM, Belloni S, Barilli S, Ruperti B, Di Fonzo N, Stanca AM, Cattivelli L. Low temperature promotes intron retention in two e-cor genes of durum wheat. PLANTA 2005; 221:705-15. [PMID: 15666155 DOI: 10.1007/s00425-004-1475-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 11/13/2004] [Indexed: 05/03/2023]
Abstract
Following the screening of a suppression subtractive library developed from durum wheat plants exposed to low temperature for 6 h, two early cold-regulated (e-cor) genes have been isolated. These genes, coding putatively for a ribokinase (7H8) and a C3H2C3 RING-finger protein (6G2), were characterized by the stress-induced retention of a subset of introns in the mature mRNA. This feature was dependent on cold for 7H8 and on cold and dehydration for 6G2. When other genes, such as the stress-related gene WCOR410c, coding for a dehydrin (one intron), or a gene coding for a putative ATP binding cassette transporter (16 introns) were analyzed, no cold-dependent intron retention was observed. Cold-induced intron retention was not observed in mutants defective in the chloroplast development; nevertheless treatment with cycloheximide in the absence of cold was able to promote intron retention for the 7H8 e-cor gene. These results suggest that the cold-induced intron retention reflects the response of the spliceosoma to specific environmental signals transduced to the splicing protein factors through a chloroplast-dependent pathway. Notably, when the 7H8 Arabidopsis orthologous gene was analyzed, no stress induction in terms of mRNA abundance and no cold-dependent intron retention was detected. Otherwise, 6G2 Arabidopsis homologous sequences sharing the same genomic structure of the durum wheat 6G2 showed a similar intron retention event although not strictly dependent on stress.
Collapse
|
57
|
Jang JH. FIGC, a novel FGF-induced ubiquitin-protein ligase in gastric cancers. FEBS Lett 2005; 578:21-5. [PMID: 15581609 DOI: 10.1016/j.febslet.2004.10.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Accepted: 10/11/2004] [Indexed: 11/24/2022]
Abstract
We have previously shown that fibroblast growth factor receptor 2 (FGFR2) plays an important role in gastric carcinogenesis. In this study, we have used a differential display approach to identify basic fibroblast growth factor (bFGF)-inducible genes in gastric cancer cells. Here, we report that one of these genes is predicted to encode a RING finger protein, designated FIGC. The FIGC gene was found to encode a polypeptide of 381 amino acids with a novel RING finger module at the NH2-terminus and the COOH-terminal proline-rich region. Using an in vitro ubiquitination assay with recombinant protein, we demonstrate that FIGC has intrinsic E3 ubiquitin ligase activity and promotes ubiquitination. Our data indicate that FIGC upregulation in response to bFGF in gastric cancer might be implicated in carcinogenesis through dysregulation of growth modulator.
Collapse
Affiliation(s)
- Jun-Hyeog Jang
- Department of Biochemistry, Inha University College of Medicine, Jung Gu, Incheon 400-712, Republic of Korea.
| |
Collapse
|
58
|
Vichi A, Payne DM, Pacheco-Rodriguez G, Moss J, Vaughan M. E3 ubiquitin ligase activity of the trifunctional ARD1 (ADP-ribosylation factor domain protein 1). Proc Natl Acad Sci U S A 2005; 102:1945-50. [PMID: 15684077 PMCID: PMC548593 DOI: 10.1073/pnas.0409800102] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein ubiquitinylation plays a key role in many important cellular processes. Ubiquitinylation requires the E1 ubiquitin-activating enzyme, an E2 ubiquitin-conjugating enzyme, and, frequently, a substrate-specific E3 ubiquitin-protein ligase. In one class of E3 ubiquitin ligases, the catalytic domain contains a zinc-binding RING finger motif. ARD1 (ADP-ribosylation factor domain protein 1), with a RING finger domain in the N-terminal region, two predicted B-Boxes, and a coiled-coil protein interaction motif immediately preceding an ADP-ribosylation factor domain at the C terminus, belongs to the TRIM (Tripartite motif) or RBCC (RING, B-Box, coiled-coil) family. The region containing the B-Boxes and the coiled-coil motif acts as a GTPase-activating protein for the ADP-ribosylation factor domain of ARD1. We report here that full-length ARD1 or the RING finger domain (residues 1-110) produced polyubiquitinylated proteins in vitro in the presence of mammalian E1, an E2 enzyme (UbcH6 or UbcH5a, -5b, or -5c), ATP, and ubiquitin. Deletion of the RING region or point mutations within the RING sequence abolished ARD1 E3 ligase activity. All data are consistent with a potential function for ARD1 as an E3 ubiquitin ligase in cells.
Collapse
Affiliation(s)
- Alessandro Vichi
- Pulmonary-Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1434, USA.
| | | | | | | | | |
Collapse
|
59
|
Stone SL, Hauksdóttir H, Troy A, Herschleb J, Kraft E, Callis J. Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. PLANT PHYSIOLOGY 2005; 137:13-30. [PMID: 15644464 PMCID: PMC548835 DOI: 10.1104/pp.104.052423] [Citation(s) in RCA: 441] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 11/02/2004] [Accepted: 11/10/2004] [Indexed: 05/17/2023]
Abstract
Approximately 5% of the Arabidopsis (Arabidopsis thaliana) proteome is predicted to be involved in the ubiquitination/26S proteasome pathway. The majority of these predicted proteins have identity to conserved domains found in E3 ligases, of which there are multiple types. The RING-type E3 is characterized by the presence of a cysteine-rich domain that coordinates two zinc atoms. Database searches followed by extensive manual curation identified 469 predicted Arabidopsis RING domain-containing proteins. In addition to the two canonical RING types (C3H2C3 or C3HC4), additional types of modified RING domains, named RING-v, RING-D, RING-S/T, RING-G, and RING-C2, were identified. The modified RINGs differ in either the spacing between metal ligands or have substitutions at one or more of the metal ligand positions. The majority of the canonical and modified RING domain-containing proteins analyzed were active in in vitro ubiquitination assays, catalyzing polyubiquitination with the E2 AtUBC8. To help identity regions of the proteins that may interact with substrates, domain analyses of the amino acids outside the RING domain classified RING proteins into 30 different groups. Several characterized protein-protein interaction domains were identified, as well as additional conserved domains not described previously. The two largest classes of RING proteins contain either no identifiable domain or a transmembrane domain. The presence of such a large and diverse number of RING domain-containing proteins that function as ubiquitin E3 ligases suggests that target-specific proteolysis by these E3 ligases is a complex and important part of cellular regulation in Arabidopsis.
Collapse
Affiliation(s)
- Sophia L Stone
- Section of Molecular and Cellular Biology, Division of Biological Sciences , University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
60
|
Ishigaki S, Hishikawa N, Niwa JI, Iemura SI, Natsume T, Hori S, Kakizuka A, Tanaka K, Sobue G. Physical and Functional Interaction between Dorfin and Valosin-containing Protein That Are Colocalized in Ubiquitylated Inclusions in Neurodegenerative Disorders. J Biol Chem 2004; 279:51376-85. [PMID: 15456787 DOI: 10.1074/jbc.m406683200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dorfin, a RING-IBR type ubiquitin ligase (E3), can ubiquitylate mutant superoxide dismutase 1, the causative gene of familial amyotrophic lateral sclerosis (ALS). Dorfin is located in ubiquitylated inclusions (UBIs) in various neurodegenerative disorders, such as ALS and Parkinson's disease (PD). Here we report that Valosin-containing protein (VCP) directly binds to Dorfin and that VCP ATPase activity profoundly contributes to the E3 activity of Dorfin. High through-put analysis using mass spectrometry identified VCP as a candidate of Dorfin-associated protein. Glycerol gradient centrifugation analysis showed that endogenous Dorfin consisted of a 400-600-kDa complex and was co-immunoprecipitated with endogenous VCP. In vitro experiments showed that Dorfin interacted directly with VCP through its C-terminal region. These two proteins were colocalized in aggresomes in HEK293 cells and UBIs in the affected neurons of ALS and PD. VCP(K524A), a dominant negative form of VCP, reduced the E3 activity of Dorfin against mutant superoxide dismutase 1, whereas it had no effect on the autoubiquitylation of Parkin. Our results indicate that VCPs functionally regulate Dorfin through direct interaction and that their functional interplay may be related to the process of UBI formation in neurodegenerative disorders, such as ALS or PD.
Collapse
Affiliation(s)
- Shinsuke Ishigaki
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8500, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Lehner B, Semple JI, Brown SE, Counsell D, Campbell RD, Sanderson CM. Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region. Genomics 2004; 83:153-67. [PMID: 14667819 DOI: 10.1016/s0888-7543(03)00235-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
High-throughput (HTP) protein-interaction assays, such as the yeast two-hybrid (Y2H) system, are enormously useful in predicting the functions of novel gene-products. HTP-Y2H screens typically do not include all of the reconfirmation and specificity tests used in small-scale studies, but the effects of omitting these steps have not been assessed. We performed HTP-Y2H screens that included all standard controls, using the predicted intracellular proteins expressed from the human MHC class III region, a region of the genome associated with many autoimmune diseases. The 91 novel interactions identified provide insight into the potential functions of many MHC genes, including C6orf47, LSM2, NELF-E (RDBP), DOM3Z, STK19, PBX2, RNF5, UAP56 (BAT1), ATP6G2, LST1/f, BAT2, Scythe (BAT3), CSNK2B, BAT5, and CLIC1. Surprisingly, our results predict that 1/3 of the proteins may have a role in mRNA processing, which suggests clustering of functionally related genes within the human genome. Most importantly, our analysis shows that omitting standard controls in HTP-Y2H screens could significantly compromise data quality.
Collapse
Affiliation(s)
- Ben Lehner
- Functional Genomics Group, MRC Rosalind Franklin Centre for Genomics Research, Hinxton, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
62
|
Didier C, Broday L, Bhoumik A, Israeli S, Takahashi S, Nakayama K, Thomas SM, Turner CE, Henderson S, Sabe H, Ronai Z. RNF5, a RING finger protein that regulates cell motility by targeting paxillin ubiquitination and altered localization. Mol Cell Biol 2003; 23:5331-45. [PMID: 12861019 PMCID: PMC165736 DOI: 10.1128/mcb.23.15.5331-5345.2003] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNF5 is a RING finger protein found to be important in the growth and development of Caenorhabditis elegans. The search for RNF5-associated proteins via a yeast two-hybrid screen identified a LIM-containing protein in C. elegans which shows homology with human paxillin. Here we demonstrate that the human homologue of RNF5 associates with the amino-terminal domain of paxillin, resulting in its ubiquitination. RNF5 requires intact RING and C-terminal domains to mediate paxillin ubiquitination. Whereas RNF5 mediates efficient ubiquitination of paxillin in vivo, protein extracts were required for in vitro ubiquitination, suggesting that additional modifications and/or an associated E3 ligase assist RNF5 targeting of paxillin ubiquitination. Mutant Ubc13 efficiently inhibits RNF5 ubiquitination, suggesting that RNF5 generates polychain ubiquitin of the K63 topology. Expression of RNF5 increases the cytoplasmic distribution of paxillin while decreasing its localization within focal adhesions, where it is primarily seen under normal growth. Concomitantly, RNF5 expression results in inhibition of cell motility. Via targeting of paxillin ubiquitination, which alters its localization, RNF5 emerges as a novel regulator of cell motility.
Collapse
Affiliation(s)
- Christine Didier
- Ruttenberg Cancer Center, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Araki K, Kawamura M, Suzuki T, Matsuda N, Kanbe D, Ishii K, Ichikawa T, Kumanishi T, Chiba T, Tanaka K, Nawa H. A palmitoylated RING finger ubiquitin ligase and its homologue in the brain membranes. J Neurochem 2003; 86:749-62. [PMID: 12859687 DOI: 10.1046/j.1471-4159.2003.01875.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ubiquitin (Ub) ligation is implicated in active protein metabolism and subcellular trafficking and its impairment is involved in various neurologic diseases. In rat brain, we identified two novel Ub ligases, Momo and Sakura, carrying double zinc finger motif and RING finger domain. Momo expression is enriched in the brain gray matter and testis, and Sakura expression is more widely detected in the brain white matter as well as in many peripheral organs. Both proteins associate with the cell membranes of neuronal and/or glial cells. We examined their Ub ligase activity in vivo and in vitro using viral expression vectors carrying myc-tagged Momo and Sakura. Overexpression of either Momo or Sakura in mixed cortical cultures increased total polyubiquitination levels. In vitro ubiquitination assay revealed that the combination of Momo and UbcH4 and H5c, or of Sakura and UbcH4, H5c and H6 is required for the reaction. Deletion mutagenesis suggested that the E3 Ub ligase activity of Momo and Sakura depended on their C-terminal domains containing RING finger structure, while their N-terminal domains influenced their membrane association. In agreement, Sakura associating with the membrane was specifically palmitoylated. Although the molecular targets of their Ub ligation remain to be identified, these findings imply a novel function of the palmitoylated E3 Ub ligase(s).
Collapse
Affiliation(s)
- Kazuaki Araki
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Ng CC, Arakawa H, Fukuda S, Kondoh H, Nakamura Y. p53RFP, a p53-inducible RING-finger protein, regulates the stability of p21WAF1. Oncogene 2003; 22:4449-58. [PMID: 12853982 DOI: 10.1038/sj.onc.1206586] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mechanisms by which p53 prevents development of cancer are much more complicated than previously thought. Under normal conditions, p53 is involved in cell-cycle arrest, Q1apoptosis, DNA repair, and inhibition of angiogenesis; it also promotes degradation of proteins through transcriptional regulation of certain target genes. Here we report the isolation of a novel transcriptional target of p53, designated p53RFP (p53-inducible RING-finger protein), whose product has E3 ubiquitin ligase activity. Its expression was negatively correlated to that of p21(WAF1) protein; p53RFP is likely to play a role in the regulation of this protein, probably through interaction with, and ubiquitination of, p21(WAF1). p53RFP appears to represent the second known example, the first being MDM2, of an E3 ubiquitin ligase as a p53 target. Our results further suggest that p53 might regulate the stability of p21(WAF1) through transcriptional regulation of p53RFP, and this feature may represent a novel mechanism for a p53-dependent cell-cycle checkpoint.
Collapse
Affiliation(s)
- Ching-Ching Ng
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
65
|
Fischer T, De Vries L, Meerloo T, Farquhar MG. Promotion of G alpha i3 subunit down-regulation by GIPN, a putative E3 ubiquitin ligase that interacts with RGS-GAIP. Proc Natl Acad Sci U S A 2003; 100:8270-5. [PMID: 12826607 PMCID: PMC166218 DOI: 10.1073/pnas.1432965100] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have isolated an RGS-GAIP interacting protein that links RGS proteins to protein degradation. GIPN (GAIP interacting protein N terminus) is a 38-kDa protein with an N-terminal leucine-rich region, a central RING finger-like domain, and a putative C-terminal transmembrane domain. GIPN binds exclusively to RGS proteins of subfamily A, RGS-GAIP, RGSZ1, and RGSZ2. The N-terminal leucine-rich region of GIPN interacts with the cysteine-rich motif of RGS-GAIP. GIPN mRNA is ubiquitously expressed, and GIPN is found on the plasma membrane of transfected HEK293 cells. Endogenous GIPN is concentrated along the basolateral plasma membrane of proximal and distal tubules in rat kidney, where many G protein-coupled receptors and some G proteins are also located. Two immunoreactive species are found in rat kidney, a 38-kDa cytosolic form and an approximately 94-kDa membrane form. GIPN shows Zn2+- and E1/E2-dependent autoubiquitination in vitro, suggesting that it has E3 ubiquitin ligase activity. Overexpression of GIPN stimulates proteasome-dependent reduction of endogenous G alpha i3 in HEK293 cells and reduces the half-life of overexpressed G alpha i3-YFP. Thus, our findings suggest that GIPN is involved in the degradation of G alpha i3 subunits via the proteasome pathway. RGS-GAIP functions as a bifunctional adaptor that binds to G alpha subunits through its RGS domain and to GIPN through its cysteine string motif.
Collapse
Affiliation(s)
| | | | | | - Marilyn Gist Farquhar
- Department of Cellular and Molecular Medicine, University of California
at San Diego, La Jolla, CA 92093
| |
Collapse
|
66
|
Imai N, Matsuda N, Tanaka K, Nakano A, Matsumoto S, Kang W. Ubiquitin ligase activities of Bombyx mori nucleopolyhedrovirus RING finger proteins. J Virol 2003; 77:923-30. [PMID: 12502808 PMCID: PMC140854 DOI: 10.1128/jvi.77.2.923-930.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of Bombyx mori nucleopolyhedrovirus (BmNPV) is predicted to contain six RING finger proteins: IAP1, ORF35, IAP2, CG30, IE2, and PE38. Several other members of the RING finger family have recently been shown to have the ubiquitin-ligase (E3) activity. We thus examined whether BmNPV RING finger proteins have the E3 activity. In vitro ubiquitination assay with the rabbit reticulocyte lysates and BmNPV RING finger proteins fused with maltose-binding protein (MBP) showed that four of them (IAP2, IE2, PE38, and CG30) were polyubiquitinated in the presence of zinc ion. Furthermore, MBP-IAP2, MBP-IE2, and MBP-PE38 were able to reconstitute ubiquitination activity in cooperation with the Ubc4/5 subfamily of ubiquitin-conjugating enzymes. Mutational analysis also showed that ubiquitination activity of MBP-IAP2, MBP-IE2, and MBP-PE38 were dependent on their RING finger motif. Therefore, these results suggest that IAP2, IE2, and PE38 may function as E3 enzymes during BmNPV infection.
Collapse
Affiliation(s)
- Noriko Imai
- Laboratory of Molecular Entomology and Baculovirology, Wako, Japan
| | | | | | | | | | | |
Collapse
|
67
|
Yu P, Chen Y, Tagle DA, Cai T. PJA1, encoding a RING-H2 finger ubiquitin ligase, is a novel human X chromosome gene abundantly expressed in brain. Genomics 2002; 79:869-74. [PMID: 12036302 DOI: 10.1006/geno.2002.6770] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RING-finger proteins contain cysteine-rich, zinc-binding domains and are involved in the formation of macromolecular scaffolds important for transcriptional repression and ubiquitination. In this study, we have identified a RING-H2 finger gene, PJA1 (for praja-1), from a human brain cDNA library and mapped it to human chromosome Xq12 between markers DXS983 and DXS1216, a region implicated in X-linked mental retardation (MRX). Northern blot analysis indicated a 2.7-kb transcript that was abundantly expressed in the brain, including regions of the cerebellum, cerebral cortex, medulla, occipital pole, frontal lobe, temporal lobe, and putamen. Amino acid sequence analysis of the 71-kDa protein PJA1 showed 52.3% identity to human PJA2 (for praja-2, also known as NEURODAP1/KIAA0438) and also a significant identity to its homologs in rat, mouse, and zebrafish. In vitro binding and immunoprecipitation assays demonstrated that both PJA1 and PJA2 are able to bind the ubiquitin-conjugating enzyme UbcH5B. Moreover, the ubiquitination assay indicated that PJA1 and PJA2 have an E2-dependent E3 ubiquitin ligase activity. Thus our findings demonstrate that PJA1 can be involved in protein ubiquitination in the brain and is a suitable candidate gene for MRX.
Collapse
Affiliation(s)
- Ping Yu
- Structure Biophysics Laboratory, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
68
|
Lechner E, Goloubinoff P, Genschik P, Shen WH. A gene trap Dissociation insertion line, associated with a RING-H2 finger gene, shows tissue specific and developmental regulated expression of the gene in Arabidopsis. Gene 2002; 290:63-71. [PMID: 12062802 DOI: 10.1016/s0378-1119(02)00556-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Real interesting new gene (RING) finger proteins act as E3 ubiquitin-protein ligases and play critical roles in targeting the destruction of proteins of diverse functions in all eukaryotes, ranging from yeast to mammals. Arabidopsis genome contains a large number of genes encoding RING finger proteins. In this report we describe the identification of more than 40 RING-H2 finger proteins that are of small size, not more than 200 amino acids, and contain no other recognizable protein-protein interaction domain(s). We characterize RHA2b, one of these small RING-H2 finger genes. A gene trap line, SGT6304, was identified to contain a Dissociation (Ds) insertion in RHA2b gene. No RHA2b transcript was detected in the homozygous SGT6304 plants. Despite the elimination of RHA2b function, homozygous SGT6304 plants lacked detectable growth or development defects, suggesting functional redundancy of RHA2b with other RING finger genes. Expression of RHA2b was specifically active in vascular tissue and in upper pistil of inflorescence as well as in root tip and shoot apical meristem region. Potential functions of ubiquitin-proteolysis pathway in vascular formation and in fertilization are discussed.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/cytology
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis Proteins/genetics
- Blotting, Northern
- Cells, Cultured
- DNA Transposable Elements/genetics
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Plant/drug effects
- Genome, Plant
- Homozygote
- Indoleacetic Acids/pharmacology
- Leupeptins/pharmacology
- Molecular Sequence Data
- Mutagenesis, Insertional
- Mutation
- Phenotype
- Phylogeny
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Sequence Homology, Amino Acid
- Transcription, Genetic/drug effects
- Zinc Fingers/genetics
Collapse
Affiliation(s)
- Esther Lechner
- Institut de Biologie Moléculaire des Plantes du CNRS, 12, rue du Général Zimmer, Strasbourg, France
| | | | | | | |
Collapse
|
69
|
Hardtke CS, Okamoto H, Stoop-Myer C, Deng XW. Biochemical evidence for ubiquitin ligase activity of the Arabidopsis COP1 interacting protein 8 (CIP8). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 30:385-94. [PMID: 12028569 DOI: 10.1046/j.1365-313x.2002.01298.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Arabidopsis COP1 is a negative regulator of photomorphogenesis, which targets HY5, a positive regulator of photomorphogenesis, for degradation via the proteasome pathway in the absence of light. COP1 and its interactive partner CIP8 both possess RING finger motifs, characteristic of some E3 ubiquitin ligases. Here we show that CIP8 promotes ubiquitin attachment to HY5 in E2-dependent fashion in vitro. CIP8 exhibits a strong interaction with the E2 enzyme AtUBC8 through its N-terminal domain. Phosphorylation of HY5 by casein kinase II requires the beta subunit 2, but does not affect HY5's susceptibility to ubiquitination. The RING domain of CIP8 is required but is not sufficient for ubiquitin ligase activity. Although the RING domain of CIP8 interacts with the RING domain of COP1, addition of recombinant COP1 fails to affect CIP8's ubiquitin ligase activity towards HY5 in vitro. However, recombinant COP1 can pull-down native CIP8 from the extract of dark-grown seedlings, but not from the extract of light-grown seedlings in a column-binding assay, implying a requirement for light-regulated modification in vivo. Our data suggest that CIP8 can form a minimal ubiquitin ligase in co-operation with the E2 enzyme AtUBC8. It is possible that the AtUBC8-CIP8 module might interact with COP1 in vivo, thereby participating in proteasome-mediated degradation of HY5.
Collapse
Affiliation(s)
- Christian S Hardtke
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8104, USA
| | | | | | | |
Collapse
|
70
|
Takai R, Matsuda N, Nakano A, Hasegawa K, Akimoto C, Shibuya N, Minami E. EL5, a rice N-acetylchitooligosaccharide elicitor-responsive RING-H2 finger protein, is a ubiquitin ligase which functions in vitro in co-operation with an elicitor-responsive ubiquitin-conjugating enzyme, OsUBC5b. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 30:447-455. [PMID: 12028574 DOI: 10.1046/j.1365-313x.2002.01299.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
EL5, a rice gene responsive to N-acetylchitooligosaccharide elicitor, encodes a RING-H2 finger protein with structural features common to the plant-specific ATL family. We show that the fusion protein of EL5 with maltose binding protein (MBP) was polyubiquitinated by incubation with ubiquitin, ubiquitin-activating enzyme (E1), and the Ubc4/5 subfamily of the ubiquitin-conjugating enzyme (E2). EL5 possesses the activity to catalyse the transfer of ubiquitin to the MBP moiety, and the RING-H2 finger motif of EL5 is necessary for this activity. Thus, we concluded that EL5 represents a ubiquitin ligase (E3). We also show that two rice E2s (OsUBC5a, OsUBC5b) of the Ubc4/5 subfamily function as E2 which catalyses EL5-mediated ubiquitination, and OsUBC5b was induced by elicitor, as well as EL5. These results strongly suggest that EL5 and OsUBC5b have roles in plant defense response through the turnover of protein(s) via the ubiquitin/proteasome system.
Collapse
Affiliation(s)
- Ryota Takai
- Institute of Applied Biochemistry, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | |
Collapse
|